1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // SystemZ target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "SystemZTargetTransformInfo.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/CodeGen/BasicTTIImpl.h" 20 #include "llvm/IR/IntrinsicInst.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Target/CostTable.h" 23 #include "llvm/Target/TargetLowering.h" 24 using namespace llvm; 25 26 #define DEBUG_TYPE "systemztti" 27 28 //===----------------------------------------------------------------------===// 29 // 30 // SystemZ cost model. 31 // 32 //===----------------------------------------------------------------------===// 33 34 int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { 35 assert(Ty->isIntegerTy()); 36 37 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 38 // There is no cost model for constants with a bit size of 0. Return TCC_Free 39 // here, so that constant hoisting will ignore this constant. 40 if (BitSize == 0) 41 return TTI::TCC_Free; 42 // No cost model for operations on integers larger than 64 bit implemented yet. 43 if (BitSize > 64) 44 return TTI::TCC_Free; 45 46 if (Imm == 0) 47 return TTI::TCC_Free; 48 49 if (Imm.getBitWidth() <= 64) { 50 // Constants loaded via lgfi. 51 if (isInt<32>(Imm.getSExtValue())) 52 return TTI::TCC_Basic; 53 // Constants loaded via llilf. 54 if (isUInt<32>(Imm.getZExtValue())) 55 return TTI::TCC_Basic; 56 // Constants loaded via llihf: 57 if ((Imm.getZExtValue() & 0xffffffff) == 0) 58 return TTI::TCC_Basic; 59 60 return 2 * TTI::TCC_Basic; 61 } 62 63 return 4 * TTI::TCC_Basic; 64 } 65 66 int SystemZTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, 67 const APInt &Imm, Type *Ty) { 68 assert(Ty->isIntegerTy()); 69 70 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 71 // There is no cost model for constants with a bit size of 0. Return TCC_Free 72 // here, so that constant hoisting will ignore this constant. 73 if (BitSize == 0) 74 return TTI::TCC_Free; 75 // No cost model for operations on integers larger than 64 bit implemented yet. 76 if (BitSize > 64) 77 return TTI::TCC_Free; 78 79 switch (Opcode) { 80 default: 81 return TTI::TCC_Free; 82 case Instruction::GetElementPtr: 83 // Always hoist the base address of a GetElementPtr. This prevents the 84 // creation of new constants for every base constant that gets constant 85 // folded with the offset. 86 if (Idx == 0) 87 return 2 * TTI::TCC_Basic; 88 return TTI::TCC_Free; 89 case Instruction::Store: 90 if (Idx == 0 && Imm.getBitWidth() <= 64) { 91 // Any 8-bit immediate store can by implemented via mvi. 92 if (BitSize == 8) 93 return TTI::TCC_Free; 94 // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi. 95 if (isInt<16>(Imm.getSExtValue())) 96 return TTI::TCC_Free; 97 } 98 break; 99 case Instruction::ICmp: 100 if (Idx == 1 && Imm.getBitWidth() <= 64) { 101 // Comparisons against signed 32-bit immediates implemented via cgfi. 102 if (isInt<32>(Imm.getSExtValue())) 103 return TTI::TCC_Free; 104 // Comparisons against unsigned 32-bit immediates implemented via clgfi. 105 if (isUInt<32>(Imm.getZExtValue())) 106 return TTI::TCC_Free; 107 } 108 break; 109 case Instruction::Add: 110 case Instruction::Sub: 111 if (Idx == 1 && Imm.getBitWidth() <= 64) { 112 // We use algfi/slgfi to add/subtract 32-bit unsigned immediates. 113 if (isUInt<32>(Imm.getZExtValue())) 114 return TTI::TCC_Free; 115 // Or their negation, by swapping addition vs. subtraction. 116 if (isUInt<32>(-Imm.getSExtValue())) 117 return TTI::TCC_Free; 118 } 119 break; 120 case Instruction::Mul: 121 if (Idx == 1 && Imm.getBitWidth() <= 64) { 122 // We use msgfi to multiply by 32-bit signed immediates. 123 if (isInt<32>(Imm.getSExtValue())) 124 return TTI::TCC_Free; 125 } 126 break; 127 case Instruction::Or: 128 case Instruction::Xor: 129 if (Idx == 1 && Imm.getBitWidth() <= 64) { 130 // Masks supported by oilf/xilf. 131 if (isUInt<32>(Imm.getZExtValue())) 132 return TTI::TCC_Free; 133 // Masks supported by oihf/xihf. 134 if ((Imm.getZExtValue() & 0xffffffff) == 0) 135 return TTI::TCC_Free; 136 } 137 break; 138 case Instruction::And: 139 if (Idx == 1 && Imm.getBitWidth() <= 64) { 140 // Any 32-bit AND operation can by implemented via nilf. 141 if (BitSize <= 32) 142 return TTI::TCC_Free; 143 // 64-bit masks supported by nilf. 144 if (isUInt<32>(~Imm.getZExtValue())) 145 return TTI::TCC_Free; 146 // 64-bit masks supported by nilh. 147 if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff) 148 return TTI::TCC_Free; 149 // Some 64-bit AND operations can be implemented via risbg. 150 const SystemZInstrInfo *TII = ST->getInstrInfo(); 151 unsigned Start, End; 152 if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End)) 153 return TTI::TCC_Free; 154 } 155 break; 156 case Instruction::Shl: 157 case Instruction::LShr: 158 case Instruction::AShr: 159 // Always return TCC_Free for the shift value of a shift instruction. 160 if (Idx == 1) 161 return TTI::TCC_Free; 162 break; 163 case Instruction::UDiv: 164 case Instruction::SDiv: 165 case Instruction::URem: 166 case Instruction::SRem: 167 case Instruction::Trunc: 168 case Instruction::ZExt: 169 case Instruction::SExt: 170 case Instruction::IntToPtr: 171 case Instruction::PtrToInt: 172 case Instruction::BitCast: 173 case Instruction::PHI: 174 case Instruction::Call: 175 case Instruction::Select: 176 case Instruction::Ret: 177 case Instruction::Load: 178 break; 179 } 180 181 return SystemZTTIImpl::getIntImmCost(Imm, Ty); 182 } 183 184 int SystemZTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 185 const APInt &Imm, Type *Ty) { 186 assert(Ty->isIntegerTy()); 187 188 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 189 // There is no cost model for constants with a bit size of 0. Return TCC_Free 190 // here, so that constant hoisting will ignore this constant. 191 if (BitSize == 0) 192 return TTI::TCC_Free; 193 // No cost model for operations on integers larger than 64 bit implemented yet. 194 if (BitSize > 64) 195 return TTI::TCC_Free; 196 197 switch (IID) { 198 default: 199 return TTI::TCC_Free; 200 case Intrinsic::sadd_with_overflow: 201 case Intrinsic::uadd_with_overflow: 202 case Intrinsic::ssub_with_overflow: 203 case Intrinsic::usub_with_overflow: 204 // These get expanded to include a normal addition/subtraction. 205 if (Idx == 1 && Imm.getBitWidth() <= 64) { 206 if (isUInt<32>(Imm.getZExtValue())) 207 return TTI::TCC_Free; 208 if (isUInt<32>(-Imm.getSExtValue())) 209 return TTI::TCC_Free; 210 } 211 break; 212 case Intrinsic::smul_with_overflow: 213 case Intrinsic::umul_with_overflow: 214 // These get expanded to include a normal multiplication. 215 if (Idx == 1 && Imm.getBitWidth() <= 64) { 216 if (isInt<32>(Imm.getSExtValue())) 217 return TTI::TCC_Free; 218 } 219 break; 220 case Intrinsic::experimental_stackmap: 221 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 222 return TTI::TCC_Free; 223 break; 224 case Intrinsic::experimental_patchpoint_void: 225 case Intrinsic::experimental_patchpoint_i64: 226 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 227 return TTI::TCC_Free; 228 break; 229 } 230 return SystemZTTIImpl::getIntImmCost(Imm, Ty); 231 } 232 233 TargetTransformInfo::PopcntSupportKind 234 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) { 235 assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2"); 236 if (ST->hasPopulationCount() && TyWidth <= 64) 237 return TTI::PSK_FastHardware; 238 return TTI::PSK_Software; 239 } 240 241 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, 242 TTI::UnrollingPreferences &UP) { 243 // Find out if L contains a call, what the machine instruction count 244 // estimate is, and how many stores there are. 245 bool HasCall = false; 246 unsigned NumStores = 0; 247 for (auto &BB : L->blocks()) 248 for (auto &I : *BB) { 249 if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) { 250 ImmutableCallSite CS(&I); 251 if (const Function *F = CS.getCalledFunction()) { 252 if (isLoweredToCall(F)) 253 HasCall = true; 254 if (F->getIntrinsicID() == Intrinsic::memcpy || 255 F->getIntrinsicID() == Intrinsic::memset) 256 NumStores++; 257 } else { // indirect call. 258 HasCall = true; 259 } 260 } 261 if (isa<StoreInst>(&I)) { 262 Type *MemAccessTy = I.getOperand(0)->getType(); 263 NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 0, 0); 264 } 265 } 266 267 // The z13 processor will run out of store tags if too many stores 268 // are fed into it too quickly. Therefore make sure there are not 269 // too many stores in the resulting unrolled loop. 270 unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX); 271 272 if (HasCall) { 273 // Only allow full unrolling if loop has any calls. 274 UP.FullUnrollMaxCount = Max; 275 UP.MaxCount = 1; 276 return; 277 } 278 279 UP.MaxCount = Max; 280 if (UP.MaxCount <= 1) 281 return; 282 283 // Allow partial and runtime trip count unrolling. 284 UP.Partial = UP.Runtime = true; 285 286 UP.PartialThreshold = 75; 287 UP.DefaultUnrollRuntimeCount = 4; 288 289 // Allow expensive instructions in the pre-header of the loop. 290 UP.AllowExpensiveTripCount = true; 291 292 UP.Force = true; 293 } 294 295 unsigned SystemZTTIImpl::getNumberOfRegisters(bool Vector) { 296 if (!Vector) 297 // Discount the stack pointer. Also leave out %r0, since it can't 298 // be used in an address. 299 return 14; 300 if (ST->hasVector()) 301 return 32; 302 return 0; 303 } 304 305 unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) { 306 if (!Vector) 307 return 64; 308 if (ST->hasVector()) 309 return 128; 310 return 0; 311 } 312 313 int SystemZTTIImpl::getArithmeticInstrCost( 314 unsigned Opcode, Type *Ty, 315 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, 316 TTI::OperandValueProperties Opd1PropInfo, 317 TTI::OperandValueProperties Opd2PropInfo, 318 ArrayRef<const Value *> Args) { 319 320 // TODO: return a good value for BB-VECTORIZER that includes the 321 // immediate loads, which we do not want to count for the loop 322 // vectorizer, since they are hopefully hoisted out of the loop. This 323 // would require a new parameter 'InLoop', but not sure if constant 324 // args are common enough to motivate this. 325 326 unsigned ScalarBits = Ty->getScalarSizeInBits(); 327 328 // Div with a constant which is a power of 2 will be converted by 329 // DAGCombiner to use shifts. With vector shift-element instructions, a 330 // vector sdiv costs about as much as a scalar one. 331 const unsigned SDivCostEstimate = 4; 332 bool SDivPow2 = false; 333 bool UDivPow2 = false; 334 if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv) && 335 Args.size() == 2) { 336 const ConstantInt *CI = nullptr; 337 if (const Constant *C = dyn_cast<Constant>(Args[1])) { 338 if (C->getType()->isVectorTy()) 339 CI = dyn_cast_or_null<const ConstantInt>(C->getSplatValue()); 340 else 341 CI = dyn_cast<const ConstantInt>(C); 342 } 343 if (CI != nullptr && 344 (CI->getValue().isPowerOf2() || (-CI->getValue()).isPowerOf2())) { 345 if (Opcode == Instruction::SDiv) 346 SDivPow2 = true; 347 else 348 UDivPow2 = true; 349 } 350 } 351 352 if (Ty->isVectorTy()) { 353 assert (ST->hasVector() && "getArithmeticInstrCost() called with vector type."); 354 unsigned VF = Ty->getVectorNumElements(); 355 unsigned NumVectors = getNumberOfParts(Ty); 356 357 // These vector operations are custom handled, but are still supported 358 // with one instruction per vector, regardless of element size. 359 if (Opcode == Instruction::Shl || Opcode == Instruction::LShr || 360 Opcode == Instruction::AShr || UDivPow2) { 361 return NumVectors; 362 } 363 364 if (SDivPow2) 365 return (NumVectors * SDivCostEstimate); 366 367 // These FP operations are supported with a single vector instruction for 368 // double (base implementation assumes float generally costs 2). For 369 // FP128, the scalar cost is 1, and there is no overhead since the values 370 // are already in scalar registers. 371 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 372 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) { 373 switch (ScalarBits) { 374 case 32: { 375 // Return the cost of multiple scalar invocation plus the cost of 376 // inserting and extracting the values. 377 unsigned ScalarCost = getArithmeticInstrCost(Opcode, Ty->getScalarType()); 378 unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args); 379 // FIXME: VF 2 for these FP operations are currently just as 380 // expensive as for VF 4. 381 if (VF == 2) 382 Cost *= 2; 383 return Cost; 384 } 385 case 64: 386 case 128: 387 return NumVectors; 388 default: 389 break; 390 } 391 } 392 393 // There is no native support for FRem. 394 if (Opcode == Instruction::FRem) { 395 unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args); 396 // FIXME: VF 2 for float is currently just as expensive as for VF 4. 397 if (VF == 2 && ScalarBits == 32) 398 Cost *= 2; 399 return Cost; 400 } 401 } 402 else { // Scalar: 403 // These FP operations are supported with a dedicated instruction for 404 // float, double and fp128 (base implementation assumes float generally 405 // costs 2). 406 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 407 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) 408 return 1; 409 410 // There is no native support for FRem. 411 if (Opcode == Instruction::FRem) 412 return LIBCALL_COST; 413 414 if (Opcode == Instruction::LShr || Opcode == Instruction::AShr) 415 return (ScalarBits >= 32 ? 1 : 2 /*ext*/); 416 417 // Or requires one instruction, although it has custom handling for i64. 418 if (Opcode == Instruction::Or) 419 return 1; 420 421 if (Opcode == Instruction::Xor && ScalarBits == 1) 422 // 2 * ipm sequences ; xor ; shift ; compare 423 return 7; 424 425 if (UDivPow2) 426 return 1; 427 if (SDivPow2) 428 return SDivCostEstimate; 429 430 // An extra extension for narrow types is needed. 431 if ((Opcode == Instruction::SDiv || Opcode == Instruction::SRem)) 432 // sext of op(s) for narrow types 433 return (ScalarBits < 32 ? 4 : (ScalarBits == 32 ? 2 : 1)); 434 435 if (Opcode == Instruction::UDiv || Opcode == Instruction::URem) 436 // Clearing of low 64 bit reg + sext of op(s) for narrow types + dl[g]r 437 return (ScalarBits < 32 ? 4 : 2); 438 } 439 440 // Fallback to the default implementation. 441 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, 442 Opd1PropInfo, Opd2PropInfo, Args); 443 } 444 445 446 int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 447 Type *SubTp) { 448 assert (Tp->isVectorTy()); 449 assert (ST->hasVector() && "getShuffleCost() called."); 450 unsigned NumVectors = getNumberOfParts(Tp); 451 452 // TODO: Since fp32 is expanded, the shuffle cost should always be 0. 453 454 // FP128 values are always in scalar registers, so there is no work 455 // involved with a shuffle, except for broadcast. In that case register 456 // moves are done with a single instruction per element. 457 if (Tp->getScalarType()->isFP128Ty()) 458 return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0); 459 460 switch (Kind) { 461 case TargetTransformInfo::SK_ExtractSubvector: 462 // ExtractSubvector Index indicates start offset. 463 464 // Extracting a subvector from first index is a noop. 465 return (Index == 0 ? 0 : NumVectors); 466 467 case TargetTransformInfo::SK_Broadcast: 468 // Loop vectorizer calls here to figure out the extra cost of 469 // broadcasting a loaded value to all elements of a vector. Since vlrep 470 // loads and replicates with a single instruction, adjust the returned 471 // value. 472 return NumVectors - 1; 473 474 default: 475 476 // SystemZ supports single instruction permutation / replication. 477 return NumVectors; 478 } 479 480 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 481 } 482 483 // Return the log2 difference of the element sizes of the two vector types. 484 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) { 485 unsigned Bits0 = Ty0->getScalarSizeInBits(); 486 unsigned Bits1 = Ty1->getScalarSizeInBits(); 487 488 if (Bits1 > Bits0) 489 return (Log2_32(Bits1) - Log2_32(Bits0)); 490 491 return (Log2_32(Bits0) - Log2_32(Bits1)); 492 } 493 494 // Return the number of instructions needed to truncate SrcTy to DstTy. 495 unsigned SystemZTTIImpl:: 496 getVectorTruncCost(Type *SrcTy, Type *DstTy) { 497 assert (SrcTy->isVectorTy() && DstTy->isVectorTy()); 498 assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() && 499 "Packing must reduce size of vector type."); 500 assert (SrcTy->getVectorNumElements() == DstTy->getVectorNumElements() && 501 "Packing should not change number of elements."); 502 503 // TODO: Since fp32 is expanded, the extract cost should always be 0. 504 505 unsigned NumParts = getNumberOfParts(SrcTy); 506 if (NumParts <= 2) 507 // Up to 2 vector registers can be truncated efficiently with pack or 508 // permute. The latter requires an immediate mask to be loaded, which 509 // typically gets hoisted out of a loop. TODO: return a good value for 510 // BB-VECTORIZER that includes the immediate loads, which we do not want 511 // to count for the loop vectorizer. 512 return 1; 513 514 unsigned Cost = 0; 515 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 516 unsigned VF = SrcTy->getVectorNumElements(); 517 for (unsigned P = 0; P < Log2Diff; ++P) { 518 if (NumParts > 1) 519 NumParts /= 2; 520 Cost += NumParts; 521 } 522 523 // Currently, a general mix of permutes and pack instructions is output by 524 // isel, which follow the cost computation above except for this case which 525 // is one instruction less: 526 if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 && 527 DstTy->getScalarSizeInBits() == 8) 528 Cost--; 529 530 return Cost; 531 } 532 533 // Return the cost of converting a vector bitmask produced by a compare 534 // (SrcTy), to the type of the select or extend instruction (DstTy). 535 unsigned SystemZTTIImpl:: 536 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) { 537 assert (SrcTy->isVectorTy() && DstTy->isVectorTy() && 538 "Should only be called with vector types."); 539 540 unsigned PackCost = 0; 541 unsigned SrcScalarBits = SrcTy->getScalarSizeInBits(); 542 unsigned DstScalarBits = DstTy->getScalarSizeInBits(); 543 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 544 if (SrcScalarBits > DstScalarBits) 545 // The bitmask will be truncated. 546 PackCost = getVectorTruncCost(SrcTy, DstTy); 547 else if (SrcScalarBits < DstScalarBits) { 548 unsigned DstNumParts = getNumberOfParts(DstTy); 549 // Each vector select needs its part of the bitmask unpacked. 550 PackCost = Log2Diff * DstNumParts; 551 // Extra cost for moving part of mask before unpacking. 552 PackCost += DstNumParts - 1; 553 } 554 555 return PackCost; 556 } 557 558 // Return the type of the compared operands. This is needed to compute the 559 // cost for a Select / ZExt or SExt instruction. 560 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) { 561 Type *OpTy = nullptr; 562 if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0))) 563 OpTy = CI->getOperand(0)->getType(); 564 else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0))) 565 if (LogicI->getNumOperands() == 2) 566 if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0))) 567 if (isa<CmpInst>(LogicI->getOperand(1))) 568 OpTy = CI0->getOperand(0)->getType(); 569 570 if (OpTy != nullptr) { 571 if (VF == 1) { 572 assert (!OpTy->isVectorTy() && "Expected scalar type"); 573 return OpTy; 574 } 575 // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may 576 // be either scalar or already vectorized with a same or lesser VF. 577 Type *ElTy = OpTy->getScalarType(); 578 return VectorType::get(ElTy, VF); 579 } 580 581 return nullptr; 582 } 583 584 int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 585 const Instruction *I) { 586 unsigned DstScalarBits = Dst->getScalarSizeInBits(); 587 unsigned SrcScalarBits = Src->getScalarSizeInBits(); 588 589 if (Src->isVectorTy()) { 590 assert (ST->hasVector() && "getCastInstrCost() called with vector type."); 591 assert (Dst->isVectorTy()); 592 unsigned VF = Src->getVectorNumElements(); 593 unsigned NumDstVectors = getNumberOfParts(Dst); 594 unsigned NumSrcVectors = getNumberOfParts(Src); 595 596 if (Opcode == Instruction::Trunc) { 597 if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits()) 598 return 0; // Check for NOOP conversions. 599 return getVectorTruncCost(Src, Dst); 600 } 601 602 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 603 if (SrcScalarBits >= 8) { 604 // ZExt/SExt will be handled with one unpack per doubling of width. 605 unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst); 606 607 // For types that spans multiple vector registers, some additional 608 // instructions are used to setup the unpacking. 609 unsigned NumSrcVectorOps = 610 (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors) 611 : (NumDstVectors / 2)); 612 613 return (NumUnpacks * NumDstVectors) + NumSrcVectorOps; 614 } 615 else if (SrcScalarBits == 1) { 616 // This should be extension of a compare i1 result. 617 // If we know what the widths of the compared operands, get the 618 // cost of converting it to Dst. Otherwise assume same widths. 619 unsigned Cost = 0; 620 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 621 if (CmpOpTy != nullptr) 622 Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst); 623 if (Opcode == Instruction::ZExt) 624 // One 'vn' per dst vector with an immediate mask. 625 Cost += NumDstVectors; 626 return Cost; 627 } 628 } 629 630 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP || 631 Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) { 632 // TODO: Fix base implementation which could simplify things a bit here 633 // (seems to miss on differentiating on scalar/vector types). 634 635 // Only 64 bit vector conversions are natively supported. 636 if (SrcScalarBits == 64 && DstScalarBits == 64) 637 return NumDstVectors; 638 639 // Return the cost of multiple scalar invocation plus the cost of 640 // inserting and extracting the values. Base implementation does not 641 // realize float->int gets scalarized. 642 unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(), 643 Src->getScalarType()); 644 unsigned TotCost = VF * ScalarCost; 645 bool NeedsInserts = true, NeedsExtracts = true; 646 // FP128 registers do not get inserted or extracted. 647 if (DstScalarBits == 128 && 648 (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)) 649 NeedsInserts = false; 650 if (SrcScalarBits == 128 && 651 (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI)) 652 NeedsExtracts = false; 653 654 TotCost += getScalarizationOverhead(Dst, NeedsInserts, NeedsExtracts); 655 656 // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4. 657 if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32) 658 TotCost *= 2; 659 660 return TotCost; 661 } 662 663 if (Opcode == Instruction::FPTrunc) { 664 if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements. 665 return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false); 666 else // double -> float 667 return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/); 668 } 669 670 if (Opcode == Instruction::FPExt) { 671 if (SrcScalarBits == 32 && DstScalarBits == 64) { 672 // float -> double is very rare and currently unoptimized. Instead of 673 // using vldeb, which can do two at a time, all conversions are 674 // scalarized. 675 return VF * 2; 676 } 677 // -> fp128. VF * lxdb/lxeb + extraction of elements. 678 return VF + getScalarizationOverhead(Src, false, true); 679 } 680 } 681 else { // Scalar 682 assert (!Dst->isVectorTy()); 683 684 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) 685 return (SrcScalarBits >= 32 ? 1 : 2 /*i8/i16 extend*/); 686 687 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && 688 Src->isIntegerTy(1)) { 689 // This should be extension of a compare i1 result, which is done with 690 // ipm and a varying sequence of instructions. 691 unsigned Cost = 0; 692 if (Opcode == Instruction::SExt) 693 Cost = (DstScalarBits < 64 ? 3 : 4); 694 if (Opcode == Instruction::ZExt) 695 Cost = 3; 696 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr); 697 if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy()) 698 // If operands of an fp-type was compared, this costs +1. 699 Cost++; 700 701 return Cost; 702 } 703 } 704 705 return BaseT::getCastInstrCost(Opcode, Dst, Src, I); 706 } 707 708 int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, 709 const Instruction *I) { 710 if (ValTy->isVectorTy()) { 711 assert (ST->hasVector() && "getCmpSelInstrCost() called with vector type."); 712 unsigned VF = ValTy->getVectorNumElements(); 713 714 // Called with a compare instruction. 715 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) { 716 unsigned PredicateExtraCost = 0; 717 if (I != nullptr) { 718 // Some predicates cost one or two extra instructions. 719 switch (dyn_cast<CmpInst>(I)->getPredicate()) { 720 case CmpInst::Predicate::ICMP_NE: 721 case CmpInst::Predicate::ICMP_UGE: 722 case CmpInst::Predicate::ICMP_ULE: 723 case CmpInst::Predicate::ICMP_SGE: 724 case CmpInst::Predicate::ICMP_SLE: 725 PredicateExtraCost = 1; 726 break; 727 case CmpInst::Predicate::FCMP_ONE: 728 case CmpInst::Predicate::FCMP_ORD: 729 case CmpInst::Predicate::FCMP_UEQ: 730 case CmpInst::Predicate::FCMP_UNO: 731 PredicateExtraCost = 2; 732 break; 733 default: 734 break; 735 } 736 } 737 738 // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of 739 // floats. FIXME: <2 x float> generates same code as <4 x float>. 740 unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1); 741 unsigned NumVecs_cmp = getNumberOfParts(ValTy); 742 743 unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost)); 744 return Cost; 745 } 746 else { // Called with a select instruction. 747 assert (Opcode == Instruction::Select); 748 749 // We can figure out the extra cost of packing / unpacking if the 750 // instruction was passed and the compare instruction is found. 751 unsigned PackCost = 0; 752 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 753 if (CmpOpTy != nullptr) 754 PackCost = 755 getVectorBitmaskConversionCost(CmpOpTy, ValTy); 756 757 return getNumberOfParts(ValTy) /*vsel*/ + PackCost; 758 } 759 } 760 else { // Scalar 761 switch (Opcode) { 762 case Instruction::ICmp: { 763 unsigned Cost = 1; 764 if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16) 765 Cost += 2; // extend both operands 766 return Cost; 767 } 768 case Instruction::Select: 769 if (ValTy->isFloatingPointTy()) 770 return 4; // No load on condition for FP, so this costs a conditional jump. 771 return 1; // Load On Condition. 772 } 773 } 774 775 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr); 776 } 777 778 int SystemZTTIImpl:: 779 getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { 780 // vlvgp will insert two grs into a vector register, so only count half the 781 // number of instructions. 782 if (Opcode == Instruction::InsertElement && 783 Val->getScalarType()->isIntegerTy(64)) 784 return ((Index % 2 == 0) ? 1 : 0); 785 786 if (Opcode == Instruction::ExtractElement) { 787 int Cost = ((Val->getScalarSizeInBits() == 1) ? 2 /*+test-under-mask*/ : 1); 788 789 // Give a slight penalty for moving out of vector pipeline to FXU unit. 790 if (Index == 0 && Val->getScalarType()->isIntegerTy()) 791 Cost += 1; 792 793 return Cost; 794 } 795 796 return BaseT::getVectorInstrCost(Opcode, Val, Index); 797 } 798 799 int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 800 unsigned Alignment, unsigned AddressSpace, 801 const Instruction *I) { 802 assert(!Src->isVoidTy() && "Invalid type"); 803 804 if (!Src->isVectorTy() && Opcode == Instruction::Load && 805 I != nullptr && I->hasOneUse()) { 806 const Instruction *UserI = cast<Instruction>(*I->user_begin()); 807 unsigned Bits = Src->getScalarSizeInBits(); 808 bool FoldsLoad = false; 809 switch (UserI->getOpcode()) { 810 case Instruction::ICmp: 811 case Instruction::Add: 812 case Instruction::Sub: 813 case Instruction::Mul: 814 case Instruction::SDiv: 815 case Instruction::UDiv: 816 case Instruction::And: 817 case Instruction::Or: 818 case Instruction::Xor: 819 // This also makes sense for float operations, but disabled for now due 820 // to regressions. 821 // case Instruction::FCmp: 822 // case Instruction::FAdd: 823 // case Instruction::FSub: 824 // case Instruction::FMul: 825 // case Instruction::FDiv: 826 FoldsLoad = (Bits == 32 || Bits == 64); 827 break; 828 } 829 830 if (FoldsLoad) { 831 assert (UserI->getNumOperands() == 2 && 832 "Expected to only handle binops."); 833 834 // UserI can't fold two loads, so in that case return 0 cost only 835 // half of the time. 836 for (unsigned i = 0; i < 2; ++i) { 837 if (UserI->getOperand(i) == I) 838 continue; 839 if (LoadInst *LI = dyn_cast<LoadInst>(UserI->getOperand(i))) { 840 if (LI->hasOneUse()) 841 return i == 0; 842 } 843 } 844 845 return 0; 846 } 847 } 848 849 unsigned NumOps = getNumberOfParts(Src); 850 851 if (Src->getScalarSizeInBits() == 128) 852 // 128 bit scalars are held in a pair of two 64 bit registers. 853 NumOps *= 2; 854 855 return NumOps; 856 } 857 858 int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 859 unsigned Factor, 860 ArrayRef<unsigned> Indices, 861 unsigned Alignment, 862 unsigned AddressSpace) { 863 assert(isa<VectorType>(VecTy) && 864 "Expect a vector type for interleaved memory op"); 865 866 unsigned WideBits = (VecTy->isPtrOrPtrVectorTy() ? 867 (64U * VecTy->getVectorNumElements()) : VecTy->getPrimitiveSizeInBits()); 868 assert (WideBits > 0 && "Could not compute size of vector"); 869 int NumWideParts = 870 ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U)); 871 872 // How many source vectors are handled to produce a vectorized operand? 873 int NumElsPerVector = (VecTy->getVectorNumElements() / NumWideParts); 874 int NumSrcParts = 875 ((NumWideParts > NumElsPerVector) ? NumElsPerVector : NumWideParts); 876 877 // A Load group may have gaps. 878 unsigned NumOperands = 879 ((Opcode == Instruction::Load) ? Indices.size() : Factor); 880 881 // Each needed permute takes two vectors as input. 882 if (NumSrcParts > 1) 883 NumSrcParts--; 884 int NumPermutes = NumSrcParts * NumOperands; 885 886 // Cost of load/store operations and the permutations needed. 887 return NumWideParts + NumPermutes; 888 } 889