1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the PowerPC implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCInstrInfo.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCHazardRecognizers.h" 18 #include "PPCInstrBuilder.h" 19 #include "PPCMachineFunctionInfo.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/ScheduleDAG.h" 31 #include "llvm/CodeGen/SlotIndexes.h" 32 #include "llvm/CodeGen/StackMaps.h" 33 #include "llvm/MC/MCAsmInfo.h" 34 #include "llvm/MC/MCInst.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/TargetRegistry.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "ppc-instr-info" 44 45 #define GET_INSTRMAP_INFO 46 #define GET_INSTRINFO_CTOR_DTOR 47 #include "PPCGenInstrInfo.inc" 48 49 static cl:: 50 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 51 cl::desc("Disable analysis for CTR loops")); 52 53 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 54 cl::desc("Disable compare instruction optimization"), cl::Hidden); 55 56 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 57 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 58 cl::Hidden); 59 60 static cl::opt<bool> 61 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 62 cl::desc("Use the old (incorrect) instruction latency calculation")); 63 64 // Pin the vtable to this file. 65 void PPCInstrInfo::anchor() {} 66 67 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 68 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP), 69 Subtarget(STI), RI(STI.getTargetMachine()) {} 70 71 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 72 /// this target when scheduling the DAG. 73 ScheduleHazardRecognizer * 74 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 75 const ScheduleDAG *DAG) const { 76 unsigned Directive = 77 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective(); 78 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 79 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 80 const InstrItineraryData *II = 81 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 82 return new ScoreboardHazardRecognizer(II, DAG); 83 } 84 85 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 86 } 87 88 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 89 /// to use for this target when scheduling the DAG. 90 ScheduleHazardRecognizer * 91 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 92 const ScheduleDAG *DAG) const { 93 unsigned Directive = 94 DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective(); 95 96 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 97 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 98 99 // Most subtargets use a PPC970 recognizer. 100 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 101 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 102 assert(DAG->TII && "No InstrInfo?"); 103 104 return new PPCHazardRecognizer970(*DAG); 105 } 106 107 return new ScoreboardHazardRecognizer(II, DAG); 108 } 109 110 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 111 const MachineInstr *MI, 112 unsigned *PredCost) const { 113 if (!ItinData || UseOldLatencyCalc) 114 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 115 116 // The default implementation of getInstrLatency calls getStageLatency, but 117 // getStageLatency does not do the right thing for us. While we have 118 // itinerary, most cores are fully pipelined, and so the itineraries only 119 // express the first part of the pipeline, not every stage. Instead, we need 120 // to use the listed output operand cycle number (using operand 0 here, which 121 // is an output). 122 123 unsigned Latency = 1; 124 unsigned DefClass = MI->getDesc().getSchedClass(); 125 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 126 const MachineOperand &MO = MI->getOperand(i); 127 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 128 continue; 129 130 int Cycle = ItinData->getOperandCycle(DefClass, i); 131 if (Cycle < 0) 132 continue; 133 134 Latency = std::max(Latency, (unsigned) Cycle); 135 } 136 137 return Latency; 138 } 139 140 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 141 const MachineInstr *DefMI, unsigned DefIdx, 142 const MachineInstr *UseMI, 143 unsigned UseIdx) const { 144 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 145 UseMI, UseIdx); 146 147 const MachineOperand &DefMO = DefMI->getOperand(DefIdx); 148 unsigned Reg = DefMO.getReg(); 149 150 bool IsRegCR; 151 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 152 const MachineRegisterInfo *MRI = 153 &DefMI->getParent()->getParent()->getRegInfo(); 154 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 155 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 156 } else { 157 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 158 PPC::CRBITRCRegClass.contains(Reg); 159 } 160 161 if (UseMI->isBranch() && IsRegCR) { 162 if (Latency < 0) 163 Latency = getInstrLatency(ItinData, DefMI); 164 165 // On some cores, there is an additional delay between writing to a condition 166 // register, and using it from a branch. 167 unsigned Directive = Subtarget.getDarwinDirective(); 168 switch (Directive) { 169 default: break; 170 case PPC::DIR_7400: 171 case PPC::DIR_750: 172 case PPC::DIR_970: 173 case PPC::DIR_E5500: 174 case PPC::DIR_PWR4: 175 case PPC::DIR_PWR5: 176 case PPC::DIR_PWR5X: 177 case PPC::DIR_PWR6: 178 case PPC::DIR_PWR6X: 179 case PPC::DIR_PWR7: 180 case PPC::DIR_PWR8: 181 Latency += 2; 182 break; 183 } 184 } 185 186 return Latency; 187 } 188 189 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 190 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 191 unsigned &SrcReg, unsigned &DstReg, 192 unsigned &SubIdx) const { 193 switch (MI.getOpcode()) { 194 default: return false; 195 case PPC::EXTSW: 196 case PPC::EXTSW_32_64: 197 SrcReg = MI.getOperand(1).getReg(); 198 DstReg = MI.getOperand(0).getReg(); 199 SubIdx = PPC::sub_32; 200 return true; 201 } 202 } 203 204 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 205 int &FrameIndex) const { 206 // Note: This list must be kept consistent with LoadRegFromStackSlot. 207 switch (MI->getOpcode()) { 208 default: break; 209 case PPC::LD: 210 case PPC::LWZ: 211 case PPC::LFS: 212 case PPC::LFD: 213 case PPC::RESTORE_CR: 214 case PPC::RESTORE_CRBIT: 215 case PPC::LVX: 216 case PPC::LXVD2X: 217 case PPC::QVLFDX: 218 case PPC::QVLFSXs: 219 case PPC::QVLFDXb: 220 case PPC::RESTORE_VRSAVE: 221 // Check for the operands added by addFrameReference (the immediate is the 222 // offset which defaults to 0). 223 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 224 MI->getOperand(2).isFI()) { 225 FrameIndex = MI->getOperand(2).getIndex(); 226 return MI->getOperand(0).getReg(); 227 } 228 break; 229 } 230 return 0; 231 } 232 233 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI, 234 int &FrameIndex) const { 235 // Note: This list must be kept consistent with StoreRegToStackSlot. 236 switch (MI->getOpcode()) { 237 default: break; 238 case PPC::STD: 239 case PPC::STW: 240 case PPC::STFS: 241 case PPC::STFD: 242 case PPC::SPILL_CR: 243 case PPC::SPILL_CRBIT: 244 case PPC::STVX: 245 case PPC::STXVD2X: 246 case PPC::QVSTFDX: 247 case PPC::QVSTFSXs: 248 case PPC::QVSTFDXb: 249 case PPC::SPILL_VRSAVE: 250 // Check for the operands added by addFrameReference (the immediate is the 251 // offset which defaults to 0). 252 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 253 MI->getOperand(2).isFI()) { 254 FrameIndex = MI->getOperand(2).getIndex(); 255 return MI->getOperand(0).getReg(); 256 } 257 break; 258 } 259 return 0; 260 } 261 262 // commuteInstruction - We can commute rlwimi instructions, but only if the 263 // rotate amt is zero. We also have to munge the immediates a bit. 264 MachineInstr * 265 PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { 266 MachineFunction &MF = *MI->getParent()->getParent(); 267 268 // Normal instructions can be commuted the obvious way. 269 if (MI->getOpcode() != PPC::RLWIMI && 270 MI->getOpcode() != PPC::RLWIMIo) 271 return TargetInstrInfo::commuteInstruction(MI, NewMI); 272 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 273 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 274 // changing the relative order of the mask operands might change what happens 275 // to the high-bits of the mask (and, thus, the result). 276 277 // Cannot commute if it has a non-zero rotate count. 278 if (MI->getOperand(3).getImm() != 0) 279 return nullptr; 280 281 // If we have a zero rotate count, we have: 282 // M = mask(MB,ME) 283 // Op0 = (Op1 & ~M) | (Op2 & M) 284 // Change this to: 285 // M = mask((ME+1)&31, (MB-1)&31) 286 // Op0 = (Op2 & ~M) | (Op1 & M) 287 288 // Swap op1/op2 289 unsigned Reg0 = MI->getOperand(0).getReg(); 290 unsigned Reg1 = MI->getOperand(1).getReg(); 291 unsigned Reg2 = MI->getOperand(2).getReg(); 292 unsigned SubReg1 = MI->getOperand(1).getSubReg(); 293 unsigned SubReg2 = MI->getOperand(2).getSubReg(); 294 bool Reg1IsKill = MI->getOperand(1).isKill(); 295 bool Reg2IsKill = MI->getOperand(2).isKill(); 296 bool ChangeReg0 = false; 297 // If machine instrs are no longer in two-address forms, update 298 // destination register as well. 299 if (Reg0 == Reg1) { 300 // Must be two address instruction! 301 assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 302 "Expecting a two-address instruction!"); 303 assert(MI->getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 304 Reg2IsKill = false; 305 ChangeReg0 = true; 306 } 307 308 // Masks. 309 unsigned MB = MI->getOperand(4).getImm(); 310 unsigned ME = MI->getOperand(5).getImm(); 311 312 // We can't commute a trivial mask (there is no way to represent an all-zero 313 // mask). 314 if (MB == 0 && ME == 31) 315 return nullptr; 316 317 if (NewMI) { 318 // Create a new instruction. 319 unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg(); 320 bool Reg0IsDead = MI->getOperand(0).isDead(); 321 return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) 322 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 323 .addReg(Reg2, getKillRegState(Reg2IsKill)) 324 .addReg(Reg1, getKillRegState(Reg1IsKill)) 325 .addImm((ME+1) & 31) 326 .addImm((MB-1) & 31); 327 } 328 329 if (ChangeReg0) { 330 MI->getOperand(0).setReg(Reg2); 331 MI->getOperand(0).setSubReg(SubReg2); 332 } 333 MI->getOperand(2).setReg(Reg1); 334 MI->getOperand(1).setReg(Reg2); 335 MI->getOperand(2).setSubReg(SubReg1); 336 MI->getOperand(1).setSubReg(SubReg2); 337 MI->getOperand(2).setIsKill(Reg1IsKill); 338 MI->getOperand(1).setIsKill(Reg2IsKill); 339 340 // Swap the mask around. 341 MI->getOperand(4).setImm((ME+1) & 31); 342 MI->getOperand(5).setImm((MB-1) & 31); 343 return MI; 344 } 345 346 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1, 347 unsigned &SrcOpIdx2) const { 348 // For VSX A-Type FMA instructions, it is the first two operands that can be 349 // commuted, however, because the non-encoded tied input operand is listed 350 // first, the operands to swap are actually the second and third. 351 352 int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode()); 353 if (AltOpc == -1) 354 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 355 356 SrcOpIdx1 = 2; 357 SrcOpIdx2 = 3; 358 return true; 359 } 360 361 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 362 MachineBasicBlock::iterator MI) const { 363 // This function is used for scheduling, and the nop wanted here is the type 364 // that terminates dispatch groups on the POWER cores. 365 unsigned Directive = Subtarget.getDarwinDirective(); 366 unsigned Opcode; 367 switch (Directive) { 368 default: Opcode = PPC::NOP; break; 369 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 370 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 371 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 372 } 373 374 DebugLoc DL; 375 BuildMI(MBB, MI, DL, get(Opcode)); 376 } 377 378 /// getNoopForMachoTarget - Return the noop instruction to use for a noop. 379 void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { 380 NopInst.setOpcode(PPC::NOP); 381 } 382 383 // Branch analysis. 384 // Note: If the condition register is set to CTR or CTR8 then this is a 385 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 386 bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, 387 MachineBasicBlock *&FBB, 388 SmallVectorImpl<MachineOperand> &Cond, 389 bool AllowModify) const { 390 bool isPPC64 = Subtarget.isPPC64(); 391 392 // If the block has no terminators, it just falls into the block after it. 393 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 394 if (I == MBB.end()) 395 return false; 396 397 if (!isUnpredicatedTerminator(I)) 398 return false; 399 400 // Get the last instruction in the block. 401 MachineInstr *LastInst = I; 402 403 // If there is only one terminator instruction, process it. 404 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { 405 if (LastInst->getOpcode() == PPC::B) { 406 if (!LastInst->getOperand(0).isMBB()) 407 return true; 408 TBB = LastInst->getOperand(0).getMBB(); 409 return false; 410 } else if (LastInst->getOpcode() == PPC::BCC) { 411 if (!LastInst->getOperand(2).isMBB()) 412 return true; 413 // Block ends with fall-through condbranch. 414 TBB = LastInst->getOperand(2).getMBB(); 415 Cond.push_back(LastInst->getOperand(0)); 416 Cond.push_back(LastInst->getOperand(1)); 417 return false; 418 } else if (LastInst->getOpcode() == PPC::BC) { 419 if (!LastInst->getOperand(1).isMBB()) 420 return true; 421 // Block ends with fall-through condbranch. 422 TBB = LastInst->getOperand(1).getMBB(); 423 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 424 Cond.push_back(LastInst->getOperand(0)); 425 return false; 426 } else if (LastInst->getOpcode() == PPC::BCn) { 427 if (!LastInst->getOperand(1).isMBB()) 428 return true; 429 // Block ends with fall-through condbranch. 430 TBB = LastInst->getOperand(1).getMBB(); 431 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 432 Cond.push_back(LastInst->getOperand(0)); 433 return false; 434 } else if (LastInst->getOpcode() == PPC::BDNZ8 || 435 LastInst->getOpcode() == PPC::BDNZ) { 436 if (!LastInst->getOperand(0).isMBB()) 437 return true; 438 if (DisableCTRLoopAnal) 439 return true; 440 TBB = LastInst->getOperand(0).getMBB(); 441 Cond.push_back(MachineOperand::CreateImm(1)); 442 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 443 true)); 444 return false; 445 } else if (LastInst->getOpcode() == PPC::BDZ8 || 446 LastInst->getOpcode() == PPC::BDZ) { 447 if (!LastInst->getOperand(0).isMBB()) 448 return true; 449 if (DisableCTRLoopAnal) 450 return true; 451 TBB = LastInst->getOperand(0).getMBB(); 452 Cond.push_back(MachineOperand::CreateImm(0)); 453 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 454 true)); 455 return false; 456 } 457 458 // Otherwise, don't know what this is. 459 return true; 460 } 461 462 // Get the instruction before it if it's a terminator. 463 MachineInstr *SecondLastInst = I; 464 465 // If there are three terminators, we don't know what sort of block this is. 466 if (SecondLastInst && I != MBB.begin() && 467 isUnpredicatedTerminator(--I)) 468 return true; 469 470 // If the block ends with PPC::B and PPC:BCC, handle it. 471 if (SecondLastInst->getOpcode() == PPC::BCC && 472 LastInst->getOpcode() == PPC::B) { 473 if (!SecondLastInst->getOperand(2).isMBB() || 474 !LastInst->getOperand(0).isMBB()) 475 return true; 476 TBB = SecondLastInst->getOperand(2).getMBB(); 477 Cond.push_back(SecondLastInst->getOperand(0)); 478 Cond.push_back(SecondLastInst->getOperand(1)); 479 FBB = LastInst->getOperand(0).getMBB(); 480 return false; 481 } else if (SecondLastInst->getOpcode() == PPC::BC && 482 LastInst->getOpcode() == PPC::B) { 483 if (!SecondLastInst->getOperand(1).isMBB() || 484 !LastInst->getOperand(0).isMBB()) 485 return true; 486 TBB = SecondLastInst->getOperand(1).getMBB(); 487 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 488 Cond.push_back(SecondLastInst->getOperand(0)); 489 FBB = LastInst->getOperand(0).getMBB(); 490 return false; 491 } else if (SecondLastInst->getOpcode() == PPC::BCn && 492 LastInst->getOpcode() == PPC::B) { 493 if (!SecondLastInst->getOperand(1).isMBB() || 494 !LastInst->getOperand(0).isMBB()) 495 return true; 496 TBB = SecondLastInst->getOperand(1).getMBB(); 497 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 498 Cond.push_back(SecondLastInst->getOperand(0)); 499 FBB = LastInst->getOperand(0).getMBB(); 500 return false; 501 } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 || 502 SecondLastInst->getOpcode() == PPC::BDNZ) && 503 LastInst->getOpcode() == PPC::B) { 504 if (!SecondLastInst->getOperand(0).isMBB() || 505 !LastInst->getOperand(0).isMBB()) 506 return true; 507 if (DisableCTRLoopAnal) 508 return true; 509 TBB = SecondLastInst->getOperand(0).getMBB(); 510 Cond.push_back(MachineOperand::CreateImm(1)); 511 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 512 true)); 513 FBB = LastInst->getOperand(0).getMBB(); 514 return false; 515 } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 || 516 SecondLastInst->getOpcode() == PPC::BDZ) && 517 LastInst->getOpcode() == PPC::B) { 518 if (!SecondLastInst->getOperand(0).isMBB() || 519 !LastInst->getOperand(0).isMBB()) 520 return true; 521 if (DisableCTRLoopAnal) 522 return true; 523 TBB = SecondLastInst->getOperand(0).getMBB(); 524 Cond.push_back(MachineOperand::CreateImm(0)); 525 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 526 true)); 527 FBB = LastInst->getOperand(0).getMBB(); 528 return false; 529 } 530 531 // If the block ends with two PPC:Bs, handle it. The second one is not 532 // executed, so remove it. 533 if (SecondLastInst->getOpcode() == PPC::B && 534 LastInst->getOpcode() == PPC::B) { 535 if (!SecondLastInst->getOperand(0).isMBB()) 536 return true; 537 TBB = SecondLastInst->getOperand(0).getMBB(); 538 I = LastInst; 539 if (AllowModify) 540 I->eraseFromParent(); 541 return false; 542 } 543 544 // Otherwise, can't handle this. 545 return true; 546 } 547 548 unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 549 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 550 if (I == MBB.end()) 551 return 0; 552 553 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 554 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 555 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 556 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 557 return 0; 558 559 // Remove the branch. 560 I->eraseFromParent(); 561 562 I = MBB.end(); 563 564 if (I == MBB.begin()) return 1; 565 --I; 566 if (I->getOpcode() != PPC::BCC && 567 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 568 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 569 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 570 return 1; 571 572 // Remove the branch. 573 I->eraseFromParent(); 574 return 2; 575 } 576 577 unsigned 578 PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 579 MachineBasicBlock *FBB, 580 ArrayRef<MachineOperand> Cond, 581 DebugLoc DL) const { 582 // Shouldn't be a fall through. 583 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 584 assert((Cond.size() == 2 || Cond.size() == 0) && 585 "PPC branch conditions have two components!"); 586 587 bool isPPC64 = Subtarget.isPPC64(); 588 589 // One-way branch. 590 if (!FBB) { 591 if (Cond.empty()) // Unconditional branch 592 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 593 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 594 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 595 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 596 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 597 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 598 BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB); 599 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 600 BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB); 601 else // Conditional branch 602 BuildMI(&MBB, DL, get(PPC::BCC)) 603 .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB); 604 return 1; 605 } 606 607 // Two-way Conditional Branch. 608 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 609 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 610 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 611 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 612 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 613 BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB); 614 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 615 BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB); 616 else 617 BuildMI(&MBB, DL, get(PPC::BCC)) 618 .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB); 619 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 620 return 2; 621 } 622 623 // Select analysis. 624 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 625 ArrayRef<MachineOperand> Cond, 626 unsigned TrueReg, unsigned FalseReg, 627 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 628 if (!Subtarget.hasISEL()) 629 return false; 630 631 if (Cond.size() != 2) 632 return false; 633 634 // If this is really a bdnz-like condition, then it cannot be turned into a 635 // select. 636 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 637 return false; 638 639 // Check register classes. 640 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 641 const TargetRegisterClass *RC = 642 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 643 if (!RC) 644 return false; 645 646 // isel is for regular integer GPRs only. 647 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 648 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 649 !PPC::G8RCRegClass.hasSubClassEq(RC) && 650 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 651 return false; 652 653 // FIXME: These numbers are for the A2, how well they work for other cores is 654 // an open question. On the A2, the isel instruction has a 2-cycle latency 655 // but single-cycle throughput. These numbers are used in combination with 656 // the MispredictPenalty setting from the active SchedMachineModel. 657 CondCycles = 1; 658 TrueCycles = 1; 659 FalseCycles = 1; 660 661 return true; 662 } 663 664 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 665 MachineBasicBlock::iterator MI, DebugLoc dl, 666 unsigned DestReg, ArrayRef<MachineOperand> Cond, 667 unsigned TrueReg, unsigned FalseReg) const { 668 assert(Cond.size() == 2 && 669 "PPC branch conditions have two components!"); 670 671 assert(Subtarget.hasISEL() && 672 "Cannot insert select on target without ISEL support"); 673 674 // Get the register classes. 675 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 676 const TargetRegisterClass *RC = 677 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 678 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 679 680 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 681 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 682 assert((Is64Bit || 683 PPC::GPRCRegClass.hasSubClassEq(RC) || 684 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 685 "isel is for regular integer GPRs only"); 686 687 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 688 unsigned SelectPred = Cond[0].getImm(); 689 690 unsigned SubIdx; 691 bool SwapOps; 692 switch (SelectPred) { 693 default: llvm_unreachable("invalid predicate for isel"); 694 case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break; 695 case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break; 696 case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break; 697 case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break; 698 case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break; 699 case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break; 700 case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break; 701 case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break; 702 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 703 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 704 } 705 706 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 707 SecondReg = SwapOps ? TrueReg : FalseReg; 708 709 // The first input register of isel cannot be r0. If it is a member 710 // of a register class that can be r0, then copy it first (the 711 // register allocator should eliminate the copy). 712 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 713 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 714 const TargetRegisterClass *FirstRC = 715 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 716 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 717 unsigned OldFirstReg = FirstReg; 718 FirstReg = MRI.createVirtualRegister(FirstRC); 719 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 720 .addReg(OldFirstReg); 721 } 722 723 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 724 .addReg(FirstReg).addReg(SecondReg) 725 .addReg(Cond[1].getReg(), 0, SubIdx); 726 } 727 728 static unsigned getCRBitValue(unsigned CRBit) { 729 unsigned Ret = 4; 730 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 731 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 732 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 733 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 734 Ret = 3; 735 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 736 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 737 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 738 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 739 Ret = 2; 740 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 741 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 742 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 743 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 744 Ret = 1; 745 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 746 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 747 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 748 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 749 Ret = 0; 750 751 assert(Ret != 4 && "Invalid CR bit register"); 752 return Ret; 753 } 754 755 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 756 MachineBasicBlock::iterator I, DebugLoc DL, 757 unsigned DestReg, unsigned SrcReg, 758 bool KillSrc) const { 759 // We can end up with self copies and similar things as a result of VSX copy 760 // legalization. Promote them here. 761 const TargetRegisterInfo *TRI = &getRegisterInfo(); 762 if (PPC::F8RCRegClass.contains(DestReg) && 763 PPC::VSRCRegClass.contains(SrcReg)) { 764 unsigned SuperReg = 765 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 766 767 if (VSXSelfCopyCrash && SrcReg == SuperReg) 768 llvm_unreachable("nop VSX copy"); 769 770 DestReg = SuperReg; 771 } else if (PPC::VRRCRegClass.contains(DestReg) && 772 PPC::VSRCRegClass.contains(SrcReg)) { 773 unsigned SuperReg = 774 TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass); 775 776 if (VSXSelfCopyCrash && SrcReg == SuperReg) 777 llvm_unreachable("nop VSX copy"); 778 779 DestReg = SuperReg; 780 } else if (PPC::F8RCRegClass.contains(SrcReg) && 781 PPC::VSRCRegClass.contains(DestReg)) { 782 unsigned SuperReg = 783 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 784 785 if (VSXSelfCopyCrash && DestReg == SuperReg) 786 llvm_unreachable("nop VSX copy"); 787 788 SrcReg = SuperReg; 789 } else if (PPC::VRRCRegClass.contains(SrcReg) && 790 PPC::VSRCRegClass.contains(DestReg)) { 791 unsigned SuperReg = 792 TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass); 793 794 if (VSXSelfCopyCrash && DestReg == SuperReg) 795 llvm_unreachable("nop VSX copy"); 796 797 SrcReg = SuperReg; 798 } 799 800 // Different class register copy 801 if (PPC::CRBITRCRegClass.contains(SrcReg) && 802 PPC::GPRCRegClass.contains(DestReg)) { 803 unsigned CRReg = getCRFromCRBit(SrcReg); 804 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg) 805 .addReg(CRReg), getKillRegState(KillSrc); 806 // Rotate the CR bit in the CR fields to be the least significant bit and 807 // then mask with 0x1 (MB = ME = 31). 808 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 809 .addReg(DestReg, RegState::Kill) 810 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 811 .addImm(31) 812 .addImm(31); 813 return; 814 } else if (PPC::CRRCRegClass.contains(SrcReg) && 815 PPC::G8RCRegClass.contains(DestReg)) { 816 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg) 817 .addReg(SrcReg), getKillRegState(KillSrc); 818 return; 819 } else if (PPC::CRRCRegClass.contains(SrcReg) && 820 PPC::GPRCRegClass.contains(DestReg)) { 821 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg) 822 .addReg(SrcReg), getKillRegState(KillSrc); 823 return; 824 } 825 826 unsigned Opc; 827 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 828 Opc = PPC::OR; 829 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 830 Opc = PPC::OR8; 831 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 832 Opc = PPC::FMR; 833 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 834 Opc = PPC::MCRF; 835 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 836 Opc = PPC::VOR; 837 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 838 // There are two different ways this can be done: 839 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 840 // issue in VSU pipeline 0. 841 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 842 // can go to either pipeline. 843 // We'll always use xxlor here, because in practically all cases where 844 // copies are generated, they are close enough to some use that the 845 // lower-latency form is preferable. 846 Opc = PPC::XXLOR; 847 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 848 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 849 Opc = PPC::XXLORf; 850 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) 851 Opc = PPC::QVFMR; 852 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) 853 Opc = PPC::QVFMRs; 854 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) 855 Opc = PPC::QVFMRb; 856 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 857 Opc = PPC::CROR; 858 else 859 llvm_unreachable("Impossible reg-to-reg copy"); 860 861 const MCInstrDesc &MCID = get(Opc); 862 if (MCID.getNumOperands() == 3) 863 BuildMI(MBB, I, DL, MCID, DestReg) 864 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 865 else 866 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 867 } 868 869 // This function returns true if a CR spill is necessary and false otherwise. 870 bool 871 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, 872 unsigned SrcReg, bool isKill, 873 int FrameIdx, 874 const TargetRegisterClass *RC, 875 SmallVectorImpl<MachineInstr*> &NewMIs, 876 bool &NonRI, bool &SpillsVRS) const{ 877 // Note: If additional store instructions are added here, 878 // update isStoreToStackSlot. 879 880 DebugLoc DL; 881 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 882 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 883 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) 884 .addReg(SrcReg, 885 getKillRegState(isKill)), 886 FrameIdx)); 887 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 888 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 889 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) 890 .addReg(SrcReg, 891 getKillRegState(isKill)), 892 FrameIdx)); 893 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 894 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) 895 .addReg(SrcReg, 896 getKillRegState(isKill)), 897 FrameIdx)); 898 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 899 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) 900 .addReg(SrcReg, 901 getKillRegState(isKill)), 902 FrameIdx)); 903 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 904 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) 905 .addReg(SrcReg, 906 getKillRegState(isKill)), 907 FrameIdx)); 908 return true; 909 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 910 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT)) 911 .addReg(SrcReg, 912 getKillRegState(isKill)), 913 FrameIdx)); 914 return true; 915 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 916 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX)) 917 .addReg(SrcReg, 918 getKillRegState(isKill)), 919 FrameIdx)); 920 NonRI = true; 921 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 922 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X)) 923 .addReg(SrcReg, 924 getKillRegState(isKill)), 925 FrameIdx)); 926 NonRI = true; 927 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 928 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX)) 929 .addReg(SrcReg, 930 getKillRegState(isKill)), 931 FrameIdx)); 932 NonRI = true; 933 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 934 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSSPX)) 935 .addReg(SrcReg, 936 getKillRegState(isKill)), 937 FrameIdx)); 938 NonRI = true; 939 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 940 assert(Subtarget.isDarwin() && 941 "VRSAVE only needs spill/restore on Darwin"); 942 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE)) 943 .addReg(SrcReg, 944 getKillRegState(isKill)), 945 FrameIdx)); 946 SpillsVRS = true; 947 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 948 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX)) 949 .addReg(SrcReg, 950 getKillRegState(isKill)), 951 FrameIdx)); 952 NonRI = true; 953 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 954 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs)) 955 .addReg(SrcReg, 956 getKillRegState(isKill)), 957 FrameIdx)); 958 NonRI = true; 959 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 960 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb)) 961 .addReg(SrcReg, 962 getKillRegState(isKill)), 963 FrameIdx)); 964 NonRI = true; 965 } else { 966 llvm_unreachable("Unknown regclass!"); 967 } 968 969 return false; 970 } 971 972 void 973 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 974 MachineBasicBlock::iterator MI, 975 unsigned SrcReg, bool isKill, int FrameIdx, 976 const TargetRegisterClass *RC, 977 const TargetRegisterInfo *TRI) const { 978 MachineFunction &MF = *MBB.getParent(); 979 SmallVector<MachineInstr*, 4> NewMIs; 980 981 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 982 FuncInfo->setHasSpills(); 983 984 bool NonRI = false, SpillsVRS = false; 985 if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs, 986 NonRI, SpillsVRS)) 987 FuncInfo->setSpillsCR(); 988 989 if (SpillsVRS) 990 FuncInfo->setSpillsVRSAVE(); 991 992 if (NonRI) 993 FuncInfo->setHasNonRISpills(); 994 995 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 996 MBB.insert(MI, NewMIs[i]); 997 998 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 999 MachineMemOperand *MMO = 1000 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 1001 MachineMemOperand::MOStore, 1002 MFI.getObjectSize(FrameIdx), 1003 MFI.getObjectAlignment(FrameIdx)); 1004 NewMIs.back()->addMemOperand(MF, MMO); 1005 } 1006 1007 bool 1008 PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL, 1009 unsigned DestReg, int FrameIdx, 1010 const TargetRegisterClass *RC, 1011 SmallVectorImpl<MachineInstr*> &NewMIs, 1012 bool &NonRI, bool &SpillsVRS) const{ 1013 // Note: If additional load instructions are added here, 1014 // update isLoadFromStackSlot. 1015 1016 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1017 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1018 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), 1019 DestReg), FrameIdx)); 1020 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1021 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1022 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), 1023 FrameIdx)); 1024 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1025 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), 1026 FrameIdx)); 1027 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1028 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), 1029 FrameIdx)); 1030 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1031 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1032 get(PPC::RESTORE_CR), DestReg), 1033 FrameIdx)); 1034 return true; 1035 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1036 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1037 get(PPC::RESTORE_CRBIT), DestReg), 1038 FrameIdx)); 1039 return true; 1040 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1041 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg), 1042 FrameIdx)); 1043 NonRI = true; 1044 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1045 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg), 1046 FrameIdx)); 1047 NonRI = true; 1048 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1049 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg), 1050 FrameIdx)); 1051 NonRI = true; 1052 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1053 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSSPX), DestReg), 1054 FrameIdx)); 1055 NonRI = true; 1056 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1057 assert(Subtarget.isDarwin() && 1058 "VRSAVE only needs spill/restore on Darwin"); 1059 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1060 get(PPC::RESTORE_VRSAVE), 1061 DestReg), 1062 FrameIdx)); 1063 SpillsVRS = true; 1064 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1065 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg), 1066 FrameIdx)); 1067 NonRI = true; 1068 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1069 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg), 1070 FrameIdx)); 1071 NonRI = true; 1072 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1073 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg), 1074 FrameIdx)); 1075 NonRI = true; 1076 } else { 1077 llvm_unreachable("Unknown regclass!"); 1078 } 1079 1080 return false; 1081 } 1082 1083 void 1084 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1085 MachineBasicBlock::iterator MI, 1086 unsigned DestReg, int FrameIdx, 1087 const TargetRegisterClass *RC, 1088 const TargetRegisterInfo *TRI) const { 1089 MachineFunction &MF = *MBB.getParent(); 1090 SmallVector<MachineInstr*, 4> NewMIs; 1091 DebugLoc DL; 1092 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1093 1094 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1095 FuncInfo->setHasSpills(); 1096 1097 bool NonRI = false, SpillsVRS = false; 1098 if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs, 1099 NonRI, SpillsVRS)) 1100 FuncInfo->setSpillsCR(); 1101 1102 if (SpillsVRS) 1103 FuncInfo->setSpillsVRSAVE(); 1104 1105 if (NonRI) 1106 FuncInfo->setHasNonRISpills(); 1107 1108 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1109 MBB.insert(MI, NewMIs[i]); 1110 1111 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 1112 MachineMemOperand *MMO = 1113 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 1114 MachineMemOperand::MOLoad, 1115 MFI.getObjectSize(FrameIdx), 1116 MFI.getObjectAlignment(FrameIdx)); 1117 NewMIs.back()->addMemOperand(MF, MMO); 1118 } 1119 1120 bool PPCInstrInfo:: 1121 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1122 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1123 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1124 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1125 else 1126 // Leave the CR# the same, but invert the condition. 1127 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1128 return false; 1129 } 1130 1131 bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI, 1132 unsigned Reg, MachineRegisterInfo *MRI) const { 1133 // For some instructions, it is legal to fold ZERO into the RA register field. 1134 // A zero immediate should always be loaded with a single li. 1135 unsigned DefOpc = DefMI->getOpcode(); 1136 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1137 return false; 1138 if (!DefMI->getOperand(1).isImm()) 1139 return false; 1140 if (DefMI->getOperand(1).getImm() != 0) 1141 return false; 1142 1143 // Note that we cannot here invert the arguments of an isel in order to fold 1144 // a ZERO into what is presented as the second argument. All we have here 1145 // is the condition bit, and that might come from a CR-logical bit operation. 1146 1147 const MCInstrDesc &UseMCID = UseMI->getDesc(); 1148 1149 // Only fold into real machine instructions. 1150 if (UseMCID.isPseudo()) 1151 return false; 1152 1153 unsigned UseIdx; 1154 for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx) 1155 if (UseMI->getOperand(UseIdx).isReg() && 1156 UseMI->getOperand(UseIdx).getReg() == Reg) 1157 break; 1158 1159 assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI"); 1160 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1161 1162 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1163 1164 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1165 // register (which might also be specified as a pointer class kind). 1166 if (UseInfo->isLookupPtrRegClass()) { 1167 if (UseInfo->RegClass /* Kind */ != 1) 1168 return false; 1169 } else { 1170 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1171 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1172 return false; 1173 } 1174 1175 // Make sure this is not tied to an output register (or otherwise 1176 // constrained). This is true for ST?UX registers, for example, which 1177 // are tied to their output registers. 1178 if (UseInfo->Constraints != 0) 1179 return false; 1180 1181 unsigned ZeroReg; 1182 if (UseInfo->isLookupPtrRegClass()) { 1183 bool isPPC64 = Subtarget.isPPC64(); 1184 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1185 } else { 1186 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1187 PPC::ZERO8 : PPC::ZERO; 1188 } 1189 1190 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1191 UseMI->getOperand(UseIdx).setReg(ZeroReg); 1192 1193 if (DeleteDef) 1194 DefMI->eraseFromParent(); 1195 1196 return true; 1197 } 1198 1199 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1200 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1201 I != IE; ++I) 1202 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1203 return true; 1204 return false; 1205 } 1206 1207 // We should make sure that, if we're going to predicate both sides of a 1208 // condition (a diamond), that both sides don't define the counter register. We 1209 // can predicate counter-decrement-based branches, but while that predicates 1210 // the branching, it does not predicate the counter decrement. If we tried to 1211 // merge the triangle into one predicated block, we'd decrement the counter 1212 // twice. 1213 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1214 unsigned NumT, unsigned ExtraT, 1215 MachineBasicBlock &FMBB, 1216 unsigned NumF, unsigned ExtraF, 1217 const BranchProbability &Probability) const { 1218 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1219 } 1220 1221 1222 bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const { 1223 // The predicated branches are identified by their type, not really by the 1224 // explicit presence of a predicate. Furthermore, some of them can be 1225 // predicated more than once. Because if conversion won't try to predicate 1226 // any instruction which already claims to be predicated (by returning true 1227 // here), always return false. In doing so, we let isPredicable() be the 1228 // final word on whether not the instruction can be (further) predicated. 1229 1230 return false; 1231 } 1232 1233 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { 1234 if (!MI->isTerminator()) 1235 return false; 1236 1237 // Conditional branch is a special case. 1238 if (MI->isBranch() && !MI->isBarrier()) 1239 return true; 1240 1241 return !isPredicated(MI); 1242 } 1243 1244 bool PPCInstrInfo::PredicateInstruction(MachineInstr *MI, 1245 ArrayRef<MachineOperand> Pred) const { 1246 unsigned OpC = MI->getOpcode(); 1247 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1248 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1249 bool isPPC64 = Subtarget.isPPC64(); 1250 MI->setDesc(get(Pred[0].getImm() ? 1251 (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) : 1252 (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1253 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1254 MI->setDesc(get(PPC::BCLR)); 1255 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1256 .addReg(Pred[1].getReg()); 1257 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1258 MI->setDesc(get(PPC::BCLRn)); 1259 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1260 .addReg(Pred[1].getReg()); 1261 } else { 1262 MI->setDesc(get(PPC::BCCLR)); 1263 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1264 .addImm(Pred[0].getImm()) 1265 .addReg(Pred[1].getReg()); 1266 } 1267 1268 return true; 1269 } else if (OpC == PPC::B) { 1270 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1271 bool isPPC64 = Subtarget.isPPC64(); 1272 MI->setDesc(get(Pred[0].getImm() ? 1273 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1274 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1275 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1276 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1277 MI->RemoveOperand(0); 1278 1279 MI->setDesc(get(PPC::BC)); 1280 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1281 .addReg(Pred[1].getReg()) 1282 .addMBB(MBB); 1283 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1284 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1285 MI->RemoveOperand(0); 1286 1287 MI->setDesc(get(PPC::BCn)); 1288 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1289 .addReg(Pred[1].getReg()) 1290 .addMBB(MBB); 1291 } else { 1292 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1293 MI->RemoveOperand(0); 1294 1295 MI->setDesc(get(PPC::BCC)); 1296 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1297 .addImm(Pred[0].getImm()) 1298 .addReg(Pred[1].getReg()) 1299 .addMBB(MBB); 1300 } 1301 1302 return true; 1303 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || 1304 OpC == PPC::BCTRL || OpC == PPC::BCTRL8) { 1305 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1306 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1307 1308 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1309 bool isPPC64 = Subtarget.isPPC64(); 1310 1311 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1312 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) : 1313 (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1314 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1315 .addReg(Pred[1].getReg()); 1316 return true; 1317 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1318 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) : 1319 (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1320 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1321 .addReg(Pred[1].getReg()); 1322 return true; 1323 } 1324 1325 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) : 1326 (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1327 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1328 .addImm(Pred[0].getImm()) 1329 .addReg(Pred[1].getReg()); 1330 return true; 1331 } 1332 1333 return false; 1334 } 1335 1336 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1337 ArrayRef<MachineOperand> Pred2) const { 1338 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1339 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1340 1341 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1342 return false; 1343 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1344 return false; 1345 1346 // P1 can only subsume P2 if they test the same condition register. 1347 if (Pred1[1].getReg() != Pred2[1].getReg()) 1348 return false; 1349 1350 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1351 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1352 1353 if (P1 == P2) 1354 return true; 1355 1356 // Does P1 subsume P2, e.g. GE subsumes GT. 1357 if (P1 == PPC::PRED_LE && 1358 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1359 return true; 1360 if (P1 == PPC::PRED_GE && 1361 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1362 return true; 1363 1364 return false; 1365 } 1366 1367 bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI, 1368 std::vector<MachineOperand> &Pred) const { 1369 // Note: At the present time, the contents of Pred from this function is 1370 // unused by IfConversion. This implementation follows ARM by pushing the 1371 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1372 // predicate, instructions defining CTR or CTR8 are also included as 1373 // predicate-defining instructions. 1374 1375 const TargetRegisterClass *RCs[] = 1376 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1377 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1378 1379 bool Found = false; 1380 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1381 const MachineOperand &MO = MI->getOperand(i); 1382 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1383 const TargetRegisterClass *RC = RCs[c]; 1384 if (MO.isReg()) { 1385 if (MO.isDef() && RC->contains(MO.getReg())) { 1386 Pred.push_back(MO); 1387 Found = true; 1388 } 1389 } else if (MO.isRegMask()) { 1390 for (TargetRegisterClass::iterator I = RC->begin(), 1391 IE = RC->end(); I != IE; ++I) 1392 if (MO.clobbersPhysReg(*I)) { 1393 Pred.push_back(MO); 1394 Found = true; 1395 } 1396 } 1397 } 1398 } 1399 1400 return Found; 1401 } 1402 1403 bool PPCInstrInfo::isPredicable(MachineInstr *MI) const { 1404 unsigned OpC = MI->getOpcode(); 1405 switch (OpC) { 1406 default: 1407 return false; 1408 case PPC::B: 1409 case PPC::BLR: 1410 case PPC::BLR8: 1411 case PPC::BCTR: 1412 case PPC::BCTR8: 1413 case PPC::BCTRL: 1414 case PPC::BCTRL8: 1415 return true; 1416 } 1417 } 1418 1419 bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI, 1420 unsigned &SrcReg, unsigned &SrcReg2, 1421 int &Mask, int &Value) const { 1422 unsigned Opc = MI->getOpcode(); 1423 1424 switch (Opc) { 1425 default: return false; 1426 case PPC::CMPWI: 1427 case PPC::CMPLWI: 1428 case PPC::CMPDI: 1429 case PPC::CMPLDI: 1430 SrcReg = MI->getOperand(1).getReg(); 1431 SrcReg2 = 0; 1432 Value = MI->getOperand(2).getImm(); 1433 Mask = 0xFFFF; 1434 return true; 1435 case PPC::CMPW: 1436 case PPC::CMPLW: 1437 case PPC::CMPD: 1438 case PPC::CMPLD: 1439 case PPC::FCMPUS: 1440 case PPC::FCMPUD: 1441 SrcReg = MI->getOperand(1).getReg(); 1442 SrcReg2 = MI->getOperand(2).getReg(); 1443 return true; 1444 } 1445 } 1446 1447 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr, 1448 unsigned SrcReg, unsigned SrcReg2, 1449 int Mask, int Value, 1450 const MachineRegisterInfo *MRI) const { 1451 if (DisableCmpOpt) 1452 return false; 1453 1454 int OpC = CmpInstr->getOpcode(); 1455 unsigned CRReg = CmpInstr->getOperand(0).getReg(); 1456 1457 // FP record forms set CR1 based on the execption status bits, not a 1458 // comparison with zero. 1459 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1460 return false; 1461 1462 // The record forms set the condition register based on a signed comparison 1463 // with zero (so says the ISA manual). This is not as straightforward as it 1464 // seems, however, because this is always a 64-bit comparison on PPC64, even 1465 // for instructions that are 32-bit in nature (like slw for example). 1466 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1467 // for equality checks (as those don't depend on the sign). On PPC64, 1468 // we are restricted to equality for unsigned 64-bit comparisons and for 1469 // signed 32-bit comparisons the applicability is more restricted. 1470 bool isPPC64 = Subtarget.isPPC64(); 1471 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1472 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1473 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1474 1475 // Get the unique definition of SrcReg. 1476 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1477 if (!MI) return false; 1478 int MIOpC = MI->getOpcode(); 1479 1480 bool equalityOnly = false; 1481 bool noSub = false; 1482 if (isPPC64) { 1483 if (is32BitSignedCompare) { 1484 // We can perform this optimization only if MI is sign-extending. 1485 if (MIOpC == PPC::SRAW || MIOpC == PPC::SRAWo || 1486 MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo || 1487 MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo || 1488 MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo || 1489 MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) { 1490 noSub = true; 1491 } else 1492 return false; 1493 } else if (is32BitUnsignedCompare) { 1494 // We can perform this optimization, equality only, if MI is 1495 // zero-extending. 1496 if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo || 1497 MIOpC == PPC::SLW || MIOpC == PPC::SLWo || 1498 MIOpC == PPC::SRW || MIOpC == PPC::SRWo) { 1499 noSub = true; 1500 equalityOnly = true; 1501 } else 1502 return false; 1503 } else 1504 equalityOnly = is64BitUnsignedCompare; 1505 } else 1506 equalityOnly = is32BitUnsignedCompare; 1507 1508 if (equalityOnly) { 1509 // We need to check the uses of the condition register in order to reject 1510 // non-equality comparisons. 1511 for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg), 1512 IE = MRI->use_instr_end(); I != IE; ++I) { 1513 MachineInstr *UseMI = &*I; 1514 if (UseMI->getOpcode() == PPC::BCC) { 1515 unsigned Pred = UseMI->getOperand(0).getImm(); 1516 if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE) 1517 return false; 1518 } else if (UseMI->getOpcode() == PPC::ISEL || 1519 UseMI->getOpcode() == PPC::ISEL8) { 1520 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1521 if (SubIdx != PPC::sub_eq) 1522 return false; 1523 } else 1524 return false; 1525 } 1526 } 1527 1528 MachineBasicBlock::iterator I = CmpInstr; 1529 1530 // Scan forward to find the first use of the compare. 1531 for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end(); 1532 I != EL; ++I) { 1533 bool FoundUse = false; 1534 for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg), 1535 JE = MRI->use_instr_end(); J != JE; ++J) 1536 if (&*J == &*I) { 1537 FoundUse = true; 1538 break; 1539 } 1540 1541 if (FoundUse) 1542 break; 1543 } 1544 1545 // There are two possible candidates which can be changed to set CR[01]. 1546 // One is MI, the other is a SUB instruction. 1547 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1548 MachineInstr *Sub = nullptr; 1549 if (SrcReg2 != 0) 1550 // MI is not a candidate for CMPrr. 1551 MI = nullptr; 1552 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1553 // same BB as the comparison. This is to allow the check below to avoid calls 1554 // (and other explicit clobbers); instead we should really check for these 1555 // more explicitly (in at least a few predecessors). 1556 else if (MI->getParent() != CmpInstr->getParent() || Value != 0) { 1557 // PPC does not have a record-form SUBri. 1558 return false; 1559 } 1560 1561 // Search for Sub. 1562 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1563 --I; 1564 1565 // Get ready to iterate backward from CmpInstr. 1566 MachineBasicBlock::iterator E = MI, 1567 B = CmpInstr->getParent()->begin(); 1568 1569 for (; I != E && !noSub; --I) { 1570 const MachineInstr &Instr = *I; 1571 unsigned IOpC = Instr.getOpcode(); 1572 1573 if (&*I != CmpInstr && ( 1574 Instr.modifiesRegister(PPC::CR0, TRI) || 1575 Instr.readsRegister(PPC::CR0, TRI))) 1576 // This instruction modifies or uses the record condition register after 1577 // the one we want to change. While we could do this transformation, it 1578 // would likely not be profitable. This transformation removes one 1579 // instruction, and so even forcing RA to generate one move probably 1580 // makes it unprofitable. 1581 return false; 1582 1583 // Check whether CmpInstr can be made redundant by the current instruction. 1584 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1585 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1586 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1587 ((Instr.getOperand(1).getReg() == SrcReg && 1588 Instr.getOperand(2).getReg() == SrcReg2) || 1589 (Instr.getOperand(1).getReg() == SrcReg2 && 1590 Instr.getOperand(2).getReg() == SrcReg))) { 1591 Sub = &*I; 1592 break; 1593 } 1594 1595 if (I == B) 1596 // The 'and' is below the comparison instruction. 1597 return false; 1598 } 1599 1600 // Return false if no candidates exist. 1601 if (!MI && !Sub) 1602 return false; 1603 1604 // The single candidate is called MI. 1605 if (!MI) MI = Sub; 1606 1607 int NewOpC = -1; 1608 MIOpC = MI->getOpcode(); 1609 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8) 1610 NewOpC = MIOpC; 1611 else { 1612 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1613 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1614 NewOpC = MIOpC; 1615 } 1616 1617 // FIXME: On the non-embedded POWER architectures, only some of the record 1618 // forms are fast, and we should use only the fast ones. 1619 1620 // The defining instruction has a record form (or is already a record 1621 // form). It is possible, however, that we'll need to reverse the condition 1622 // code of the users. 1623 if (NewOpC == -1) 1624 return false; 1625 1626 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1627 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1628 1629 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1630 // needs to be updated to be based on SUB. Push the condition code 1631 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1632 // condition code of these operands will be modified. 1633 bool ShouldSwap = false; 1634 if (Sub) { 1635 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1636 Sub->getOperand(2).getReg() == SrcReg; 1637 1638 // The operands to subf are the opposite of sub, so only in the fixed-point 1639 // case, invert the order. 1640 ShouldSwap = !ShouldSwap; 1641 } 1642 1643 if (ShouldSwap) 1644 for (MachineRegisterInfo::use_instr_iterator 1645 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1646 I != IE; ++I) { 1647 MachineInstr *UseMI = &*I; 1648 if (UseMI->getOpcode() == PPC::BCC) { 1649 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1650 assert((!equalityOnly || 1651 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) && 1652 "Invalid predicate for equality-only optimization"); 1653 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1654 PPC::getSwappedPredicate(Pred))); 1655 } else if (UseMI->getOpcode() == PPC::ISEL || 1656 UseMI->getOpcode() == PPC::ISEL8) { 1657 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1658 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1659 "Invalid CR bit for equality-only optimization"); 1660 1661 if (NewSubReg == PPC::sub_lt) 1662 NewSubReg = PPC::sub_gt; 1663 else if (NewSubReg == PPC::sub_gt) 1664 NewSubReg = PPC::sub_lt; 1665 1666 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1667 NewSubReg)); 1668 } else // We need to abort on a user we don't understand. 1669 return false; 1670 } 1671 1672 // Create a new virtual register to hold the value of the CR set by the 1673 // record-form instruction. If the instruction was not previously in 1674 // record form, then set the kill flag on the CR. 1675 CmpInstr->eraseFromParent(); 1676 1677 MachineBasicBlock::iterator MII = MI; 1678 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1679 get(TargetOpcode::COPY), CRReg) 1680 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1681 1682 if (MIOpC != NewOpC) { 1683 // We need to be careful here: we're replacing one instruction with 1684 // another, and we need to make sure that we get all of the right 1685 // implicit uses and defs. On the other hand, the caller may be holding 1686 // an iterator to this instruction, and so we can't delete it (this is 1687 // specifically the case if this is the instruction directly after the 1688 // compare). 1689 1690 const MCInstrDesc &NewDesc = get(NewOpC); 1691 MI->setDesc(NewDesc); 1692 1693 if (NewDesc.ImplicitDefs) 1694 for (const uint16_t *ImpDefs = NewDesc.getImplicitDefs(); 1695 *ImpDefs; ++ImpDefs) 1696 if (!MI->definesRegister(*ImpDefs)) 1697 MI->addOperand(*MI->getParent()->getParent(), 1698 MachineOperand::CreateReg(*ImpDefs, true, true)); 1699 if (NewDesc.ImplicitUses) 1700 for (const uint16_t *ImpUses = NewDesc.getImplicitUses(); 1701 *ImpUses; ++ImpUses) 1702 if (!MI->readsRegister(*ImpUses)) 1703 MI->addOperand(*MI->getParent()->getParent(), 1704 MachineOperand::CreateReg(*ImpUses, false, true)); 1705 } 1706 1707 // Modify the condition code of operands in OperandsToUpdate. 1708 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1709 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1710 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1711 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1712 1713 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1714 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1715 1716 return true; 1717 } 1718 1719 /// GetInstSize - Return the number of bytes of code the specified 1720 /// instruction may be. This returns the maximum number of bytes. 1721 /// 1722 unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { 1723 unsigned Opcode = MI->getOpcode(); 1724 1725 if (Opcode == PPC::INLINEASM) { 1726 const MachineFunction *MF = MI->getParent()->getParent(); 1727 const char *AsmStr = MI->getOperand(0).getSymbolName(); 1728 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1729 } else if (Opcode == TargetOpcode::STACKMAP) { 1730 return MI->getOperand(1).getImm(); 1731 } else if (Opcode == TargetOpcode::PATCHPOINT) { 1732 PatchPointOpers Opers(MI); 1733 return Opers.getMetaOper(PatchPointOpers::NBytesPos).getImm(); 1734 } else { 1735 const MCInstrDesc &Desc = get(Opcode); 1736 return Desc.getSize(); 1737 } 1738 } 1739 1740