1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // SystemZ target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "SystemZTargetTransformInfo.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/CodeGen/BasicTTIImpl.h" 20 #include "llvm/IR/IntrinsicInst.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Target/CostTable.h" 23 #include "llvm/Target/TargetLowering.h" 24 using namespace llvm; 25 26 #define DEBUG_TYPE "systemztti" 27 28 //===----------------------------------------------------------------------===// 29 // 30 // SystemZ cost model. 31 // 32 //===----------------------------------------------------------------------===// 33 34 int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { 35 assert(Ty->isIntegerTy()); 36 37 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 38 // There is no cost model for constants with a bit size of 0. Return TCC_Free 39 // here, so that constant hoisting will ignore this constant. 40 if (BitSize == 0) 41 return TTI::TCC_Free; 42 // No cost model for operations on integers larger than 64 bit implemented yet. 43 if (BitSize > 64) 44 return TTI::TCC_Free; 45 46 if (Imm == 0) 47 return TTI::TCC_Free; 48 49 if (Imm.getBitWidth() <= 64) { 50 // Constants loaded via lgfi. 51 if (isInt<32>(Imm.getSExtValue())) 52 return TTI::TCC_Basic; 53 // Constants loaded via llilf. 54 if (isUInt<32>(Imm.getZExtValue())) 55 return TTI::TCC_Basic; 56 // Constants loaded via llihf: 57 if ((Imm.getZExtValue() & 0xffffffff) == 0) 58 return TTI::TCC_Basic; 59 60 return 2 * TTI::TCC_Basic; 61 } 62 63 return 4 * TTI::TCC_Basic; 64 } 65 66 int SystemZTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, 67 const APInt &Imm, Type *Ty) { 68 assert(Ty->isIntegerTy()); 69 70 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 71 // There is no cost model for constants with a bit size of 0. Return TCC_Free 72 // here, so that constant hoisting will ignore this constant. 73 if (BitSize == 0) 74 return TTI::TCC_Free; 75 // No cost model for operations on integers larger than 64 bit implemented yet. 76 if (BitSize > 64) 77 return TTI::TCC_Free; 78 79 switch (Opcode) { 80 default: 81 return TTI::TCC_Free; 82 case Instruction::GetElementPtr: 83 // Always hoist the base address of a GetElementPtr. This prevents the 84 // creation of new constants for every base constant that gets constant 85 // folded with the offset. 86 if (Idx == 0) 87 return 2 * TTI::TCC_Basic; 88 return TTI::TCC_Free; 89 case Instruction::Store: 90 if (Idx == 0 && Imm.getBitWidth() <= 64) { 91 // Any 8-bit immediate store can by implemented via mvi. 92 if (BitSize == 8) 93 return TTI::TCC_Free; 94 // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi. 95 if (isInt<16>(Imm.getSExtValue())) 96 return TTI::TCC_Free; 97 } 98 break; 99 case Instruction::ICmp: 100 if (Idx == 1 && Imm.getBitWidth() <= 64) { 101 // Comparisons against signed 32-bit immediates implemented via cgfi. 102 if (isInt<32>(Imm.getSExtValue())) 103 return TTI::TCC_Free; 104 // Comparisons against unsigned 32-bit immediates implemented via clgfi. 105 if (isUInt<32>(Imm.getZExtValue())) 106 return TTI::TCC_Free; 107 } 108 break; 109 case Instruction::Add: 110 case Instruction::Sub: 111 if (Idx == 1 && Imm.getBitWidth() <= 64) { 112 // We use algfi/slgfi to add/subtract 32-bit unsigned immediates. 113 if (isUInt<32>(Imm.getZExtValue())) 114 return TTI::TCC_Free; 115 // Or their negation, by swapping addition vs. subtraction. 116 if (isUInt<32>(-Imm.getSExtValue())) 117 return TTI::TCC_Free; 118 } 119 break; 120 case Instruction::Mul: 121 if (Idx == 1 && Imm.getBitWidth() <= 64) { 122 // We use msgfi to multiply by 32-bit signed immediates. 123 if (isInt<32>(Imm.getSExtValue())) 124 return TTI::TCC_Free; 125 } 126 break; 127 case Instruction::Or: 128 case Instruction::Xor: 129 if (Idx == 1 && Imm.getBitWidth() <= 64) { 130 // Masks supported by oilf/xilf. 131 if (isUInt<32>(Imm.getZExtValue())) 132 return TTI::TCC_Free; 133 // Masks supported by oihf/xihf. 134 if ((Imm.getZExtValue() & 0xffffffff) == 0) 135 return TTI::TCC_Free; 136 } 137 break; 138 case Instruction::And: 139 if (Idx == 1 && Imm.getBitWidth() <= 64) { 140 // Any 32-bit AND operation can by implemented via nilf. 141 if (BitSize <= 32) 142 return TTI::TCC_Free; 143 // 64-bit masks supported by nilf. 144 if (isUInt<32>(~Imm.getZExtValue())) 145 return TTI::TCC_Free; 146 // 64-bit masks supported by nilh. 147 if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff) 148 return TTI::TCC_Free; 149 // Some 64-bit AND operations can be implemented via risbg. 150 const SystemZInstrInfo *TII = ST->getInstrInfo(); 151 unsigned Start, End; 152 if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End)) 153 return TTI::TCC_Free; 154 } 155 break; 156 case Instruction::Shl: 157 case Instruction::LShr: 158 case Instruction::AShr: 159 // Always return TCC_Free for the shift value of a shift instruction. 160 if (Idx == 1) 161 return TTI::TCC_Free; 162 break; 163 case Instruction::UDiv: 164 case Instruction::SDiv: 165 case Instruction::URem: 166 case Instruction::SRem: 167 case Instruction::Trunc: 168 case Instruction::ZExt: 169 case Instruction::SExt: 170 case Instruction::IntToPtr: 171 case Instruction::PtrToInt: 172 case Instruction::BitCast: 173 case Instruction::PHI: 174 case Instruction::Call: 175 case Instruction::Select: 176 case Instruction::Ret: 177 case Instruction::Load: 178 break; 179 } 180 181 return SystemZTTIImpl::getIntImmCost(Imm, Ty); 182 } 183 184 int SystemZTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 185 const APInt &Imm, Type *Ty) { 186 assert(Ty->isIntegerTy()); 187 188 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 189 // There is no cost model for constants with a bit size of 0. Return TCC_Free 190 // here, so that constant hoisting will ignore this constant. 191 if (BitSize == 0) 192 return TTI::TCC_Free; 193 // No cost model for operations on integers larger than 64 bit implemented yet. 194 if (BitSize > 64) 195 return TTI::TCC_Free; 196 197 switch (IID) { 198 default: 199 return TTI::TCC_Free; 200 case Intrinsic::sadd_with_overflow: 201 case Intrinsic::uadd_with_overflow: 202 case Intrinsic::ssub_with_overflow: 203 case Intrinsic::usub_with_overflow: 204 // These get expanded to include a normal addition/subtraction. 205 if (Idx == 1 && Imm.getBitWidth() <= 64) { 206 if (isUInt<32>(Imm.getZExtValue())) 207 return TTI::TCC_Free; 208 if (isUInt<32>(-Imm.getSExtValue())) 209 return TTI::TCC_Free; 210 } 211 break; 212 case Intrinsic::smul_with_overflow: 213 case Intrinsic::umul_with_overflow: 214 // These get expanded to include a normal multiplication. 215 if (Idx == 1 && Imm.getBitWidth() <= 64) { 216 if (isInt<32>(Imm.getSExtValue())) 217 return TTI::TCC_Free; 218 } 219 break; 220 case Intrinsic::experimental_stackmap: 221 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 222 return TTI::TCC_Free; 223 break; 224 case Intrinsic::experimental_patchpoint_void: 225 case Intrinsic::experimental_patchpoint_i64: 226 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 227 return TTI::TCC_Free; 228 break; 229 } 230 return SystemZTTIImpl::getIntImmCost(Imm, Ty); 231 } 232 233 TargetTransformInfo::PopcntSupportKind 234 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) { 235 assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2"); 236 if (ST->hasPopulationCount() && TyWidth <= 64) 237 return TTI::PSK_FastHardware; 238 return TTI::PSK_Software; 239 } 240 241 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 242 TTI::UnrollingPreferences &UP) { 243 // Find out if L contains a call, what the machine instruction count 244 // estimate is, and how many stores there are. 245 bool HasCall = false; 246 unsigned NumStores = 0; 247 for (auto &BB : L->blocks()) 248 for (auto &I : *BB) { 249 if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) { 250 ImmutableCallSite CS(&I); 251 if (const Function *F = CS.getCalledFunction()) { 252 if (isLoweredToCall(F)) 253 HasCall = true; 254 if (F->getIntrinsicID() == Intrinsic::memcpy || 255 F->getIntrinsicID() == Intrinsic::memset) 256 NumStores++; 257 } else { // indirect call. 258 HasCall = true; 259 } 260 } 261 if (isa<StoreInst>(&I)) { 262 Type *MemAccessTy = I.getOperand(0)->getType(); 263 NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 0, 0); 264 } 265 } 266 267 // The z13 processor will run out of store tags if too many stores 268 // are fed into it too quickly. Therefore make sure there are not 269 // too many stores in the resulting unrolled loop. 270 unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX); 271 272 if (HasCall) { 273 // Only allow full unrolling if loop has any calls. 274 UP.FullUnrollMaxCount = Max; 275 UP.MaxCount = 1; 276 return; 277 } 278 279 UP.MaxCount = Max; 280 if (UP.MaxCount <= 1) 281 return; 282 283 // Allow partial and runtime trip count unrolling. 284 UP.Partial = UP.Runtime = true; 285 286 UP.PartialThreshold = 75; 287 UP.DefaultUnrollRuntimeCount = 4; 288 289 // Allow expensive instructions in the pre-header of the loop. 290 UP.AllowExpensiveTripCount = true; 291 292 UP.Force = true; 293 } 294 295 unsigned SystemZTTIImpl::getNumberOfRegisters(bool Vector) { 296 if (!Vector) 297 // Discount the stack pointer. Also leave out %r0, since it can't 298 // be used in an address. 299 return 14; 300 if (ST->hasVector()) 301 return 32; 302 return 0; 303 } 304 305 unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const { 306 if (!Vector) 307 return 64; 308 if (ST->hasVector()) 309 return 128; 310 return 0; 311 } 312 313 int SystemZTTIImpl::getArithmeticInstrCost( 314 unsigned Opcode, Type *Ty, 315 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, 316 TTI::OperandValueProperties Opd1PropInfo, 317 TTI::OperandValueProperties Opd2PropInfo, 318 ArrayRef<const Value *> Args) { 319 320 // TODO: return a good value for BB-VECTORIZER that includes the 321 // immediate loads, which we do not want to count for the loop 322 // vectorizer, since they are hopefully hoisted out of the loop. This 323 // would require a new parameter 'InLoop', but not sure if constant 324 // args are common enough to motivate this. 325 326 unsigned ScalarBits = Ty->getScalarSizeInBits(); 327 328 // Div with a constant which is a power of 2 will be converted by 329 // DAGCombiner to use shifts. With vector shift-element instructions, a 330 // vector sdiv costs about as much as a scalar one. 331 const unsigned SDivCostEstimate = 4; 332 bool SDivPow2 = false; 333 bool UDivPow2 = false; 334 if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv) && 335 Args.size() == 2) { 336 const ConstantInt *CI = nullptr; 337 if (const Constant *C = dyn_cast<Constant>(Args[1])) { 338 if (C->getType()->isVectorTy()) 339 CI = dyn_cast_or_null<const ConstantInt>(C->getSplatValue()); 340 else 341 CI = dyn_cast<const ConstantInt>(C); 342 } 343 if (CI != nullptr && 344 (CI->getValue().isPowerOf2() || (-CI->getValue()).isPowerOf2())) { 345 if (Opcode == Instruction::SDiv) 346 SDivPow2 = true; 347 else 348 UDivPow2 = true; 349 } 350 } 351 352 if (Ty->isVectorTy()) { 353 assert (ST->hasVector() && "getArithmeticInstrCost() called with vector type."); 354 unsigned VF = Ty->getVectorNumElements(); 355 unsigned NumVectors = getNumberOfParts(Ty); 356 357 // These vector operations are custom handled, but are still supported 358 // with one instruction per vector, regardless of element size. 359 if (Opcode == Instruction::Shl || Opcode == Instruction::LShr || 360 Opcode == Instruction::AShr || UDivPow2) { 361 return NumVectors; 362 } 363 364 if (SDivPow2) 365 return (NumVectors * SDivCostEstimate); 366 367 // These FP operations are supported with a single vector instruction for 368 // double (base implementation assumes float generally costs 2). For 369 // FP128, the scalar cost is 1, and there is no overhead since the values 370 // are already in scalar registers. 371 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 372 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) { 373 switch (ScalarBits) { 374 case 32: { 375 // The vector enhancements facility 1 provides v4f32 instructions. 376 if (ST->hasVectorEnhancements1()) 377 return NumVectors; 378 // Return the cost of multiple scalar invocation plus the cost of 379 // inserting and extracting the values. 380 unsigned ScalarCost = getArithmeticInstrCost(Opcode, Ty->getScalarType()); 381 unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args); 382 // FIXME: VF 2 for these FP operations are currently just as 383 // expensive as for VF 4. 384 if (VF == 2) 385 Cost *= 2; 386 return Cost; 387 } 388 case 64: 389 case 128: 390 return NumVectors; 391 default: 392 break; 393 } 394 } 395 396 // There is no native support for FRem. 397 if (Opcode == Instruction::FRem) { 398 unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args); 399 // FIXME: VF 2 for float is currently just as expensive as for VF 4. 400 if (VF == 2 && ScalarBits == 32) 401 Cost *= 2; 402 return Cost; 403 } 404 } 405 else { // Scalar: 406 // These FP operations are supported with a dedicated instruction for 407 // float, double and fp128 (base implementation assumes float generally 408 // costs 2). 409 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 410 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) 411 return 1; 412 413 // There is no native support for FRem. 414 if (Opcode == Instruction::FRem) 415 return LIBCALL_COST; 416 417 if (Opcode == Instruction::LShr || Opcode == Instruction::AShr) 418 return (ScalarBits >= 32 ? 1 : 2 /*ext*/); 419 420 // Or requires one instruction, although it has custom handling for i64. 421 if (Opcode == Instruction::Or) 422 return 1; 423 424 if (Opcode == Instruction::Xor && ScalarBits == 1) 425 // 2 * ipm sequences ; xor ; shift ; compare 426 return 7; 427 428 if (UDivPow2) 429 return 1; 430 if (SDivPow2) 431 return SDivCostEstimate; 432 433 // An extra extension for narrow types is needed. 434 if ((Opcode == Instruction::SDiv || Opcode == Instruction::SRem)) 435 // sext of op(s) for narrow types 436 return (ScalarBits < 32 ? 4 : (ScalarBits == 32 ? 2 : 1)); 437 438 if (Opcode == Instruction::UDiv || Opcode == Instruction::URem) 439 // Clearing of low 64 bit reg + sext of op(s) for narrow types + dl[g]r 440 return (ScalarBits < 32 ? 4 : 2); 441 } 442 443 // Fallback to the default implementation. 444 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, 445 Opd1PropInfo, Opd2PropInfo, Args); 446 } 447 448 449 int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 450 Type *SubTp) { 451 assert (Tp->isVectorTy()); 452 assert (ST->hasVector() && "getShuffleCost() called."); 453 unsigned NumVectors = getNumberOfParts(Tp); 454 455 // TODO: Since fp32 is expanded, the shuffle cost should always be 0. 456 457 // FP128 values are always in scalar registers, so there is no work 458 // involved with a shuffle, except for broadcast. In that case register 459 // moves are done with a single instruction per element. 460 if (Tp->getScalarType()->isFP128Ty()) 461 return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0); 462 463 switch (Kind) { 464 case TargetTransformInfo::SK_ExtractSubvector: 465 // ExtractSubvector Index indicates start offset. 466 467 // Extracting a subvector from first index is a noop. 468 return (Index == 0 ? 0 : NumVectors); 469 470 case TargetTransformInfo::SK_Broadcast: 471 // Loop vectorizer calls here to figure out the extra cost of 472 // broadcasting a loaded value to all elements of a vector. Since vlrep 473 // loads and replicates with a single instruction, adjust the returned 474 // value. 475 return NumVectors - 1; 476 477 default: 478 479 // SystemZ supports single instruction permutation / replication. 480 return NumVectors; 481 } 482 483 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 484 } 485 486 // Return the log2 difference of the element sizes of the two vector types. 487 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) { 488 unsigned Bits0 = Ty0->getScalarSizeInBits(); 489 unsigned Bits1 = Ty1->getScalarSizeInBits(); 490 491 if (Bits1 > Bits0) 492 return (Log2_32(Bits1) - Log2_32(Bits0)); 493 494 return (Log2_32(Bits0) - Log2_32(Bits1)); 495 } 496 497 // Return the number of instructions needed to truncate SrcTy to DstTy. 498 unsigned SystemZTTIImpl:: 499 getVectorTruncCost(Type *SrcTy, Type *DstTy) { 500 assert (SrcTy->isVectorTy() && DstTy->isVectorTy()); 501 assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() && 502 "Packing must reduce size of vector type."); 503 assert (SrcTy->getVectorNumElements() == DstTy->getVectorNumElements() && 504 "Packing should not change number of elements."); 505 506 // TODO: Since fp32 is expanded, the extract cost should always be 0. 507 508 unsigned NumParts = getNumberOfParts(SrcTy); 509 if (NumParts <= 2) 510 // Up to 2 vector registers can be truncated efficiently with pack or 511 // permute. The latter requires an immediate mask to be loaded, which 512 // typically gets hoisted out of a loop. TODO: return a good value for 513 // BB-VECTORIZER that includes the immediate loads, which we do not want 514 // to count for the loop vectorizer. 515 return 1; 516 517 unsigned Cost = 0; 518 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 519 unsigned VF = SrcTy->getVectorNumElements(); 520 for (unsigned P = 0; P < Log2Diff; ++P) { 521 if (NumParts > 1) 522 NumParts /= 2; 523 Cost += NumParts; 524 } 525 526 // Currently, a general mix of permutes and pack instructions is output by 527 // isel, which follow the cost computation above except for this case which 528 // is one instruction less: 529 if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 && 530 DstTy->getScalarSizeInBits() == 8) 531 Cost--; 532 533 return Cost; 534 } 535 536 // Return the cost of converting a vector bitmask produced by a compare 537 // (SrcTy), to the type of the select or extend instruction (DstTy). 538 unsigned SystemZTTIImpl:: 539 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) { 540 assert (SrcTy->isVectorTy() && DstTy->isVectorTy() && 541 "Should only be called with vector types."); 542 543 unsigned PackCost = 0; 544 unsigned SrcScalarBits = SrcTy->getScalarSizeInBits(); 545 unsigned DstScalarBits = DstTy->getScalarSizeInBits(); 546 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 547 if (SrcScalarBits > DstScalarBits) 548 // The bitmask will be truncated. 549 PackCost = getVectorTruncCost(SrcTy, DstTy); 550 else if (SrcScalarBits < DstScalarBits) { 551 unsigned DstNumParts = getNumberOfParts(DstTy); 552 // Each vector select needs its part of the bitmask unpacked. 553 PackCost = Log2Diff * DstNumParts; 554 // Extra cost for moving part of mask before unpacking. 555 PackCost += DstNumParts - 1; 556 } 557 558 return PackCost; 559 } 560 561 // Return the type of the compared operands. This is needed to compute the 562 // cost for a Select / ZExt or SExt instruction. 563 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) { 564 Type *OpTy = nullptr; 565 if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0))) 566 OpTy = CI->getOperand(0)->getType(); 567 else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0))) 568 if (LogicI->getNumOperands() == 2) 569 if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0))) 570 if (isa<CmpInst>(LogicI->getOperand(1))) 571 OpTy = CI0->getOperand(0)->getType(); 572 573 if (OpTy != nullptr) { 574 if (VF == 1) { 575 assert (!OpTy->isVectorTy() && "Expected scalar type"); 576 return OpTy; 577 } 578 // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may 579 // be either scalar or already vectorized with a same or lesser VF. 580 Type *ElTy = OpTy->getScalarType(); 581 return VectorType::get(ElTy, VF); 582 } 583 584 return nullptr; 585 } 586 587 int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 588 const Instruction *I) { 589 unsigned DstScalarBits = Dst->getScalarSizeInBits(); 590 unsigned SrcScalarBits = Src->getScalarSizeInBits(); 591 592 if (Src->isVectorTy()) { 593 assert (ST->hasVector() && "getCastInstrCost() called with vector type."); 594 assert (Dst->isVectorTy()); 595 unsigned VF = Src->getVectorNumElements(); 596 unsigned NumDstVectors = getNumberOfParts(Dst); 597 unsigned NumSrcVectors = getNumberOfParts(Src); 598 599 if (Opcode == Instruction::Trunc) { 600 if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits()) 601 return 0; // Check for NOOP conversions. 602 return getVectorTruncCost(Src, Dst); 603 } 604 605 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 606 if (SrcScalarBits >= 8) { 607 // ZExt/SExt will be handled with one unpack per doubling of width. 608 unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst); 609 610 // For types that spans multiple vector registers, some additional 611 // instructions are used to setup the unpacking. 612 unsigned NumSrcVectorOps = 613 (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors) 614 : (NumDstVectors / 2)); 615 616 return (NumUnpacks * NumDstVectors) + NumSrcVectorOps; 617 } 618 else if (SrcScalarBits == 1) { 619 // This should be extension of a compare i1 result. 620 // If we know what the widths of the compared operands, get the 621 // cost of converting it to Dst. Otherwise assume same widths. 622 unsigned Cost = 0; 623 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 624 if (CmpOpTy != nullptr) 625 Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst); 626 if (Opcode == Instruction::ZExt) 627 // One 'vn' per dst vector with an immediate mask. 628 Cost += NumDstVectors; 629 return Cost; 630 } 631 } 632 633 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP || 634 Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) { 635 // TODO: Fix base implementation which could simplify things a bit here 636 // (seems to miss on differentiating on scalar/vector types). 637 638 // Only 64 bit vector conversions are natively supported. 639 if (SrcScalarBits == 64 && DstScalarBits == 64) 640 return NumDstVectors; 641 642 // Return the cost of multiple scalar invocation plus the cost of 643 // inserting and extracting the values. Base implementation does not 644 // realize float->int gets scalarized. 645 unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(), 646 Src->getScalarType()); 647 unsigned TotCost = VF * ScalarCost; 648 bool NeedsInserts = true, NeedsExtracts = true; 649 // FP128 registers do not get inserted or extracted. 650 if (DstScalarBits == 128 && 651 (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)) 652 NeedsInserts = false; 653 if (SrcScalarBits == 128 && 654 (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI)) 655 NeedsExtracts = false; 656 657 TotCost += getScalarizationOverhead(Dst, NeedsInserts, NeedsExtracts); 658 659 // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4. 660 if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32) 661 TotCost *= 2; 662 663 return TotCost; 664 } 665 666 if (Opcode == Instruction::FPTrunc) { 667 if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements. 668 return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false); 669 else // double -> float 670 return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/); 671 } 672 673 if (Opcode == Instruction::FPExt) { 674 if (SrcScalarBits == 32 && DstScalarBits == 64) { 675 // float -> double is very rare and currently unoptimized. Instead of 676 // using vldeb, which can do two at a time, all conversions are 677 // scalarized. 678 return VF * 2; 679 } 680 // -> fp128. VF * lxdb/lxeb + extraction of elements. 681 return VF + getScalarizationOverhead(Src, false, true); 682 } 683 } 684 else { // Scalar 685 assert (!Dst->isVectorTy()); 686 687 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) 688 return (SrcScalarBits >= 32 ? 1 : 2 /*i8/i16 extend*/); 689 690 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && 691 Src->isIntegerTy(1)) { 692 // This should be extension of a compare i1 result, which is done with 693 // ipm and a varying sequence of instructions. 694 unsigned Cost = 0; 695 if (Opcode == Instruction::SExt) 696 Cost = (DstScalarBits < 64 ? 3 : 4); 697 if (Opcode == Instruction::ZExt) 698 Cost = 3; 699 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr); 700 if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy()) 701 // If operands of an fp-type was compared, this costs +1. 702 Cost++; 703 704 return Cost; 705 } 706 } 707 708 return BaseT::getCastInstrCost(Opcode, Dst, Src, I); 709 } 710 711 int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, 712 const Instruction *I) { 713 if (ValTy->isVectorTy()) { 714 assert (ST->hasVector() && "getCmpSelInstrCost() called with vector type."); 715 unsigned VF = ValTy->getVectorNumElements(); 716 717 // Called with a compare instruction. 718 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) { 719 unsigned PredicateExtraCost = 0; 720 if (I != nullptr) { 721 // Some predicates cost one or two extra instructions. 722 switch (dyn_cast<CmpInst>(I)->getPredicate()) { 723 case CmpInst::Predicate::ICMP_NE: 724 case CmpInst::Predicate::ICMP_UGE: 725 case CmpInst::Predicate::ICMP_ULE: 726 case CmpInst::Predicate::ICMP_SGE: 727 case CmpInst::Predicate::ICMP_SLE: 728 PredicateExtraCost = 1; 729 break; 730 case CmpInst::Predicate::FCMP_ONE: 731 case CmpInst::Predicate::FCMP_ORD: 732 case CmpInst::Predicate::FCMP_UEQ: 733 case CmpInst::Predicate::FCMP_UNO: 734 PredicateExtraCost = 2; 735 break; 736 default: 737 break; 738 } 739 } 740 741 // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of 742 // floats. FIXME: <2 x float> generates same code as <4 x float>. 743 unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1); 744 unsigned NumVecs_cmp = getNumberOfParts(ValTy); 745 746 unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost)); 747 return Cost; 748 } 749 else { // Called with a select instruction. 750 assert (Opcode == Instruction::Select); 751 752 // We can figure out the extra cost of packing / unpacking if the 753 // instruction was passed and the compare instruction is found. 754 unsigned PackCost = 0; 755 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 756 if (CmpOpTy != nullptr) 757 PackCost = 758 getVectorBitmaskConversionCost(CmpOpTy, ValTy); 759 760 return getNumberOfParts(ValTy) /*vsel*/ + PackCost; 761 } 762 } 763 else { // Scalar 764 switch (Opcode) { 765 case Instruction::ICmp: { 766 unsigned Cost = 1; 767 if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16) 768 Cost += 2; // extend both operands 769 return Cost; 770 } 771 case Instruction::Select: 772 if (ValTy->isFloatingPointTy()) 773 return 4; // No load on condition for FP, so this costs a conditional jump. 774 return 1; // Load On Condition. 775 } 776 } 777 778 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr); 779 } 780 781 int SystemZTTIImpl:: 782 getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { 783 // vlvgp will insert two grs into a vector register, so only count half the 784 // number of instructions. 785 if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64)) 786 return ((Index % 2 == 0) ? 1 : 0); 787 788 if (Opcode == Instruction::ExtractElement) { 789 int Cost = ((Val->getScalarSizeInBits() == 1) ? 2 /*+test-under-mask*/ : 1); 790 791 // Give a slight penalty for moving out of vector pipeline to FXU unit. 792 if (Index == 0 && Val->isIntOrIntVectorTy()) 793 Cost += 1; 794 795 return Cost; 796 } 797 798 return BaseT::getVectorInstrCost(Opcode, Val, Index); 799 } 800 801 int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 802 unsigned Alignment, unsigned AddressSpace, 803 const Instruction *I) { 804 assert(!Src->isVoidTy() && "Invalid type"); 805 806 if (!Src->isVectorTy() && Opcode == Instruction::Load && 807 I != nullptr && I->hasOneUse()) { 808 const Instruction *UserI = cast<Instruction>(*I->user_begin()); 809 unsigned Bits = Src->getScalarSizeInBits(); 810 bool FoldsLoad = false; 811 switch (UserI->getOpcode()) { 812 case Instruction::ICmp: 813 case Instruction::Add: 814 case Instruction::Sub: 815 case Instruction::Mul: 816 case Instruction::SDiv: 817 case Instruction::UDiv: 818 case Instruction::And: 819 case Instruction::Or: 820 case Instruction::Xor: 821 // This also makes sense for float operations, but disabled for now due 822 // to regressions. 823 // case Instruction::FCmp: 824 // case Instruction::FAdd: 825 // case Instruction::FSub: 826 // case Instruction::FMul: 827 // case Instruction::FDiv: 828 FoldsLoad = (Bits == 32 || Bits == 64); 829 break; 830 } 831 832 if (FoldsLoad) { 833 assert (UserI->getNumOperands() == 2 && 834 "Expected to only handle binops."); 835 836 // UserI can't fold two loads, so in that case return 0 cost only 837 // half of the time. 838 for (unsigned i = 0; i < 2; ++i) { 839 if (UserI->getOperand(i) == I) 840 continue; 841 if (LoadInst *LI = dyn_cast<LoadInst>(UserI->getOperand(i))) { 842 if (LI->hasOneUse()) 843 return i == 0; 844 } 845 } 846 847 return 0; 848 } 849 } 850 851 unsigned NumOps = getNumberOfParts(Src); 852 853 if (Src->getScalarSizeInBits() == 128) 854 // 128 bit scalars are held in a pair of two 64 bit registers. 855 NumOps *= 2; 856 857 return NumOps; 858 } 859 860 int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 861 unsigned Factor, 862 ArrayRef<unsigned> Indices, 863 unsigned Alignment, 864 unsigned AddressSpace) { 865 assert(isa<VectorType>(VecTy) && 866 "Expect a vector type for interleaved memory op"); 867 868 unsigned WideBits = (VecTy->isPtrOrPtrVectorTy() ? 869 (64U * VecTy->getVectorNumElements()) : VecTy->getPrimitiveSizeInBits()); 870 assert (WideBits > 0 && "Could not compute size of vector"); 871 int NumWideParts = 872 ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U)); 873 874 // How many source vectors are handled to produce a vectorized operand? 875 int NumElsPerVector = (VecTy->getVectorNumElements() / NumWideParts); 876 int NumSrcParts = 877 ((NumWideParts > NumElsPerVector) ? NumElsPerVector : NumWideParts); 878 879 // A Load group may have gaps. 880 unsigned NumOperands = 881 ((Opcode == Instruction::Load) ? Indices.size() : Factor); 882 883 // Each needed permute takes two vectors as input. 884 if (NumSrcParts > 1) 885 NumSrcParts--; 886 int NumPermutes = NumSrcParts * NumOperands; 887 888 // Cost of load/store operations and the permutations needed. 889 return NumWideParts + NumPermutes; 890 } 891