1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCInstrInfo.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCHazardRecognizers.h"
18 #include "PPCInstrBuilder.h"
19 #include "PPCMachineFunctionInfo.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/ScheduleDAG.h"
31 #include "llvm/CodeGen/SlotIndexes.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCInst.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Support/raw_ostream.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "ppc-instr-info"
44 
45 #define GET_INSTRMAP_INFO
46 #define GET_INSTRINFO_CTOR_DTOR
47 #include "PPCGenInstrInfo.inc"
48 
49 static cl::
50 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
51             cl::desc("Disable analysis for CTR loops"));
52 
53 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
54 cl::desc("Disable compare instruction optimization"), cl::Hidden);
55 
56 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
57 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
58 cl::Hidden);
59 
60 static cl::opt<bool>
61 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
62   cl::desc("Use the old (incorrect) instruction latency calculation"));
63 
64 // Pin the vtable to this file.
65 void PPCInstrInfo::anchor() {}
66 
67 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
68     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
69       Subtarget(STI), RI(STI.getTargetMachine()) {}
70 
71 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
72 /// this target when scheduling the DAG.
73 ScheduleHazardRecognizer *
74 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
75                                            const ScheduleDAG *DAG) const {
76   unsigned Directive =
77       static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
78   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
79       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
80     const InstrItineraryData *II =
81         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
82     return new ScoreboardHazardRecognizer(II, DAG);
83   }
84 
85   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
86 }
87 
88 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
89 /// to use for this target when scheduling the DAG.
90 ScheduleHazardRecognizer *
91 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
92                                                  const ScheduleDAG *DAG) const {
93   unsigned Directive =
94       DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
95 
96   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
97     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
98 
99   // Most subtargets use a PPC970 recognizer.
100   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
101       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
102     assert(DAG->TII && "No InstrInfo?");
103 
104     return new PPCHazardRecognizer970(*DAG);
105   }
106 
107   return new ScoreboardHazardRecognizer(II, DAG);
108 }
109 
110 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
111                                        const MachineInstr *MI,
112                                        unsigned *PredCost) const {
113   if (!ItinData || UseOldLatencyCalc)
114     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
115 
116   // The default implementation of getInstrLatency calls getStageLatency, but
117   // getStageLatency does not do the right thing for us. While we have
118   // itinerary, most cores are fully pipelined, and so the itineraries only
119   // express the first part of the pipeline, not every stage. Instead, we need
120   // to use the listed output operand cycle number (using operand 0 here, which
121   // is an output).
122 
123   unsigned Latency = 1;
124   unsigned DefClass = MI->getDesc().getSchedClass();
125   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
126     const MachineOperand &MO = MI->getOperand(i);
127     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
128       continue;
129 
130     int Cycle = ItinData->getOperandCycle(DefClass, i);
131     if (Cycle < 0)
132       continue;
133 
134     Latency = std::max(Latency, (unsigned) Cycle);
135   }
136 
137   return Latency;
138 }
139 
140 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
141                                     const MachineInstr *DefMI, unsigned DefIdx,
142                                     const MachineInstr *UseMI,
143                                     unsigned UseIdx) const {
144   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
145                                                    UseMI, UseIdx);
146 
147   const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
148   unsigned Reg = DefMO.getReg();
149 
150   bool IsRegCR;
151   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
152     const MachineRegisterInfo *MRI =
153       &DefMI->getParent()->getParent()->getRegInfo();
154     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
155               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
156   } else {
157     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
158               PPC::CRBITRCRegClass.contains(Reg);
159   }
160 
161   if (UseMI->isBranch() && IsRegCR) {
162     if (Latency < 0)
163       Latency = getInstrLatency(ItinData, DefMI);
164 
165     // On some cores, there is an additional delay between writing to a condition
166     // register, and using it from a branch.
167     unsigned Directive = Subtarget.getDarwinDirective();
168     switch (Directive) {
169     default: break;
170     case PPC::DIR_7400:
171     case PPC::DIR_750:
172     case PPC::DIR_970:
173     case PPC::DIR_E5500:
174     case PPC::DIR_PWR4:
175     case PPC::DIR_PWR5:
176     case PPC::DIR_PWR5X:
177     case PPC::DIR_PWR6:
178     case PPC::DIR_PWR6X:
179     case PPC::DIR_PWR7:
180     case PPC::DIR_PWR8:
181       Latency += 2;
182       break;
183     }
184   }
185 
186   return Latency;
187 }
188 
189 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
190 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
191                                          unsigned &SrcReg, unsigned &DstReg,
192                                          unsigned &SubIdx) const {
193   switch (MI.getOpcode()) {
194   default: return false;
195   case PPC::EXTSW:
196   case PPC::EXTSW_32_64:
197     SrcReg = MI.getOperand(1).getReg();
198     DstReg = MI.getOperand(0).getReg();
199     SubIdx = PPC::sub_32;
200     return true;
201   }
202 }
203 
204 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
205                                            int &FrameIndex) const {
206   // Note: This list must be kept consistent with LoadRegFromStackSlot.
207   switch (MI->getOpcode()) {
208   default: break;
209   case PPC::LD:
210   case PPC::LWZ:
211   case PPC::LFS:
212   case PPC::LFD:
213   case PPC::RESTORE_CR:
214   case PPC::RESTORE_CRBIT:
215   case PPC::LVX:
216   case PPC::LXVD2X:
217   case PPC::QVLFDX:
218   case PPC::QVLFSXs:
219   case PPC::QVLFDXb:
220   case PPC::RESTORE_VRSAVE:
221     // Check for the operands added by addFrameReference (the immediate is the
222     // offset which defaults to 0).
223     if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
224         MI->getOperand(2).isFI()) {
225       FrameIndex = MI->getOperand(2).getIndex();
226       return MI->getOperand(0).getReg();
227     }
228     break;
229   }
230   return 0;
231 }
232 
233 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
234                                           int &FrameIndex) const {
235   // Note: This list must be kept consistent with StoreRegToStackSlot.
236   switch (MI->getOpcode()) {
237   default: break;
238   case PPC::STD:
239   case PPC::STW:
240   case PPC::STFS:
241   case PPC::STFD:
242   case PPC::SPILL_CR:
243   case PPC::SPILL_CRBIT:
244   case PPC::STVX:
245   case PPC::STXVD2X:
246   case PPC::QVSTFDX:
247   case PPC::QVSTFSXs:
248   case PPC::QVSTFDXb:
249   case PPC::SPILL_VRSAVE:
250     // Check for the operands added by addFrameReference (the immediate is the
251     // offset which defaults to 0).
252     if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
253         MI->getOperand(2).isFI()) {
254       FrameIndex = MI->getOperand(2).getIndex();
255       return MI->getOperand(0).getReg();
256     }
257     break;
258   }
259   return 0;
260 }
261 
262 // commuteInstruction - We can commute rlwimi instructions, but only if the
263 // rotate amt is zero.  We also have to munge the immediates a bit.
264 MachineInstr *
265 PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
266   MachineFunction &MF = *MI->getParent()->getParent();
267 
268   // Normal instructions can be commuted the obvious way.
269   if (MI->getOpcode() != PPC::RLWIMI &&
270       MI->getOpcode() != PPC::RLWIMIo)
271     return TargetInstrInfo::commuteInstruction(MI, NewMI);
272   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
273   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
274   // changing the relative order of the mask operands might change what happens
275   // to the high-bits of the mask (and, thus, the result).
276 
277   // Cannot commute if it has a non-zero rotate count.
278   if (MI->getOperand(3).getImm() != 0)
279     return nullptr;
280 
281   // If we have a zero rotate count, we have:
282   //   M = mask(MB,ME)
283   //   Op0 = (Op1 & ~M) | (Op2 & M)
284   // Change this to:
285   //   M = mask((ME+1)&31, (MB-1)&31)
286   //   Op0 = (Op2 & ~M) | (Op1 & M)
287 
288   // Swap op1/op2
289   unsigned Reg0 = MI->getOperand(0).getReg();
290   unsigned Reg1 = MI->getOperand(1).getReg();
291   unsigned Reg2 = MI->getOperand(2).getReg();
292   unsigned SubReg1 = MI->getOperand(1).getSubReg();
293   unsigned SubReg2 = MI->getOperand(2).getSubReg();
294   bool Reg1IsKill = MI->getOperand(1).isKill();
295   bool Reg2IsKill = MI->getOperand(2).isKill();
296   bool ChangeReg0 = false;
297   // If machine instrs are no longer in two-address forms, update
298   // destination register as well.
299   if (Reg0 == Reg1) {
300     // Must be two address instruction!
301     assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
302            "Expecting a two-address instruction!");
303     assert(MI->getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
304     Reg2IsKill = false;
305     ChangeReg0 = true;
306   }
307 
308   // Masks.
309   unsigned MB = MI->getOperand(4).getImm();
310   unsigned ME = MI->getOperand(5).getImm();
311 
312   // We can't commute a trivial mask (there is no way to represent an all-zero
313   // mask).
314   if (MB == 0 && ME == 31)
315     return nullptr;
316 
317   if (NewMI) {
318     // Create a new instruction.
319     unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
320     bool Reg0IsDead = MI->getOperand(0).isDead();
321     return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
322       .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
323       .addReg(Reg2, getKillRegState(Reg2IsKill))
324       .addReg(Reg1, getKillRegState(Reg1IsKill))
325       .addImm((ME+1) & 31)
326       .addImm((MB-1) & 31);
327   }
328 
329   if (ChangeReg0) {
330     MI->getOperand(0).setReg(Reg2);
331     MI->getOperand(0).setSubReg(SubReg2);
332   }
333   MI->getOperand(2).setReg(Reg1);
334   MI->getOperand(1).setReg(Reg2);
335   MI->getOperand(2).setSubReg(SubReg1);
336   MI->getOperand(1).setSubReg(SubReg2);
337   MI->getOperand(2).setIsKill(Reg1IsKill);
338   MI->getOperand(1).setIsKill(Reg2IsKill);
339 
340   // Swap the mask around.
341   MI->getOperand(4).setImm((ME+1) & 31);
342   MI->getOperand(5).setImm((MB-1) & 31);
343   return MI;
344 }
345 
346 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
347                                          unsigned &SrcOpIdx2) const {
348   // For VSX A-Type FMA instructions, it is the first two operands that can be
349   // commuted, however, because the non-encoded tied input operand is listed
350   // first, the operands to swap are actually the second and third.
351 
352   int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode());
353   if (AltOpc == -1)
354     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
355 
356   SrcOpIdx1 = 2;
357   SrcOpIdx2 = 3;
358   return true;
359 }
360 
361 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
362                               MachineBasicBlock::iterator MI) const {
363   // This function is used for scheduling, and the nop wanted here is the type
364   // that terminates dispatch groups on the POWER cores.
365   unsigned Directive = Subtarget.getDarwinDirective();
366   unsigned Opcode;
367   switch (Directive) {
368   default:            Opcode = PPC::NOP; break;
369   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
370   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
371   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
372   }
373 
374   DebugLoc DL;
375   BuildMI(MBB, MI, DL, get(Opcode));
376 }
377 
378 /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
379 void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
380   NopInst.setOpcode(PPC::NOP);
381 }
382 
383 // Branch analysis.
384 // Note: If the condition register is set to CTR or CTR8 then this is a
385 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
386 bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
387                                  MachineBasicBlock *&FBB,
388                                  SmallVectorImpl<MachineOperand> &Cond,
389                                  bool AllowModify) const {
390   bool isPPC64 = Subtarget.isPPC64();
391 
392   // If the block has no terminators, it just falls into the block after it.
393   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
394   if (I == MBB.end())
395     return false;
396 
397   if (!isUnpredicatedTerminator(I))
398     return false;
399 
400   // Get the last instruction in the block.
401   MachineInstr *LastInst = I;
402 
403   // If there is only one terminator instruction, process it.
404   if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
405     if (LastInst->getOpcode() == PPC::B) {
406       if (!LastInst->getOperand(0).isMBB())
407         return true;
408       TBB = LastInst->getOperand(0).getMBB();
409       return false;
410     } else if (LastInst->getOpcode() == PPC::BCC) {
411       if (!LastInst->getOperand(2).isMBB())
412         return true;
413       // Block ends with fall-through condbranch.
414       TBB = LastInst->getOperand(2).getMBB();
415       Cond.push_back(LastInst->getOperand(0));
416       Cond.push_back(LastInst->getOperand(1));
417       return false;
418     } else if (LastInst->getOpcode() == PPC::BC) {
419       if (!LastInst->getOperand(1).isMBB())
420         return true;
421       // Block ends with fall-through condbranch.
422       TBB = LastInst->getOperand(1).getMBB();
423       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
424       Cond.push_back(LastInst->getOperand(0));
425       return false;
426     } else if (LastInst->getOpcode() == PPC::BCn) {
427       if (!LastInst->getOperand(1).isMBB())
428         return true;
429       // Block ends with fall-through condbranch.
430       TBB = LastInst->getOperand(1).getMBB();
431       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
432       Cond.push_back(LastInst->getOperand(0));
433       return false;
434     } else if (LastInst->getOpcode() == PPC::BDNZ8 ||
435                LastInst->getOpcode() == PPC::BDNZ) {
436       if (!LastInst->getOperand(0).isMBB())
437         return true;
438       if (DisableCTRLoopAnal)
439         return true;
440       TBB = LastInst->getOperand(0).getMBB();
441       Cond.push_back(MachineOperand::CreateImm(1));
442       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
443                                                true));
444       return false;
445     } else if (LastInst->getOpcode() == PPC::BDZ8 ||
446                LastInst->getOpcode() == PPC::BDZ) {
447       if (!LastInst->getOperand(0).isMBB())
448         return true;
449       if (DisableCTRLoopAnal)
450         return true;
451       TBB = LastInst->getOperand(0).getMBB();
452       Cond.push_back(MachineOperand::CreateImm(0));
453       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
454                                                true));
455       return false;
456     }
457 
458     // Otherwise, don't know what this is.
459     return true;
460   }
461 
462   // Get the instruction before it if it's a terminator.
463   MachineInstr *SecondLastInst = I;
464 
465   // If there are three terminators, we don't know what sort of block this is.
466   if (SecondLastInst && I != MBB.begin() &&
467       isUnpredicatedTerminator(--I))
468     return true;
469 
470   // If the block ends with PPC::B and PPC:BCC, handle it.
471   if (SecondLastInst->getOpcode() == PPC::BCC &&
472       LastInst->getOpcode() == PPC::B) {
473     if (!SecondLastInst->getOperand(2).isMBB() ||
474         !LastInst->getOperand(0).isMBB())
475       return true;
476     TBB =  SecondLastInst->getOperand(2).getMBB();
477     Cond.push_back(SecondLastInst->getOperand(0));
478     Cond.push_back(SecondLastInst->getOperand(1));
479     FBB = LastInst->getOperand(0).getMBB();
480     return false;
481   } else if (SecondLastInst->getOpcode() == PPC::BC &&
482       LastInst->getOpcode() == PPC::B) {
483     if (!SecondLastInst->getOperand(1).isMBB() ||
484         !LastInst->getOperand(0).isMBB())
485       return true;
486     TBB =  SecondLastInst->getOperand(1).getMBB();
487     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
488     Cond.push_back(SecondLastInst->getOperand(0));
489     FBB = LastInst->getOperand(0).getMBB();
490     return false;
491   } else if (SecondLastInst->getOpcode() == PPC::BCn &&
492       LastInst->getOpcode() == PPC::B) {
493     if (!SecondLastInst->getOperand(1).isMBB() ||
494         !LastInst->getOperand(0).isMBB())
495       return true;
496     TBB =  SecondLastInst->getOperand(1).getMBB();
497     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
498     Cond.push_back(SecondLastInst->getOperand(0));
499     FBB = LastInst->getOperand(0).getMBB();
500     return false;
501   } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 ||
502               SecondLastInst->getOpcode() == PPC::BDNZ) &&
503       LastInst->getOpcode() == PPC::B) {
504     if (!SecondLastInst->getOperand(0).isMBB() ||
505         !LastInst->getOperand(0).isMBB())
506       return true;
507     if (DisableCTRLoopAnal)
508       return true;
509     TBB = SecondLastInst->getOperand(0).getMBB();
510     Cond.push_back(MachineOperand::CreateImm(1));
511     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
512                                              true));
513     FBB = LastInst->getOperand(0).getMBB();
514     return false;
515   } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 ||
516               SecondLastInst->getOpcode() == PPC::BDZ) &&
517       LastInst->getOpcode() == PPC::B) {
518     if (!SecondLastInst->getOperand(0).isMBB() ||
519         !LastInst->getOperand(0).isMBB())
520       return true;
521     if (DisableCTRLoopAnal)
522       return true;
523     TBB = SecondLastInst->getOperand(0).getMBB();
524     Cond.push_back(MachineOperand::CreateImm(0));
525     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
526                                              true));
527     FBB = LastInst->getOperand(0).getMBB();
528     return false;
529   }
530 
531   // If the block ends with two PPC:Bs, handle it.  The second one is not
532   // executed, so remove it.
533   if (SecondLastInst->getOpcode() == PPC::B &&
534       LastInst->getOpcode() == PPC::B) {
535     if (!SecondLastInst->getOperand(0).isMBB())
536       return true;
537     TBB = SecondLastInst->getOperand(0).getMBB();
538     I = LastInst;
539     if (AllowModify)
540       I->eraseFromParent();
541     return false;
542   }
543 
544   // Otherwise, can't handle this.
545   return true;
546 }
547 
548 unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
549   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
550   if (I == MBB.end())
551     return 0;
552 
553   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
554       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
555       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
556       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
557     return 0;
558 
559   // Remove the branch.
560   I->eraseFromParent();
561 
562   I = MBB.end();
563 
564   if (I == MBB.begin()) return 1;
565   --I;
566   if (I->getOpcode() != PPC::BCC &&
567       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
568       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
569       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
570     return 1;
571 
572   // Remove the branch.
573   I->eraseFromParent();
574   return 2;
575 }
576 
577 unsigned
578 PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
579                            MachineBasicBlock *FBB,
580                            ArrayRef<MachineOperand> Cond,
581                            DebugLoc DL) const {
582   // Shouldn't be a fall through.
583   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
584   assert((Cond.size() == 2 || Cond.size() == 0) &&
585          "PPC branch conditions have two components!");
586 
587   bool isPPC64 = Subtarget.isPPC64();
588 
589   // One-way branch.
590   if (!FBB) {
591     if (Cond.empty())   // Unconditional branch
592       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
593     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
594       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
595                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
596                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
597     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
598       BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
599     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
600       BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
601     else                // Conditional branch
602       BuildMI(&MBB, DL, get(PPC::BCC))
603         .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
604     return 1;
605   }
606 
607   // Two-way Conditional Branch.
608   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
609     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
610                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
611                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
612   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
613     BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
614   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
615     BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
616   else
617     BuildMI(&MBB, DL, get(PPC::BCC))
618       .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
619   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
620   return 2;
621 }
622 
623 // Select analysis.
624 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
625                 ArrayRef<MachineOperand> Cond,
626                 unsigned TrueReg, unsigned FalseReg,
627                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
628   if (!Subtarget.hasISEL())
629     return false;
630 
631   if (Cond.size() != 2)
632     return false;
633 
634   // If this is really a bdnz-like condition, then it cannot be turned into a
635   // select.
636   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
637     return false;
638 
639   // Check register classes.
640   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
641   const TargetRegisterClass *RC =
642     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
643   if (!RC)
644     return false;
645 
646   // isel is for regular integer GPRs only.
647   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
648       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
649       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
650       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
651     return false;
652 
653   // FIXME: These numbers are for the A2, how well they work for other cores is
654   // an open question. On the A2, the isel instruction has a 2-cycle latency
655   // but single-cycle throughput. These numbers are used in combination with
656   // the MispredictPenalty setting from the active SchedMachineModel.
657   CondCycles = 1;
658   TrueCycles = 1;
659   FalseCycles = 1;
660 
661   return true;
662 }
663 
664 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
665                                 MachineBasicBlock::iterator MI, DebugLoc dl,
666                                 unsigned DestReg, ArrayRef<MachineOperand> Cond,
667                                 unsigned TrueReg, unsigned FalseReg) const {
668   assert(Cond.size() == 2 &&
669          "PPC branch conditions have two components!");
670 
671   assert(Subtarget.hasISEL() &&
672          "Cannot insert select on target without ISEL support");
673 
674   // Get the register classes.
675   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
676   const TargetRegisterClass *RC =
677     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
678   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
679 
680   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
681                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
682   assert((Is64Bit ||
683           PPC::GPRCRegClass.hasSubClassEq(RC) ||
684           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
685          "isel is for regular integer GPRs only");
686 
687   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
688   unsigned SelectPred = Cond[0].getImm();
689 
690   unsigned SubIdx;
691   bool SwapOps;
692   switch (SelectPred) {
693   default: llvm_unreachable("invalid predicate for isel");
694   case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break;
695   case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break;
696   case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break;
697   case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break;
698   case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break;
699   case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break;
700   case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break;
701   case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break;
702   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
703   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
704   }
705 
706   unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
707            SecondReg = SwapOps ? TrueReg  : FalseReg;
708 
709   // The first input register of isel cannot be r0. If it is a member
710   // of a register class that can be r0, then copy it first (the
711   // register allocator should eliminate the copy).
712   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
713       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
714     const TargetRegisterClass *FirstRC =
715       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
716         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
717     unsigned OldFirstReg = FirstReg;
718     FirstReg = MRI.createVirtualRegister(FirstRC);
719     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
720       .addReg(OldFirstReg);
721   }
722 
723   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
724     .addReg(FirstReg).addReg(SecondReg)
725     .addReg(Cond[1].getReg(), 0, SubIdx);
726 }
727 
728 static unsigned getCRBitValue(unsigned CRBit) {
729   unsigned Ret = 4;
730   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
731       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
732       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
733       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
734     Ret = 3;
735   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
736       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
737       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
738       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
739     Ret = 2;
740   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
741       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
742       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
743       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
744     Ret = 1;
745   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
746       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
747       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
748       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
749     Ret = 0;
750 
751   assert(Ret != 4 && "Invalid CR bit register");
752   return Ret;
753 }
754 
755 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
756                                MachineBasicBlock::iterator I, DebugLoc DL,
757                                unsigned DestReg, unsigned SrcReg,
758                                bool KillSrc) const {
759   // We can end up with self copies and similar things as a result of VSX copy
760   // legalization. Promote them here.
761   const TargetRegisterInfo *TRI = &getRegisterInfo();
762   if (PPC::F8RCRegClass.contains(DestReg) &&
763       PPC::VSRCRegClass.contains(SrcReg)) {
764     unsigned SuperReg =
765       TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
766 
767     if (VSXSelfCopyCrash && SrcReg == SuperReg)
768       llvm_unreachable("nop VSX copy");
769 
770     DestReg = SuperReg;
771   } else if (PPC::VRRCRegClass.contains(DestReg) &&
772              PPC::VSRCRegClass.contains(SrcReg)) {
773     unsigned SuperReg =
774       TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass);
775 
776     if (VSXSelfCopyCrash && SrcReg == SuperReg)
777       llvm_unreachable("nop VSX copy");
778 
779     DestReg = SuperReg;
780   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
781              PPC::VSRCRegClass.contains(DestReg)) {
782     unsigned SuperReg =
783       TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
784 
785     if (VSXSelfCopyCrash && DestReg == SuperReg)
786       llvm_unreachable("nop VSX copy");
787 
788     SrcReg = SuperReg;
789   } else if (PPC::VRRCRegClass.contains(SrcReg) &&
790              PPC::VSRCRegClass.contains(DestReg)) {
791     unsigned SuperReg =
792       TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass);
793 
794     if (VSXSelfCopyCrash && DestReg == SuperReg)
795       llvm_unreachable("nop VSX copy");
796 
797     SrcReg = SuperReg;
798   }
799 
800   // Different class register copy
801   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
802       PPC::GPRCRegClass.contains(DestReg)) {
803     unsigned CRReg = getCRFromCRBit(SrcReg);
804     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg)
805        .addReg(CRReg), getKillRegState(KillSrc);
806     // Rotate the CR bit in the CR fields to be the least significant bit and
807     // then mask with 0x1 (MB = ME = 31).
808     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
809        .addReg(DestReg, RegState::Kill)
810        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
811        .addImm(31)
812        .addImm(31);
813     return;
814   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
815       PPC::G8RCRegClass.contains(DestReg)) {
816     BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg)
817        .addReg(SrcReg), getKillRegState(KillSrc);
818     return;
819   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
820       PPC::GPRCRegClass.contains(DestReg)) {
821     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg)
822        .addReg(SrcReg), getKillRegState(KillSrc);
823     return;
824    }
825 
826   unsigned Opc;
827   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
828     Opc = PPC::OR;
829   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
830     Opc = PPC::OR8;
831   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
832     Opc = PPC::FMR;
833   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
834     Opc = PPC::MCRF;
835   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
836     Opc = PPC::VOR;
837   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
838     // There are two different ways this can be done:
839     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
840     //      issue in VSU pipeline 0.
841     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
842     //      can go to either pipeline.
843     // We'll always use xxlor here, because in practically all cases where
844     // copies are generated, they are close enough to some use that the
845     // lower-latency form is preferable.
846     Opc = PPC::XXLOR;
847   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
848            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
849     Opc = PPC::XXLORf;
850   else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
851     Opc = PPC::QVFMR;
852   else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
853     Opc = PPC::QVFMRs;
854   else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
855     Opc = PPC::QVFMRb;
856   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
857     Opc = PPC::CROR;
858   else
859     llvm_unreachable("Impossible reg-to-reg copy");
860 
861   const MCInstrDesc &MCID = get(Opc);
862   if (MCID.getNumOperands() == 3)
863     BuildMI(MBB, I, DL, MCID, DestReg)
864       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
865   else
866     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
867 }
868 
869 // This function returns true if a CR spill is necessary and false otherwise.
870 bool
871 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
872                                   unsigned SrcReg, bool isKill,
873                                   int FrameIdx,
874                                   const TargetRegisterClass *RC,
875                                   SmallVectorImpl<MachineInstr*> &NewMIs,
876                                   bool &NonRI, bool &SpillsVRS) const{
877   // Note: If additional store instructions are added here,
878   // update isStoreToStackSlot.
879 
880   DebugLoc DL;
881   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
882       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
883     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
884                                        .addReg(SrcReg,
885                                                getKillRegState(isKill)),
886                                        FrameIdx));
887   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
888              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
889     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
890                                        .addReg(SrcReg,
891                                                getKillRegState(isKill)),
892                                        FrameIdx));
893   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
894     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
895                                        .addReg(SrcReg,
896                                                getKillRegState(isKill)),
897                                        FrameIdx));
898   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
899     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
900                                        .addReg(SrcReg,
901                                                getKillRegState(isKill)),
902                                        FrameIdx));
903   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
904     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
905                                        .addReg(SrcReg,
906                                                getKillRegState(isKill)),
907                                        FrameIdx));
908     return true;
909   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
910     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT))
911                                        .addReg(SrcReg,
912                                                getKillRegState(isKill)),
913                                        FrameIdx));
914     return true;
915   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
916     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
917                                        .addReg(SrcReg,
918                                                getKillRegState(isKill)),
919                                        FrameIdx));
920     NonRI = true;
921   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
922     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X))
923                                        .addReg(SrcReg,
924                                                getKillRegState(isKill)),
925                                        FrameIdx));
926     NonRI = true;
927   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
928     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX))
929                                        .addReg(SrcReg,
930                                                getKillRegState(isKill)),
931                                        FrameIdx));
932     NonRI = true;
933   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
934     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSSPX))
935                                        .addReg(SrcReg,
936                                                getKillRegState(isKill)),
937                                        FrameIdx));
938     NonRI = true;
939   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
940     assert(Subtarget.isDarwin() &&
941            "VRSAVE only needs spill/restore on Darwin");
942     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
943                                        .addReg(SrcReg,
944                                                getKillRegState(isKill)),
945                                        FrameIdx));
946     SpillsVRS = true;
947   } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
948     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX))
949                                        .addReg(SrcReg,
950                                                getKillRegState(isKill)),
951                                        FrameIdx));
952     NonRI = true;
953   } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
954     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs))
955                                        .addReg(SrcReg,
956                                                getKillRegState(isKill)),
957                                        FrameIdx));
958     NonRI = true;
959   } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
960     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb))
961                                        .addReg(SrcReg,
962                                                getKillRegState(isKill)),
963                                        FrameIdx));
964     NonRI = true;
965   } else {
966     llvm_unreachable("Unknown regclass!");
967   }
968 
969   return false;
970 }
971 
972 void
973 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
974                                   MachineBasicBlock::iterator MI,
975                                   unsigned SrcReg, bool isKill, int FrameIdx,
976                                   const TargetRegisterClass *RC,
977                                   const TargetRegisterInfo *TRI) const {
978   MachineFunction &MF = *MBB.getParent();
979   SmallVector<MachineInstr*, 4> NewMIs;
980 
981   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
982   FuncInfo->setHasSpills();
983 
984   bool NonRI = false, SpillsVRS = false;
985   if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
986                           NonRI, SpillsVRS))
987     FuncInfo->setSpillsCR();
988 
989   if (SpillsVRS)
990     FuncInfo->setSpillsVRSAVE();
991 
992   if (NonRI)
993     FuncInfo->setHasNonRISpills();
994 
995   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
996     MBB.insert(MI, NewMIs[i]);
997 
998   const MachineFrameInfo &MFI = *MF.getFrameInfo();
999   MachineMemOperand *MMO =
1000     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
1001                             MachineMemOperand::MOStore,
1002                             MFI.getObjectSize(FrameIdx),
1003                             MFI.getObjectAlignment(FrameIdx));
1004   NewMIs.back()->addMemOperand(MF, MMO);
1005 }
1006 
1007 bool
1008 PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL,
1009                                    unsigned DestReg, int FrameIdx,
1010                                    const TargetRegisterClass *RC,
1011                                    SmallVectorImpl<MachineInstr*> &NewMIs,
1012                                    bool &NonRI, bool &SpillsVRS) const{
1013   // Note: If additional load instructions are added here,
1014   // update isLoadFromStackSlot.
1015 
1016   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1017       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1018     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
1019                                                DestReg), FrameIdx));
1020   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1021              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1022     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
1023                                        FrameIdx));
1024   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1025     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
1026                                        FrameIdx));
1027   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1028     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
1029                                        FrameIdx));
1030   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1031     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1032                                                get(PPC::RESTORE_CR), DestReg),
1033                                        FrameIdx));
1034     return true;
1035   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1036     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1037                                                get(PPC::RESTORE_CRBIT), DestReg),
1038                                        FrameIdx));
1039     return true;
1040   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1041     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
1042                                        FrameIdx));
1043     NonRI = true;
1044   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1045     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg),
1046                                        FrameIdx));
1047     NonRI = true;
1048   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1049     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg),
1050                                        FrameIdx));
1051     NonRI = true;
1052   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1053     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSSPX), DestReg),
1054                                        FrameIdx));
1055     NonRI = true;
1056   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1057     assert(Subtarget.isDarwin() &&
1058            "VRSAVE only needs spill/restore on Darwin");
1059     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1060                                                get(PPC::RESTORE_VRSAVE),
1061                                                DestReg),
1062                                        FrameIdx));
1063     SpillsVRS = true;
1064   } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1065     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg),
1066                                        FrameIdx));
1067     NonRI = true;
1068   } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1069     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg),
1070                                        FrameIdx));
1071     NonRI = true;
1072   } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1073     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg),
1074                                        FrameIdx));
1075     NonRI = true;
1076   } else {
1077     llvm_unreachable("Unknown regclass!");
1078   }
1079 
1080   return false;
1081 }
1082 
1083 void
1084 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1085                                    MachineBasicBlock::iterator MI,
1086                                    unsigned DestReg, int FrameIdx,
1087                                    const TargetRegisterClass *RC,
1088                                    const TargetRegisterInfo *TRI) const {
1089   MachineFunction &MF = *MBB.getParent();
1090   SmallVector<MachineInstr*, 4> NewMIs;
1091   DebugLoc DL;
1092   if (MI != MBB.end()) DL = MI->getDebugLoc();
1093 
1094   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1095   FuncInfo->setHasSpills();
1096 
1097   bool NonRI = false, SpillsVRS = false;
1098   if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
1099                            NonRI, SpillsVRS))
1100     FuncInfo->setSpillsCR();
1101 
1102   if (SpillsVRS)
1103     FuncInfo->setSpillsVRSAVE();
1104 
1105   if (NonRI)
1106     FuncInfo->setHasNonRISpills();
1107 
1108   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1109     MBB.insert(MI, NewMIs[i]);
1110 
1111   const MachineFrameInfo &MFI = *MF.getFrameInfo();
1112   MachineMemOperand *MMO =
1113     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
1114                             MachineMemOperand::MOLoad,
1115                             MFI.getObjectSize(FrameIdx),
1116                             MFI.getObjectAlignment(FrameIdx));
1117   NewMIs.back()->addMemOperand(MF, MMO);
1118 }
1119 
1120 bool PPCInstrInfo::
1121 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1122   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1123   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1124     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1125   else
1126     // Leave the CR# the same, but invert the condition.
1127     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1128   return false;
1129 }
1130 
1131 bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
1132                              unsigned Reg, MachineRegisterInfo *MRI) const {
1133   // For some instructions, it is legal to fold ZERO into the RA register field.
1134   // A zero immediate should always be loaded with a single li.
1135   unsigned DefOpc = DefMI->getOpcode();
1136   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1137     return false;
1138   if (!DefMI->getOperand(1).isImm())
1139     return false;
1140   if (DefMI->getOperand(1).getImm() != 0)
1141     return false;
1142 
1143   // Note that we cannot here invert the arguments of an isel in order to fold
1144   // a ZERO into what is presented as the second argument. All we have here
1145   // is the condition bit, and that might come from a CR-logical bit operation.
1146 
1147   const MCInstrDesc &UseMCID = UseMI->getDesc();
1148 
1149   // Only fold into real machine instructions.
1150   if (UseMCID.isPseudo())
1151     return false;
1152 
1153   unsigned UseIdx;
1154   for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx)
1155     if (UseMI->getOperand(UseIdx).isReg() &&
1156         UseMI->getOperand(UseIdx).getReg() == Reg)
1157       break;
1158 
1159   assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI");
1160   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1161 
1162   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1163 
1164   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1165   // register (which might also be specified as a pointer class kind).
1166   if (UseInfo->isLookupPtrRegClass()) {
1167     if (UseInfo->RegClass /* Kind */ != 1)
1168       return false;
1169   } else {
1170     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1171         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1172       return false;
1173   }
1174 
1175   // Make sure this is not tied to an output register (or otherwise
1176   // constrained). This is true for ST?UX registers, for example, which
1177   // are tied to their output registers.
1178   if (UseInfo->Constraints != 0)
1179     return false;
1180 
1181   unsigned ZeroReg;
1182   if (UseInfo->isLookupPtrRegClass()) {
1183     bool isPPC64 = Subtarget.isPPC64();
1184     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1185   } else {
1186     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1187               PPC::ZERO8 : PPC::ZERO;
1188   }
1189 
1190   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1191   UseMI->getOperand(UseIdx).setReg(ZeroReg);
1192 
1193   if (DeleteDef)
1194     DefMI->eraseFromParent();
1195 
1196   return true;
1197 }
1198 
1199 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1200   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1201        I != IE; ++I)
1202     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1203       return true;
1204   return false;
1205 }
1206 
1207 // We should make sure that, if we're going to predicate both sides of a
1208 // condition (a diamond), that both sides don't define the counter register. We
1209 // can predicate counter-decrement-based branches, but while that predicates
1210 // the branching, it does not predicate the counter decrement. If we tried to
1211 // merge the triangle into one predicated block, we'd decrement the counter
1212 // twice.
1213 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1214                      unsigned NumT, unsigned ExtraT,
1215                      MachineBasicBlock &FMBB,
1216                      unsigned NumF, unsigned ExtraF,
1217                      const BranchProbability &Probability) const {
1218   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1219 }
1220 
1221 
1222 bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const {
1223   // The predicated branches are identified by their type, not really by the
1224   // explicit presence of a predicate. Furthermore, some of them can be
1225   // predicated more than once. Because if conversion won't try to predicate
1226   // any instruction which already claims to be predicated (by returning true
1227   // here), always return false. In doing so, we let isPredicable() be the
1228   // final word on whether not the instruction can be (further) predicated.
1229 
1230   return false;
1231 }
1232 
1233 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1234   if (!MI->isTerminator())
1235     return false;
1236 
1237   // Conditional branch is a special case.
1238   if (MI->isBranch() && !MI->isBarrier())
1239     return true;
1240 
1241   return !isPredicated(MI);
1242 }
1243 
1244 bool PPCInstrInfo::PredicateInstruction(MachineInstr *MI,
1245                                         ArrayRef<MachineOperand> Pred) const {
1246   unsigned OpC = MI->getOpcode();
1247   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1248     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1249       bool isPPC64 = Subtarget.isPPC64();
1250       MI->setDesc(get(Pred[0].getImm() ?
1251                       (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) :
1252                       (isPPC64 ? PPC::BDZLR8  : PPC::BDZLR)));
1253     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1254       MI->setDesc(get(PPC::BCLR));
1255       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1256         .addReg(Pred[1].getReg());
1257     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1258       MI->setDesc(get(PPC::BCLRn));
1259       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1260         .addReg(Pred[1].getReg());
1261     } else {
1262       MI->setDesc(get(PPC::BCCLR));
1263       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1264         .addImm(Pred[0].getImm())
1265         .addReg(Pred[1].getReg());
1266     }
1267 
1268     return true;
1269   } else if (OpC == PPC::B) {
1270     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1271       bool isPPC64 = Subtarget.isPPC64();
1272       MI->setDesc(get(Pred[0].getImm() ?
1273                       (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1274                       (isPPC64 ? PPC::BDZ8  : PPC::BDZ)));
1275     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1276       MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
1277       MI->RemoveOperand(0);
1278 
1279       MI->setDesc(get(PPC::BC));
1280       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1281         .addReg(Pred[1].getReg())
1282         .addMBB(MBB);
1283     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1284       MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
1285       MI->RemoveOperand(0);
1286 
1287       MI->setDesc(get(PPC::BCn));
1288       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1289         .addReg(Pred[1].getReg())
1290         .addMBB(MBB);
1291     } else {
1292       MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
1293       MI->RemoveOperand(0);
1294 
1295       MI->setDesc(get(PPC::BCC));
1296       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1297         .addImm(Pred[0].getImm())
1298         .addReg(Pred[1].getReg())
1299         .addMBB(MBB);
1300     }
1301 
1302     return true;
1303   } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 ||
1304              OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
1305     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1306       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1307 
1308     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1309     bool isPPC64 = Subtarget.isPPC64();
1310 
1311     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1312       MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) :
1313                                 (setLR ? PPC::BCCTRL  : PPC::BCCTR)));
1314       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1315         .addReg(Pred[1].getReg());
1316       return true;
1317     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1318       MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) :
1319                                 (setLR ? PPC::BCCTRLn  : PPC::BCCTRn)));
1320       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1321         .addReg(Pred[1].getReg());
1322       return true;
1323     }
1324 
1325     MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) :
1326                               (setLR ? PPC::BCCCTRL  : PPC::BCCCTR)));
1327     MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1328       .addImm(Pred[0].getImm())
1329       .addReg(Pred[1].getReg());
1330     return true;
1331   }
1332 
1333   return false;
1334 }
1335 
1336 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1337                                      ArrayRef<MachineOperand> Pred2) const {
1338   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1339   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1340 
1341   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1342     return false;
1343   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1344     return false;
1345 
1346   // P1 can only subsume P2 if they test the same condition register.
1347   if (Pred1[1].getReg() != Pred2[1].getReg())
1348     return false;
1349 
1350   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1351   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1352 
1353   if (P1 == P2)
1354     return true;
1355 
1356   // Does P1 subsume P2, e.g. GE subsumes GT.
1357   if (P1 == PPC::PRED_LE &&
1358       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1359     return true;
1360   if (P1 == PPC::PRED_GE &&
1361       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1362     return true;
1363 
1364   return false;
1365 }
1366 
1367 bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI,
1368                                     std::vector<MachineOperand> &Pred) const {
1369   // Note: At the present time, the contents of Pred from this function is
1370   // unused by IfConversion. This implementation follows ARM by pushing the
1371   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1372   // predicate, instructions defining CTR or CTR8 are also included as
1373   // predicate-defining instructions.
1374 
1375   const TargetRegisterClass *RCs[] =
1376     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1377       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1378 
1379   bool Found = false;
1380   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1381     const MachineOperand &MO = MI->getOperand(i);
1382     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1383       const TargetRegisterClass *RC = RCs[c];
1384       if (MO.isReg()) {
1385         if (MO.isDef() && RC->contains(MO.getReg())) {
1386           Pred.push_back(MO);
1387           Found = true;
1388         }
1389       } else if (MO.isRegMask()) {
1390         for (TargetRegisterClass::iterator I = RC->begin(),
1391              IE = RC->end(); I != IE; ++I)
1392           if (MO.clobbersPhysReg(*I)) {
1393             Pred.push_back(MO);
1394             Found = true;
1395           }
1396       }
1397     }
1398   }
1399 
1400   return Found;
1401 }
1402 
1403 bool PPCInstrInfo::isPredicable(MachineInstr *MI) const {
1404   unsigned OpC = MI->getOpcode();
1405   switch (OpC) {
1406   default:
1407     return false;
1408   case PPC::B:
1409   case PPC::BLR:
1410   case PPC::BLR8:
1411   case PPC::BCTR:
1412   case PPC::BCTR8:
1413   case PPC::BCTRL:
1414   case PPC::BCTRL8:
1415     return true;
1416   }
1417 }
1418 
1419 bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI,
1420                                   unsigned &SrcReg, unsigned &SrcReg2,
1421                                   int &Mask, int &Value) const {
1422   unsigned Opc = MI->getOpcode();
1423 
1424   switch (Opc) {
1425   default: return false;
1426   case PPC::CMPWI:
1427   case PPC::CMPLWI:
1428   case PPC::CMPDI:
1429   case PPC::CMPLDI:
1430     SrcReg = MI->getOperand(1).getReg();
1431     SrcReg2 = 0;
1432     Value = MI->getOperand(2).getImm();
1433     Mask = 0xFFFF;
1434     return true;
1435   case PPC::CMPW:
1436   case PPC::CMPLW:
1437   case PPC::CMPD:
1438   case PPC::CMPLD:
1439   case PPC::FCMPUS:
1440   case PPC::FCMPUD:
1441     SrcReg = MI->getOperand(1).getReg();
1442     SrcReg2 = MI->getOperand(2).getReg();
1443     return true;
1444   }
1445 }
1446 
1447 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr,
1448                                         unsigned SrcReg, unsigned SrcReg2,
1449                                         int Mask, int Value,
1450                                         const MachineRegisterInfo *MRI) const {
1451   if (DisableCmpOpt)
1452     return false;
1453 
1454   int OpC = CmpInstr->getOpcode();
1455   unsigned CRReg = CmpInstr->getOperand(0).getReg();
1456 
1457   // FP record forms set CR1 based on the execption status bits, not a
1458   // comparison with zero.
1459   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1460     return false;
1461 
1462   // The record forms set the condition register based on a signed comparison
1463   // with zero (so says the ISA manual). This is not as straightforward as it
1464   // seems, however, because this is always a 64-bit comparison on PPC64, even
1465   // for instructions that are 32-bit in nature (like slw for example).
1466   // So, on PPC32, for unsigned comparisons, we can use the record forms only
1467   // for equality checks (as those don't depend on the sign). On PPC64,
1468   // we are restricted to equality for unsigned 64-bit comparisons and for
1469   // signed 32-bit comparisons the applicability is more restricted.
1470   bool isPPC64 = Subtarget.isPPC64();
1471   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1472   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1473   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1474 
1475   // Get the unique definition of SrcReg.
1476   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1477   if (!MI) return false;
1478   int MIOpC = MI->getOpcode();
1479 
1480   bool equalityOnly = false;
1481   bool noSub = false;
1482   if (isPPC64) {
1483     if (is32BitSignedCompare) {
1484       // We can perform this optimization only if MI is sign-extending.
1485       if (MIOpC == PPC::SRAW  || MIOpC == PPC::SRAWo ||
1486           MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo ||
1487           MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo ||
1488           MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo ||
1489           MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) {
1490         noSub = true;
1491       } else
1492         return false;
1493     } else if (is32BitUnsignedCompare) {
1494       // We can perform this optimization, equality only, if MI is
1495       // zero-extending.
1496       if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo ||
1497           MIOpC == PPC::SLW    || MIOpC == PPC::SLWo ||
1498           MIOpC == PPC::SRW    || MIOpC == PPC::SRWo) {
1499         noSub = true;
1500         equalityOnly = true;
1501       } else
1502         return false;
1503     } else
1504       equalityOnly = is64BitUnsignedCompare;
1505   } else
1506     equalityOnly = is32BitUnsignedCompare;
1507 
1508   if (equalityOnly) {
1509     // We need to check the uses of the condition register in order to reject
1510     // non-equality comparisons.
1511     for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg),
1512          IE = MRI->use_instr_end(); I != IE; ++I) {
1513       MachineInstr *UseMI = &*I;
1514       if (UseMI->getOpcode() == PPC::BCC) {
1515         unsigned Pred = UseMI->getOperand(0).getImm();
1516         if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE)
1517           return false;
1518       } else if (UseMI->getOpcode() == PPC::ISEL ||
1519                  UseMI->getOpcode() == PPC::ISEL8) {
1520         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1521         if (SubIdx != PPC::sub_eq)
1522           return false;
1523       } else
1524         return false;
1525     }
1526   }
1527 
1528   MachineBasicBlock::iterator I = CmpInstr;
1529 
1530   // Scan forward to find the first use of the compare.
1531   for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end();
1532        I != EL; ++I) {
1533     bool FoundUse = false;
1534     for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg),
1535          JE = MRI->use_instr_end(); J != JE; ++J)
1536       if (&*J == &*I) {
1537         FoundUse = true;
1538         break;
1539       }
1540 
1541     if (FoundUse)
1542       break;
1543   }
1544 
1545   // There are two possible candidates which can be changed to set CR[01].
1546   // One is MI, the other is a SUB instruction.
1547   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1548   MachineInstr *Sub = nullptr;
1549   if (SrcReg2 != 0)
1550     // MI is not a candidate for CMPrr.
1551     MI = nullptr;
1552   // FIXME: Conservatively refuse to convert an instruction which isn't in the
1553   // same BB as the comparison. This is to allow the check below to avoid calls
1554   // (and other explicit clobbers); instead we should really check for these
1555   // more explicitly (in at least a few predecessors).
1556   else if (MI->getParent() != CmpInstr->getParent() || Value != 0) {
1557     // PPC does not have a record-form SUBri.
1558     return false;
1559   }
1560 
1561   // Search for Sub.
1562   const TargetRegisterInfo *TRI = &getRegisterInfo();
1563   --I;
1564 
1565   // Get ready to iterate backward from CmpInstr.
1566   MachineBasicBlock::iterator E = MI,
1567                               B = CmpInstr->getParent()->begin();
1568 
1569   for (; I != E && !noSub; --I) {
1570     const MachineInstr &Instr = *I;
1571     unsigned IOpC = Instr.getOpcode();
1572 
1573     if (&*I != CmpInstr && (
1574         Instr.modifiesRegister(PPC::CR0, TRI) ||
1575         Instr.readsRegister(PPC::CR0, TRI)))
1576       // This instruction modifies or uses the record condition register after
1577       // the one we want to change. While we could do this transformation, it
1578       // would likely not be profitable. This transformation removes one
1579       // instruction, and so even forcing RA to generate one move probably
1580       // makes it unprofitable.
1581       return false;
1582 
1583     // Check whether CmpInstr can be made redundant by the current instruction.
1584     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1585          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1586         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1587         ((Instr.getOperand(1).getReg() == SrcReg &&
1588           Instr.getOperand(2).getReg() == SrcReg2) ||
1589         (Instr.getOperand(1).getReg() == SrcReg2 &&
1590          Instr.getOperand(2).getReg() == SrcReg))) {
1591       Sub = &*I;
1592       break;
1593     }
1594 
1595     if (I == B)
1596       // The 'and' is below the comparison instruction.
1597       return false;
1598   }
1599 
1600   // Return false if no candidates exist.
1601   if (!MI && !Sub)
1602     return false;
1603 
1604   // The single candidate is called MI.
1605   if (!MI) MI = Sub;
1606 
1607   int NewOpC = -1;
1608   MIOpC = MI->getOpcode();
1609   if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
1610     NewOpC = MIOpC;
1611   else {
1612     NewOpC = PPC::getRecordFormOpcode(MIOpC);
1613     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1614       NewOpC = MIOpC;
1615   }
1616 
1617   // FIXME: On the non-embedded POWER architectures, only some of the record
1618   // forms are fast, and we should use only the fast ones.
1619 
1620   // The defining instruction has a record form (or is already a record
1621   // form). It is possible, however, that we'll need to reverse the condition
1622   // code of the users.
1623   if (NewOpC == -1)
1624     return false;
1625 
1626   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1627   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1628 
1629   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1630   // needs to be updated to be based on SUB.  Push the condition code
1631   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1632   // condition code of these operands will be modified.
1633   bool ShouldSwap = false;
1634   if (Sub) {
1635     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1636       Sub->getOperand(2).getReg() == SrcReg;
1637 
1638     // The operands to subf are the opposite of sub, so only in the fixed-point
1639     // case, invert the order.
1640     ShouldSwap = !ShouldSwap;
1641   }
1642 
1643   if (ShouldSwap)
1644     for (MachineRegisterInfo::use_instr_iterator
1645          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1646          I != IE; ++I) {
1647       MachineInstr *UseMI = &*I;
1648       if (UseMI->getOpcode() == PPC::BCC) {
1649         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1650         assert((!equalityOnly ||
1651                 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) &&
1652                "Invalid predicate for equality-only optimization");
1653         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1654                                 PPC::getSwappedPredicate(Pred)));
1655       } else if (UseMI->getOpcode() == PPC::ISEL ||
1656                  UseMI->getOpcode() == PPC::ISEL8) {
1657         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1658         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1659                "Invalid CR bit for equality-only optimization");
1660 
1661         if (NewSubReg == PPC::sub_lt)
1662           NewSubReg = PPC::sub_gt;
1663         else if (NewSubReg == PPC::sub_gt)
1664           NewSubReg = PPC::sub_lt;
1665 
1666         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1667                                                  NewSubReg));
1668       } else // We need to abort on a user we don't understand.
1669         return false;
1670     }
1671 
1672   // Create a new virtual register to hold the value of the CR set by the
1673   // record-form instruction. If the instruction was not previously in
1674   // record form, then set the kill flag on the CR.
1675   CmpInstr->eraseFromParent();
1676 
1677   MachineBasicBlock::iterator MII = MI;
1678   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1679           get(TargetOpcode::COPY), CRReg)
1680     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1681 
1682   if (MIOpC != NewOpC) {
1683     // We need to be careful here: we're replacing one instruction with
1684     // another, and we need to make sure that we get all of the right
1685     // implicit uses and defs. On the other hand, the caller may be holding
1686     // an iterator to this instruction, and so we can't delete it (this is
1687     // specifically the case if this is the instruction directly after the
1688     // compare).
1689 
1690     const MCInstrDesc &NewDesc = get(NewOpC);
1691     MI->setDesc(NewDesc);
1692 
1693     if (NewDesc.ImplicitDefs)
1694       for (const uint16_t *ImpDefs = NewDesc.getImplicitDefs();
1695            *ImpDefs; ++ImpDefs)
1696         if (!MI->definesRegister(*ImpDefs))
1697           MI->addOperand(*MI->getParent()->getParent(),
1698                          MachineOperand::CreateReg(*ImpDefs, true, true));
1699     if (NewDesc.ImplicitUses)
1700       for (const uint16_t *ImpUses = NewDesc.getImplicitUses();
1701            *ImpUses; ++ImpUses)
1702         if (!MI->readsRegister(*ImpUses))
1703           MI->addOperand(*MI->getParent()->getParent(),
1704                          MachineOperand::CreateReg(*ImpUses, false, true));
1705   }
1706 
1707   // Modify the condition code of operands in OperandsToUpdate.
1708   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1709   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1710   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1711     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1712 
1713   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
1714     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
1715 
1716   return true;
1717 }
1718 
1719 /// GetInstSize - Return the number of bytes of code the specified
1720 /// instruction may be.  This returns the maximum number of bytes.
1721 ///
1722 unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
1723   unsigned Opcode = MI->getOpcode();
1724 
1725   if (Opcode == PPC::INLINEASM) {
1726     const MachineFunction *MF = MI->getParent()->getParent();
1727     const char *AsmStr = MI->getOperand(0).getSymbolName();
1728     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1729   } else if (Opcode == TargetOpcode::STACKMAP) {
1730     return MI->getOperand(1).getImm();
1731   } else if (Opcode == TargetOpcode::PATCHPOINT) {
1732     PatchPointOpers Opers(MI);
1733     return Opers.getMetaOper(PatchPointOpers::NBytesPos).getImm();
1734   } else {
1735     const MCInstrDesc &Desc = get(Opcode);
1736     return Desc.getSize();
1737   }
1738 }
1739 
1740