1 //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines an instruction selector for the SystemZ target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZTargetMachine.h" 15 #include "llvm/Analysis/AliasAnalysis.h" 16 #include "llvm/CodeGen/SelectionDAGISel.h" 17 #include "llvm/Support/Debug.h" 18 #include "llvm/Support/KnownBits.h" 19 #include "llvm/Support/raw_ostream.h" 20 21 using namespace llvm; 22 23 #define DEBUG_TYPE "systemz-isel" 24 25 namespace { 26 // Used to build addressing modes. 27 struct SystemZAddressingMode { 28 // The shape of the address. 29 enum AddrForm { 30 // base+displacement 31 FormBD, 32 33 // base+displacement+index for load and store operands 34 FormBDXNormal, 35 36 // base+displacement+index for load address operands 37 FormBDXLA, 38 39 // base+displacement+index+ADJDYNALLOC 40 FormBDXDynAlloc 41 }; 42 AddrForm Form; 43 44 // The type of displacement. The enum names here correspond directly 45 // to the definitions in SystemZOperand.td. We could split them into 46 // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it. 47 enum DispRange { 48 Disp12Only, 49 Disp12Pair, 50 Disp20Only, 51 Disp20Only128, 52 Disp20Pair 53 }; 54 DispRange DR; 55 56 // The parts of the address. The address is equivalent to: 57 // 58 // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0) 59 SDValue Base; 60 int64_t Disp; 61 SDValue Index; 62 bool IncludesDynAlloc; 63 64 SystemZAddressingMode(AddrForm form, DispRange dr) 65 : Form(form), DR(dr), Base(), Disp(0), Index(), 66 IncludesDynAlloc(false) {} 67 68 // True if the address can have an index register. 69 bool hasIndexField() { return Form != FormBD; } 70 71 // True if the address can (and must) include ADJDYNALLOC. 72 bool isDynAlloc() { return Form == FormBDXDynAlloc; } 73 74 void dump(const llvm::SelectionDAG *DAG) { 75 errs() << "SystemZAddressingMode " << this << '\n'; 76 77 errs() << " Base "; 78 if (Base.getNode()) 79 Base.getNode()->dump(DAG); 80 else 81 errs() << "null\n"; 82 83 if (hasIndexField()) { 84 errs() << " Index "; 85 if (Index.getNode()) 86 Index.getNode()->dump(DAG); 87 else 88 errs() << "null\n"; 89 } 90 91 errs() << " Disp " << Disp; 92 if (IncludesDynAlloc) 93 errs() << " + ADJDYNALLOC"; 94 errs() << '\n'; 95 } 96 }; 97 98 // Return a mask with Count low bits set. 99 static uint64_t allOnes(unsigned int Count) { 100 assert(Count <= 64); 101 if (Count > 63) 102 return UINT64_MAX; 103 return (uint64_t(1) << Count) - 1; 104 } 105 106 // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation 107 // given by Opcode. The operands are: Input (R2), Start (I3), End (I4) and 108 // Rotate (I5). The combined operand value is effectively: 109 // 110 // (or (rotl Input, Rotate), ~Mask) 111 // 112 // for RNSBG and: 113 // 114 // (and (rotl Input, Rotate), Mask) 115 // 116 // otherwise. The output value has BitSize bits, although Input may be 117 // narrower (in which case the upper bits are don't care), or wider (in which 118 // case the result will be truncated as part of the operation). 119 struct RxSBGOperands { 120 RxSBGOperands(unsigned Op, SDValue N) 121 : Opcode(Op), BitSize(N.getValueSizeInBits()), 122 Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63), 123 Rotate(0) {} 124 125 unsigned Opcode; 126 unsigned BitSize; 127 uint64_t Mask; 128 SDValue Input; 129 unsigned Start; 130 unsigned End; 131 unsigned Rotate; 132 }; 133 134 class SystemZDAGToDAGISel : public SelectionDAGISel { 135 const SystemZSubtarget *Subtarget; 136 137 // Used by SystemZOperands.td to create integer constants. 138 inline SDValue getImm(const SDNode *Node, uint64_t Imm) const { 139 return CurDAG->getTargetConstant(Imm, SDLoc(Node), Node->getValueType(0)); 140 } 141 142 const SystemZTargetMachine &getTargetMachine() const { 143 return static_cast<const SystemZTargetMachine &>(TM); 144 } 145 146 const SystemZInstrInfo *getInstrInfo() const { 147 return Subtarget->getInstrInfo(); 148 } 149 150 // Try to fold more of the base or index of AM into AM, where IsBase 151 // selects between the base and index. 152 bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const; 153 154 // Try to describe N in AM, returning true on success. 155 bool selectAddress(SDValue N, SystemZAddressingMode &AM) const; 156 157 // Extract individual target operands from matched address AM. 158 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT, 159 SDValue &Base, SDValue &Disp) const; 160 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT, 161 SDValue &Base, SDValue &Disp, SDValue &Index) const; 162 163 // Try to match Addr as a FormBD address with displacement type DR. 164 // Return true on success, storing the base and displacement in 165 // Base and Disp respectively. 166 bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr, 167 SDValue &Base, SDValue &Disp) const; 168 169 // Try to match Addr as a FormBDX address with displacement type DR. 170 // Return true on success and if the result had no index. Store the 171 // base and displacement in Base and Disp respectively. 172 bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr, 173 SDValue &Base, SDValue &Disp) const; 174 175 // Try to match Addr as a FormBDX* address of form Form with 176 // displacement type DR. Return true on success, storing the base, 177 // displacement and index in Base, Disp and Index respectively. 178 bool selectBDXAddr(SystemZAddressingMode::AddrForm Form, 179 SystemZAddressingMode::DispRange DR, SDValue Addr, 180 SDValue &Base, SDValue &Disp, SDValue &Index) const; 181 182 // PC-relative address matching routines used by SystemZOperands.td. 183 bool selectPCRelAddress(SDValue Addr, SDValue &Target) const { 184 if (SystemZISD::isPCREL(Addr.getOpcode())) { 185 Target = Addr.getOperand(0); 186 return true; 187 } 188 return false; 189 } 190 191 // BD matching routines used by SystemZOperands.td. 192 bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const { 193 return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp); 194 } 195 bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { 196 return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp); 197 } 198 bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const { 199 return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp); 200 } 201 bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { 202 return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp); 203 } 204 205 // MVI matching routines used by SystemZOperands.td. 206 bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { 207 return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp); 208 } 209 bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { 210 return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp); 211 } 212 213 // BDX matching routines used by SystemZOperands.td. 214 bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp, 215 SDValue &Index) const { 216 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, 217 SystemZAddressingMode::Disp12Only, 218 Addr, Base, Disp, Index); 219 } 220 bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp, 221 SDValue &Index) const { 222 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, 223 SystemZAddressingMode::Disp12Pair, 224 Addr, Base, Disp, Index); 225 } 226 bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp, 227 SDValue &Index) const { 228 return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc, 229 SystemZAddressingMode::Disp12Only, 230 Addr, Base, Disp, Index); 231 } 232 bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp, 233 SDValue &Index) const { 234 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, 235 SystemZAddressingMode::Disp20Only, 236 Addr, Base, Disp, Index); 237 } 238 bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp, 239 SDValue &Index) const { 240 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, 241 SystemZAddressingMode::Disp20Only128, 242 Addr, Base, Disp, Index); 243 } 244 bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp, 245 SDValue &Index) const { 246 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, 247 SystemZAddressingMode::Disp20Pair, 248 Addr, Base, Disp, Index); 249 } 250 bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp, 251 SDValue &Index) const { 252 return selectBDXAddr(SystemZAddressingMode::FormBDXLA, 253 SystemZAddressingMode::Disp12Pair, 254 Addr, Base, Disp, Index); 255 } 256 bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp, 257 SDValue &Index) const { 258 return selectBDXAddr(SystemZAddressingMode::FormBDXLA, 259 SystemZAddressingMode::Disp20Pair, 260 Addr, Base, Disp, Index); 261 } 262 263 // Try to match Addr as an address with a base, 12-bit displacement 264 // and index, where the index is element Elem of a vector. 265 // Return true on success, storing the base, displacement and vector 266 // in Base, Disp and Index respectively. 267 bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base, 268 SDValue &Disp, SDValue &Index) const; 269 270 // Check whether (or Op (and X InsertMask)) is effectively an insertion 271 // of X into bits InsertMask of some Y != Op. Return true if so and 272 // set Op to that Y. 273 bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const; 274 275 // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used. 276 // Return true on success. 277 bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const; 278 279 // Try to fold some of RxSBG.Input into other fields of RxSBG. 280 // Return true on success. 281 bool expandRxSBG(RxSBGOperands &RxSBG) const; 282 283 // Return an undefined value of type VT. 284 SDValue getUNDEF(const SDLoc &DL, EVT VT) const; 285 286 // Convert N to VT, if it isn't already. 287 SDValue convertTo(const SDLoc &DL, EVT VT, SDValue N) const; 288 289 // Try to implement AND or shift node N using RISBG with the zero flag set. 290 // Return the selected node on success, otherwise return null. 291 bool tryRISBGZero(SDNode *N); 292 293 // Try to use RISBG or Opcode to implement OR or XOR node N. 294 // Return the selected node on success, otherwise return null. 295 bool tryRxSBG(SDNode *N, unsigned Opcode); 296 297 // If Op0 is null, then Node is a constant that can be loaded using: 298 // 299 // (Opcode UpperVal LowerVal) 300 // 301 // If Op0 is nonnull, then Node can be implemented using: 302 // 303 // (Opcode (Opcode Op0 UpperVal) LowerVal) 304 void splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0, 305 uint64_t UpperVal, uint64_t LowerVal); 306 307 // Try to use gather instruction Opcode to implement vector insertion N. 308 bool tryGather(SDNode *N, unsigned Opcode); 309 310 // Try to use scatter instruction Opcode to implement store Store. 311 bool tryScatter(StoreSDNode *Store, unsigned Opcode); 312 313 // Change a chain of {load; op; store} of the same value into a simple op 314 // through memory of that value, if the uses of the modified value and its 315 // address are suitable. 316 bool tryFoldLoadStoreIntoMemOperand(SDNode *Node); 317 318 // Return true if Load and Store are loads and stores of the same size 319 // and are guaranteed not to overlap. Such operations can be implemented 320 // using block (SS-format) instructions. 321 // 322 // Partial overlap would lead to incorrect code, since the block operations 323 // are logically bytewise, even though they have a fast path for the 324 // non-overlapping case. We also need to avoid full overlap (i.e. two 325 // addresses that might be equal at run time) because although that case 326 // would be handled correctly, it might be implemented by millicode. 327 bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const; 328 329 // N is a (store (load Y), X) pattern. Return true if it can use an MVC 330 // from Y to X. 331 bool storeLoadCanUseMVC(SDNode *N) const; 332 333 // N is a (store (op (load A[0]), (load A[1])), X) pattern. Return true 334 // if A[1 - I] == X and if N can use a block operation like NC from A[I] 335 // to X. 336 bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const; 337 338 // Try to expand a boolean SELECT_CCMASK using an IPM sequence. 339 SDValue expandSelectBoolean(SDNode *Node); 340 341 public: 342 SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel) 343 : SelectionDAGISel(TM, OptLevel) {} 344 345 bool runOnMachineFunction(MachineFunction &MF) override { 346 Subtarget = &MF.getSubtarget<SystemZSubtarget>(); 347 return SelectionDAGISel::runOnMachineFunction(MF); 348 } 349 350 // Override MachineFunctionPass. 351 StringRef getPassName() const override { 352 return "SystemZ DAG->DAG Pattern Instruction Selection"; 353 } 354 355 // Override SelectionDAGISel. 356 void Select(SDNode *Node) override; 357 bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, 358 std::vector<SDValue> &OutOps) override; 359 bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override; 360 void PreprocessISelDAG() override; 361 362 // Include the pieces autogenerated from the target description. 363 #include "SystemZGenDAGISel.inc" 364 }; 365 } // end anonymous namespace 366 367 FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM, 368 CodeGenOpt::Level OptLevel) { 369 return new SystemZDAGToDAGISel(TM, OptLevel); 370 } 371 372 // Return true if Val should be selected as a displacement for an address 373 // with range DR. Here we're interested in the range of both the instruction 374 // described by DR and of any pairing instruction. 375 static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) { 376 switch (DR) { 377 case SystemZAddressingMode::Disp12Only: 378 return isUInt<12>(Val); 379 380 case SystemZAddressingMode::Disp12Pair: 381 case SystemZAddressingMode::Disp20Only: 382 case SystemZAddressingMode::Disp20Pair: 383 return isInt<20>(Val); 384 385 case SystemZAddressingMode::Disp20Only128: 386 return isInt<20>(Val) && isInt<20>(Val + 8); 387 } 388 llvm_unreachable("Unhandled displacement range"); 389 } 390 391 // Change the base or index in AM to Value, where IsBase selects 392 // between the base and index. 393 static void changeComponent(SystemZAddressingMode &AM, bool IsBase, 394 SDValue Value) { 395 if (IsBase) 396 AM.Base = Value; 397 else 398 AM.Index = Value; 399 } 400 401 // The base or index of AM is equivalent to Value + ADJDYNALLOC, 402 // where IsBase selects between the base and index. Try to fold the 403 // ADJDYNALLOC into AM. 404 static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase, 405 SDValue Value) { 406 if (AM.isDynAlloc() && !AM.IncludesDynAlloc) { 407 changeComponent(AM, IsBase, Value); 408 AM.IncludesDynAlloc = true; 409 return true; 410 } 411 return false; 412 } 413 414 // The base of AM is equivalent to Base + Index. Try to use Index as 415 // the index register. 416 static bool expandIndex(SystemZAddressingMode &AM, SDValue Base, 417 SDValue Index) { 418 if (AM.hasIndexField() && !AM.Index.getNode()) { 419 AM.Base = Base; 420 AM.Index = Index; 421 return true; 422 } 423 return false; 424 } 425 426 // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects 427 // between the base and index. Try to fold Op1 into AM's displacement. 428 static bool expandDisp(SystemZAddressingMode &AM, bool IsBase, 429 SDValue Op0, uint64_t Op1) { 430 // First try adjusting the displacement. 431 int64_t TestDisp = AM.Disp + Op1; 432 if (selectDisp(AM.DR, TestDisp)) { 433 changeComponent(AM, IsBase, Op0); 434 AM.Disp = TestDisp; 435 return true; 436 } 437 438 // We could consider forcing the displacement into a register and 439 // using it as an index, but it would need to be carefully tuned. 440 return false; 441 } 442 443 bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM, 444 bool IsBase) const { 445 SDValue N = IsBase ? AM.Base : AM.Index; 446 unsigned Opcode = N.getOpcode(); 447 if (Opcode == ISD::TRUNCATE) { 448 N = N.getOperand(0); 449 Opcode = N.getOpcode(); 450 } 451 if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) { 452 SDValue Op0 = N.getOperand(0); 453 SDValue Op1 = N.getOperand(1); 454 455 unsigned Op0Code = Op0->getOpcode(); 456 unsigned Op1Code = Op1->getOpcode(); 457 458 if (Op0Code == SystemZISD::ADJDYNALLOC) 459 return expandAdjDynAlloc(AM, IsBase, Op1); 460 if (Op1Code == SystemZISD::ADJDYNALLOC) 461 return expandAdjDynAlloc(AM, IsBase, Op0); 462 463 if (Op0Code == ISD::Constant) 464 return expandDisp(AM, IsBase, Op1, 465 cast<ConstantSDNode>(Op0)->getSExtValue()); 466 if (Op1Code == ISD::Constant) 467 return expandDisp(AM, IsBase, Op0, 468 cast<ConstantSDNode>(Op1)->getSExtValue()); 469 470 if (IsBase && expandIndex(AM, Op0, Op1)) 471 return true; 472 } 473 if (Opcode == SystemZISD::PCREL_OFFSET) { 474 SDValue Full = N.getOperand(0); 475 SDValue Base = N.getOperand(1); 476 SDValue Anchor = Base.getOperand(0); 477 uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() - 478 cast<GlobalAddressSDNode>(Anchor)->getOffset()); 479 return expandDisp(AM, IsBase, Base, Offset); 480 } 481 return false; 482 } 483 484 // Return true if an instruction with displacement range DR should be 485 // used for displacement value Val. selectDisp(DR, Val) must already hold. 486 static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) { 487 assert(selectDisp(DR, Val) && "Invalid displacement"); 488 switch (DR) { 489 case SystemZAddressingMode::Disp12Only: 490 case SystemZAddressingMode::Disp20Only: 491 case SystemZAddressingMode::Disp20Only128: 492 return true; 493 494 case SystemZAddressingMode::Disp12Pair: 495 // Use the other instruction if the displacement is too large. 496 return isUInt<12>(Val); 497 498 case SystemZAddressingMode::Disp20Pair: 499 // Use the other instruction if the displacement is small enough. 500 return !isUInt<12>(Val); 501 } 502 llvm_unreachable("Unhandled displacement range"); 503 } 504 505 // Return true if Base + Disp + Index should be performed by LA(Y). 506 static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) { 507 // Don't use LA(Y) for constants. 508 if (!Base) 509 return false; 510 511 // Always use LA(Y) for frame addresses, since we know that the destination 512 // register is almost always (perhaps always) going to be different from 513 // the frame register. 514 if (Base->getOpcode() == ISD::FrameIndex) 515 return true; 516 517 if (Disp) { 518 // Always use LA(Y) if there is a base, displacement and index. 519 if (Index) 520 return true; 521 522 // Always use LA if the displacement is small enough. It should always 523 // be no worse than AGHI (and better if it avoids a move). 524 if (isUInt<12>(Disp)) 525 return true; 526 527 // For similar reasons, always use LAY if the constant is too big for AGHI. 528 // LAY should be no worse than AGFI. 529 if (!isInt<16>(Disp)) 530 return true; 531 } else { 532 // Don't use LA for plain registers. 533 if (!Index) 534 return false; 535 536 // Don't use LA for plain addition if the index operand is only used 537 // once. It should be a natural two-operand addition in that case. 538 if (Index->hasOneUse()) 539 return false; 540 541 // Prefer addition if the second operation is sign-extended, in the 542 // hope of using AGF. 543 unsigned IndexOpcode = Index->getOpcode(); 544 if (IndexOpcode == ISD::SIGN_EXTEND || 545 IndexOpcode == ISD::SIGN_EXTEND_INREG) 546 return false; 547 } 548 549 // Don't use LA for two-operand addition if either operand is only 550 // used once. The addition instructions are better in that case. 551 if (Base->hasOneUse()) 552 return false; 553 554 return true; 555 } 556 557 // Return true if Addr is suitable for AM, updating AM if so. 558 bool SystemZDAGToDAGISel::selectAddress(SDValue Addr, 559 SystemZAddressingMode &AM) const { 560 // Start out assuming that the address will need to be loaded separately, 561 // then try to extend it as much as we can. 562 AM.Base = Addr; 563 564 // First try treating the address as a constant. 565 if (Addr.getOpcode() == ISD::Constant && 566 expandDisp(AM, true, SDValue(), 567 cast<ConstantSDNode>(Addr)->getSExtValue())) 568 ; 569 // Also see if it's a bare ADJDYNALLOC. 570 else if (Addr.getOpcode() == SystemZISD::ADJDYNALLOC && 571 expandAdjDynAlloc(AM, true, SDValue())) 572 ; 573 else 574 // Otherwise try expanding each component. 575 while (expandAddress(AM, true) || 576 (AM.Index.getNode() && expandAddress(AM, false))) 577 continue; 578 579 // Reject cases where it isn't profitable to use LA(Y). 580 if (AM.Form == SystemZAddressingMode::FormBDXLA && 581 !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode())) 582 return false; 583 584 // Reject cases where the other instruction in a pair should be used. 585 if (!isValidDisp(AM.DR, AM.Disp)) 586 return false; 587 588 // Make sure that ADJDYNALLOC is included where necessary. 589 if (AM.isDynAlloc() && !AM.IncludesDynAlloc) 590 return false; 591 592 LLVM_DEBUG(AM.dump(CurDAG)); 593 return true; 594 } 595 596 // Insert a node into the DAG at least before Pos. This will reposition 597 // the node as needed, and will assign it a node ID that is <= Pos's ID. 598 // Note that this does *not* preserve the uniqueness of node IDs! 599 // The selection DAG must no longer depend on their uniqueness when this 600 // function is used. 601 static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) { 602 if (N->getNodeId() == -1 || 603 (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) > 604 SelectionDAGISel::getUninvalidatedNodeId(Pos))) { 605 DAG->RepositionNode(Pos->getIterator(), N.getNode()); 606 // Mark Node as invalid for pruning as after this it may be a successor to a 607 // selected node but otherwise be in the same position of Pos. 608 // Conservatively mark it with the same -abs(Id) to assure node id 609 // invariant is preserved. 610 N->setNodeId(Pos->getNodeId()); 611 SelectionDAGISel::InvalidateNodeId(N.getNode()); 612 } 613 } 614 615 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM, 616 EVT VT, SDValue &Base, 617 SDValue &Disp) const { 618 Base = AM.Base; 619 if (!Base.getNode()) 620 // Register 0 means "no base". This is mostly useful for shifts. 621 Base = CurDAG->getRegister(0, VT); 622 else if (Base.getOpcode() == ISD::FrameIndex) { 623 // Lower a FrameIndex to a TargetFrameIndex. 624 int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex(); 625 Base = CurDAG->getTargetFrameIndex(FrameIndex, VT); 626 } else if (Base.getValueType() != VT) { 627 // Truncate values from i64 to i32, for shifts. 628 assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 && 629 "Unexpected truncation"); 630 SDLoc DL(Base); 631 SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base); 632 insertDAGNode(CurDAG, Base.getNode(), Trunc); 633 Base = Trunc; 634 } 635 636 // Lower the displacement to a TargetConstant. 637 Disp = CurDAG->getTargetConstant(AM.Disp, SDLoc(Base), VT); 638 } 639 640 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM, 641 EVT VT, SDValue &Base, 642 SDValue &Disp, 643 SDValue &Index) const { 644 getAddressOperands(AM, VT, Base, Disp); 645 646 Index = AM.Index; 647 if (!Index.getNode()) 648 // Register 0 means "no index". 649 Index = CurDAG->getRegister(0, VT); 650 } 651 652 bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR, 653 SDValue Addr, SDValue &Base, 654 SDValue &Disp) const { 655 SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR); 656 if (!selectAddress(Addr, AM)) 657 return false; 658 659 getAddressOperands(AM, Addr.getValueType(), Base, Disp); 660 return true; 661 } 662 663 bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR, 664 SDValue Addr, SDValue &Base, 665 SDValue &Disp) const { 666 SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR); 667 if (!selectAddress(Addr, AM) || AM.Index.getNode()) 668 return false; 669 670 getAddressOperands(AM, Addr.getValueType(), Base, Disp); 671 return true; 672 } 673 674 bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form, 675 SystemZAddressingMode::DispRange DR, 676 SDValue Addr, SDValue &Base, 677 SDValue &Disp, SDValue &Index) const { 678 SystemZAddressingMode AM(Form, DR); 679 if (!selectAddress(Addr, AM)) 680 return false; 681 682 getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index); 683 return true; 684 } 685 686 bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem, 687 SDValue &Base, 688 SDValue &Disp, 689 SDValue &Index) const { 690 SDValue Regs[2]; 691 if (selectBDXAddr12Only(Addr, Regs[0], Disp, Regs[1]) && 692 Regs[0].getNode() && Regs[1].getNode()) { 693 for (unsigned int I = 0; I < 2; ++I) { 694 Base = Regs[I]; 695 Index = Regs[1 - I]; 696 // We can't tell here whether the index vector has the right type 697 // for the access; the caller needs to do that instead. 698 if (Index.getOpcode() == ISD::ZERO_EXTEND) 699 Index = Index.getOperand(0); 700 if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 701 Index.getOperand(1) == Elem) { 702 Index = Index.getOperand(0); 703 return true; 704 } 705 } 706 } 707 return false; 708 } 709 710 bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op, 711 uint64_t InsertMask) const { 712 // We're only interested in cases where the insertion is into some operand 713 // of Op, rather than into Op itself. The only useful case is an AND. 714 if (Op.getOpcode() != ISD::AND) 715 return false; 716 717 // We need a constant mask. 718 auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode()); 719 if (!MaskNode) 720 return false; 721 722 // It's not an insertion of Op.getOperand(0) if the two masks overlap. 723 uint64_t AndMask = MaskNode->getZExtValue(); 724 if (InsertMask & AndMask) 725 return false; 726 727 // It's only an insertion if all bits are covered or are known to be zero. 728 // The inner check covers all cases but is more expensive. 729 uint64_t Used = allOnes(Op.getValueSizeInBits()); 730 if (Used != (AndMask | InsertMask)) { 731 KnownBits Known = CurDAG->computeKnownBits(Op.getOperand(0)); 732 if (Used != (AndMask | InsertMask | Known.Zero.getZExtValue())) 733 return false; 734 } 735 736 Op = Op.getOperand(0); 737 return true; 738 } 739 740 bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG, 741 uint64_t Mask) const { 742 const SystemZInstrInfo *TII = getInstrInfo(); 743 if (RxSBG.Rotate != 0) 744 Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)); 745 Mask &= RxSBG.Mask; 746 if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) { 747 RxSBG.Mask = Mask; 748 return true; 749 } 750 return false; 751 } 752 753 // Return true if any bits of (RxSBG.Input & Mask) are significant. 754 static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) { 755 // Rotate the mask in the same way as RxSBG.Input is rotated. 756 if (RxSBG.Rotate != 0) 757 Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate))); 758 return (Mask & RxSBG.Mask) != 0; 759 } 760 761 bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const { 762 SDValue N = RxSBG.Input; 763 unsigned Opcode = N.getOpcode(); 764 switch (Opcode) { 765 case ISD::TRUNCATE: { 766 if (RxSBG.Opcode == SystemZ::RNSBG) 767 return false; 768 uint64_t BitSize = N.getValueSizeInBits(); 769 uint64_t Mask = allOnes(BitSize); 770 if (!refineRxSBGMask(RxSBG, Mask)) 771 return false; 772 RxSBG.Input = N.getOperand(0); 773 return true; 774 } 775 case ISD::AND: { 776 if (RxSBG.Opcode == SystemZ::RNSBG) 777 return false; 778 779 auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); 780 if (!MaskNode) 781 return false; 782 783 SDValue Input = N.getOperand(0); 784 uint64_t Mask = MaskNode->getZExtValue(); 785 if (!refineRxSBGMask(RxSBG, Mask)) { 786 // If some bits of Input are already known zeros, those bits will have 787 // been removed from the mask. See if adding them back in makes the 788 // mask suitable. 789 KnownBits Known = CurDAG->computeKnownBits(Input); 790 Mask |= Known.Zero.getZExtValue(); 791 if (!refineRxSBGMask(RxSBG, Mask)) 792 return false; 793 } 794 RxSBG.Input = Input; 795 return true; 796 } 797 798 case ISD::OR: { 799 if (RxSBG.Opcode != SystemZ::RNSBG) 800 return false; 801 802 auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); 803 if (!MaskNode) 804 return false; 805 806 SDValue Input = N.getOperand(0); 807 uint64_t Mask = ~MaskNode->getZExtValue(); 808 if (!refineRxSBGMask(RxSBG, Mask)) { 809 // If some bits of Input are already known ones, those bits will have 810 // been removed from the mask. See if adding them back in makes the 811 // mask suitable. 812 KnownBits Known = CurDAG->computeKnownBits(Input); 813 Mask &= ~Known.One.getZExtValue(); 814 if (!refineRxSBGMask(RxSBG, Mask)) 815 return false; 816 } 817 RxSBG.Input = Input; 818 return true; 819 } 820 821 case ISD::ROTL: { 822 // Any 64-bit rotate left can be merged into the RxSBG. 823 if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64) 824 return false; 825 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); 826 if (!CountNode) 827 return false; 828 829 RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63; 830 RxSBG.Input = N.getOperand(0); 831 return true; 832 } 833 834 case ISD::ANY_EXTEND: 835 // Bits above the extended operand are don't-care. 836 RxSBG.Input = N.getOperand(0); 837 return true; 838 839 case ISD::ZERO_EXTEND: 840 if (RxSBG.Opcode != SystemZ::RNSBG) { 841 // Restrict the mask to the extended operand. 842 unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits(); 843 if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize))) 844 return false; 845 846 RxSBG.Input = N.getOperand(0); 847 return true; 848 } 849 LLVM_FALLTHROUGH; 850 851 case ISD::SIGN_EXTEND: { 852 // Check that the extension bits are don't-care (i.e. are masked out 853 // by the final mask). 854 unsigned BitSize = N.getValueSizeInBits(); 855 unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits(); 856 if (maskMatters(RxSBG, allOnes(BitSize) - allOnes(InnerBitSize))) { 857 // In the case where only the sign bit is active, increase Rotate with 858 // the extension width. 859 if (RxSBG.Mask == 1 && RxSBG.Rotate == 1) 860 RxSBG.Rotate += (BitSize - InnerBitSize); 861 else 862 return false; 863 } 864 865 RxSBG.Input = N.getOperand(0); 866 return true; 867 } 868 869 case ISD::SHL: { 870 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); 871 if (!CountNode) 872 return false; 873 874 uint64_t Count = CountNode->getZExtValue(); 875 unsigned BitSize = N.getValueSizeInBits(); 876 if (Count < 1 || Count >= BitSize) 877 return false; 878 879 if (RxSBG.Opcode == SystemZ::RNSBG) { 880 // Treat (shl X, count) as (rotl X, size-count) as long as the bottom 881 // count bits from RxSBG.Input are ignored. 882 if (maskMatters(RxSBG, allOnes(Count))) 883 return false; 884 } else { 885 // Treat (shl X, count) as (and (rotl X, count), ~0<<count). 886 if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count)) 887 return false; 888 } 889 890 RxSBG.Rotate = (RxSBG.Rotate + Count) & 63; 891 RxSBG.Input = N.getOperand(0); 892 return true; 893 } 894 895 case ISD::SRL: 896 case ISD::SRA: { 897 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); 898 if (!CountNode) 899 return false; 900 901 uint64_t Count = CountNode->getZExtValue(); 902 unsigned BitSize = N.getValueSizeInBits(); 903 if (Count < 1 || Count >= BitSize) 904 return false; 905 906 if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) { 907 // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top 908 // count bits from RxSBG.Input are ignored. 909 if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count))) 910 return false; 911 } else { 912 // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count), 913 // which is similar to SLL above. 914 if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count))) 915 return false; 916 } 917 918 RxSBG.Rotate = (RxSBG.Rotate - Count) & 63; 919 RxSBG.Input = N.getOperand(0); 920 return true; 921 } 922 default: 923 return false; 924 } 925 } 926 927 SDValue SystemZDAGToDAGISel::getUNDEF(const SDLoc &DL, EVT VT) const { 928 SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT); 929 return SDValue(N, 0); 930 } 931 932 SDValue SystemZDAGToDAGISel::convertTo(const SDLoc &DL, EVT VT, 933 SDValue N) const { 934 if (N.getValueType() == MVT::i32 && VT == MVT::i64) 935 return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32, 936 DL, VT, getUNDEF(DL, MVT::i64), N); 937 if (N.getValueType() == MVT::i64 && VT == MVT::i32) 938 return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N); 939 assert(N.getValueType() == VT && "Unexpected value types"); 940 return N; 941 } 942 943 bool SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) { 944 SDLoc DL(N); 945 EVT VT = N->getValueType(0); 946 if (!VT.isInteger() || VT.getSizeInBits() > 64) 947 return false; 948 RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0)); 949 unsigned Count = 0; 950 while (expandRxSBG(RISBG)) 951 // The widening or narrowing is expected to be free. 952 // Counting widening or narrowing as a saved operation will result in 953 // preferring an R*SBG over a simple shift/logical instruction. 954 if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND && 955 RISBG.Input.getOpcode() != ISD::TRUNCATE) 956 Count += 1; 957 if (Count == 0) 958 return false; 959 960 // Prefer to use normal shift instructions over RISBG, since they can handle 961 // all cases and are sometimes shorter. 962 if (Count == 1 && N->getOpcode() != ISD::AND) 963 return false; 964 965 // Prefer register extensions like LLC over RISBG. Also prefer to start 966 // out with normal ANDs if one instruction would be enough. We can convert 967 // these ANDs into an RISBG later if a three-address instruction is useful. 968 if (RISBG.Rotate == 0) { 969 bool PreferAnd = false; 970 // Prefer AND for any 32-bit and-immediate operation. 971 if (VT == MVT::i32) 972 PreferAnd = true; 973 // As well as for any 64-bit operation that can be implemented via LLC(R), 974 // LLH(R), LLGT(R), or one of the and-immediate instructions. 975 else if (RISBG.Mask == 0xff || 976 RISBG.Mask == 0xffff || 977 RISBG.Mask == 0x7fffffff || 978 SystemZ::isImmLF(~RISBG.Mask) || 979 SystemZ::isImmHF(~RISBG.Mask)) 980 PreferAnd = true; 981 // And likewise for the LLZRGF instruction, which doesn't have a register 982 // to register version. 983 else if (auto *Load = dyn_cast<LoadSDNode>(RISBG.Input)) { 984 if (Load->getMemoryVT() == MVT::i32 && 985 (Load->getExtensionType() == ISD::EXTLOAD || 986 Load->getExtensionType() == ISD::ZEXTLOAD) && 987 RISBG.Mask == 0xffffff00 && 988 Subtarget->hasLoadAndZeroRightmostByte()) 989 PreferAnd = true; 990 } 991 if (PreferAnd) { 992 // Replace the current node with an AND. Note that the current node 993 // might already be that same AND, in which case it is already CSE'd 994 // with it, and we must not call ReplaceNode. 995 SDValue In = convertTo(DL, VT, RISBG.Input); 996 SDValue Mask = CurDAG->getConstant(RISBG.Mask, DL, VT); 997 SDValue New = CurDAG->getNode(ISD::AND, DL, VT, In, Mask); 998 if (N != New.getNode()) { 999 insertDAGNode(CurDAG, N, Mask); 1000 insertDAGNode(CurDAG, N, New); 1001 ReplaceNode(N, New.getNode()); 1002 N = New.getNode(); 1003 } 1004 // Now, select the machine opcode to implement this operation. 1005 if (!N->isMachineOpcode()) 1006 SelectCode(N); 1007 return true; 1008 } 1009 } 1010 1011 unsigned Opcode = SystemZ::RISBG; 1012 // Prefer RISBGN if available, since it does not clobber CC. 1013 if (Subtarget->hasMiscellaneousExtensions()) 1014 Opcode = SystemZ::RISBGN; 1015 EVT OpcodeVT = MVT::i64; 1016 if (VT == MVT::i32 && Subtarget->hasHighWord() && 1017 // We can only use the 32-bit instructions if all source bits are 1018 // in the low 32 bits without wrapping, both after rotation (because 1019 // of the smaller range for Start and End) and before rotation 1020 // (because the input value is truncated). 1021 RISBG.Start >= 32 && RISBG.End >= RISBG.Start && 1022 ((RISBG.Start + RISBG.Rotate) & 63) >= 32 && 1023 ((RISBG.End + RISBG.Rotate) & 63) >= 1024 ((RISBG.Start + RISBG.Rotate) & 63)) { 1025 Opcode = SystemZ::RISBMux; 1026 OpcodeVT = MVT::i32; 1027 RISBG.Start &= 31; 1028 RISBG.End &= 31; 1029 } 1030 SDValue Ops[5] = { 1031 getUNDEF(DL, OpcodeVT), 1032 convertTo(DL, OpcodeVT, RISBG.Input), 1033 CurDAG->getTargetConstant(RISBG.Start, DL, MVT::i32), 1034 CurDAG->getTargetConstant(RISBG.End | 128, DL, MVT::i32), 1035 CurDAG->getTargetConstant(RISBG.Rotate, DL, MVT::i32) 1036 }; 1037 SDValue New = convertTo( 1038 DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, OpcodeVT, Ops), 0)); 1039 ReplaceNode(N, New.getNode()); 1040 return true; 1041 } 1042 1043 bool SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) { 1044 SDLoc DL(N); 1045 EVT VT = N->getValueType(0); 1046 if (!VT.isInteger() || VT.getSizeInBits() > 64) 1047 return false; 1048 // Try treating each operand of N as the second operand of the RxSBG 1049 // and see which goes deepest. 1050 RxSBGOperands RxSBG[] = { 1051 RxSBGOperands(Opcode, N->getOperand(0)), 1052 RxSBGOperands(Opcode, N->getOperand(1)) 1053 }; 1054 unsigned Count[] = { 0, 0 }; 1055 for (unsigned I = 0; I < 2; ++I) 1056 while (expandRxSBG(RxSBG[I])) 1057 // The widening or narrowing is expected to be free. 1058 // Counting widening or narrowing as a saved operation will result in 1059 // preferring an R*SBG over a simple shift/logical instruction. 1060 if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND && 1061 RxSBG[I].Input.getOpcode() != ISD::TRUNCATE) 1062 Count[I] += 1; 1063 1064 // Do nothing if neither operand is suitable. 1065 if (Count[0] == 0 && Count[1] == 0) 1066 return false; 1067 1068 // Pick the deepest second operand. 1069 unsigned I = Count[0] > Count[1] ? 0 : 1; 1070 SDValue Op0 = N->getOperand(I ^ 1); 1071 1072 // Prefer IC for character insertions from memory. 1073 if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0) 1074 if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode())) 1075 if (Load->getMemoryVT() == MVT::i8) 1076 return false; 1077 1078 // See whether we can avoid an AND in the first operand by converting 1079 // ROSBG to RISBG. 1080 if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) { 1081 Opcode = SystemZ::RISBG; 1082 // Prefer RISBGN if available, since it does not clobber CC. 1083 if (Subtarget->hasMiscellaneousExtensions()) 1084 Opcode = SystemZ::RISBGN; 1085 } 1086 1087 SDValue Ops[5] = { 1088 convertTo(DL, MVT::i64, Op0), 1089 convertTo(DL, MVT::i64, RxSBG[I].Input), 1090 CurDAG->getTargetConstant(RxSBG[I].Start, DL, MVT::i32), 1091 CurDAG->getTargetConstant(RxSBG[I].End, DL, MVT::i32), 1092 CurDAG->getTargetConstant(RxSBG[I].Rotate, DL, MVT::i32) 1093 }; 1094 SDValue New = convertTo( 1095 DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, MVT::i64, Ops), 0)); 1096 ReplaceNode(N, New.getNode()); 1097 return true; 1098 } 1099 1100 void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node, 1101 SDValue Op0, uint64_t UpperVal, 1102 uint64_t LowerVal) { 1103 EVT VT = Node->getValueType(0); 1104 SDLoc DL(Node); 1105 SDValue Upper = CurDAG->getConstant(UpperVal, DL, VT); 1106 if (Op0.getNode()) 1107 Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper); 1108 1109 { 1110 // When we haven't passed in Op0, Upper will be a constant. In order to 1111 // prevent folding back to the large immediate in `Or = getNode(...)` we run 1112 // SelectCode first and end up with an opaque machine node. This means that 1113 // we need to use a handle to keep track of Upper in case it gets CSE'd by 1114 // SelectCode. 1115 // 1116 // Note that in the case where Op0 is passed in we could just call 1117 // SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing 1118 // the handle at all, but it's fine to do it here. 1119 // 1120 // TODO: This is a pretty hacky way to do this. Can we do something that 1121 // doesn't require a two paragraph explanation? 1122 HandleSDNode Handle(Upper); 1123 SelectCode(Upper.getNode()); 1124 Upper = Handle.getValue(); 1125 } 1126 1127 SDValue Lower = CurDAG->getConstant(LowerVal, DL, VT); 1128 SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower); 1129 1130 ReplaceNode(Node, Or.getNode()); 1131 1132 SelectCode(Or.getNode()); 1133 } 1134 1135 bool SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) { 1136 SDValue ElemV = N->getOperand(2); 1137 auto *ElemN = dyn_cast<ConstantSDNode>(ElemV); 1138 if (!ElemN) 1139 return false; 1140 1141 unsigned Elem = ElemN->getZExtValue(); 1142 EVT VT = N->getValueType(0); 1143 if (Elem >= VT.getVectorNumElements()) 1144 return false; 1145 1146 auto *Load = dyn_cast<LoadSDNode>(N->getOperand(1)); 1147 if (!Load || !Load->hasNUsesOfValue(1, 0)) 1148 return false; 1149 if (Load->getMemoryVT().getSizeInBits() != 1150 Load->getValueType(0).getSizeInBits()) 1151 return false; 1152 1153 SDValue Base, Disp, Index; 1154 if (!selectBDVAddr12Only(Load->getBasePtr(), ElemV, Base, Disp, Index) || 1155 Index.getValueType() != VT.changeVectorElementTypeToInteger()) 1156 return false; 1157 1158 SDLoc DL(Load); 1159 SDValue Ops[] = { 1160 N->getOperand(0), Base, Disp, Index, 1161 CurDAG->getTargetConstant(Elem, DL, MVT::i32), Load->getChain() 1162 }; 1163 SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT, MVT::Other, Ops); 1164 ReplaceUses(SDValue(Load, 1), SDValue(Res, 1)); 1165 ReplaceNode(N, Res); 1166 return true; 1167 } 1168 1169 bool SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) { 1170 SDValue Value = Store->getValue(); 1171 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1172 return false; 1173 if (Store->getMemoryVT().getSizeInBits() != Value.getValueSizeInBits()) 1174 return false; 1175 1176 SDValue ElemV = Value.getOperand(1); 1177 auto *ElemN = dyn_cast<ConstantSDNode>(ElemV); 1178 if (!ElemN) 1179 return false; 1180 1181 SDValue Vec = Value.getOperand(0); 1182 EVT VT = Vec.getValueType(); 1183 unsigned Elem = ElemN->getZExtValue(); 1184 if (Elem >= VT.getVectorNumElements()) 1185 return false; 1186 1187 SDValue Base, Disp, Index; 1188 if (!selectBDVAddr12Only(Store->getBasePtr(), ElemV, Base, Disp, Index) || 1189 Index.getValueType() != VT.changeVectorElementTypeToInteger()) 1190 return false; 1191 1192 SDLoc DL(Store); 1193 SDValue Ops[] = { 1194 Vec, Base, Disp, Index, CurDAG->getTargetConstant(Elem, DL, MVT::i32), 1195 Store->getChain() 1196 }; 1197 ReplaceNode(Store, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops)); 1198 return true; 1199 } 1200 1201 // Check whether or not the chain ending in StoreNode is suitable for doing 1202 // the {load; op; store} to modify transformation. 1203 static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode, 1204 SDValue StoredVal, SelectionDAG *CurDAG, 1205 LoadSDNode *&LoadNode, 1206 SDValue &InputChain) { 1207 // Is the stored value result 0 of the operation? 1208 if (StoredVal.getResNo() != 0) 1209 return false; 1210 1211 // Are there other uses of the loaded value than the operation? 1212 if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) 1213 return false; 1214 1215 // Is the store non-extending and non-indexed? 1216 if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal()) 1217 return false; 1218 1219 SDValue Load = StoredVal->getOperand(0); 1220 // Is the stored value a non-extending and non-indexed load? 1221 if (!ISD::isNormalLoad(Load.getNode())) 1222 return false; 1223 1224 // Return LoadNode by reference. 1225 LoadNode = cast<LoadSDNode>(Load); 1226 1227 // Is store the only read of the loaded value? 1228 if (!Load.hasOneUse()) 1229 return false; 1230 1231 // Is the address of the store the same as the load? 1232 if (LoadNode->getBasePtr() != StoreNode->getBasePtr() || 1233 LoadNode->getOffset() != StoreNode->getOffset()) 1234 return false; 1235 1236 // Check if the chain is produced by the load or is a TokenFactor with 1237 // the load output chain as an operand. Return InputChain by reference. 1238 SDValue Chain = StoreNode->getChain(); 1239 1240 bool ChainCheck = false; 1241 if (Chain == Load.getValue(1)) { 1242 ChainCheck = true; 1243 InputChain = LoadNode->getChain(); 1244 } else if (Chain.getOpcode() == ISD::TokenFactor) { 1245 SmallVector<SDValue, 4> ChainOps; 1246 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) { 1247 SDValue Op = Chain.getOperand(i); 1248 if (Op == Load.getValue(1)) { 1249 ChainCheck = true; 1250 // Drop Load, but keep its chain. No cycle check necessary. 1251 ChainOps.push_back(Load.getOperand(0)); 1252 continue; 1253 } 1254 1255 // Make sure using Op as part of the chain would not cause a cycle here. 1256 // In theory, we could check whether the chain node is a predecessor of 1257 // the load. But that can be very expensive. Instead visit the uses and 1258 // make sure they all have smaller node id than the load. 1259 int LoadId = LoadNode->getNodeId(); 1260 for (SDNode::use_iterator UI = Op.getNode()->use_begin(), 1261 UE = UI->use_end(); UI != UE; ++UI) { 1262 if (UI.getUse().getResNo() != 0) 1263 continue; 1264 if (UI->getNodeId() > LoadId) 1265 return false; 1266 } 1267 1268 ChainOps.push_back(Op); 1269 } 1270 1271 if (ChainCheck) 1272 // Make a new TokenFactor with all the other input chains except 1273 // for the load. 1274 InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), 1275 MVT::Other, ChainOps); 1276 } 1277 if (!ChainCheck) 1278 return false; 1279 1280 return true; 1281 } 1282 1283 // Change a chain of {load; op; store} of the same value into a simple op 1284 // through memory of that value, if the uses of the modified value and its 1285 // address are suitable. 1286 // 1287 // The tablegen pattern memory operand pattern is currently not able to match 1288 // the case where the CC on the original operation are used. 1289 // 1290 // See the equivalent routine in X86ISelDAGToDAG for further comments. 1291 bool SystemZDAGToDAGISel::tryFoldLoadStoreIntoMemOperand(SDNode *Node) { 1292 StoreSDNode *StoreNode = cast<StoreSDNode>(Node); 1293 SDValue StoredVal = StoreNode->getOperand(1); 1294 unsigned Opc = StoredVal->getOpcode(); 1295 SDLoc DL(StoreNode); 1296 1297 // Before we try to select anything, make sure this is memory operand size 1298 // and opcode we can handle. Note that this must match the code below that 1299 // actually lowers the opcodes. 1300 EVT MemVT = StoreNode->getMemoryVT(); 1301 unsigned NewOpc = 0; 1302 bool NegateOperand = false; 1303 switch (Opc) { 1304 default: 1305 return false; 1306 case SystemZISD::SSUBO: 1307 NegateOperand = true; 1308 LLVM_FALLTHROUGH; 1309 case SystemZISD::SADDO: 1310 if (MemVT == MVT::i32) 1311 NewOpc = SystemZ::ASI; 1312 else if (MemVT == MVT::i64) 1313 NewOpc = SystemZ::AGSI; 1314 else 1315 return false; 1316 break; 1317 case SystemZISD::USUBO: 1318 NegateOperand = true; 1319 LLVM_FALLTHROUGH; 1320 case SystemZISD::UADDO: 1321 if (MemVT == MVT::i32) 1322 NewOpc = SystemZ::ALSI; 1323 else if (MemVT == MVT::i64) 1324 NewOpc = SystemZ::ALGSI; 1325 else 1326 return false; 1327 break; 1328 } 1329 1330 LoadSDNode *LoadNode = nullptr; 1331 SDValue InputChain; 1332 if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadNode, 1333 InputChain)) 1334 return false; 1335 1336 SDValue Operand = StoredVal.getOperand(1); 1337 auto *OperandC = dyn_cast<ConstantSDNode>(Operand); 1338 if (!OperandC) 1339 return false; 1340 auto OperandV = OperandC->getAPIntValue(); 1341 if (NegateOperand) 1342 OperandV = -OperandV; 1343 if (OperandV.getMinSignedBits() > 8) 1344 return false; 1345 Operand = CurDAG->getTargetConstant(OperandV, DL, MemVT); 1346 1347 SDValue Base, Disp; 1348 if (!selectBDAddr20Only(StoreNode->getBasePtr(), Base, Disp)) 1349 return false; 1350 1351 SDValue Ops[] = { Base, Disp, Operand, InputChain }; 1352 MachineSDNode *Result = 1353 CurDAG->getMachineNode(NewOpc, DL, MVT::i32, MVT::Other, Ops); 1354 CurDAG->setNodeMemRefs( 1355 Result, {StoreNode->getMemOperand(), LoadNode->getMemOperand()}); 1356 1357 ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1)); 1358 ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0)); 1359 CurDAG->RemoveDeadNode(Node); 1360 return true; 1361 } 1362 1363 bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store, 1364 LoadSDNode *Load) const { 1365 // Check that the two memory operands have the same size. 1366 if (Load->getMemoryVT() != Store->getMemoryVT()) 1367 return false; 1368 1369 // Volatility stops an access from being decomposed. 1370 if (Load->isVolatile() || Store->isVolatile()) 1371 return false; 1372 1373 // There's no chance of overlap if the load is invariant. 1374 if (Load->isInvariant() && Load->isDereferenceable()) 1375 return true; 1376 1377 // Otherwise we need to check whether there's an alias. 1378 const Value *V1 = Load->getMemOperand()->getValue(); 1379 const Value *V2 = Store->getMemOperand()->getValue(); 1380 if (!V1 || !V2) 1381 return false; 1382 1383 // Reject equality. 1384 uint64_t Size = Load->getMemoryVT().getStoreSize(); 1385 int64_t End1 = Load->getSrcValueOffset() + Size; 1386 int64_t End2 = Store->getSrcValueOffset() + Size; 1387 if (V1 == V2 && End1 == End2) 1388 return false; 1389 1390 return !AA->alias(MemoryLocation(V1, End1, Load->getAAInfo()), 1391 MemoryLocation(V2, End2, Store->getAAInfo())); 1392 } 1393 1394 bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const { 1395 auto *Store = cast<StoreSDNode>(N); 1396 auto *Load = cast<LoadSDNode>(Store->getValue()); 1397 1398 // Prefer not to use MVC if either address can use ... RELATIVE LONG 1399 // instructions. 1400 uint64_t Size = Load->getMemoryVT().getStoreSize(); 1401 if (Size > 1 && Size <= 8) { 1402 // Prefer LHRL, LRL and LGRL. 1403 if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode())) 1404 return false; 1405 // Prefer STHRL, STRL and STGRL. 1406 if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode())) 1407 return false; 1408 } 1409 1410 return canUseBlockOperation(Store, Load); 1411 } 1412 1413 bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N, 1414 unsigned I) const { 1415 auto *StoreA = cast<StoreSDNode>(N); 1416 auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I)); 1417 auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I)); 1418 return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB); 1419 } 1420 1421 void SystemZDAGToDAGISel::Select(SDNode *Node) { 1422 // If we have a custom node, we already have selected! 1423 if (Node->isMachineOpcode()) { 1424 LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n"); 1425 Node->setNodeId(-1); 1426 return; 1427 } 1428 1429 unsigned Opcode = Node->getOpcode(); 1430 switch (Opcode) { 1431 case ISD::OR: 1432 if (Node->getOperand(1).getOpcode() != ISD::Constant) 1433 if (tryRxSBG(Node, SystemZ::ROSBG)) 1434 return; 1435 goto or_xor; 1436 1437 case ISD::XOR: 1438 if (Node->getOperand(1).getOpcode() != ISD::Constant) 1439 if (tryRxSBG(Node, SystemZ::RXSBG)) 1440 return; 1441 // Fall through. 1442 or_xor: 1443 // If this is a 64-bit operation in which both 32-bit halves are nonzero, 1444 // split the operation into two. If both operands here happen to be 1445 // constant, leave this to common code to optimize. 1446 if (Node->getValueType(0) == MVT::i64 && 1447 Node->getOperand(0).getOpcode() != ISD::Constant) 1448 if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) { 1449 uint64_t Val = Op1->getZExtValue(); 1450 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) { 1451 splitLargeImmediate(Opcode, Node, Node->getOperand(0), 1452 Val - uint32_t(Val), uint32_t(Val)); 1453 return; 1454 } 1455 } 1456 break; 1457 1458 case ISD::AND: 1459 if (Node->getOperand(1).getOpcode() != ISD::Constant) 1460 if (tryRxSBG(Node, SystemZ::RNSBG)) 1461 return; 1462 LLVM_FALLTHROUGH; 1463 case ISD::ROTL: 1464 case ISD::SHL: 1465 case ISD::SRL: 1466 case ISD::ZERO_EXTEND: 1467 if (tryRISBGZero(Node)) 1468 return; 1469 break; 1470 1471 case ISD::Constant: 1472 // If this is a 64-bit constant that is out of the range of LLILF, 1473 // LLIHF and LGFI, split it into two 32-bit pieces. 1474 if (Node->getValueType(0) == MVT::i64) { 1475 uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue(); 1476 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val)) { 1477 splitLargeImmediate(ISD::OR, Node, SDValue(), Val - uint32_t(Val), 1478 uint32_t(Val)); 1479 return; 1480 } 1481 } 1482 break; 1483 1484 case SystemZISD::SELECT_CCMASK: { 1485 SDValue Op0 = Node->getOperand(0); 1486 SDValue Op1 = Node->getOperand(1); 1487 // Prefer to put any load first, so that it can be matched as a 1488 // conditional load. Likewise for constants in range for LOCHI. 1489 if ((Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) || 1490 (Subtarget->hasLoadStoreOnCond2() && 1491 Node->getValueType(0).isInteger() && 1492 Op1.getOpcode() == ISD::Constant && 1493 isInt<16>(cast<ConstantSDNode>(Op1)->getSExtValue()) && 1494 !(Op0.getOpcode() == ISD::Constant && 1495 isInt<16>(cast<ConstantSDNode>(Op0)->getSExtValue())))) { 1496 SDValue CCValid = Node->getOperand(2); 1497 SDValue CCMask = Node->getOperand(3); 1498 uint64_t ConstCCValid = 1499 cast<ConstantSDNode>(CCValid.getNode())->getZExtValue(); 1500 uint64_t ConstCCMask = 1501 cast<ConstantSDNode>(CCMask.getNode())->getZExtValue(); 1502 // Invert the condition. 1503 CCMask = CurDAG->getConstant(ConstCCValid ^ ConstCCMask, SDLoc(Node), 1504 CCMask.getValueType()); 1505 SDValue Op4 = Node->getOperand(4); 1506 SDNode *UpdatedNode = 1507 CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4); 1508 if (UpdatedNode != Node) { 1509 // In case this node already exists then replace Node with it. 1510 ReplaceNode(Node, UpdatedNode); 1511 Node = UpdatedNode; 1512 } 1513 } 1514 break; 1515 } 1516 1517 case ISD::INSERT_VECTOR_ELT: { 1518 EVT VT = Node->getValueType(0); 1519 unsigned ElemBitSize = VT.getScalarSizeInBits(); 1520 if (ElemBitSize == 32) { 1521 if (tryGather(Node, SystemZ::VGEF)) 1522 return; 1523 } else if (ElemBitSize == 64) { 1524 if (tryGather(Node, SystemZ::VGEG)) 1525 return; 1526 } 1527 break; 1528 } 1529 1530 case ISD::STORE: { 1531 if (tryFoldLoadStoreIntoMemOperand(Node)) 1532 return; 1533 auto *Store = cast<StoreSDNode>(Node); 1534 unsigned ElemBitSize = Store->getValue().getValueSizeInBits(); 1535 if (ElemBitSize == 32) { 1536 if (tryScatter(Store, SystemZ::VSCEF)) 1537 return; 1538 } else if (ElemBitSize == 64) { 1539 if (tryScatter(Store, SystemZ::VSCEG)) 1540 return; 1541 } 1542 break; 1543 } 1544 } 1545 1546 SelectCode(Node); 1547 } 1548 1549 bool SystemZDAGToDAGISel:: 1550 SelectInlineAsmMemoryOperand(const SDValue &Op, 1551 unsigned ConstraintID, 1552 std::vector<SDValue> &OutOps) { 1553 SystemZAddressingMode::AddrForm Form; 1554 SystemZAddressingMode::DispRange DispRange; 1555 SDValue Base, Disp, Index; 1556 1557 switch(ConstraintID) { 1558 default: 1559 llvm_unreachable("Unexpected asm memory constraint"); 1560 case InlineAsm::Constraint_i: 1561 case InlineAsm::Constraint_Q: 1562 // Accept an address with a short displacement, but no index. 1563 Form = SystemZAddressingMode::FormBD; 1564 DispRange = SystemZAddressingMode::Disp12Only; 1565 break; 1566 case InlineAsm::Constraint_R: 1567 // Accept an address with a short displacement and an index. 1568 Form = SystemZAddressingMode::FormBDXNormal; 1569 DispRange = SystemZAddressingMode::Disp12Only; 1570 break; 1571 case InlineAsm::Constraint_S: 1572 // Accept an address with a long displacement, but no index. 1573 Form = SystemZAddressingMode::FormBD; 1574 DispRange = SystemZAddressingMode::Disp20Only; 1575 break; 1576 case InlineAsm::Constraint_T: 1577 case InlineAsm::Constraint_m: 1578 case InlineAsm::Constraint_o: 1579 // Accept an address with a long displacement and an index. 1580 // m works the same as T, as this is the most general case. 1581 // We don't really have any special handling of "offsettable" 1582 // memory addresses, so just treat o the same as m. 1583 Form = SystemZAddressingMode::FormBDXNormal; 1584 DispRange = SystemZAddressingMode::Disp20Only; 1585 break; 1586 } 1587 1588 if (selectBDXAddr(Form, DispRange, Op, Base, Disp, Index)) { 1589 const TargetRegisterClass *TRC = 1590 Subtarget->getRegisterInfo()->getPointerRegClass(*MF); 1591 SDLoc DL(Base); 1592 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), DL, MVT::i32); 1593 1594 // Make sure that the base address doesn't go into %r0. 1595 // If it's a TargetFrameIndex or a fixed register, we shouldn't do anything. 1596 if (Base.getOpcode() != ISD::TargetFrameIndex && 1597 Base.getOpcode() != ISD::Register) { 1598 Base = 1599 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, 1600 DL, Base.getValueType(), 1601 Base, RC), 0); 1602 } 1603 1604 // Make sure that the index register isn't assigned to %r0 either. 1605 if (Index.getOpcode() != ISD::Register) { 1606 Index = 1607 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, 1608 DL, Index.getValueType(), 1609 Index, RC), 0); 1610 } 1611 1612 OutOps.push_back(Base); 1613 OutOps.push_back(Disp); 1614 OutOps.push_back(Index); 1615 return false; 1616 } 1617 1618 return true; 1619 } 1620 1621 // IsProfitableToFold - Returns true if is profitable to fold the specific 1622 // operand node N of U during instruction selection that starts at Root. 1623 bool 1624 SystemZDAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, 1625 SDNode *Root) const { 1626 // We want to avoid folding a LOAD into an ICMP node if as a result 1627 // we would be forced to spill the condition code into a GPR. 1628 if (N.getOpcode() == ISD::LOAD && U->getOpcode() == SystemZISD::ICMP) { 1629 if (!N.hasOneUse() || !U->hasOneUse()) 1630 return false; 1631 1632 // The user of the CC value will usually be a CopyToReg into the 1633 // physical CC register, which in turn is glued and chained to the 1634 // actual instruction that uses the CC value. Bail out if we have 1635 // anything else than that. 1636 SDNode *CCUser = *U->use_begin(); 1637 SDNode *CCRegUser = nullptr; 1638 if (CCUser->getOpcode() == ISD::CopyToReg || 1639 cast<RegisterSDNode>(CCUser->getOperand(1))->getReg() == SystemZ::CC) { 1640 for (auto *U : CCUser->uses()) { 1641 if (CCRegUser == nullptr) 1642 CCRegUser = U; 1643 else if (CCRegUser != U) 1644 return false; 1645 } 1646 } 1647 if (CCRegUser == nullptr) 1648 return false; 1649 1650 // If the actual instruction is a branch, the only thing that remains to be 1651 // checked is whether the CCUser chain is a predecessor of the load. 1652 if (CCRegUser->isMachineOpcode() && 1653 CCRegUser->getMachineOpcode() == SystemZ::BRC) 1654 return !N->isPredecessorOf(CCUser->getOperand(0).getNode()); 1655 1656 // Otherwise, the instruction may have multiple operands, and we need to 1657 // verify that none of them are a predecessor of the load. This is exactly 1658 // the same check that would be done by common code if the CC setter were 1659 // glued to the CC user, so simply invoke that check here. 1660 if (!IsLegalToFold(N, U, CCRegUser, OptLevel, false)) 1661 return false; 1662 } 1663 1664 return true; 1665 } 1666 1667 namespace { 1668 // Represents a sequence for extracting a 0/1 value from an IPM result: 1669 // (((X ^ XORValue) + AddValue) >> Bit) 1670 struct IPMConversion { 1671 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) 1672 : XORValue(xorValue), AddValue(addValue), Bit(bit) {} 1673 1674 int64_t XORValue; 1675 int64_t AddValue; 1676 unsigned Bit; 1677 }; 1678 } // end anonymous namespace 1679 1680 // Return a sequence for getting a 1 from an IPM result when CC has a 1681 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. 1682 // The handling of CC values outside CCValid doesn't matter. 1683 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { 1684 // Deal with cases where the result can be taken directly from a bit 1685 // of the IPM result. 1686 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) 1687 return IPMConversion(0, 0, SystemZ::IPM_CC); 1688 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) 1689 return IPMConversion(0, 0, SystemZ::IPM_CC + 1); 1690 1691 // Deal with cases where we can add a value to force the sign bit 1692 // to contain the right value. Putting the bit in 31 means we can 1693 // use SRL rather than RISBG(L), and also makes it easier to get a 1694 // 0/-1 value, so it has priority over the other tests below. 1695 // 1696 // These sequences rely on the fact that the upper two bits of the 1697 // IPM result are zero. 1698 uint64_t TopBit = uint64_t(1) << 31; 1699 if (CCMask == (CCValid & SystemZ::CCMASK_0)) 1700 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); 1701 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) 1702 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); 1703 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1704 | SystemZ::CCMASK_1 1705 | SystemZ::CCMASK_2))) 1706 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); 1707 if (CCMask == (CCValid & SystemZ::CCMASK_3)) 1708 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); 1709 if (CCMask == (CCValid & (SystemZ::CCMASK_1 1710 | SystemZ::CCMASK_2 1711 | SystemZ::CCMASK_3))) 1712 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); 1713 1714 // Next try inverting the value and testing a bit. 0/1 could be 1715 // handled this way too, but we dealt with that case above. 1716 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) 1717 return IPMConversion(-1, 0, SystemZ::IPM_CC); 1718 1719 // Handle cases where adding a value forces a non-sign bit to contain 1720 // the right value. 1721 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) 1722 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); 1723 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) 1724 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); 1725 1726 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are 1727 // can be done by inverting the low CC bit and applying one of the 1728 // sign-based extractions above. 1729 if (CCMask == (CCValid & SystemZ::CCMASK_1)) 1730 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); 1731 if (CCMask == (CCValid & SystemZ::CCMASK_2)) 1732 return IPMConversion(1 << SystemZ::IPM_CC, 1733 TopBit - (3 << SystemZ::IPM_CC), 31); 1734 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1735 | SystemZ::CCMASK_1 1736 | SystemZ::CCMASK_3))) 1737 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); 1738 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1739 | SystemZ::CCMASK_2 1740 | SystemZ::CCMASK_3))) 1741 return IPMConversion(1 << SystemZ::IPM_CC, 1742 TopBit - (1 << SystemZ::IPM_CC), 31); 1743 1744 llvm_unreachable("Unexpected CC combination"); 1745 } 1746 1747 SDValue SystemZDAGToDAGISel::expandSelectBoolean(SDNode *Node) { 1748 auto *TrueOp = dyn_cast<ConstantSDNode>(Node->getOperand(0)); 1749 auto *FalseOp = dyn_cast<ConstantSDNode>(Node->getOperand(1)); 1750 if (!TrueOp || !FalseOp) 1751 return SDValue(); 1752 if (FalseOp->getZExtValue() != 0) 1753 return SDValue(); 1754 if (TrueOp->getSExtValue() != 1 && TrueOp->getSExtValue() != -1) 1755 return SDValue(); 1756 1757 auto *CCValidOp = dyn_cast<ConstantSDNode>(Node->getOperand(2)); 1758 auto *CCMaskOp = dyn_cast<ConstantSDNode>(Node->getOperand(3)); 1759 if (!CCValidOp || !CCMaskOp) 1760 return SDValue(); 1761 int CCValid = CCValidOp->getZExtValue(); 1762 int CCMask = CCMaskOp->getZExtValue(); 1763 1764 SDLoc DL(Node); 1765 SDValue CCReg = Node->getOperand(4); 1766 IPMConversion IPM = getIPMConversion(CCValid, CCMask); 1767 SDValue Result = CurDAG->getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 1768 1769 if (IPM.XORValue) 1770 Result = CurDAG->getNode(ISD::XOR, DL, MVT::i32, Result, 1771 CurDAG->getConstant(IPM.XORValue, DL, MVT::i32)); 1772 1773 if (IPM.AddValue) 1774 Result = CurDAG->getNode(ISD::ADD, DL, MVT::i32, Result, 1775 CurDAG->getConstant(IPM.AddValue, DL, MVT::i32)); 1776 1777 EVT VT = Node->getValueType(0); 1778 if (VT == MVT::i32 && IPM.Bit == 31) { 1779 unsigned ShiftOp = TrueOp->getSExtValue() == 1 ? ISD::SRL : ISD::SRA; 1780 Result = CurDAG->getNode(ShiftOp, DL, MVT::i32, Result, 1781 CurDAG->getConstant(IPM.Bit, DL, MVT::i32)); 1782 } else { 1783 if (VT != MVT::i32) 1784 Result = CurDAG->getNode(ISD::ANY_EXTEND, DL, VT, Result); 1785 1786 if (TrueOp->getSExtValue() == 1) { 1787 // The SHR/AND sequence should get optimized to an RISBG. 1788 Result = CurDAG->getNode(ISD::SRL, DL, VT, Result, 1789 CurDAG->getConstant(IPM.Bit, DL, MVT::i32)); 1790 Result = CurDAG->getNode(ISD::AND, DL, VT, Result, 1791 CurDAG->getConstant(1, DL, VT)); 1792 } else { 1793 // Sign-extend from IPM.Bit using a pair of shifts. 1794 int ShlAmt = VT.getSizeInBits() - 1 - IPM.Bit; 1795 int SraAmt = VT.getSizeInBits() - 1; 1796 Result = CurDAG->getNode(ISD::SHL, DL, VT, Result, 1797 CurDAG->getConstant(ShlAmt, DL, MVT::i32)); 1798 Result = CurDAG->getNode(ISD::SRA, DL, VT, Result, 1799 CurDAG->getConstant(SraAmt, DL, MVT::i32)); 1800 } 1801 } 1802 1803 return Result; 1804 } 1805 1806 void SystemZDAGToDAGISel::PreprocessISelDAG() { 1807 // If we have conditional immediate loads, we always prefer 1808 // using those over an IPM sequence. 1809 if (Subtarget->hasLoadStoreOnCond2()) 1810 return; 1811 1812 bool MadeChange = false; 1813 1814 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), 1815 E = CurDAG->allnodes_end(); 1816 I != E;) { 1817 SDNode *N = &*I++; 1818 if (N->use_empty()) 1819 continue; 1820 1821 SDValue Res; 1822 switch (N->getOpcode()) { 1823 default: break; 1824 case SystemZISD::SELECT_CCMASK: 1825 Res = expandSelectBoolean(N); 1826 break; 1827 } 1828 1829 if (Res) { 1830 LLVM_DEBUG(dbgs() << "SystemZ DAG preprocessing replacing:\nOld: "); 1831 LLVM_DEBUG(N->dump(CurDAG)); 1832 LLVM_DEBUG(dbgs() << "\nNew: "); 1833 LLVM_DEBUG(Res.getNode()->dump(CurDAG)); 1834 LLVM_DEBUG(dbgs() << "\n"); 1835 1836 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); 1837 MadeChange = true; 1838 } 1839 } 1840 1841 if (MadeChange) 1842 CurDAG->RemoveDeadNodes(); 1843 } 1844