1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// This file implements a register stacking pass. 12 /// 13 /// This pass reorders instructions to put register uses and defs in an order 14 /// such that they form single-use expression trees. Registers fitting this form 15 /// are then marked as "stackified", meaning references to them are replaced by 16 /// "push" and "pop" from the value stack. 17 /// 18 /// This is primarily a code size optimization, since temporary values on the 19 /// value stack don't need to be named. 20 /// 21 //===----------------------------------------------------------------------===// 22 23 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* 24 #include "WebAssembly.h" 25 #include "WebAssemblyDebugValueManager.h" 26 #include "WebAssemblyMachineFunctionInfo.h" 27 #include "WebAssemblySubtarget.h" 28 #include "WebAssemblyUtilities.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/Analysis/AliasAnalysis.h" 31 #include "llvm/CodeGen/LiveIntervals.h" 32 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/Passes.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/raw_ostream.h" 40 using namespace llvm; 41 42 #define DEBUG_TYPE "wasm-reg-stackify" 43 44 namespace { 45 class WebAssemblyRegStackify final : public MachineFunctionPass { 46 StringRef getPassName() const override { 47 return "WebAssembly Register Stackify"; 48 } 49 50 void getAnalysisUsage(AnalysisUsage &AU) const override { 51 AU.setPreservesCFG(); 52 AU.addRequired<AAResultsWrapperPass>(); 53 AU.addRequired<MachineDominatorTree>(); 54 AU.addRequired<LiveIntervals>(); 55 AU.addPreserved<MachineBlockFrequencyInfo>(); 56 AU.addPreserved<SlotIndexes>(); 57 AU.addPreserved<LiveIntervals>(); 58 AU.addPreservedID(LiveVariablesID); 59 AU.addPreserved<MachineDominatorTree>(); 60 MachineFunctionPass::getAnalysisUsage(AU); 61 } 62 63 bool runOnMachineFunction(MachineFunction &MF) override; 64 65 public: 66 static char ID; // Pass identification, replacement for typeid 67 WebAssemblyRegStackify() : MachineFunctionPass(ID) {} 68 }; 69 } // end anonymous namespace 70 71 char WebAssemblyRegStackify::ID = 0; 72 INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE, 73 "Reorder instructions to use the WebAssembly value stack", 74 false, false) 75 76 FunctionPass *llvm::createWebAssemblyRegStackify() { 77 return new WebAssemblyRegStackify(); 78 } 79 80 // Decorate the given instruction with implicit operands that enforce the 81 // expression stack ordering constraints for an instruction which is on 82 // the expression stack. 83 static void ImposeStackOrdering(MachineInstr *MI) { 84 // Write the opaque VALUE_STACK register. 85 if (!MI->definesRegister(WebAssembly::VALUE_STACK)) 86 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 87 /*isDef=*/true, 88 /*isImp=*/true)); 89 90 // Also read the opaque VALUE_STACK register. 91 if (!MI->readsRegister(WebAssembly::VALUE_STACK)) 92 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 93 /*isDef=*/false, 94 /*isImp=*/true)); 95 } 96 97 // Convert an IMPLICIT_DEF instruction into an instruction which defines 98 // a constant zero value. 99 static void ConvertImplicitDefToConstZero(MachineInstr *MI, 100 MachineRegisterInfo &MRI, 101 const TargetInstrInfo *TII, 102 MachineFunction &MF, 103 LiveIntervals &LIS) { 104 assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF); 105 106 const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg()); 107 if (RegClass == &WebAssembly::I32RegClass) { 108 MI->setDesc(TII->get(WebAssembly::CONST_I32)); 109 MI->addOperand(MachineOperand::CreateImm(0)); 110 } else if (RegClass == &WebAssembly::I64RegClass) { 111 MI->setDesc(TII->get(WebAssembly::CONST_I64)); 112 MI->addOperand(MachineOperand::CreateImm(0)); 113 } else if (RegClass == &WebAssembly::F32RegClass) { 114 MI->setDesc(TII->get(WebAssembly::CONST_F32)); 115 ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue( 116 Type::getFloatTy(MF.getFunction().getContext()))); 117 MI->addOperand(MachineOperand::CreateFPImm(Val)); 118 } else if (RegClass == &WebAssembly::F64RegClass) { 119 MI->setDesc(TII->get(WebAssembly::CONST_F64)); 120 ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue( 121 Type::getDoubleTy(MF.getFunction().getContext()))); 122 MI->addOperand(MachineOperand::CreateFPImm(Val)); 123 } else if (RegClass == &WebAssembly::V128RegClass) { 124 unsigned TempReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 125 MI->setDesc(TII->get(WebAssembly::SPLAT_v4i32)); 126 MI->addOperand(MachineOperand::CreateReg(TempReg, false)); 127 MachineInstr *Const = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 128 TII->get(WebAssembly::CONST_I32), TempReg) 129 .addImm(0); 130 LIS.InsertMachineInstrInMaps(*Const); 131 } else { 132 llvm_unreachable("Unexpected reg class"); 133 } 134 } 135 136 // Determine whether a call to the callee referenced by 137 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side 138 // effects. 139 static void QueryCallee(const MachineInstr &MI, unsigned CalleeOpNo, bool &Read, 140 bool &Write, bool &Effects, bool &StackPointer) { 141 // All calls can use the stack pointer. 142 StackPointer = true; 143 144 const MachineOperand &MO = MI.getOperand(CalleeOpNo); 145 if (MO.isGlobal()) { 146 const Constant *GV = MO.getGlobal(); 147 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) 148 if (!GA->isInterposable()) 149 GV = GA->getAliasee(); 150 151 if (const Function *F = dyn_cast<Function>(GV)) { 152 if (!F->doesNotThrow()) 153 Effects = true; 154 if (F->doesNotAccessMemory()) 155 return; 156 if (F->onlyReadsMemory()) { 157 Read = true; 158 return; 159 } 160 } 161 } 162 163 // Assume the worst. 164 Write = true; 165 Read = true; 166 Effects = true; 167 } 168 169 // Determine whether MI reads memory, writes memory, has side effects, 170 // and/or uses the stack pointer value. 171 static void Query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read, 172 bool &Write, bool &Effects, bool &StackPointer) { 173 assert(!MI.isTerminator()); 174 175 if (MI.isDebugInstr() || MI.isPosition()) 176 return; 177 178 // Check for loads. 179 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA)) 180 Read = true; 181 182 // Check for stores. 183 if (MI.mayStore()) { 184 Write = true; 185 } else if (MI.hasOrderedMemoryRef()) { 186 switch (MI.getOpcode()) { 187 case WebAssembly::DIV_S_I32: 188 case WebAssembly::DIV_S_I64: 189 case WebAssembly::REM_S_I32: 190 case WebAssembly::REM_S_I64: 191 case WebAssembly::DIV_U_I32: 192 case WebAssembly::DIV_U_I64: 193 case WebAssembly::REM_U_I32: 194 case WebAssembly::REM_U_I64: 195 case WebAssembly::I32_TRUNC_S_F32: 196 case WebAssembly::I64_TRUNC_S_F32: 197 case WebAssembly::I32_TRUNC_S_F64: 198 case WebAssembly::I64_TRUNC_S_F64: 199 case WebAssembly::I32_TRUNC_U_F32: 200 case WebAssembly::I64_TRUNC_U_F32: 201 case WebAssembly::I32_TRUNC_U_F64: 202 case WebAssembly::I64_TRUNC_U_F64: 203 // These instruction have hasUnmodeledSideEffects() returning true 204 // because they trap on overflow and invalid so they can't be arbitrarily 205 // moved, however hasOrderedMemoryRef() interprets this plus their lack 206 // of memoperands as having a potential unknown memory reference. 207 break; 208 default: 209 // Record volatile accesses, unless it's a call, as calls are handled 210 // specially below. 211 if (!MI.isCall()) { 212 Write = true; 213 Effects = true; 214 } 215 break; 216 } 217 } 218 219 // Check for side effects. 220 if (MI.hasUnmodeledSideEffects()) { 221 switch (MI.getOpcode()) { 222 case WebAssembly::DIV_S_I32: 223 case WebAssembly::DIV_S_I64: 224 case WebAssembly::REM_S_I32: 225 case WebAssembly::REM_S_I64: 226 case WebAssembly::DIV_U_I32: 227 case WebAssembly::DIV_U_I64: 228 case WebAssembly::REM_U_I32: 229 case WebAssembly::REM_U_I64: 230 case WebAssembly::I32_TRUNC_S_F32: 231 case WebAssembly::I64_TRUNC_S_F32: 232 case WebAssembly::I32_TRUNC_S_F64: 233 case WebAssembly::I64_TRUNC_S_F64: 234 case WebAssembly::I32_TRUNC_U_F32: 235 case WebAssembly::I64_TRUNC_U_F32: 236 case WebAssembly::I32_TRUNC_U_F64: 237 case WebAssembly::I64_TRUNC_U_F64: 238 // These instructions have hasUnmodeledSideEffects() returning true 239 // because they trap on overflow and invalid so they can't be arbitrarily 240 // moved, however in the specific case of register stackifying, it is safe 241 // to move them because overflow and invalid are Undefined Behavior. 242 break; 243 default: 244 Effects = true; 245 break; 246 } 247 } 248 249 // Check for writes to __stack_pointer global. 250 if (MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 && 251 strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0) 252 StackPointer = true; 253 254 // Analyze calls. 255 if (MI.isCall()) { 256 unsigned CalleeOpNo = WebAssembly::getCalleeOpNo(MI); 257 QueryCallee(MI, CalleeOpNo, Read, Write, Effects, StackPointer); 258 } 259 } 260 261 // Test whether Def is safe and profitable to rematerialize. 262 static bool ShouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA, 263 const WebAssemblyInstrInfo *TII) { 264 return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA); 265 } 266 267 // Identify the definition for this register at this point. This is a 268 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses 269 // LiveIntervals to handle complex cases. 270 static MachineInstr *GetVRegDef(unsigned Reg, const MachineInstr *Insert, 271 const MachineRegisterInfo &MRI, 272 const LiveIntervals &LIS) { 273 // Most registers are in SSA form here so we try a quick MRI query first. 274 if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg)) 275 return Def; 276 277 // MRI doesn't know what the Def is. Try asking LIS. 278 if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore( 279 LIS.getInstructionIndex(*Insert))) 280 return LIS.getInstructionFromIndex(ValNo->def); 281 282 return nullptr; 283 } 284 285 // Test whether Reg, as defined at Def, has exactly one use. This is a 286 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals 287 // to handle complex cases. 288 static bool HasOneUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI, 289 MachineDominatorTree &MDT, LiveIntervals &LIS) { 290 // Most registers are in SSA form here so we try a quick MRI query first. 291 if (MRI.hasOneUse(Reg)) 292 return true; 293 294 bool HasOne = false; 295 const LiveInterval &LI = LIS.getInterval(Reg); 296 const VNInfo *DefVNI = 297 LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot()); 298 assert(DefVNI); 299 for (auto &I : MRI.use_nodbg_operands(Reg)) { 300 const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent())); 301 if (Result.valueIn() == DefVNI) { 302 if (!Result.isKill()) 303 return false; 304 if (HasOne) 305 return false; 306 HasOne = true; 307 } 308 } 309 return HasOne; 310 } 311 312 // Test whether it's safe to move Def to just before Insert. 313 // TODO: Compute memory dependencies in a way that doesn't require always 314 // walking the block. 315 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be 316 // more precise. 317 static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert, 318 AliasAnalysis &AA, const MachineRegisterInfo &MRI) { 319 assert(Def->getParent() == Insert->getParent()); 320 321 // Check for register dependencies. 322 SmallVector<unsigned, 4> MutableRegisters; 323 for (const MachineOperand &MO : Def->operands()) { 324 if (!MO.isReg() || MO.isUndef()) 325 continue; 326 unsigned Reg = MO.getReg(); 327 328 // If the register is dead here and at Insert, ignore it. 329 if (MO.isDead() && Insert->definesRegister(Reg) && 330 !Insert->readsRegister(Reg)) 331 continue; 332 333 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 334 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions 335 // from moving down, and we've already checked for that. 336 if (Reg == WebAssembly::ARGUMENTS) 337 continue; 338 // If the physical register is never modified, ignore it. 339 if (!MRI.isPhysRegModified(Reg)) 340 continue; 341 // Otherwise, it's a physical register with unknown liveness. 342 return false; 343 } 344 345 // If one of the operands isn't in SSA form, it has different values at 346 // different times, and we need to make sure we don't move our use across 347 // a different def. 348 if (!MO.isDef() && !MRI.hasOneDef(Reg)) 349 MutableRegisters.push_back(Reg); 350 } 351 352 bool Read = false, Write = false, Effects = false, StackPointer = false; 353 Query(*Def, AA, Read, Write, Effects, StackPointer); 354 355 // If the instruction does not access memory and has no side effects, it has 356 // no additional dependencies. 357 bool HasMutableRegisters = !MutableRegisters.empty(); 358 if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters) 359 return true; 360 361 // Scan through the intervening instructions between Def and Insert. 362 MachineBasicBlock::const_iterator D(Def), I(Insert); 363 for (--I; I != D; --I) { 364 bool InterveningRead = false; 365 bool InterveningWrite = false; 366 bool InterveningEffects = false; 367 bool InterveningStackPointer = false; 368 Query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects, 369 InterveningStackPointer); 370 if (Effects && InterveningEffects) 371 return false; 372 if (Read && InterveningWrite) 373 return false; 374 if (Write && (InterveningRead || InterveningWrite)) 375 return false; 376 if (StackPointer && InterveningStackPointer) 377 return false; 378 379 for (unsigned Reg : MutableRegisters) 380 for (const MachineOperand &MO : I->operands()) 381 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) 382 return false; 383 } 384 385 return true; 386 } 387 388 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. 389 static bool OneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, 390 const MachineBasicBlock &MBB, 391 const MachineRegisterInfo &MRI, 392 const MachineDominatorTree &MDT, 393 LiveIntervals &LIS, 394 WebAssemblyFunctionInfo &MFI) { 395 const LiveInterval &LI = LIS.getInterval(Reg); 396 397 const MachineInstr *OneUseInst = OneUse.getParent(); 398 VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst)); 399 400 for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) { 401 if (&Use == &OneUse) 402 continue; 403 404 const MachineInstr *UseInst = Use.getParent(); 405 VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst)); 406 407 if (UseVNI != OneUseVNI) 408 continue; 409 410 if (UseInst == OneUseInst) { 411 // Another use in the same instruction. We need to ensure that the one 412 // selected use happens "before" it. 413 if (&OneUse > &Use) 414 return false; 415 } else { 416 // Test that the use is dominated by the one selected use. 417 while (!MDT.dominates(OneUseInst, UseInst)) { 418 // Actually, dominating is over-conservative. Test that the use would 419 // happen after the one selected use in the stack evaluation order. 420 // 421 // This is needed as a consequence of using implicit local.gets for 422 // uses and implicit local.sets for defs. 423 if (UseInst->getDesc().getNumDefs() == 0) 424 return false; 425 const MachineOperand &MO = UseInst->getOperand(0); 426 if (!MO.isReg()) 427 return false; 428 unsigned DefReg = MO.getReg(); 429 if (!TargetRegisterInfo::isVirtualRegister(DefReg) || 430 !MFI.isVRegStackified(DefReg)) 431 return false; 432 assert(MRI.hasOneNonDBGUse(DefReg)); 433 const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg); 434 const MachineInstr *NewUseInst = NewUse.getParent(); 435 if (NewUseInst == OneUseInst) { 436 if (&OneUse > &NewUse) 437 return false; 438 break; 439 } 440 UseInst = NewUseInst; 441 } 442 } 443 } 444 return true; 445 } 446 447 /// Get the appropriate tee opcode for the given register class. 448 static unsigned GetTeeOpcode(const TargetRegisterClass *RC) { 449 if (RC == &WebAssembly::I32RegClass) 450 return WebAssembly::TEE_I32; 451 if (RC == &WebAssembly::I64RegClass) 452 return WebAssembly::TEE_I64; 453 if (RC == &WebAssembly::F32RegClass) 454 return WebAssembly::TEE_F32; 455 if (RC == &WebAssembly::F64RegClass) 456 return WebAssembly::TEE_F64; 457 if (RC == &WebAssembly::V128RegClass) 458 return WebAssembly::TEE_V128; 459 llvm_unreachable("Unexpected register class"); 460 } 461 462 // Shrink LI to its uses, cleaning up LI. 463 static void ShrinkToUses(LiveInterval &LI, LiveIntervals &LIS) { 464 if (LIS.shrinkToUses(&LI)) { 465 SmallVector<LiveInterval *, 4> SplitLIs; 466 LIS.splitSeparateComponents(LI, SplitLIs); 467 } 468 } 469 470 /// A single-use def in the same block with no intervening memory or register 471 /// dependencies; move the def down and nest it with the current instruction. 472 static MachineInstr *MoveForSingleUse(unsigned Reg, MachineOperand &Op, 473 MachineInstr *Def, MachineBasicBlock &MBB, 474 MachineInstr *Insert, LiveIntervals &LIS, 475 WebAssemblyFunctionInfo &MFI, 476 MachineRegisterInfo &MRI) { 477 LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump()); 478 479 WebAssemblyDebugValueManager DefDIs(Def); 480 MBB.splice(Insert, &MBB, Def); 481 DefDIs.move(Insert); 482 LIS.handleMove(*Def); 483 484 if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) { 485 // No one else is using this register for anything so we can just stackify 486 // it in place. 487 MFI.stackifyVReg(Reg); 488 } else { 489 // The register may have unrelated uses or defs; create a new register for 490 // just our one def and use so that we can stackify it. 491 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 492 Def->getOperand(0).setReg(NewReg); 493 Op.setReg(NewReg); 494 495 // Tell LiveIntervals about the new register. 496 LIS.createAndComputeVirtRegInterval(NewReg); 497 498 // Tell LiveIntervals about the changes to the old register. 499 LiveInterval &LI = LIS.getInterval(Reg); 500 LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(), 501 LIS.getInstructionIndex(*Op.getParent()).getRegSlot(), 502 /*RemoveDeadValNo=*/true); 503 504 MFI.stackifyVReg(NewReg); 505 506 DefDIs.updateReg(NewReg); 507 508 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 509 } 510 511 ImposeStackOrdering(Def); 512 return Def; 513 } 514 515 /// A trivially cloneable instruction; clone it and nest the new copy with the 516 /// current instruction. 517 static MachineInstr *RematerializeCheapDef( 518 unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB, 519 MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS, 520 WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI, 521 const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) { 522 LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump()); 523 LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump()); 524 525 WebAssemblyDebugValueManager DefDIs(&Def); 526 527 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 528 TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI); 529 Op.setReg(NewReg); 530 MachineInstr *Clone = &*std::prev(Insert); 531 LIS.InsertMachineInstrInMaps(*Clone); 532 LIS.createAndComputeVirtRegInterval(NewReg); 533 MFI.stackifyVReg(NewReg); 534 ImposeStackOrdering(Clone); 535 536 LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump()); 537 538 // Shrink the interval. 539 bool IsDead = MRI.use_empty(Reg); 540 if (!IsDead) { 541 LiveInterval &LI = LIS.getInterval(Reg); 542 ShrinkToUses(LI, LIS); 543 IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot()); 544 } 545 546 // If that was the last use of the original, delete the original. 547 // Move or clone corresponding DBG_VALUEs to the 'Insert' location. 548 if (IsDead) { 549 LLVM_DEBUG(dbgs() << " - Deleting original\n"); 550 SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot(); 551 LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx); 552 LIS.removeInterval(Reg); 553 LIS.RemoveMachineInstrFromMaps(Def); 554 Def.eraseFromParent(); 555 556 DefDIs.move(&*Insert); 557 DefDIs.updateReg(NewReg); 558 } else { 559 DefDIs.clone(&*Insert, NewReg); 560 } 561 562 return Clone; 563 } 564 565 /// A multiple-use def in the same block with no intervening memory or register 566 /// dependencies; move the def down, nest it with the current instruction, and 567 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite 568 /// this: 569 /// 570 /// Reg = INST ... // Def 571 /// INST ..., Reg, ... // Insert 572 /// INST ..., Reg, ... 573 /// INST ..., Reg, ... 574 /// 575 /// to this: 576 /// 577 /// DefReg = INST ... // Def (to become the new Insert) 578 /// TeeReg, Reg = TEE_... DefReg 579 /// INST ..., TeeReg, ... // Insert 580 /// INST ..., Reg, ... 581 /// INST ..., Reg, ... 582 /// 583 /// with DefReg and TeeReg stackified. This eliminates a local.get from the 584 /// resulting code. 585 static MachineInstr *MoveAndTeeForMultiUse( 586 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, 587 MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 588 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { 589 LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump()); 590 591 WebAssemblyDebugValueManager DefDIs(Def); 592 593 // Move Def into place. 594 MBB.splice(Insert, &MBB, Def); 595 LIS.handleMove(*Def); 596 597 // Create the Tee and attach the registers. 598 const auto *RegClass = MRI.getRegClass(Reg); 599 unsigned TeeReg = MRI.createVirtualRegister(RegClass); 600 unsigned DefReg = MRI.createVirtualRegister(RegClass); 601 MachineOperand &DefMO = Def->getOperand(0); 602 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(), 603 TII->get(GetTeeOpcode(RegClass)), TeeReg) 604 .addReg(Reg, RegState::Define) 605 .addReg(DefReg, getUndefRegState(DefMO.isDead())); 606 Op.setReg(TeeReg); 607 DefMO.setReg(DefReg); 608 SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot(); 609 SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot(); 610 611 DefDIs.move(Insert); 612 613 // Tell LiveIntervals we moved the original vreg def from Def to Tee. 614 LiveInterval &LI = LIS.getInterval(Reg); 615 LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx); 616 VNInfo *ValNo = LI.getVNInfoAt(DefIdx); 617 I->start = TeeIdx; 618 ValNo->def = TeeIdx; 619 ShrinkToUses(LI, LIS); 620 621 // Finish stackifying the new regs. 622 LIS.createAndComputeVirtRegInterval(TeeReg); 623 LIS.createAndComputeVirtRegInterval(DefReg); 624 MFI.stackifyVReg(DefReg); 625 MFI.stackifyVReg(TeeReg); 626 ImposeStackOrdering(Def); 627 ImposeStackOrdering(Tee); 628 629 DefDIs.clone(Tee, DefReg); 630 DefDIs.clone(Insert, TeeReg); 631 632 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 633 LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump()); 634 return Def; 635 } 636 637 namespace { 638 /// A stack for walking the tree of instructions being built, visiting the 639 /// MachineOperands in DFS order. 640 class TreeWalkerState { 641 typedef MachineInstr::mop_iterator mop_iterator; 642 typedef std::reverse_iterator<mop_iterator> mop_reverse_iterator; 643 typedef iterator_range<mop_reverse_iterator> RangeTy; 644 SmallVector<RangeTy, 4> Worklist; 645 646 public: 647 explicit TreeWalkerState(MachineInstr *Insert) { 648 const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); 649 if (Range.begin() != Range.end()) 650 Worklist.push_back(reverse(Range)); 651 } 652 653 bool Done() const { return Worklist.empty(); } 654 655 MachineOperand &Pop() { 656 RangeTy &Range = Worklist.back(); 657 MachineOperand &Op = *Range.begin(); 658 Range = drop_begin(Range, 1); 659 if (Range.begin() == Range.end()) 660 Worklist.pop_back(); 661 assert((Worklist.empty() || 662 Worklist.back().begin() != Worklist.back().end()) && 663 "Empty ranges shouldn't remain in the worklist"); 664 return Op; 665 } 666 667 /// Push Instr's operands onto the stack to be visited. 668 void PushOperands(MachineInstr *Instr) { 669 const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); 670 if (Range.begin() != Range.end()) 671 Worklist.push_back(reverse(Range)); 672 } 673 674 /// Some of Instr's operands are on the top of the stack; remove them and 675 /// re-insert them starting from the beginning (because we've commuted them). 676 void ResetTopOperands(MachineInstr *Instr) { 677 assert(HasRemainingOperands(Instr) && 678 "Reseting operands should only be done when the instruction has " 679 "an operand still on the stack"); 680 Worklist.back() = reverse(Instr->explicit_uses()); 681 } 682 683 /// Test whether Instr has operands remaining to be visited at the top of 684 /// the stack. 685 bool HasRemainingOperands(const MachineInstr *Instr) const { 686 if (Worklist.empty()) 687 return false; 688 const RangeTy &Range = Worklist.back(); 689 return Range.begin() != Range.end() && Range.begin()->getParent() == Instr; 690 } 691 692 /// Test whether the given register is present on the stack, indicating an 693 /// operand in the tree that we haven't visited yet. Moving a definition of 694 /// Reg to a point in the tree after that would change its value. 695 /// 696 /// This is needed as a consequence of using implicit local.gets for 697 /// uses and implicit local.sets for defs. 698 bool IsOnStack(unsigned Reg) const { 699 for (const RangeTy &Range : Worklist) 700 for (const MachineOperand &MO : Range) 701 if (MO.isReg() && MO.getReg() == Reg) 702 return true; 703 return false; 704 } 705 }; 706 707 /// State to keep track of whether commuting is in flight or whether it's been 708 /// tried for the current instruction and didn't work. 709 class CommutingState { 710 /// There are effectively three states: the initial state where we haven't 711 /// started commuting anything and we don't know anything yet, the tentative 712 /// state where we've commuted the operands of the current instruction and are 713 /// revisiting it, and the declined state where we've reverted the operands 714 /// back to their original order and will no longer commute it further. 715 bool TentativelyCommuting; 716 bool Declined; 717 718 /// During the tentative state, these hold the operand indices of the commuted 719 /// operands. 720 unsigned Operand0, Operand1; 721 722 public: 723 CommutingState() : TentativelyCommuting(false), Declined(false) {} 724 725 /// Stackification for an operand was not successful due to ordering 726 /// constraints. If possible, and if we haven't already tried it and declined 727 /// it, commute Insert's operands and prepare to revisit it. 728 void MaybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, 729 const WebAssemblyInstrInfo *TII) { 730 if (TentativelyCommuting) { 731 assert(!Declined && 732 "Don't decline commuting until you've finished trying it"); 733 // Commuting didn't help. Revert it. 734 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 735 TentativelyCommuting = false; 736 Declined = true; 737 } else if (!Declined && TreeWalker.HasRemainingOperands(Insert)) { 738 Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; 739 Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; 740 if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) { 741 // Tentatively commute the operands and try again. 742 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 743 TreeWalker.ResetTopOperands(Insert); 744 TentativelyCommuting = true; 745 Declined = false; 746 } 747 } 748 } 749 750 /// Stackification for some operand was successful. Reset to the default 751 /// state. 752 void Reset() { 753 TentativelyCommuting = false; 754 Declined = false; 755 } 756 }; 757 } // end anonymous namespace 758 759 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { 760 LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n" 761 "********** Function: " 762 << MF.getName() << '\n'); 763 764 bool Changed = false; 765 MachineRegisterInfo &MRI = MF.getRegInfo(); 766 WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 767 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 768 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo(); 769 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 770 MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>(); 771 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 772 773 // Walk the instructions from the bottom up. Currently we don't look past 774 // block boundaries, and the blocks aren't ordered so the block visitation 775 // order isn't significant, but we may want to change this in the future. 776 for (MachineBasicBlock &MBB : MF) { 777 // Don't use a range-based for loop, because we modify the list as we're 778 // iterating over it and the end iterator may change. 779 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { 780 MachineInstr *Insert = &*MII; 781 // Don't nest anything inside an inline asm, because we don't have 782 // constraints for $push inputs. 783 if (Insert->getOpcode() == TargetOpcode::INLINEASM) 784 continue; 785 786 // Ignore debugging intrinsics. 787 if (Insert->getOpcode() == TargetOpcode::DBG_VALUE) 788 continue; 789 790 // Iterate through the inputs in reverse order, since we'll be pulling 791 // operands off the stack in LIFO order. 792 CommutingState Commuting; 793 TreeWalkerState TreeWalker(Insert); 794 while (!TreeWalker.Done()) { 795 MachineOperand &Op = TreeWalker.Pop(); 796 797 // We're only interested in explicit virtual register operands. 798 if (!Op.isReg()) 799 continue; 800 801 unsigned Reg = Op.getReg(); 802 assert(Op.isUse() && "explicit_uses() should only iterate over uses"); 803 assert(!Op.isImplicit() && 804 "explicit_uses() should only iterate over explicit operands"); 805 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 806 continue; 807 808 // Identify the definition for this register at this point. 809 MachineInstr *Def = GetVRegDef(Reg, Insert, MRI, LIS); 810 if (!Def) 811 continue; 812 813 // Don't nest an INLINE_ASM def into anything, because we don't have 814 // constraints for $pop outputs. 815 if (Def->getOpcode() == TargetOpcode::INLINEASM) 816 continue; 817 818 // Argument instructions represent live-in registers and not real 819 // instructions. 820 if (WebAssembly::isArgument(*Def)) 821 continue; 822 823 // Decide which strategy to take. Prefer to move a single-use value 824 // over cloning it, and prefer cloning over introducing a tee. 825 // For moving, we require the def to be in the same block as the use; 826 // this makes things simpler (LiveIntervals' handleMove function only 827 // supports intra-block moves) and it's MachineSink's job to catch all 828 // the sinking opportunities anyway. 829 bool SameBlock = Def->getParent() == &MBB; 830 bool CanMove = SameBlock && IsSafeToMove(Def, Insert, AA, MRI) && 831 !TreeWalker.IsOnStack(Reg); 832 if (CanMove && HasOneUse(Reg, Def, MRI, MDT, LIS)) { 833 Insert = MoveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI); 834 } else if (ShouldRematerialize(*Def, AA, TII)) { 835 Insert = 836 RematerializeCheapDef(Reg, Op, *Def, MBB, Insert->getIterator(), 837 LIS, MFI, MRI, TII, TRI); 838 } else if (CanMove && 839 OneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS, MFI)) { 840 Insert = MoveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI, 841 MRI, TII); 842 } else { 843 // We failed to stackify the operand. If the problem was ordering 844 // constraints, Commuting may be able to help. 845 if (!CanMove && SameBlock) 846 Commuting.MaybeCommute(Insert, TreeWalker, TII); 847 // Proceed to the next operand. 848 continue; 849 } 850 851 // If the instruction we just stackified is an IMPLICIT_DEF, convert it 852 // to a constant 0 so that the def is explicit, and the push/pop 853 // correspondence is maintained. 854 if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF) 855 ConvertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS); 856 857 // We stackified an operand. Add the defining instruction's operands to 858 // the worklist stack now to continue to build an ever deeper tree. 859 Commuting.Reset(); 860 TreeWalker.PushOperands(Insert); 861 } 862 863 // If we stackified any operands, skip over the tree to start looking for 864 // the next instruction we can build a tree on. 865 if (Insert != &*MII) { 866 ImposeStackOrdering(&*MII); 867 MII = MachineBasicBlock::iterator(Insert).getReverse(); 868 Changed = true; 869 } 870 } 871 } 872 873 // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so 874 // that it never looks like a use-before-def. 875 if (Changed) { 876 MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK); 877 for (MachineBasicBlock &MBB : MF) 878 MBB.addLiveIn(WebAssembly::VALUE_STACK); 879 } 880 881 #ifndef NDEBUG 882 // Verify that pushes and pops are performed in LIFO order. 883 SmallVector<unsigned, 0> Stack; 884 for (MachineBasicBlock &MBB : MF) { 885 for (MachineInstr &MI : MBB) { 886 if (MI.isDebugInstr()) 887 continue; 888 for (MachineOperand &MO : reverse(MI.explicit_operands())) { 889 if (!MO.isReg()) 890 continue; 891 unsigned Reg = MO.getReg(); 892 893 if (MFI.isVRegStackified(Reg)) { 894 if (MO.isDef()) 895 Stack.push_back(Reg); 896 else 897 assert(Stack.pop_back_val() == Reg && 898 "Register stack pop should be paired with a push"); 899 } 900 } 901 } 902 // TODO: Generalize this code to support keeping values on the stack across 903 // basic block boundaries. 904 assert(Stack.empty() && 905 "Register stack pushes and pops should be balanced"); 906 } 907 #endif 908 909 return Changed; 910 } 911