1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCCCState.h" 18 #include "PPCCallingConv.h" 19 #include "PPCFrameLowering.h" 20 #include "PPCInstrInfo.h" 21 #include "PPCMachineFunctionInfo.h" 22 #include "PPCPerfectShuffle.h" 23 #include "PPCRegisterInfo.h" 24 #include "PPCSubtarget.h" 25 #include "PPCTargetMachine.h" 26 #include "llvm/ADT/APFloat.h" 27 #include "llvm/ADT/APInt.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/None.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/ADT/StringRef.h" 37 #include "llvm/ADT/StringSwitch.h" 38 #include "llvm/CodeGen/CallingConvLower.h" 39 #include "llvm/CodeGen/ISDOpcodes.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineJumpTableInfo.h" 46 #include "llvm/CodeGen/MachineLoopInfo.h" 47 #include "llvm/CodeGen/MachineMemOperand.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/ValueTypes.h" 57 #include "llvm/IR/CallSite.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/Module.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/MC/MCExpr.h" 74 #include "llvm/MC/MCRegisterInfo.h" 75 #include "llvm/Support/AtomicOrdering.h" 76 #include "llvm/Support/BranchProbability.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CodeGen.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/Format.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MachineValueType.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Target/TargetMachine.h" 89 #include "llvm/Target/TargetOptions.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <list> 95 #include <utility> 96 #include <vector> 97 98 using namespace llvm; 99 100 #define DEBUG_TYPE "ppc-lowering" 101 102 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 103 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 104 105 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 106 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 107 108 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 109 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 110 111 static cl::opt<bool> DisableSCO("disable-ppc-sco", 112 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 113 114 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision", 115 cl::desc("enable quad precision float support on ppc"), cl::Hidden); 116 117 STATISTIC(NumTailCalls, "Number of tail calls"); 118 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 119 120 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 121 122 // FIXME: Remove this once the bug has been fixed! 123 extern cl::opt<bool> ANDIGlueBug; 124 125 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 126 const PPCSubtarget &STI) 127 : TargetLowering(TM), Subtarget(STI) { 128 // Use _setjmp/_longjmp instead of setjmp/longjmp. 129 setUseUnderscoreSetJmp(true); 130 setUseUnderscoreLongJmp(true); 131 132 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 133 // arguments are at least 4/8 bytes aligned. 134 bool isPPC64 = Subtarget.isPPC64(); 135 setMinStackArgumentAlignment(isPPC64 ? 8:4); 136 137 // Set up the register classes. 138 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 139 if (!useSoftFloat()) { 140 if (hasSPE()) { 141 addRegisterClass(MVT::f32, &PPC::SPE4RCRegClass); 142 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 143 } else { 144 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 145 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 146 } 147 } 148 149 // Match BITREVERSE to customized fast code sequence in the td file. 150 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 151 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 152 153 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 154 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 155 156 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 157 for (MVT VT : MVT::integer_valuetypes()) { 158 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 159 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 160 } 161 162 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 163 164 // PowerPC has pre-inc load and store's. 165 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 166 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 167 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 168 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 169 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 170 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 171 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 172 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 173 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 174 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 175 if (!Subtarget.hasSPE()) { 176 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 177 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 178 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 179 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 180 } 181 182 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 183 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 184 for (MVT VT : ScalarIntVTs) { 185 setOperationAction(ISD::ADDC, VT, Legal); 186 setOperationAction(ISD::ADDE, VT, Legal); 187 setOperationAction(ISD::SUBC, VT, Legal); 188 setOperationAction(ISD::SUBE, VT, Legal); 189 } 190 191 if (Subtarget.useCRBits()) { 192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 193 194 if (isPPC64 || Subtarget.hasFPCVT()) { 195 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 196 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 197 isPPC64 ? MVT::i64 : MVT::i32); 198 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 199 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 200 isPPC64 ? MVT::i64 : MVT::i32); 201 } else { 202 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 203 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 204 } 205 206 // PowerPC does not support direct load/store of condition registers. 207 setOperationAction(ISD::LOAD, MVT::i1, Custom); 208 setOperationAction(ISD::STORE, MVT::i1, Custom); 209 210 // FIXME: Remove this once the ANDI glue bug is fixed: 211 if (ANDIGlueBug) 212 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 213 214 for (MVT VT : MVT::integer_valuetypes()) { 215 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 216 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 217 setTruncStoreAction(VT, MVT::i1, Expand); 218 } 219 220 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 221 } 222 223 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 224 // PPC (the libcall is not available). 225 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 226 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 227 228 // We do not currently implement these libm ops for PowerPC. 229 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 230 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 231 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 232 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 233 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 234 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 235 236 // PowerPC has no SREM/UREM instructions unless we are on P9 237 // On P9 we may use a hardware instruction to compute the remainder. 238 // The instructions are not legalized directly because in the cases where the 239 // result of both the remainder and the division is required it is more 240 // efficient to compute the remainder from the result of the division rather 241 // than use the remainder instruction. 242 if (Subtarget.isISA3_0()) { 243 setOperationAction(ISD::SREM, MVT::i32, Custom); 244 setOperationAction(ISD::UREM, MVT::i32, Custom); 245 setOperationAction(ISD::SREM, MVT::i64, Custom); 246 setOperationAction(ISD::UREM, MVT::i64, Custom); 247 } else { 248 setOperationAction(ISD::SREM, MVT::i32, Expand); 249 setOperationAction(ISD::UREM, MVT::i32, Expand); 250 setOperationAction(ISD::SREM, MVT::i64, Expand); 251 setOperationAction(ISD::UREM, MVT::i64, Expand); 252 } 253 254 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 255 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 256 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 257 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 258 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 259 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 260 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 261 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 262 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 263 264 // We don't support sin/cos/sqrt/fmod/pow 265 setOperationAction(ISD::FSIN , MVT::f64, Expand); 266 setOperationAction(ISD::FCOS , MVT::f64, Expand); 267 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 268 setOperationAction(ISD::FREM , MVT::f64, Expand); 269 setOperationAction(ISD::FPOW , MVT::f64, Expand); 270 setOperationAction(ISD::FSIN , MVT::f32, Expand); 271 setOperationAction(ISD::FCOS , MVT::f32, Expand); 272 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 273 setOperationAction(ISD::FREM , MVT::f32, Expand); 274 setOperationAction(ISD::FPOW , MVT::f32, Expand); 275 if (Subtarget.hasSPE()) { 276 setOperationAction(ISD::FMA , MVT::f64, Expand); 277 setOperationAction(ISD::FMA , MVT::f32, Expand); 278 } else { 279 setOperationAction(ISD::FMA , MVT::f64, Legal); 280 setOperationAction(ISD::FMA , MVT::f32, Legal); 281 } 282 283 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 284 285 // If we're enabling GP optimizations, use hardware square root 286 if (!Subtarget.hasFSQRT() && 287 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 288 Subtarget.hasFRE())) 289 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 290 291 if (!Subtarget.hasFSQRT() && 292 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 293 Subtarget.hasFRES())) 294 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 295 296 if (Subtarget.hasFCPSGN()) { 297 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 298 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 299 } else { 300 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 301 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 302 } 303 304 if (Subtarget.hasFPRND()) { 305 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 306 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 307 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 308 setOperationAction(ISD::FROUND, MVT::f64, Legal); 309 310 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 311 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 312 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 313 setOperationAction(ISD::FROUND, MVT::f32, Legal); 314 } 315 316 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 317 // to speed up scalar BSWAP64. 318 // CTPOP or CTTZ were introduced in P8/P9 respectively 319 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 320 if (Subtarget.hasP9Vector()) 321 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 322 else 323 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 324 if (Subtarget.isISA3_0()) { 325 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 326 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 327 } else { 328 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 329 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 330 } 331 332 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 333 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 334 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 335 } else { 336 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 337 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 338 } 339 340 // PowerPC does not have ROTR 341 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 342 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 343 344 if (!Subtarget.useCRBits()) { 345 // PowerPC does not have Select 346 setOperationAction(ISD::SELECT, MVT::i32, Expand); 347 setOperationAction(ISD::SELECT, MVT::i64, Expand); 348 setOperationAction(ISD::SELECT, MVT::f32, Expand); 349 setOperationAction(ISD::SELECT, MVT::f64, Expand); 350 } 351 352 // PowerPC wants to turn select_cc of FP into fsel when possible. 353 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 354 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 355 356 // PowerPC wants to optimize integer setcc a bit 357 if (!Subtarget.useCRBits()) 358 setOperationAction(ISD::SETCC, MVT::i32, Custom); 359 360 // PowerPC does not have BRCOND which requires SetCC 361 if (!Subtarget.useCRBits()) 362 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 363 364 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 365 366 if (Subtarget.hasSPE()) { 367 // SPE has built-in conversions 368 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 369 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 370 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 371 } else { 372 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 373 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 374 375 // PowerPC does not have [U|S]INT_TO_FP 376 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 377 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 378 } 379 380 if (Subtarget.hasDirectMove() && isPPC64) { 381 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 382 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 383 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 384 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 385 } else { 386 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 387 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 388 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 389 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 390 } 391 392 // We cannot sextinreg(i1). Expand to shifts. 393 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 394 395 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 396 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 397 // support continuation, user-level threading, and etc.. As a result, no 398 // other SjLj exception interfaces are implemented and please don't build 399 // your own exception handling based on them. 400 // LLVM/Clang supports zero-cost DWARF exception handling. 401 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 402 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 403 404 // We want to legalize GlobalAddress and ConstantPool nodes into the 405 // appropriate instructions to materialize the address. 406 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 407 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 408 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 409 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 410 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 411 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 412 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 413 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 414 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 415 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 416 417 // TRAP is legal. 418 setOperationAction(ISD::TRAP, MVT::Other, Legal); 419 420 // TRAMPOLINE is custom lowered. 421 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 422 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 423 424 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 425 setOperationAction(ISD::VASTART , MVT::Other, Custom); 426 427 if (Subtarget.isSVR4ABI()) { 428 if (isPPC64) { 429 // VAARG always uses double-word chunks, so promote anything smaller. 430 setOperationAction(ISD::VAARG, MVT::i1, Promote); 431 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 432 setOperationAction(ISD::VAARG, MVT::i8, Promote); 433 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 434 setOperationAction(ISD::VAARG, MVT::i16, Promote); 435 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 436 setOperationAction(ISD::VAARG, MVT::i32, Promote); 437 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 438 setOperationAction(ISD::VAARG, MVT::Other, Expand); 439 } else { 440 // VAARG is custom lowered with the 32-bit SVR4 ABI. 441 setOperationAction(ISD::VAARG, MVT::Other, Custom); 442 setOperationAction(ISD::VAARG, MVT::i64, Custom); 443 } 444 } else 445 setOperationAction(ISD::VAARG, MVT::Other, Expand); 446 447 if (Subtarget.isSVR4ABI() && !isPPC64) 448 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 449 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 450 else 451 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 452 453 // Use the default implementation. 454 setOperationAction(ISD::VAEND , MVT::Other, Expand); 455 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 456 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 457 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 458 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 459 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 460 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 461 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 462 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 463 464 // We want to custom lower some of our intrinsics. 465 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 466 467 // To handle counter-based loop conditions. 468 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 469 470 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 471 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 472 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 473 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 474 475 // Comparisons that require checking two conditions. 476 if (Subtarget.hasSPE()) { 477 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 478 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 479 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 480 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 481 } 482 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 483 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 484 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 485 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 486 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 487 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 488 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 489 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 490 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 491 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 492 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 493 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 494 495 if (Subtarget.has64BitSupport()) { 496 // They also have instructions for converting between i64 and fp. 497 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 498 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 499 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 500 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 501 // This is just the low 32 bits of a (signed) fp->i64 conversion. 502 // We cannot do this with Promote because i64 is not a legal type. 503 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 504 505 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 506 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 507 } else { 508 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 509 if (Subtarget.hasSPE()) 510 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 511 else 512 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 513 } 514 515 // With the instructions enabled under FPCVT, we can do everything. 516 if (Subtarget.hasFPCVT()) { 517 if (Subtarget.has64BitSupport()) { 518 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 519 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 520 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 521 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 522 } 523 524 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 525 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 526 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 527 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 528 } 529 530 if (Subtarget.use64BitRegs()) { 531 // 64-bit PowerPC implementations can support i64 types directly 532 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 533 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 534 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 535 // 64-bit PowerPC wants to expand i128 shifts itself. 536 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 537 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 538 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 539 } else { 540 // 32-bit PowerPC wants to expand i64 shifts itself. 541 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 542 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 543 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 544 } 545 546 if (Subtarget.hasAltivec()) { 547 // First set operation action for all vector types to expand. Then we 548 // will selectively turn on ones that can be effectively codegen'd. 549 for (MVT VT : MVT::vector_valuetypes()) { 550 // add/sub are legal for all supported vector VT's. 551 setOperationAction(ISD::ADD, VT, Legal); 552 setOperationAction(ISD::SUB, VT, Legal); 553 setOperationAction(ISD::ABS, VT, Custom); 554 555 // Vector instructions introduced in P8 556 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 557 setOperationAction(ISD::CTPOP, VT, Legal); 558 setOperationAction(ISD::CTLZ, VT, Legal); 559 } 560 else { 561 setOperationAction(ISD::CTPOP, VT, Expand); 562 setOperationAction(ISD::CTLZ, VT, Expand); 563 } 564 565 // Vector instructions introduced in P9 566 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 567 setOperationAction(ISD::CTTZ, VT, Legal); 568 else 569 setOperationAction(ISD::CTTZ, VT, Expand); 570 571 // We promote all shuffles to v16i8. 572 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 573 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 574 575 // We promote all non-typed operations to v4i32. 576 setOperationAction(ISD::AND , VT, Promote); 577 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 578 setOperationAction(ISD::OR , VT, Promote); 579 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 580 setOperationAction(ISD::XOR , VT, Promote); 581 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 582 setOperationAction(ISD::LOAD , VT, Promote); 583 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 584 setOperationAction(ISD::SELECT, VT, Promote); 585 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 586 setOperationAction(ISD::VSELECT, VT, Legal); 587 setOperationAction(ISD::SELECT_CC, VT, Promote); 588 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 589 setOperationAction(ISD::STORE, VT, Promote); 590 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 591 592 // No other operations are legal. 593 setOperationAction(ISD::MUL , VT, Expand); 594 setOperationAction(ISD::SDIV, VT, Expand); 595 setOperationAction(ISD::SREM, VT, Expand); 596 setOperationAction(ISD::UDIV, VT, Expand); 597 setOperationAction(ISD::UREM, VT, Expand); 598 setOperationAction(ISD::FDIV, VT, Expand); 599 setOperationAction(ISD::FREM, VT, Expand); 600 setOperationAction(ISD::FNEG, VT, Expand); 601 setOperationAction(ISD::FSQRT, VT, Expand); 602 setOperationAction(ISD::FLOG, VT, Expand); 603 setOperationAction(ISD::FLOG10, VT, Expand); 604 setOperationAction(ISD::FLOG2, VT, Expand); 605 setOperationAction(ISD::FEXP, VT, Expand); 606 setOperationAction(ISD::FEXP2, VT, Expand); 607 setOperationAction(ISD::FSIN, VT, Expand); 608 setOperationAction(ISD::FCOS, VT, Expand); 609 setOperationAction(ISD::FABS, VT, Expand); 610 setOperationAction(ISD::FFLOOR, VT, Expand); 611 setOperationAction(ISD::FCEIL, VT, Expand); 612 setOperationAction(ISD::FTRUNC, VT, Expand); 613 setOperationAction(ISD::FRINT, VT, Expand); 614 setOperationAction(ISD::FNEARBYINT, VT, Expand); 615 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 616 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 617 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 618 setOperationAction(ISD::MULHU, VT, Expand); 619 setOperationAction(ISD::MULHS, VT, Expand); 620 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 621 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 622 setOperationAction(ISD::UDIVREM, VT, Expand); 623 setOperationAction(ISD::SDIVREM, VT, Expand); 624 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 625 setOperationAction(ISD::FPOW, VT, Expand); 626 setOperationAction(ISD::BSWAP, VT, Expand); 627 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 628 setOperationAction(ISD::ROTL, VT, Expand); 629 setOperationAction(ISD::ROTR, VT, Expand); 630 631 for (MVT InnerVT : MVT::vector_valuetypes()) { 632 setTruncStoreAction(VT, InnerVT, Expand); 633 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 634 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 635 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 636 } 637 } 638 639 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 640 // with merges, splats, etc. 641 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 642 643 setOperationAction(ISD::AND , MVT::v4i32, Legal); 644 setOperationAction(ISD::OR , MVT::v4i32, Legal); 645 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 646 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 647 setOperationAction(ISD::SELECT, MVT::v4i32, 648 Subtarget.useCRBits() ? Legal : Expand); 649 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 650 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 651 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 652 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 653 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 654 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 655 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 656 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 657 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 658 659 // Without hasP8Altivec set, v2i64 SMAX isn't available. 660 // But ABS custom lowering requires SMAX support. 661 if (!Subtarget.hasP8Altivec()) 662 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 663 664 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 665 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 666 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 667 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 668 669 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 670 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 671 672 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 673 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 674 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 675 } 676 677 if (Subtarget.hasP8Altivec()) 678 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 679 else 680 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 681 682 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 683 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 684 685 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 686 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 687 688 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 689 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 690 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 691 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 692 693 // Altivec does not contain unordered floating-point compare instructions 694 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 695 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 696 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 697 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 698 699 if (Subtarget.hasVSX()) { 700 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 701 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 702 if (Subtarget.hasP8Vector()) { 703 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 704 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 705 } 706 if (Subtarget.hasDirectMove() && isPPC64) { 707 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 708 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 709 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 710 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 711 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 712 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 713 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 714 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 715 } 716 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 717 718 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 719 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 720 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 721 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 722 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 723 724 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 725 726 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 727 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 728 729 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 730 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 731 732 // Share the Altivec comparison restrictions. 733 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 734 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 735 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 736 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 737 738 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 739 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 740 741 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 742 743 if (Subtarget.hasP8Vector()) 744 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 745 746 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 747 748 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 749 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 750 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 751 752 if (Subtarget.hasP8Altivec()) { 753 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 754 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 755 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 756 757 // 128 bit shifts can be accomplished via 3 instructions for SHL and 758 // SRL, but not for SRA because of the instructions available: 759 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 760 // doing 761 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 762 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 763 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 764 765 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 766 } 767 else { 768 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 769 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 770 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 771 772 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 773 774 // VSX v2i64 only supports non-arithmetic operations. 775 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 776 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 777 } 778 779 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 780 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 781 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 782 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 783 784 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 785 786 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 787 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 788 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 789 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 790 791 // Custom handling for partial vectors of integers converted to 792 // floating point. We already have optimal handling for v2i32 through 793 // the DAG combine, so those aren't necessary. 794 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 795 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 796 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 797 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 798 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 799 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 800 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 801 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 802 803 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 804 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 805 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 806 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 807 808 if (Subtarget.hasDirectMove()) 809 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 810 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 811 812 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 813 } 814 815 if (Subtarget.hasP8Altivec()) { 816 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 817 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 818 } 819 820 if (Subtarget.hasP9Vector()) { 821 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 822 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 823 824 // 128 bit shifts can be accomplished via 3 instructions for SHL and 825 // SRL, but not for SRA because of the instructions available: 826 // VS{RL} and VS{RL}O. 827 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 828 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 829 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 830 831 if (EnableQuadPrecision) { 832 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 833 setOperationAction(ISD::FADD, MVT::f128, Legal); 834 setOperationAction(ISD::FSUB, MVT::f128, Legal); 835 setOperationAction(ISD::FDIV, MVT::f128, Legal); 836 setOperationAction(ISD::FMUL, MVT::f128, Legal); 837 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 838 // No extending loads to f128 on PPC. 839 for (MVT FPT : MVT::fp_valuetypes()) 840 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 841 setOperationAction(ISD::FMA, MVT::f128, Legal); 842 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 843 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 844 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 845 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 846 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 847 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 848 849 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 850 setOperationAction(ISD::FRINT, MVT::f128, Legal); 851 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 852 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 853 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 854 setOperationAction(ISD::FROUND, MVT::f128, Legal); 855 856 setOperationAction(ISD::SELECT, MVT::f128, Expand); 857 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 858 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 859 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 860 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 861 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 862 // No implementation for these ops for PowerPC. 863 setOperationAction(ISD::FSIN , MVT::f128, Expand); 864 setOperationAction(ISD::FCOS , MVT::f128, Expand); 865 setOperationAction(ISD::FPOW, MVT::f128, Expand); 866 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 867 setOperationAction(ISD::FREM, MVT::f128, Expand); 868 } 869 870 } 871 872 if (Subtarget.hasP9Altivec()) { 873 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 874 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 875 } 876 } 877 878 if (Subtarget.hasQPX()) { 879 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 880 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 881 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 882 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 883 884 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 885 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 886 887 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 888 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 889 890 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 891 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 892 893 if (!Subtarget.useCRBits()) 894 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 895 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 896 897 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 898 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 899 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 900 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 901 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 902 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 903 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 904 905 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 906 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 907 908 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 909 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand); 910 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 911 912 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 913 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 914 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 915 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 916 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 917 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 918 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 919 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 920 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 921 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 922 923 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 924 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 925 926 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 927 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 928 929 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 930 931 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 932 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 933 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 934 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 935 936 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 937 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 938 939 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 940 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 941 942 if (!Subtarget.useCRBits()) 943 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 944 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 945 946 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 947 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 948 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 949 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 950 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 951 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 952 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 953 954 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 955 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 956 957 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 958 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 959 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 960 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 961 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 962 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 963 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 964 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 965 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 966 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 967 968 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 969 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 970 971 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 972 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 973 974 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 975 976 setOperationAction(ISD::AND , MVT::v4i1, Legal); 977 setOperationAction(ISD::OR , MVT::v4i1, Legal); 978 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 979 980 if (!Subtarget.useCRBits()) 981 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 982 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 983 984 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 985 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 986 987 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 988 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 989 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 990 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 991 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 992 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 993 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 994 995 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 996 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 997 998 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 999 1000 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 1001 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 1002 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 1003 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 1004 1005 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 1006 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 1007 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 1008 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1009 1010 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 1011 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 1012 1013 // These need to set FE_INEXACT, and so cannot be vectorized here. 1014 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 1015 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 1016 1017 if (TM.Options.UnsafeFPMath) { 1018 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 1019 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 1020 1021 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 1022 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 1023 } else { 1024 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 1025 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 1026 1027 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 1028 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 1029 } 1030 } 1031 1032 if (Subtarget.has64BitSupport()) 1033 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1034 1035 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1036 1037 if (!isPPC64) { 1038 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1039 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1040 } 1041 1042 setBooleanContents(ZeroOrOneBooleanContent); 1043 1044 if (Subtarget.hasAltivec()) { 1045 // Altivec instructions set fields to all zeros or all ones. 1046 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1047 } 1048 1049 if (!isPPC64) { 1050 // These libcalls are not available in 32-bit. 1051 setLibcallName(RTLIB::SHL_I128, nullptr); 1052 setLibcallName(RTLIB::SRL_I128, nullptr); 1053 setLibcallName(RTLIB::SRA_I128, nullptr); 1054 } 1055 1056 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1057 1058 // We have target-specific dag combine patterns for the following nodes: 1059 setTargetDAGCombine(ISD::ADD); 1060 setTargetDAGCombine(ISD::SHL); 1061 setTargetDAGCombine(ISD::SRA); 1062 setTargetDAGCombine(ISD::SRL); 1063 setTargetDAGCombine(ISD::SINT_TO_FP); 1064 setTargetDAGCombine(ISD::BUILD_VECTOR); 1065 if (Subtarget.hasFPCVT()) 1066 setTargetDAGCombine(ISD::UINT_TO_FP); 1067 setTargetDAGCombine(ISD::LOAD); 1068 setTargetDAGCombine(ISD::STORE); 1069 setTargetDAGCombine(ISD::BR_CC); 1070 if (Subtarget.useCRBits()) 1071 setTargetDAGCombine(ISD::BRCOND); 1072 setTargetDAGCombine(ISD::BSWAP); 1073 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1074 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1075 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1076 1077 setTargetDAGCombine(ISD::SIGN_EXTEND); 1078 setTargetDAGCombine(ISD::ZERO_EXTEND); 1079 setTargetDAGCombine(ISD::ANY_EXTEND); 1080 1081 setTargetDAGCombine(ISD::TRUNCATE); 1082 1083 if (Subtarget.useCRBits()) { 1084 setTargetDAGCombine(ISD::TRUNCATE); 1085 setTargetDAGCombine(ISD::SETCC); 1086 setTargetDAGCombine(ISD::SELECT_CC); 1087 } 1088 1089 // Use reciprocal estimates. 1090 if (TM.Options.UnsafeFPMath) { 1091 setTargetDAGCombine(ISD::FDIV); 1092 setTargetDAGCombine(ISD::FSQRT); 1093 } 1094 1095 if (Subtarget.hasP9Altivec()) { 1096 setTargetDAGCombine(ISD::ABS); 1097 setTargetDAGCombine(ISD::VSELECT); 1098 } 1099 1100 // Darwin long double math library functions have $LDBL128 appended. 1101 if (Subtarget.isDarwin()) { 1102 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 1103 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 1104 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 1105 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 1106 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 1107 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 1108 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 1109 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 1110 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 1111 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 1112 } 1113 1114 if (EnableQuadPrecision) { 1115 setLibcallName(RTLIB::LOG_F128, "logf128"); 1116 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1117 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1118 setLibcallName(RTLIB::EXP_F128, "expf128"); 1119 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1120 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1121 setLibcallName(RTLIB::COS_F128, "cosf128"); 1122 setLibcallName(RTLIB::POW_F128, "powf128"); 1123 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1124 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1125 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1126 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1127 } 1128 1129 // With 32 condition bits, we don't need to sink (and duplicate) compares 1130 // aggressively in CodeGenPrep. 1131 if (Subtarget.useCRBits()) { 1132 setHasMultipleConditionRegisters(); 1133 setJumpIsExpensive(); 1134 } 1135 1136 setMinFunctionAlignment(2); 1137 if (Subtarget.isDarwin()) 1138 setPrefFunctionAlignment(4); 1139 1140 switch (Subtarget.getDarwinDirective()) { 1141 default: break; 1142 case PPC::DIR_970: 1143 case PPC::DIR_A2: 1144 case PPC::DIR_E500: 1145 case PPC::DIR_E500mc: 1146 case PPC::DIR_E5500: 1147 case PPC::DIR_PWR4: 1148 case PPC::DIR_PWR5: 1149 case PPC::DIR_PWR5X: 1150 case PPC::DIR_PWR6: 1151 case PPC::DIR_PWR6X: 1152 case PPC::DIR_PWR7: 1153 case PPC::DIR_PWR8: 1154 case PPC::DIR_PWR9: 1155 setPrefFunctionAlignment(4); 1156 setPrefLoopAlignment(4); 1157 break; 1158 } 1159 1160 if (Subtarget.enableMachineScheduler()) 1161 setSchedulingPreference(Sched::Source); 1162 else 1163 setSchedulingPreference(Sched::Hybrid); 1164 1165 computeRegisterProperties(STI.getRegisterInfo()); 1166 1167 // The Freescale cores do better with aggressive inlining of memcpy and 1168 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1169 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 1170 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 1171 MaxStoresPerMemset = 32; 1172 MaxStoresPerMemsetOptSize = 16; 1173 MaxStoresPerMemcpy = 32; 1174 MaxStoresPerMemcpyOptSize = 8; 1175 MaxStoresPerMemmove = 32; 1176 MaxStoresPerMemmoveOptSize = 8; 1177 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 1178 // The A2 also benefits from (very) aggressive inlining of memcpy and 1179 // friends. The overhead of a the function call, even when warm, can be 1180 // over one hundred cycles. 1181 MaxStoresPerMemset = 128; 1182 MaxStoresPerMemcpy = 128; 1183 MaxStoresPerMemmove = 128; 1184 MaxLoadsPerMemcmp = 128; 1185 } else { 1186 MaxLoadsPerMemcmp = 8; 1187 MaxLoadsPerMemcmpOptSize = 4; 1188 } 1189 } 1190 1191 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1192 /// the desired ByVal argument alignment. 1193 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 1194 unsigned MaxMaxAlign) { 1195 if (MaxAlign == MaxMaxAlign) 1196 return; 1197 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1198 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 1199 MaxAlign = 32; 1200 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 1201 MaxAlign = 16; 1202 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1203 unsigned EltAlign = 0; 1204 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1205 if (EltAlign > MaxAlign) 1206 MaxAlign = EltAlign; 1207 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1208 for (auto *EltTy : STy->elements()) { 1209 unsigned EltAlign = 0; 1210 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1211 if (EltAlign > MaxAlign) 1212 MaxAlign = EltAlign; 1213 if (MaxAlign == MaxMaxAlign) 1214 break; 1215 } 1216 } 1217 } 1218 1219 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1220 /// function arguments in the caller parameter area. 1221 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1222 const DataLayout &DL) const { 1223 // Darwin passes everything on 4 byte boundary. 1224 if (Subtarget.isDarwin()) 1225 return 4; 1226 1227 // 16byte and wider vectors are passed on 16byte boundary. 1228 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1229 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1230 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1231 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1232 return Align; 1233 } 1234 1235 unsigned PPCTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1236 CallingConv:: ID CC, 1237 EVT VT) const { 1238 if (Subtarget.hasSPE() && VT == MVT::f64) 1239 return 2; 1240 return PPCTargetLowering::getNumRegisters(Context, VT); 1241 } 1242 1243 MVT PPCTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1244 CallingConv:: ID CC, 1245 EVT VT) const { 1246 if (Subtarget.hasSPE() && VT == MVT::f64) 1247 return MVT::i32; 1248 return PPCTargetLowering::getRegisterType(Context, VT); 1249 } 1250 1251 bool PPCTargetLowering::useSoftFloat() const { 1252 return Subtarget.useSoftFloat(); 1253 } 1254 1255 bool PPCTargetLowering::hasSPE() const { 1256 return Subtarget.hasSPE(); 1257 } 1258 1259 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1260 switch ((PPCISD::NodeType)Opcode) { 1261 case PPCISD::FIRST_NUMBER: break; 1262 case PPCISD::FSEL: return "PPCISD::FSEL"; 1263 case PPCISD::FCFID: return "PPCISD::FCFID"; 1264 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1265 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1266 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1267 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1268 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1269 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1270 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1271 case PPCISD::FP_TO_UINT_IN_VSR: 1272 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1273 case PPCISD::FP_TO_SINT_IN_VSR: 1274 return "PPCISD::FP_TO_SINT_IN_VSR"; 1275 case PPCISD::FRE: return "PPCISD::FRE"; 1276 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1277 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1278 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1279 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1280 case PPCISD::VPERM: return "PPCISD::VPERM"; 1281 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1282 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1283 case PPCISD::XXREVERSE: return "PPCISD::XXREVERSE"; 1284 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1285 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1286 case PPCISD::CMPB: return "PPCISD::CMPB"; 1287 case PPCISD::Hi: return "PPCISD::Hi"; 1288 case PPCISD::Lo: return "PPCISD::Lo"; 1289 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1290 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1291 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1292 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1293 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1294 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1295 case PPCISD::SRL: return "PPCISD::SRL"; 1296 case PPCISD::SRA: return "PPCISD::SRA"; 1297 case PPCISD::SHL: return "PPCISD::SHL"; 1298 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1299 case PPCISD::CALL: return "PPCISD::CALL"; 1300 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1301 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1302 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1303 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1304 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1305 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1306 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1307 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1308 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1309 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1310 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1311 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1312 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1313 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1314 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1315 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1316 case PPCISD::VCMP: return "PPCISD::VCMP"; 1317 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1318 case PPCISD::LBRX: return "PPCISD::LBRX"; 1319 case PPCISD::STBRX: return "PPCISD::STBRX"; 1320 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1321 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1322 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1323 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1324 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1325 case PPCISD::SExtVElems: return "PPCISD::SExtVElems"; 1326 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1327 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1328 case PPCISD::ST_VSR_SCAL_INT: 1329 return "PPCISD::ST_VSR_SCAL_INT"; 1330 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1331 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1332 case PPCISD::BDZ: return "PPCISD::BDZ"; 1333 case PPCISD::MFFS: return "PPCISD::MFFS"; 1334 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1335 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1336 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1337 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1338 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1339 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1340 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1341 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1342 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1343 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1344 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1345 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1346 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1347 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1348 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1349 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1350 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1351 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1352 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1353 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1354 case PPCISD::SC: return "PPCISD::SC"; 1355 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1356 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1357 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1358 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1359 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1360 case PPCISD::VABSD: return "PPCISD::VABSD"; 1361 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1362 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1363 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1364 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1365 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1366 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1367 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1368 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1369 } 1370 return nullptr; 1371 } 1372 1373 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1374 EVT VT) const { 1375 if (!VT.isVector()) 1376 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1377 1378 if (Subtarget.hasQPX()) 1379 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1380 1381 return VT.changeVectorElementTypeToInteger(); 1382 } 1383 1384 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1385 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1386 return true; 1387 } 1388 1389 //===----------------------------------------------------------------------===// 1390 // Node matching predicates, for use by the tblgen matching code. 1391 //===----------------------------------------------------------------------===// 1392 1393 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1394 static bool isFloatingPointZero(SDValue Op) { 1395 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1396 return CFP->getValueAPF().isZero(); 1397 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1398 // Maybe this has already been legalized into the constant pool? 1399 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1400 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1401 return CFP->getValueAPF().isZero(); 1402 } 1403 return false; 1404 } 1405 1406 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1407 /// true if Op is undef or if it matches the specified value. 1408 static bool isConstantOrUndef(int Op, int Val) { 1409 return Op < 0 || Op == Val; 1410 } 1411 1412 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1413 /// VPKUHUM instruction. 1414 /// The ShuffleKind distinguishes between big-endian operations with 1415 /// two different inputs (0), either-endian operations with two identical 1416 /// inputs (1), and little-endian operations with two different inputs (2). 1417 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1418 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1419 SelectionDAG &DAG) { 1420 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1421 if (ShuffleKind == 0) { 1422 if (IsLE) 1423 return false; 1424 for (unsigned i = 0; i != 16; ++i) 1425 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1426 return false; 1427 } else if (ShuffleKind == 2) { 1428 if (!IsLE) 1429 return false; 1430 for (unsigned i = 0; i != 16; ++i) 1431 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1432 return false; 1433 } else if (ShuffleKind == 1) { 1434 unsigned j = IsLE ? 0 : 1; 1435 for (unsigned i = 0; i != 8; ++i) 1436 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1437 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1438 return false; 1439 } 1440 return true; 1441 } 1442 1443 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1444 /// VPKUWUM instruction. 1445 /// The ShuffleKind distinguishes between big-endian operations with 1446 /// two different inputs (0), either-endian operations with two identical 1447 /// inputs (1), and little-endian operations with two different inputs (2). 1448 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1449 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1450 SelectionDAG &DAG) { 1451 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1452 if (ShuffleKind == 0) { 1453 if (IsLE) 1454 return false; 1455 for (unsigned i = 0; i != 16; i += 2) 1456 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1457 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1458 return false; 1459 } else if (ShuffleKind == 2) { 1460 if (!IsLE) 1461 return false; 1462 for (unsigned i = 0; i != 16; i += 2) 1463 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1464 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1465 return false; 1466 } else if (ShuffleKind == 1) { 1467 unsigned j = IsLE ? 0 : 2; 1468 for (unsigned i = 0; i != 8; i += 2) 1469 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1470 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1471 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1472 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1473 return false; 1474 } 1475 return true; 1476 } 1477 1478 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1479 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1480 /// current subtarget. 1481 /// 1482 /// The ShuffleKind distinguishes between big-endian operations with 1483 /// two different inputs (0), either-endian operations with two identical 1484 /// inputs (1), and little-endian operations with two different inputs (2). 1485 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1486 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1487 SelectionDAG &DAG) { 1488 const PPCSubtarget& Subtarget = 1489 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1490 if (!Subtarget.hasP8Vector()) 1491 return false; 1492 1493 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1494 if (ShuffleKind == 0) { 1495 if (IsLE) 1496 return false; 1497 for (unsigned i = 0; i != 16; i += 4) 1498 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1499 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1500 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1501 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1502 return false; 1503 } else if (ShuffleKind == 2) { 1504 if (!IsLE) 1505 return false; 1506 for (unsigned i = 0; i != 16; i += 4) 1507 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1508 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1509 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1510 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1511 return false; 1512 } else if (ShuffleKind == 1) { 1513 unsigned j = IsLE ? 0 : 4; 1514 for (unsigned i = 0; i != 8; i += 4) 1515 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1516 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1517 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1518 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1519 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1520 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1521 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1522 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1523 return false; 1524 } 1525 return true; 1526 } 1527 1528 /// isVMerge - Common function, used to match vmrg* shuffles. 1529 /// 1530 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1531 unsigned LHSStart, unsigned RHSStart) { 1532 if (N->getValueType(0) != MVT::v16i8) 1533 return false; 1534 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1535 "Unsupported merge size!"); 1536 1537 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1538 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1539 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1540 LHSStart+j+i*UnitSize) || 1541 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1542 RHSStart+j+i*UnitSize)) 1543 return false; 1544 } 1545 return true; 1546 } 1547 1548 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1549 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1550 /// The ShuffleKind distinguishes between big-endian merges with two 1551 /// different inputs (0), either-endian merges with two identical inputs (1), 1552 /// and little-endian merges with two different inputs (2). For the latter, 1553 /// the input operands are swapped (see PPCInstrAltivec.td). 1554 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1555 unsigned ShuffleKind, SelectionDAG &DAG) { 1556 if (DAG.getDataLayout().isLittleEndian()) { 1557 if (ShuffleKind == 1) // unary 1558 return isVMerge(N, UnitSize, 0, 0); 1559 else if (ShuffleKind == 2) // swapped 1560 return isVMerge(N, UnitSize, 0, 16); 1561 else 1562 return false; 1563 } else { 1564 if (ShuffleKind == 1) // unary 1565 return isVMerge(N, UnitSize, 8, 8); 1566 else if (ShuffleKind == 0) // normal 1567 return isVMerge(N, UnitSize, 8, 24); 1568 else 1569 return false; 1570 } 1571 } 1572 1573 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1574 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1575 /// The ShuffleKind distinguishes between big-endian merges with two 1576 /// different inputs (0), either-endian merges with two identical inputs (1), 1577 /// and little-endian merges with two different inputs (2). For the latter, 1578 /// the input operands are swapped (see PPCInstrAltivec.td). 1579 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1580 unsigned ShuffleKind, SelectionDAG &DAG) { 1581 if (DAG.getDataLayout().isLittleEndian()) { 1582 if (ShuffleKind == 1) // unary 1583 return isVMerge(N, UnitSize, 8, 8); 1584 else if (ShuffleKind == 2) // swapped 1585 return isVMerge(N, UnitSize, 8, 24); 1586 else 1587 return false; 1588 } else { 1589 if (ShuffleKind == 1) // unary 1590 return isVMerge(N, UnitSize, 0, 0); 1591 else if (ShuffleKind == 0) // normal 1592 return isVMerge(N, UnitSize, 0, 16); 1593 else 1594 return false; 1595 } 1596 } 1597 1598 /** 1599 * Common function used to match vmrgew and vmrgow shuffles 1600 * 1601 * The indexOffset determines whether to look for even or odd words in 1602 * the shuffle mask. This is based on the of the endianness of the target 1603 * machine. 1604 * - Little Endian: 1605 * - Use offset of 0 to check for odd elements 1606 * - Use offset of 4 to check for even elements 1607 * - Big Endian: 1608 * - Use offset of 0 to check for even elements 1609 * - Use offset of 4 to check for odd elements 1610 * A detailed description of the vector element ordering for little endian and 1611 * big endian can be found at 1612 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1613 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1614 * compiler differences mean to you 1615 * 1616 * The mask to the shuffle vector instruction specifies the indices of the 1617 * elements from the two input vectors to place in the result. The elements are 1618 * numbered in array-access order, starting with the first vector. These vectors 1619 * are always of type v16i8, thus each vector will contain 16 elements of size 1620 * 8. More info on the shuffle vector can be found in the 1621 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1622 * Language Reference. 1623 * 1624 * The RHSStartValue indicates whether the same input vectors are used (unary) 1625 * or two different input vectors are used, based on the following: 1626 * - If the instruction uses the same vector for both inputs, the range of the 1627 * indices will be 0 to 15. In this case, the RHSStart value passed should 1628 * be 0. 1629 * - If the instruction has two different vectors then the range of the 1630 * indices will be 0 to 31. In this case, the RHSStart value passed should 1631 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1632 * to 31 specify elements in the second vector). 1633 * 1634 * \param[in] N The shuffle vector SD Node to analyze 1635 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1636 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1637 * vector to the shuffle_vector instruction 1638 * \return true iff this shuffle vector represents an even or odd word merge 1639 */ 1640 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1641 unsigned RHSStartValue) { 1642 if (N->getValueType(0) != MVT::v16i8) 1643 return false; 1644 1645 for (unsigned i = 0; i < 2; ++i) 1646 for (unsigned j = 0; j < 4; ++j) 1647 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1648 i*RHSStartValue+j+IndexOffset) || 1649 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1650 i*RHSStartValue+j+IndexOffset+8)) 1651 return false; 1652 return true; 1653 } 1654 1655 /** 1656 * Determine if the specified shuffle mask is suitable for the vmrgew or 1657 * vmrgow instructions. 1658 * 1659 * \param[in] N The shuffle vector SD Node to analyze 1660 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1661 * \param[in] ShuffleKind Identify the type of merge: 1662 * - 0 = big-endian merge with two different inputs; 1663 * - 1 = either-endian merge with two identical inputs; 1664 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1665 * little-endian merges). 1666 * \param[in] DAG The current SelectionDAG 1667 * \return true iff this shuffle mask 1668 */ 1669 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1670 unsigned ShuffleKind, SelectionDAG &DAG) { 1671 if (DAG.getDataLayout().isLittleEndian()) { 1672 unsigned indexOffset = CheckEven ? 4 : 0; 1673 if (ShuffleKind == 1) // Unary 1674 return isVMerge(N, indexOffset, 0); 1675 else if (ShuffleKind == 2) // swapped 1676 return isVMerge(N, indexOffset, 16); 1677 else 1678 return false; 1679 } 1680 else { 1681 unsigned indexOffset = CheckEven ? 0 : 4; 1682 if (ShuffleKind == 1) // Unary 1683 return isVMerge(N, indexOffset, 0); 1684 else if (ShuffleKind == 0) // Normal 1685 return isVMerge(N, indexOffset, 16); 1686 else 1687 return false; 1688 } 1689 return false; 1690 } 1691 1692 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1693 /// amount, otherwise return -1. 1694 /// The ShuffleKind distinguishes between big-endian operations with two 1695 /// different inputs (0), either-endian operations with two identical inputs 1696 /// (1), and little-endian operations with two different inputs (2). For the 1697 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1698 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1699 SelectionDAG &DAG) { 1700 if (N->getValueType(0) != MVT::v16i8) 1701 return -1; 1702 1703 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1704 1705 // Find the first non-undef value in the shuffle mask. 1706 unsigned i; 1707 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1708 /*search*/; 1709 1710 if (i == 16) return -1; // all undef. 1711 1712 // Otherwise, check to see if the rest of the elements are consecutively 1713 // numbered from this value. 1714 unsigned ShiftAmt = SVOp->getMaskElt(i); 1715 if (ShiftAmt < i) return -1; 1716 1717 ShiftAmt -= i; 1718 bool isLE = DAG.getDataLayout().isLittleEndian(); 1719 1720 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1721 // Check the rest of the elements to see if they are consecutive. 1722 for (++i; i != 16; ++i) 1723 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1724 return -1; 1725 } else if (ShuffleKind == 1) { 1726 // Check the rest of the elements to see if they are consecutive. 1727 for (++i; i != 16; ++i) 1728 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1729 return -1; 1730 } else 1731 return -1; 1732 1733 if (isLE) 1734 ShiftAmt = 16 - ShiftAmt; 1735 1736 return ShiftAmt; 1737 } 1738 1739 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1740 /// specifies a splat of a single element that is suitable for input to 1741 /// VSPLTB/VSPLTH/VSPLTW. 1742 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1743 assert(N->getValueType(0) == MVT::v16i8 && 1744 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1745 1746 // The consecutive indices need to specify an element, not part of two 1747 // different elements. So abandon ship early if this isn't the case. 1748 if (N->getMaskElt(0) % EltSize != 0) 1749 return false; 1750 1751 // This is a splat operation if each element of the permute is the same, and 1752 // if the value doesn't reference the second vector. 1753 unsigned ElementBase = N->getMaskElt(0); 1754 1755 // FIXME: Handle UNDEF elements too! 1756 if (ElementBase >= 16) 1757 return false; 1758 1759 // Check that the indices are consecutive, in the case of a multi-byte element 1760 // splatted with a v16i8 mask. 1761 for (unsigned i = 1; i != EltSize; ++i) 1762 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1763 return false; 1764 1765 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1766 if (N->getMaskElt(i) < 0) continue; 1767 for (unsigned j = 0; j != EltSize; ++j) 1768 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1769 return false; 1770 } 1771 return true; 1772 } 1773 1774 /// Check that the mask is shuffling N byte elements. Within each N byte 1775 /// element of the mask, the indices could be either in increasing or 1776 /// decreasing order as long as they are consecutive. 1777 /// \param[in] N the shuffle vector SD Node to analyze 1778 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1779 /// Word/DoubleWord/QuadWord). 1780 /// \param[in] StepLen the delta indices number among the N byte element, if 1781 /// the mask is in increasing/decreasing order then it is 1/-1. 1782 /// \return true iff the mask is shuffling N byte elements. 1783 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1784 int StepLen) { 1785 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1786 "Unexpected element width."); 1787 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1788 1789 unsigned NumOfElem = 16 / Width; 1790 unsigned MaskVal[16]; // Width is never greater than 16 1791 for (unsigned i = 0; i < NumOfElem; ++i) { 1792 MaskVal[0] = N->getMaskElt(i * Width); 1793 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1794 return false; 1795 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1796 return false; 1797 } 1798 1799 for (unsigned int j = 1; j < Width; ++j) { 1800 MaskVal[j] = N->getMaskElt(i * Width + j); 1801 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1802 return false; 1803 } 1804 } 1805 } 1806 1807 return true; 1808 } 1809 1810 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1811 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1812 if (!isNByteElemShuffleMask(N, 4, 1)) 1813 return false; 1814 1815 // Now we look at mask elements 0,4,8,12 1816 unsigned M0 = N->getMaskElt(0) / 4; 1817 unsigned M1 = N->getMaskElt(4) / 4; 1818 unsigned M2 = N->getMaskElt(8) / 4; 1819 unsigned M3 = N->getMaskElt(12) / 4; 1820 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1821 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1822 1823 // Below, let H and L be arbitrary elements of the shuffle mask 1824 // where H is in the range [4,7] and L is in the range [0,3]. 1825 // H, 1, 2, 3 or L, 5, 6, 7 1826 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1827 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1828 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1829 InsertAtByte = IsLE ? 12 : 0; 1830 Swap = M0 < 4; 1831 return true; 1832 } 1833 // 0, H, 2, 3 or 4, L, 6, 7 1834 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1835 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1836 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1837 InsertAtByte = IsLE ? 8 : 4; 1838 Swap = M1 < 4; 1839 return true; 1840 } 1841 // 0, 1, H, 3 or 4, 5, L, 7 1842 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1843 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1844 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1845 InsertAtByte = IsLE ? 4 : 8; 1846 Swap = M2 < 4; 1847 return true; 1848 } 1849 // 0, 1, 2, H or 4, 5, 6, L 1850 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1851 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1852 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1853 InsertAtByte = IsLE ? 0 : 12; 1854 Swap = M3 < 4; 1855 return true; 1856 } 1857 1858 // If both vector operands for the shuffle are the same vector, the mask will 1859 // contain only elements from the first one and the second one will be undef. 1860 if (N->getOperand(1).isUndef()) { 1861 ShiftElts = 0; 1862 Swap = true; 1863 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1864 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1865 InsertAtByte = IsLE ? 12 : 0; 1866 return true; 1867 } 1868 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 1869 InsertAtByte = IsLE ? 8 : 4; 1870 return true; 1871 } 1872 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 1873 InsertAtByte = IsLE ? 4 : 8; 1874 return true; 1875 } 1876 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 1877 InsertAtByte = IsLE ? 0 : 12; 1878 return true; 1879 } 1880 } 1881 1882 return false; 1883 } 1884 1885 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1886 bool &Swap, bool IsLE) { 1887 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1888 // Ensure each byte index of the word is consecutive. 1889 if (!isNByteElemShuffleMask(N, 4, 1)) 1890 return false; 1891 1892 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 1893 unsigned M0 = N->getMaskElt(0) / 4; 1894 unsigned M1 = N->getMaskElt(4) / 4; 1895 unsigned M2 = N->getMaskElt(8) / 4; 1896 unsigned M3 = N->getMaskElt(12) / 4; 1897 1898 // If both vector operands for the shuffle are the same vector, the mask will 1899 // contain only elements from the first one and the second one will be undef. 1900 if (N->getOperand(1).isUndef()) { 1901 assert(M0 < 4 && "Indexing into an undef vector?"); 1902 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 1903 return false; 1904 1905 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 1906 Swap = false; 1907 return true; 1908 } 1909 1910 // Ensure each word index of the ShuffleVector Mask is consecutive. 1911 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 1912 return false; 1913 1914 if (IsLE) { 1915 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 1916 // Input vectors don't need to be swapped if the leading element 1917 // of the result is one of the 3 left elements of the second vector 1918 // (or if there is no shift to be done at all). 1919 Swap = false; 1920 ShiftElts = (8 - M0) % 8; 1921 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 1922 // Input vectors need to be swapped if the leading element 1923 // of the result is one of the 3 left elements of the first vector 1924 // (or if we're shifting by 4 - thereby simply swapping the vectors). 1925 Swap = true; 1926 ShiftElts = (4 - M0) % 4; 1927 } 1928 1929 return true; 1930 } else { // BE 1931 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 1932 // Input vectors don't need to be swapped if the leading element 1933 // of the result is one of the 4 elements of the first vector. 1934 Swap = false; 1935 ShiftElts = M0; 1936 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 1937 // Input vectors need to be swapped if the leading element 1938 // of the result is one of the 4 elements of the right vector. 1939 Swap = true; 1940 ShiftElts = M0 - 4; 1941 } 1942 1943 return true; 1944 } 1945 } 1946 1947 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 1948 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1949 1950 if (!isNByteElemShuffleMask(N, Width, -1)) 1951 return false; 1952 1953 for (int i = 0; i < 16; i += Width) 1954 if (N->getMaskElt(i) != i + Width - 1) 1955 return false; 1956 1957 return true; 1958 } 1959 1960 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 1961 return isXXBRShuffleMaskHelper(N, 2); 1962 } 1963 1964 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 1965 return isXXBRShuffleMaskHelper(N, 4); 1966 } 1967 1968 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 1969 return isXXBRShuffleMaskHelper(N, 8); 1970 } 1971 1972 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 1973 return isXXBRShuffleMaskHelper(N, 16); 1974 } 1975 1976 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 1977 /// if the inputs to the instruction should be swapped and set \p DM to the 1978 /// value for the immediate. 1979 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 1980 /// AND element 0 of the result comes from the first input (LE) or second input 1981 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 1982 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 1983 /// mask. 1984 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 1985 bool &Swap, bool IsLE) { 1986 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1987 1988 // Ensure each byte index of the double word is consecutive. 1989 if (!isNByteElemShuffleMask(N, 8, 1)) 1990 return false; 1991 1992 unsigned M0 = N->getMaskElt(0) / 8; 1993 unsigned M1 = N->getMaskElt(8) / 8; 1994 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 1995 1996 // If both vector operands for the shuffle are the same vector, the mask will 1997 // contain only elements from the first one and the second one will be undef. 1998 if (N->getOperand(1).isUndef()) { 1999 if ((M0 | M1) < 2) { 2000 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2001 Swap = false; 2002 return true; 2003 } else 2004 return false; 2005 } 2006 2007 if (IsLE) { 2008 if (M0 > 1 && M1 < 2) { 2009 Swap = false; 2010 } else if (M0 < 2 && M1 > 1) { 2011 M0 = (M0 + 2) % 4; 2012 M1 = (M1 + 2) % 4; 2013 Swap = true; 2014 } else 2015 return false; 2016 2017 // Note: if control flow comes here that means Swap is already set above 2018 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2019 return true; 2020 } else { // BE 2021 if (M0 < 2 && M1 > 1) { 2022 Swap = false; 2023 } else if (M0 > 1 && M1 < 2) { 2024 M0 = (M0 + 2) % 4; 2025 M1 = (M1 + 2) % 4; 2026 Swap = true; 2027 } else 2028 return false; 2029 2030 // Note: if control flow comes here that means Swap is already set above 2031 DM = (M0 << 1) + (M1 & 1); 2032 return true; 2033 } 2034 } 2035 2036 2037 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 2038 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 2039 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 2040 SelectionDAG &DAG) { 2041 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2042 assert(isSplatShuffleMask(SVOp, EltSize)); 2043 if (DAG.getDataLayout().isLittleEndian()) 2044 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2045 else 2046 return SVOp->getMaskElt(0) / EltSize; 2047 } 2048 2049 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2050 /// by using a vspltis[bhw] instruction of the specified element size, return 2051 /// the constant being splatted. The ByteSize field indicates the number of 2052 /// bytes of each element [124] -> [bhw]. 2053 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2054 SDValue OpVal(nullptr, 0); 2055 2056 // If ByteSize of the splat is bigger than the element size of the 2057 // build_vector, then we have a case where we are checking for a splat where 2058 // multiple elements of the buildvector are folded together into a single 2059 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2060 unsigned EltSize = 16/N->getNumOperands(); 2061 if (EltSize < ByteSize) { 2062 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2063 SDValue UniquedVals[4]; 2064 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2065 2066 // See if all of the elements in the buildvector agree across. 2067 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2068 if (N->getOperand(i).isUndef()) continue; 2069 // If the element isn't a constant, bail fully out. 2070 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2071 2072 if (!UniquedVals[i&(Multiple-1)].getNode()) 2073 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2074 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2075 return SDValue(); // no match. 2076 } 2077 2078 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2079 // either constant or undef values that are identical for each chunk. See 2080 // if these chunks can form into a larger vspltis*. 2081 2082 // Check to see if all of the leading entries are either 0 or -1. If 2083 // neither, then this won't fit into the immediate field. 2084 bool LeadingZero = true; 2085 bool LeadingOnes = true; 2086 for (unsigned i = 0; i != Multiple-1; ++i) { 2087 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2088 2089 LeadingZero &= isNullConstant(UniquedVals[i]); 2090 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2091 } 2092 // Finally, check the least significant entry. 2093 if (LeadingZero) { 2094 if (!UniquedVals[Multiple-1].getNode()) 2095 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2096 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2097 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2098 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2099 } 2100 if (LeadingOnes) { 2101 if (!UniquedVals[Multiple-1].getNode()) 2102 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2103 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2104 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2105 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2106 } 2107 2108 return SDValue(); 2109 } 2110 2111 // Check to see if this buildvec has a single non-undef value in its elements. 2112 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2113 if (N->getOperand(i).isUndef()) continue; 2114 if (!OpVal.getNode()) 2115 OpVal = N->getOperand(i); 2116 else if (OpVal != N->getOperand(i)) 2117 return SDValue(); 2118 } 2119 2120 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2121 2122 unsigned ValSizeInBytes = EltSize; 2123 uint64_t Value = 0; 2124 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2125 Value = CN->getZExtValue(); 2126 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2127 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2128 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2129 } 2130 2131 // If the splat value is larger than the element value, then we can never do 2132 // this splat. The only case that we could fit the replicated bits into our 2133 // immediate field for would be zero, and we prefer to use vxor for it. 2134 if (ValSizeInBytes < ByteSize) return SDValue(); 2135 2136 // If the element value is larger than the splat value, check if it consists 2137 // of a repeated bit pattern of size ByteSize. 2138 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2139 return SDValue(); 2140 2141 // Properly sign extend the value. 2142 int MaskVal = SignExtend32(Value, ByteSize * 8); 2143 2144 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2145 if (MaskVal == 0) return SDValue(); 2146 2147 // Finally, if this value fits in a 5 bit sext field, return it 2148 if (SignExtend32<5>(MaskVal) == MaskVal) 2149 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2150 return SDValue(); 2151 } 2152 2153 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2154 /// amount, otherwise return -1. 2155 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2156 EVT VT = N->getValueType(0); 2157 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2158 return -1; 2159 2160 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2161 2162 // Find the first non-undef value in the shuffle mask. 2163 unsigned i; 2164 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2165 /*search*/; 2166 2167 if (i == 4) return -1; // all undef. 2168 2169 // Otherwise, check to see if the rest of the elements are consecutively 2170 // numbered from this value. 2171 unsigned ShiftAmt = SVOp->getMaskElt(i); 2172 if (ShiftAmt < i) return -1; 2173 ShiftAmt -= i; 2174 2175 // Check the rest of the elements to see if they are consecutive. 2176 for (++i; i != 4; ++i) 2177 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2178 return -1; 2179 2180 return ShiftAmt; 2181 } 2182 2183 //===----------------------------------------------------------------------===// 2184 // Addressing Mode Selection 2185 //===----------------------------------------------------------------------===// 2186 2187 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2188 /// or 64-bit immediate, and if the value can be accurately represented as a 2189 /// sign extension from a 16-bit value. If so, this returns true and the 2190 /// immediate. 2191 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2192 if (!isa<ConstantSDNode>(N)) 2193 return false; 2194 2195 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2196 if (N->getValueType(0) == MVT::i32) 2197 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2198 else 2199 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2200 } 2201 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2202 return isIntS16Immediate(Op.getNode(), Imm); 2203 } 2204 2205 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2206 /// can be represented as an indexed [r+r] operation. Returns false if it 2207 /// can be more efficiently represented with [r+imm]. 2208 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 2209 SDValue &Index, 2210 SelectionDAG &DAG) const { 2211 int16_t imm = 0; 2212 if (N.getOpcode() == ISD::ADD) { 2213 if (isIntS16Immediate(N.getOperand(1), imm)) 2214 return false; // r+i 2215 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2216 return false; // r+i 2217 2218 Base = N.getOperand(0); 2219 Index = N.getOperand(1); 2220 return true; 2221 } else if (N.getOpcode() == ISD::OR) { 2222 if (isIntS16Immediate(N.getOperand(1), imm)) 2223 return false; // r+i can fold it if we can. 2224 2225 // If this is an or of disjoint bitfields, we can codegen this as an add 2226 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2227 // disjoint. 2228 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2229 2230 if (LHSKnown.Zero.getBoolValue()) { 2231 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2232 // If all of the bits are known zero on the LHS or RHS, the add won't 2233 // carry. 2234 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2235 Base = N.getOperand(0); 2236 Index = N.getOperand(1); 2237 return true; 2238 } 2239 } 2240 } 2241 2242 return false; 2243 } 2244 2245 // If we happen to be doing an i64 load or store into a stack slot that has 2246 // less than a 4-byte alignment, then the frame-index elimination may need to 2247 // use an indexed load or store instruction (because the offset may not be a 2248 // multiple of 4). The extra register needed to hold the offset comes from the 2249 // register scavenger, and it is possible that the scavenger will need to use 2250 // an emergency spill slot. As a result, we need to make sure that a spill slot 2251 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2252 // stack slot. 2253 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2254 // FIXME: This does not handle the LWA case. 2255 if (VT != MVT::i64) 2256 return; 2257 2258 // NOTE: We'll exclude negative FIs here, which come from argument 2259 // lowering, because there are no known test cases triggering this problem 2260 // using packed structures (or similar). We can remove this exclusion if 2261 // we find such a test case. The reason why this is so test-case driven is 2262 // because this entire 'fixup' is only to prevent crashes (from the 2263 // register scavenger) on not-really-valid inputs. For example, if we have: 2264 // %a = alloca i1 2265 // %b = bitcast i1* %a to i64* 2266 // store i64* a, i64 b 2267 // then the store should really be marked as 'align 1', but is not. If it 2268 // were marked as 'align 1' then the indexed form would have been 2269 // instruction-selected initially, and the problem this 'fixup' is preventing 2270 // won't happen regardless. 2271 if (FrameIdx < 0) 2272 return; 2273 2274 MachineFunction &MF = DAG.getMachineFunction(); 2275 MachineFrameInfo &MFI = MF.getFrameInfo(); 2276 2277 unsigned Align = MFI.getObjectAlignment(FrameIdx); 2278 if (Align >= 4) 2279 return; 2280 2281 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2282 FuncInfo->setHasNonRISpills(); 2283 } 2284 2285 /// Returns true if the address N can be represented by a base register plus 2286 /// a signed 16-bit displacement [r+imm], and if it is not better 2287 /// represented as reg+reg. If \p Alignment is non-zero, only accept 2288 /// displacements that are multiples of that value. 2289 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 2290 SDValue &Base, 2291 SelectionDAG &DAG, 2292 unsigned Alignment) const { 2293 // FIXME dl should come from parent load or store, not from address 2294 SDLoc dl(N); 2295 // If this can be more profitably realized as r+r, fail. 2296 if (SelectAddressRegReg(N, Disp, Base, DAG)) 2297 return false; 2298 2299 if (N.getOpcode() == ISD::ADD) { 2300 int16_t imm = 0; 2301 if (isIntS16Immediate(N.getOperand(1), imm) && 2302 (!Alignment || (imm % Alignment) == 0)) { 2303 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2304 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2305 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2306 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2307 } else { 2308 Base = N.getOperand(0); 2309 } 2310 return true; // [r+i] 2311 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2312 // Match LOAD (ADD (X, Lo(G))). 2313 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2314 && "Cannot handle constant offsets yet!"); 2315 Disp = N.getOperand(1).getOperand(0); // The global address. 2316 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2317 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2318 Disp.getOpcode() == ISD::TargetConstantPool || 2319 Disp.getOpcode() == ISD::TargetJumpTable); 2320 Base = N.getOperand(0); 2321 return true; // [&g+r] 2322 } 2323 } else if (N.getOpcode() == ISD::OR) { 2324 int16_t imm = 0; 2325 if (isIntS16Immediate(N.getOperand(1), imm) && 2326 (!Alignment || (imm % Alignment) == 0)) { 2327 // If this is an or of disjoint bitfields, we can codegen this as an add 2328 // (for better address arithmetic) if the LHS and RHS of the OR are 2329 // provably disjoint. 2330 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2331 2332 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2333 // If all of the bits are known zero on the LHS or RHS, the add won't 2334 // carry. 2335 if (FrameIndexSDNode *FI = 2336 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2337 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2338 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2339 } else { 2340 Base = N.getOperand(0); 2341 } 2342 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2343 return true; 2344 } 2345 } 2346 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2347 // Loading from a constant address. 2348 2349 // If this address fits entirely in a 16-bit sext immediate field, codegen 2350 // this as "d, 0" 2351 int16_t Imm; 2352 if (isIntS16Immediate(CN, Imm) && (!Alignment || (Imm % Alignment) == 0)) { 2353 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2354 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2355 CN->getValueType(0)); 2356 return true; 2357 } 2358 2359 // Handle 32-bit sext immediates with LIS + addr mode. 2360 if ((CN->getValueType(0) == MVT::i32 || 2361 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2362 (!Alignment || (CN->getZExtValue() % Alignment) == 0)) { 2363 int Addr = (int)CN->getZExtValue(); 2364 2365 // Otherwise, break this down into an LIS + disp. 2366 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2367 2368 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2369 MVT::i32); 2370 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2371 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2372 return true; 2373 } 2374 } 2375 2376 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2377 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2378 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2379 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2380 } else 2381 Base = N; 2382 return true; // [r+0] 2383 } 2384 2385 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2386 /// represented as an indexed [r+r] operation. 2387 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2388 SDValue &Index, 2389 SelectionDAG &DAG) const { 2390 // Check to see if we can easily represent this as an [r+r] address. This 2391 // will fail if it thinks that the address is more profitably represented as 2392 // reg+imm, e.g. where imm = 0. 2393 if (SelectAddressRegReg(N, Base, Index, DAG)) 2394 return true; 2395 2396 // If the address is the result of an add, we will utilize the fact that the 2397 // address calculation includes an implicit add. However, we can reduce 2398 // register pressure if we do not materialize a constant just for use as the 2399 // index register. We only get rid of the add if it is not an add of a 2400 // value and a 16-bit signed constant and both have a single use. 2401 int16_t imm = 0; 2402 if (N.getOpcode() == ISD::ADD && 2403 (!isIntS16Immediate(N.getOperand(1), imm) || 2404 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2405 Base = N.getOperand(0); 2406 Index = N.getOperand(1); 2407 return true; 2408 } 2409 2410 // Otherwise, do it the hard way, using R0 as the base register. 2411 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2412 N.getValueType()); 2413 Index = N; 2414 return true; 2415 } 2416 2417 /// Returns true if we should use a direct load into vector instruction 2418 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2419 static bool usePartialVectorLoads(SDNode *N) { 2420 if (!N->hasOneUse()) 2421 return false; 2422 2423 // If there are any other uses other than scalar to vector, then we should 2424 // keep it as a scalar load -> direct move pattern to prevent multiple 2425 // loads. Currently, only check for i64 since we have lxsd/lfd to do this 2426 // efficiently, but no update equivalent. 2427 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2428 EVT MemVT = LD->getMemoryVT(); 2429 if (MemVT.isSimple() && MemVT.getSimpleVT().SimpleTy == MVT::i64) { 2430 SDNode *User = *(LD->use_begin()); 2431 if (User->getOpcode() == ISD::SCALAR_TO_VECTOR) 2432 return true; 2433 } 2434 } 2435 2436 return false; 2437 } 2438 2439 /// getPreIndexedAddressParts - returns true by value, base pointer and 2440 /// offset pointer and addressing mode by reference if the node's address 2441 /// can be legally represented as pre-indexed load / store address. 2442 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2443 SDValue &Offset, 2444 ISD::MemIndexedMode &AM, 2445 SelectionDAG &DAG) const { 2446 if (DisablePPCPreinc) return false; 2447 2448 bool isLoad = true; 2449 SDValue Ptr; 2450 EVT VT; 2451 unsigned Alignment; 2452 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2453 Ptr = LD->getBasePtr(); 2454 VT = LD->getMemoryVT(); 2455 Alignment = LD->getAlignment(); 2456 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2457 Ptr = ST->getBasePtr(); 2458 VT = ST->getMemoryVT(); 2459 Alignment = ST->getAlignment(); 2460 isLoad = false; 2461 } else 2462 return false; 2463 2464 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2465 // instructions because we can fold these into a more efficient instruction 2466 // instead, (such as LXSD). 2467 if (isLoad && usePartialVectorLoads(N)) { 2468 return false; 2469 } 2470 2471 // PowerPC doesn't have preinc load/store instructions for vectors (except 2472 // for QPX, which does have preinc r+r forms). 2473 if (VT.isVector()) { 2474 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2475 return false; 2476 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2477 AM = ISD::PRE_INC; 2478 return true; 2479 } 2480 } 2481 2482 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2483 // Common code will reject creating a pre-inc form if the base pointer 2484 // is a frame index, or if N is a store and the base pointer is either 2485 // the same as or a predecessor of the value being stored. Check for 2486 // those situations here, and try with swapped Base/Offset instead. 2487 bool Swap = false; 2488 2489 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2490 Swap = true; 2491 else if (!isLoad) { 2492 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2493 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2494 Swap = true; 2495 } 2496 2497 if (Swap) 2498 std::swap(Base, Offset); 2499 2500 AM = ISD::PRE_INC; 2501 return true; 2502 } 2503 2504 // LDU/STU can only handle immediates that are a multiple of 4. 2505 if (VT != MVT::i64) { 2506 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0)) 2507 return false; 2508 } else { 2509 // LDU/STU need an address with at least 4-byte alignment. 2510 if (Alignment < 4) 2511 return false; 2512 2513 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4)) 2514 return false; 2515 } 2516 2517 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2518 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2519 // sext i32 to i64 when addr mode is r+i. 2520 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2521 LD->getExtensionType() == ISD::SEXTLOAD && 2522 isa<ConstantSDNode>(Offset)) 2523 return false; 2524 } 2525 2526 AM = ISD::PRE_INC; 2527 return true; 2528 } 2529 2530 //===----------------------------------------------------------------------===// 2531 // LowerOperation implementation 2532 //===----------------------------------------------------------------------===// 2533 2534 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2535 /// and LoOpFlags to the target MO flags. 2536 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2537 unsigned &HiOpFlags, unsigned &LoOpFlags, 2538 const GlobalValue *GV = nullptr) { 2539 HiOpFlags = PPCII::MO_HA; 2540 LoOpFlags = PPCII::MO_LO; 2541 2542 // Don't use the pic base if not in PIC relocation model. 2543 if (IsPIC) { 2544 HiOpFlags |= PPCII::MO_PIC_FLAG; 2545 LoOpFlags |= PPCII::MO_PIC_FLAG; 2546 } 2547 2548 // If this is a reference to a global value that requires a non-lazy-ptr, make 2549 // sure that instruction lowering adds it. 2550 if (GV && Subtarget.hasLazyResolverStub(GV)) { 2551 HiOpFlags |= PPCII::MO_NLP_FLAG; 2552 LoOpFlags |= PPCII::MO_NLP_FLAG; 2553 2554 if (GV->hasHiddenVisibility()) { 2555 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2556 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2557 } 2558 } 2559 } 2560 2561 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2562 SelectionDAG &DAG) { 2563 SDLoc DL(HiPart); 2564 EVT PtrVT = HiPart.getValueType(); 2565 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2566 2567 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2568 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2569 2570 // With PIC, the first instruction is actually "GR+hi(&G)". 2571 if (isPIC) 2572 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2573 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2574 2575 // Generate non-pic code that has direct accesses to the constant pool. 2576 // The address of the global is just (hi(&g)+lo(&g)). 2577 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2578 } 2579 2580 static void setUsesTOCBasePtr(MachineFunction &MF) { 2581 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2582 FuncInfo->setUsesTOCBasePtr(); 2583 } 2584 2585 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2586 setUsesTOCBasePtr(DAG.getMachineFunction()); 2587 } 2588 2589 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit, 2590 SDValue GA) { 2591 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2592 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : 2593 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2594 2595 SDValue Ops[] = { GA, Reg }; 2596 return DAG.getMemIntrinsicNode( 2597 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2598 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, 2599 MachineMemOperand::MOLoad); 2600 } 2601 2602 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2603 SelectionDAG &DAG) const { 2604 EVT PtrVT = Op.getValueType(); 2605 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2606 const Constant *C = CP->getConstVal(); 2607 2608 // 64-bit SVR4 ABI code is always position-independent. 2609 // The actual address of the GlobalValue is stored in the TOC. 2610 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2611 setUsesTOCBasePtr(DAG); 2612 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2613 return getTOCEntry(DAG, SDLoc(CP), true, GA); 2614 } 2615 2616 unsigned MOHiFlag, MOLoFlag; 2617 bool IsPIC = isPositionIndependent(); 2618 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2619 2620 if (IsPIC && Subtarget.isSVR4ABI()) { 2621 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2622 PPCII::MO_PIC_FLAG); 2623 return getTOCEntry(DAG, SDLoc(CP), false, GA); 2624 } 2625 2626 SDValue CPIHi = 2627 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2628 SDValue CPILo = 2629 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2630 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2631 } 2632 2633 // For 64-bit PowerPC, prefer the more compact relative encodings. 2634 // This trades 32 bits per jump table entry for one or two instructions 2635 // on the jump site. 2636 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2637 if (isJumpTableRelative()) 2638 return MachineJumpTableInfo::EK_LabelDifference32; 2639 2640 return TargetLowering::getJumpTableEncoding(); 2641 } 2642 2643 bool PPCTargetLowering::isJumpTableRelative() const { 2644 if (Subtarget.isPPC64()) 2645 return true; 2646 return TargetLowering::isJumpTableRelative(); 2647 } 2648 2649 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2650 SelectionDAG &DAG) const { 2651 if (!Subtarget.isPPC64()) 2652 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2653 2654 switch (getTargetMachine().getCodeModel()) { 2655 case CodeModel::Small: 2656 case CodeModel::Medium: 2657 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2658 default: 2659 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2660 getPointerTy(DAG.getDataLayout())); 2661 } 2662 } 2663 2664 const MCExpr * 2665 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2666 unsigned JTI, 2667 MCContext &Ctx) const { 2668 if (!Subtarget.isPPC64()) 2669 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2670 2671 switch (getTargetMachine().getCodeModel()) { 2672 case CodeModel::Small: 2673 case CodeModel::Medium: 2674 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2675 default: 2676 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2677 } 2678 } 2679 2680 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2681 EVT PtrVT = Op.getValueType(); 2682 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2683 2684 // 64-bit SVR4 ABI code is always position-independent. 2685 // The actual address of the GlobalValue is stored in the TOC. 2686 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2687 setUsesTOCBasePtr(DAG); 2688 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2689 return getTOCEntry(DAG, SDLoc(JT), true, GA); 2690 } 2691 2692 unsigned MOHiFlag, MOLoFlag; 2693 bool IsPIC = isPositionIndependent(); 2694 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2695 2696 if (IsPIC && Subtarget.isSVR4ABI()) { 2697 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2698 PPCII::MO_PIC_FLAG); 2699 return getTOCEntry(DAG, SDLoc(GA), false, GA); 2700 } 2701 2702 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2703 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2704 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2705 } 2706 2707 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2708 SelectionDAG &DAG) const { 2709 EVT PtrVT = Op.getValueType(); 2710 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2711 const BlockAddress *BA = BASDN->getBlockAddress(); 2712 2713 // 64-bit SVR4 ABI code is always position-independent. 2714 // The actual BlockAddress is stored in the TOC. 2715 if (Subtarget.isSVR4ABI() && 2716 (Subtarget.isPPC64() || isPositionIndependent())) { 2717 if (Subtarget.isPPC64()) 2718 setUsesTOCBasePtr(DAG); 2719 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2720 return getTOCEntry(DAG, SDLoc(BASDN), Subtarget.isPPC64(), GA); 2721 } 2722 2723 unsigned MOHiFlag, MOLoFlag; 2724 bool IsPIC = isPositionIndependent(); 2725 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2726 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2727 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2728 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2729 } 2730 2731 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2732 SelectionDAG &DAG) const { 2733 // FIXME: TLS addresses currently use medium model code sequences, 2734 // which is the most useful form. Eventually support for small and 2735 // large models could be added if users need it, at the cost of 2736 // additional complexity. 2737 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2738 if (DAG.getTarget().useEmulatedTLS()) 2739 return LowerToTLSEmulatedModel(GA, DAG); 2740 2741 SDLoc dl(GA); 2742 const GlobalValue *GV = GA->getGlobal(); 2743 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2744 bool is64bit = Subtarget.isPPC64(); 2745 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2746 PICLevel::Level picLevel = M->getPICLevel(); 2747 2748 TLSModel::Model Model = getTargetMachine().getTLSModel(GV); 2749 2750 if (Model == TLSModel::LocalExec) { 2751 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2752 PPCII::MO_TPREL_HA); 2753 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2754 PPCII::MO_TPREL_LO); 2755 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 2756 : DAG.getRegister(PPC::R2, MVT::i32); 2757 2758 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2759 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2760 } 2761 2762 if (Model == TLSModel::InitialExec) { 2763 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2764 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2765 PPCII::MO_TLS); 2766 SDValue GOTPtr; 2767 if (is64bit) { 2768 setUsesTOCBasePtr(DAG); 2769 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2770 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2771 PtrVT, GOTReg, TGA); 2772 } else 2773 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2774 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2775 PtrVT, TGA, GOTPtr); 2776 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2777 } 2778 2779 if (Model == TLSModel::GeneralDynamic) { 2780 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2781 SDValue GOTPtr; 2782 if (is64bit) { 2783 setUsesTOCBasePtr(DAG); 2784 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2785 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2786 GOTReg, TGA); 2787 } else { 2788 if (picLevel == PICLevel::SmallPIC) 2789 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2790 else 2791 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2792 } 2793 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2794 GOTPtr, TGA, TGA); 2795 } 2796 2797 if (Model == TLSModel::LocalDynamic) { 2798 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2799 SDValue GOTPtr; 2800 if (is64bit) { 2801 setUsesTOCBasePtr(DAG); 2802 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2803 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2804 GOTReg, TGA); 2805 } else { 2806 if (picLevel == PICLevel::SmallPIC) 2807 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2808 else 2809 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2810 } 2811 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2812 PtrVT, GOTPtr, TGA, TGA); 2813 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2814 PtrVT, TLSAddr, TGA); 2815 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2816 } 2817 2818 llvm_unreachable("Unknown TLS model!"); 2819 } 2820 2821 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2822 SelectionDAG &DAG) const { 2823 EVT PtrVT = Op.getValueType(); 2824 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2825 SDLoc DL(GSDN); 2826 const GlobalValue *GV = GSDN->getGlobal(); 2827 2828 // 64-bit SVR4 ABI code is always position-independent. 2829 // The actual address of the GlobalValue is stored in the TOC. 2830 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2831 setUsesTOCBasePtr(DAG); 2832 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2833 return getTOCEntry(DAG, DL, true, GA); 2834 } 2835 2836 unsigned MOHiFlag, MOLoFlag; 2837 bool IsPIC = isPositionIndependent(); 2838 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 2839 2840 if (IsPIC && Subtarget.isSVR4ABI()) { 2841 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2842 GSDN->getOffset(), 2843 PPCII::MO_PIC_FLAG); 2844 return getTOCEntry(DAG, DL, false, GA); 2845 } 2846 2847 SDValue GAHi = 2848 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2849 SDValue GALo = 2850 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2851 2852 SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG); 2853 2854 // If the global reference is actually to a non-lazy-pointer, we have to do an 2855 // extra load to get the address of the global. 2856 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2857 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2858 return Ptr; 2859 } 2860 2861 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2862 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2863 SDLoc dl(Op); 2864 2865 if (Op.getValueType() == MVT::v2i64) { 2866 // When the operands themselves are v2i64 values, we need to do something 2867 // special because VSX has no underlying comparison operations for these. 2868 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2869 // Equality can be handled by casting to the legal type for Altivec 2870 // comparisons, everything else needs to be expanded. 2871 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2872 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2873 DAG.getSetCC(dl, MVT::v4i32, 2874 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2875 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2876 CC)); 2877 } 2878 2879 return SDValue(); 2880 } 2881 2882 // We handle most of these in the usual way. 2883 return Op; 2884 } 2885 2886 // If we're comparing for equality to zero, expose the fact that this is 2887 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 2888 // fold the new nodes. 2889 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 2890 return V; 2891 2892 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2893 // Leave comparisons against 0 and -1 alone for now, since they're usually 2894 // optimized. FIXME: revisit this when we can custom lower all setcc 2895 // optimizations. 2896 if (C->isAllOnesValue() || C->isNullValue()) 2897 return SDValue(); 2898 } 2899 2900 // If we have an integer seteq/setne, turn it into a compare against zero 2901 // by xor'ing the rhs with the lhs, which is faster than setting a 2902 // condition register, reading it back out, and masking the correct bit. The 2903 // normal approach here uses sub to do this instead of xor. Using xor exposes 2904 // the result to other bit-twiddling opportunities. 2905 EVT LHSVT = Op.getOperand(0).getValueType(); 2906 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2907 EVT VT = Op.getValueType(); 2908 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 2909 Op.getOperand(1)); 2910 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 2911 } 2912 return SDValue(); 2913 } 2914 2915 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 2916 SDNode *Node = Op.getNode(); 2917 EVT VT = Node->getValueType(0); 2918 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2919 SDValue InChain = Node->getOperand(0); 2920 SDValue VAListPtr = Node->getOperand(1); 2921 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2922 SDLoc dl(Node); 2923 2924 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 2925 2926 // gpr_index 2927 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2928 VAListPtr, MachinePointerInfo(SV), MVT::i8); 2929 InChain = GprIndex.getValue(1); 2930 2931 if (VT == MVT::i64) { 2932 // Check if GprIndex is even 2933 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 2934 DAG.getConstant(1, dl, MVT::i32)); 2935 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 2936 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 2937 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 2938 DAG.getConstant(1, dl, MVT::i32)); 2939 // Align GprIndex to be even if it isn't 2940 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 2941 GprIndex); 2942 } 2943 2944 // fpr index is 1 byte after gpr 2945 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2946 DAG.getConstant(1, dl, MVT::i32)); 2947 2948 // fpr 2949 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2950 FprPtr, MachinePointerInfo(SV), MVT::i8); 2951 InChain = FprIndex.getValue(1); 2952 2953 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2954 DAG.getConstant(8, dl, MVT::i32)); 2955 2956 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2957 DAG.getConstant(4, dl, MVT::i32)); 2958 2959 // areas 2960 SDValue OverflowArea = 2961 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 2962 InChain = OverflowArea.getValue(1); 2963 2964 SDValue RegSaveArea = 2965 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 2966 InChain = RegSaveArea.getValue(1); 2967 2968 // select overflow_area if index > 8 2969 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 2970 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 2971 2972 // adjustment constant gpr_index * 4/8 2973 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 2974 VT.isInteger() ? GprIndex : FprIndex, 2975 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 2976 MVT::i32)); 2977 2978 // OurReg = RegSaveArea + RegConstant 2979 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 2980 RegConstant); 2981 2982 // Floating types are 32 bytes into RegSaveArea 2983 if (VT.isFloatingPoint()) 2984 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 2985 DAG.getConstant(32, dl, MVT::i32)); 2986 2987 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 2988 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2989 VT.isInteger() ? GprIndex : FprIndex, 2990 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 2991 MVT::i32)); 2992 2993 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 2994 VT.isInteger() ? VAListPtr : FprPtr, 2995 MachinePointerInfo(SV), MVT::i8); 2996 2997 // determine if we should load from reg_save_area or overflow_area 2998 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 2999 3000 // increase overflow_area by 4/8 if gpr/fpr > 8 3001 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3002 DAG.getConstant(VT.isInteger() ? 4 : 8, 3003 dl, MVT::i32)); 3004 3005 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3006 OverflowAreaPlusN); 3007 3008 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3009 MachinePointerInfo(), MVT::i32); 3010 3011 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3012 } 3013 3014 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3015 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3016 3017 // We have to copy the entire va_list struct: 3018 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3019 return DAG.getMemcpy(Op.getOperand(0), Op, 3020 Op.getOperand(1), Op.getOperand(2), 3021 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 3022 false, MachinePointerInfo(), MachinePointerInfo()); 3023 } 3024 3025 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3026 SelectionDAG &DAG) const { 3027 return Op.getOperand(0); 3028 } 3029 3030 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3031 SelectionDAG &DAG) const { 3032 SDValue Chain = Op.getOperand(0); 3033 SDValue Trmp = Op.getOperand(1); // trampoline 3034 SDValue FPtr = Op.getOperand(2); // nested function 3035 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3036 SDLoc dl(Op); 3037 3038 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3039 bool isPPC64 = (PtrVT == MVT::i64); 3040 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3041 3042 TargetLowering::ArgListTy Args; 3043 TargetLowering::ArgListEntry Entry; 3044 3045 Entry.Ty = IntPtrTy; 3046 Entry.Node = Trmp; Args.push_back(Entry); 3047 3048 // TrampSize == (isPPC64 ? 48 : 40); 3049 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3050 isPPC64 ? MVT::i64 : MVT::i32); 3051 Args.push_back(Entry); 3052 3053 Entry.Node = FPtr; Args.push_back(Entry); 3054 Entry.Node = Nest; Args.push_back(Entry); 3055 3056 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3057 TargetLowering::CallLoweringInfo CLI(DAG); 3058 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3059 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3060 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3061 3062 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3063 return CallResult.second; 3064 } 3065 3066 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3067 MachineFunction &MF = DAG.getMachineFunction(); 3068 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3069 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3070 3071 SDLoc dl(Op); 3072 3073 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 3074 // vastart just stores the address of the VarArgsFrameIndex slot into the 3075 // memory location argument. 3076 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3077 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3078 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3079 MachinePointerInfo(SV)); 3080 } 3081 3082 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3083 // We suppose the given va_list is already allocated. 3084 // 3085 // typedef struct { 3086 // char gpr; /* index into the array of 8 GPRs 3087 // * stored in the register save area 3088 // * gpr=0 corresponds to r3, 3089 // * gpr=1 to r4, etc. 3090 // */ 3091 // char fpr; /* index into the array of 8 FPRs 3092 // * stored in the register save area 3093 // * fpr=0 corresponds to f1, 3094 // * fpr=1 to f2, etc. 3095 // */ 3096 // char *overflow_arg_area; 3097 // /* location on stack that holds 3098 // * the next overflow argument 3099 // */ 3100 // char *reg_save_area; 3101 // /* where r3:r10 and f1:f8 (if saved) 3102 // * are stored 3103 // */ 3104 // } va_list[1]; 3105 3106 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3107 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3108 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3109 PtrVT); 3110 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3111 PtrVT); 3112 3113 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3114 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3115 3116 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3117 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3118 3119 uint64_t FPROffset = 1; 3120 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3121 3122 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3123 3124 // Store first byte : number of int regs 3125 SDValue firstStore = 3126 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3127 MachinePointerInfo(SV), MVT::i8); 3128 uint64_t nextOffset = FPROffset; 3129 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3130 ConstFPROffset); 3131 3132 // Store second byte : number of float regs 3133 SDValue secondStore = 3134 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3135 MachinePointerInfo(SV, nextOffset), MVT::i8); 3136 nextOffset += StackOffset; 3137 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3138 3139 // Store second word : arguments given on stack 3140 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3141 MachinePointerInfo(SV, nextOffset)); 3142 nextOffset += FrameOffset; 3143 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3144 3145 // Store third word : arguments given in registers 3146 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3147 MachinePointerInfo(SV, nextOffset)); 3148 } 3149 3150 #include "PPCGenCallingConv.inc" 3151 3152 // Function whose sole purpose is to kill compiler warnings 3153 // stemming from unused functions included from PPCGenCallingConv.inc. 3154 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const { 3155 return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS; 3156 } 3157 3158 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 3159 CCValAssign::LocInfo &LocInfo, 3160 ISD::ArgFlagsTy &ArgFlags, 3161 CCState &State) { 3162 return true; 3163 } 3164 3165 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 3166 MVT &LocVT, 3167 CCValAssign::LocInfo &LocInfo, 3168 ISD::ArgFlagsTy &ArgFlags, 3169 CCState &State) { 3170 static const MCPhysReg ArgRegs[] = { 3171 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3172 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3173 }; 3174 const unsigned NumArgRegs = array_lengthof(ArgRegs); 3175 3176 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 3177 3178 // Skip one register if the first unallocated register has an even register 3179 // number and there are still argument registers available which have not been 3180 // allocated yet. RegNum is actually an index into ArgRegs, which means we 3181 // need to skip a register if RegNum is odd. 3182 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 3183 State.AllocateReg(ArgRegs[RegNum]); 3184 } 3185 3186 // Always return false here, as this function only makes sure that the first 3187 // unallocated register has an odd register number and does not actually 3188 // allocate a register for the current argument. 3189 return false; 3190 } 3191 3192 bool 3193 llvm::CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT, 3194 MVT &LocVT, 3195 CCValAssign::LocInfo &LocInfo, 3196 ISD::ArgFlagsTy &ArgFlags, 3197 CCState &State) { 3198 static const MCPhysReg ArgRegs[] = { 3199 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3200 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3201 }; 3202 const unsigned NumArgRegs = array_lengthof(ArgRegs); 3203 3204 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 3205 int RegsLeft = NumArgRegs - RegNum; 3206 3207 // Skip if there is not enough registers left for long double type (4 gpr regs 3208 // in soft float mode) and put long double argument on the stack. 3209 if (RegNum != NumArgRegs && RegsLeft < 4) { 3210 for (int i = 0; i < RegsLeft; i++) { 3211 State.AllocateReg(ArgRegs[RegNum + i]); 3212 } 3213 } 3214 3215 return false; 3216 } 3217 3218 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 3219 MVT &LocVT, 3220 CCValAssign::LocInfo &LocInfo, 3221 ISD::ArgFlagsTy &ArgFlags, 3222 CCState &State) { 3223 static const MCPhysReg ArgRegs[] = { 3224 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3225 PPC::F8 3226 }; 3227 3228 const unsigned NumArgRegs = array_lengthof(ArgRegs); 3229 3230 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 3231 3232 // If there is only one Floating-point register left we need to put both f64 3233 // values of a split ppc_fp128 value on the stack. 3234 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 3235 State.AllocateReg(ArgRegs[RegNum]); 3236 } 3237 3238 // Always return false here, as this function only makes sure that the two f64 3239 // values a ppc_fp128 value is split into are both passed in registers or both 3240 // passed on the stack and does not actually allocate a register for the 3241 // current argument. 3242 return false; 3243 } 3244 3245 /// FPR - The set of FP registers that should be allocated for arguments, 3246 /// on Darwin. 3247 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3248 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3249 PPC::F11, PPC::F12, PPC::F13}; 3250 3251 /// QFPR - The set of QPX registers that should be allocated for arguments. 3252 static const MCPhysReg QFPR[] = { 3253 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3254 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3255 3256 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3257 /// the stack. 3258 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3259 unsigned PtrByteSize) { 3260 unsigned ArgSize = ArgVT.getStoreSize(); 3261 if (Flags.isByVal()) 3262 ArgSize = Flags.getByValSize(); 3263 3264 // Round up to multiples of the pointer size, except for array members, 3265 // which are always packed. 3266 if (!Flags.isInConsecutiveRegs()) 3267 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3268 3269 return ArgSize; 3270 } 3271 3272 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3273 /// on the stack. 3274 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3275 ISD::ArgFlagsTy Flags, 3276 unsigned PtrByteSize) { 3277 unsigned Align = PtrByteSize; 3278 3279 // Altivec parameters are padded to a 16 byte boundary. 3280 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3281 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3282 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3283 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3284 Align = 16; 3285 // QPX vector types stored in double-precision are padded to a 32 byte 3286 // boundary. 3287 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3288 Align = 32; 3289 3290 // ByVal parameters are aligned as requested. 3291 if (Flags.isByVal()) { 3292 unsigned BVAlign = Flags.getByValAlign(); 3293 if (BVAlign > PtrByteSize) { 3294 if (BVAlign % PtrByteSize != 0) 3295 llvm_unreachable( 3296 "ByVal alignment is not a multiple of the pointer size"); 3297 3298 Align = BVAlign; 3299 } 3300 } 3301 3302 // Array members are always packed to their original alignment. 3303 if (Flags.isInConsecutiveRegs()) { 3304 // If the array member was split into multiple registers, the first 3305 // needs to be aligned to the size of the full type. (Except for 3306 // ppcf128, which is only aligned as its f64 components.) 3307 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3308 Align = OrigVT.getStoreSize(); 3309 else 3310 Align = ArgVT.getStoreSize(); 3311 } 3312 3313 return Align; 3314 } 3315 3316 /// CalculateStackSlotUsed - Return whether this argument will use its 3317 /// stack slot (instead of being passed in registers). ArgOffset, 3318 /// AvailableFPRs, and AvailableVRs must hold the current argument 3319 /// position, and will be updated to account for this argument. 3320 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3321 ISD::ArgFlagsTy Flags, 3322 unsigned PtrByteSize, 3323 unsigned LinkageSize, 3324 unsigned ParamAreaSize, 3325 unsigned &ArgOffset, 3326 unsigned &AvailableFPRs, 3327 unsigned &AvailableVRs, bool HasQPX) { 3328 bool UseMemory = false; 3329 3330 // Respect alignment of argument on the stack. 3331 unsigned Align = 3332 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3333 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3334 // If there's no space left in the argument save area, we must 3335 // use memory (this check also catches zero-sized arguments). 3336 if (ArgOffset >= LinkageSize + ParamAreaSize) 3337 UseMemory = true; 3338 3339 // Allocate argument on the stack. 3340 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3341 if (Flags.isInConsecutiveRegsLast()) 3342 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3343 // If we overran the argument save area, we must use memory 3344 // (this check catches arguments passed partially in memory) 3345 if (ArgOffset > LinkageSize + ParamAreaSize) 3346 UseMemory = true; 3347 3348 // However, if the argument is actually passed in an FPR or a VR, 3349 // we don't use memory after all. 3350 if (!Flags.isByVal()) { 3351 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3352 // QPX registers overlap with the scalar FP registers. 3353 (HasQPX && (ArgVT == MVT::v4f32 || 3354 ArgVT == MVT::v4f64 || 3355 ArgVT == MVT::v4i1))) 3356 if (AvailableFPRs > 0) { 3357 --AvailableFPRs; 3358 return false; 3359 } 3360 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3361 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3362 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3363 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3364 if (AvailableVRs > 0) { 3365 --AvailableVRs; 3366 return false; 3367 } 3368 } 3369 3370 return UseMemory; 3371 } 3372 3373 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3374 /// ensure minimum alignment required for target. 3375 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3376 unsigned NumBytes) { 3377 unsigned TargetAlign = Lowering->getStackAlignment(); 3378 unsigned AlignMask = TargetAlign - 1; 3379 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 3380 return NumBytes; 3381 } 3382 3383 SDValue PPCTargetLowering::LowerFormalArguments( 3384 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3385 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3386 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3387 if (Subtarget.isSVR4ABI()) { 3388 if (Subtarget.isPPC64()) 3389 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 3390 dl, DAG, InVals); 3391 else 3392 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 3393 dl, DAG, InVals); 3394 } else { 3395 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 3396 dl, DAG, InVals); 3397 } 3398 } 3399 3400 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3401 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3402 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3403 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3404 3405 // 32-bit SVR4 ABI Stack Frame Layout: 3406 // +-----------------------------------+ 3407 // +--> | Back chain | 3408 // | +-----------------------------------+ 3409 // | | Floating-point register save area | 3410 // | +-----------------------------------+ 3411 // | | General register save area | 3412 // | +-----------------------------------+ 3413 // | | CR save word | 3414 // | +-----------------------------------+ 3415 // | | VRSAVE save word | 3416 // | +-----------------------------------+ 3417 // | | Alignment padding | 3418 // | +-----------------------------------+ 3419 // | | Vector register save area | 3420 // | +-----------------------------------+ 3421 // | | Local variable space | 3422 // | +-----------------------------------+ 3423 // | | Parameter list area | 3424 // | +-----------------------------------+ 3425 // | | LR save word | 3426 // | +-----------------------------------+ 3427 // SP--> +--- | Back chain | 3428 // +-----------------------------------+ 3429 // 3430 // Specifications: 3431 // System V Application Binary Interface PowerPC Processor Supplement 3432 // AltiVec Technology Programming Interface Manual 3433 3434 MachineFunction &MF = DAG.getMachineFunction(); 3435 MachineFrameInfo &MFI = MF.getFrameInfo(); 3436 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3437 3438 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3439 // Potential tail calls could cause overwriting of argument stack slots. 3440 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3441 (CallConv == CallingConv::Fast)); 3442 unsigned PtrByteSize = 4; 3443 3444 // Assign locations to all of the incoming arguments. 3445 SmallVector<CCValAssign, 16> ArgLocs; 3446 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3447 *DAG.getContext()); 3448 3449 // Reserve space for the linkage area on the stack. 3450 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3451 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 3452 if (useSoftFloat() || hasSPE()) 3453 CCInfo.PreAnalyzeFormalArguments(Ins); 3454 3455 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3456 CCInfo.clearWasPPCF128(); 3457 3458 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3459 CCValAssign &VA = ArgLocs[i]; 3460 3461 // Arguments stored in registers. 3462 if (VA.isRegLoc()) { 3463 const TargetRegisterClass *RC; 3464 EVT ValVT = VA.getValVT(); 3465 3466 switch (ValVT.getSimpleVT().SimpleTy) { 3467 default: 3468 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3469 case MVT::i1: 3470 case MVT::i32: 3471 RC = &PPC::GPRCRegClass; 3472 break; 3473 case MVT::f32: 3474 if (Subtarget.hasP8Vector()) 3475 RC = &PPC::VSSRCRegClass; 3476 else if (Subtarget.hasSPE()) 3477 RC = &PPC::SPE4RCRegClass; 3478 else 3479 RC = &PPC::F4RCRegClass; 3480 break; 3481 case MVT::f64: 3482 if (Subtarget.hasVSX()) 3483 RC = &PPC::VSFRCRegClass; 3484 else if (Subtarget.hasSPE()) 3485 RC = &PPC::SPERCRegClass; 3486 else 3487 RC = &PPC::F8RCRegClass; 3488 break; 3489 case MVT::v16i8: 3490 case MVT::v8i16: 3491 case MVT::v4i32: 3492 RC = &PPC::VRRCRegClass; 3493 break; 3494 case MVT::v4f32: 3495 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3496 break; 3497 case MVT::v2f64: 3498 case MVT::v2i64: 3499 RC = &PPC::VRRCRegClass; 3500 break; 3501 case MVT::v4f64: 3502 RC = &PPC::QFRCRegClass; 3503 break; 3504 case MVT::v4i1: 3505 RC = &PPC::QBRCRegClass; 3506 break; 3507 } 3508 3509 // Transform the arguments stored in physical registers into virtual ones. 3510 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3511 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3512 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3513 3514 if (ValVT == MVT::i1) 3515 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3516 3517 InVals.push_back(ArgValue); 3518 } else { 3519 // Argument stored in memory. 3520 assert(VA.isMemLoc()); 3521 3522 // Get the extended size of the argument type in stack 3523 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3524 // Get the actual size of the argument type 3525 unsigned ObjSize = VA.getValVT().getStoreSize(); 3526 unsigned ArgOffset = VA.getLocMemOffset(); 3527 // Stack objects in PPC32 are right justified. 3528 ArgOffset += ArgSize - ObjSize; 3529 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3530 3531 // Create load nodes to retrieve arguments from the stack. 3532 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3533 InVals.push_back( 3534 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3535 } 3536 } 3537 3538 // Assign locations to all of the incoming aggregate by value arguments. 3539 // Aggregates passed by value are stored in the local variable space of the 3540 // caller's stack frame, right above the parameter list area. 3541 SmallVector<CCValAssign, 16> ByValArgLocs; 3542 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3543 ByValArgLocs, *DAG.getContext()); 3544 3545 // Reserve stack space for the allocations in CCInfo. 3546 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3547 3548 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3549 3550 // Area that is at least reserved in the caller of this function. 3551 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3552 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3553 3554 // Set the size that is at least reserved in caller of this function. Tail 3555 // call optimized function's reserved stack space needs to be aligned so that 3556 // taking the difference between two stack areas will result in an aligned 3557 // stack. 3558 MinReservedArea = 3559 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3560 FuncInfo->setMinReservedArea(MinReservedArea); 3561 3562 SmallVector<SDValue, 8> MemOps; 3563 3564 // If the function takes variable number of arguments, make a frame index for 3565 // the start of the first vararg value... for expansion of llvm.va_start. 3566 if (isVarArg) { 3567 static const MCPhysReg GPArgRegs[] = { 3568 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3569 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3570 }; 3571 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3572 3573 static const MCPhysReg FPArgRegs[] = { 3574 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3575 PPC::F8 3576 }; 3577 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3578 3579 if (useSoftFloat() || hasSPE()) 3580 NumFPArgRegs = 0; 3581 3582 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3583 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3584 3585 // Make room for NumGPArgRegs and NumFPArgRegs. 3586 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3587 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3588 3589 FuncInfo->setVarArgsStackOffset( 3590 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3591 CCInfo.getNextStackOffset(), true)); 3592 3593 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3594 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3595 3596 // The fixed integer arguments of a variadic function are stored to the 3597 // VarArgsFrameIndex on the stack so that they may be loaded by 3598 // dereferencing the result of va_next. 3599 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3600 // Get an existing live-in vreg, or add a new one. 3601 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3602 if (!VReg) 3603 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3604 3605 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3606 SDValue Store = 3607 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3608 MemOps.push_back(Store); 3609 // Increment the address by four for the next argument to store 3610 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3611 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3612 } 3613 3614 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3615 // is set. 3616 // The double arguments are stored to the VarArgsFrameIndex 3617 // on the stack. 3618 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3619 // Get an existing live-in vreg, or add a new one. 3620 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3621 if (!VReg) 3622 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3623 3624 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3625 SDValue Store = 3626 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3627 MemOps.push_back(Store); 3628 // Increment the address by eight for the next argument to store 3629 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3630 PtrVT); 3631 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3632 } 3633 } 3634 3635 if (!MemOps.empty()) 3636 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3637 3638 return Chain; 3639 } 3640 3641 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3642 // value to MVT::i64 and then truncate to the correct register size. 3643 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3644 EVT ObjectVT, SelectionDAG &DAG, 3645 SDValue ArgVal, 3646 const SDLoc &dl) const { 3647 if (Flags.isSExt()) 3648 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3649 DAG.getValueType(ObjectVT)); 3650 else if (Flags.isZExt()) 3651 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3652 DAG.getValueType(ObjectVT)); 3653 3654 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3655 } 3656 3657 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3658 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3659 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3660 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3661 // TODO: add description of PPC stack frame format, or at least some docs. 3662 // 3663 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3664 bool isLittleEndian = Subtarget.isLittleEndian(); 3665 MachineFunction &MF = DAG.getMachineFunction(); 3666 MachineFrameInfo &MFI = MF.getFrameInfo(); 3667 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3668 3669 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3670 "fastcc not supported on varargs functions"); 3671 3672 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3673 // Potential tail calls could cause overwriting of argument stack slots. 3674 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3675 (CallConv == CallingConv::Fast)); 3676 unsigned PtrByteSize = 8; 3677 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3678 3679 static const MCPhysReg GPR[] = { 3680 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3681 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3682 }; 3683 static const MCPhysReg VR[] = { 3684 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3685 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3686 }; 3687 3688 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3689 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3690 const unsigned Num_VR_Regs = array_lengthof(VR); 3691 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3692 3693 // Do a first pass over the arguments to determine whether the ABI 3694 // guarantees that our caller has allocated the parameter save area 3695 // on its stack frame. In the ELFv1 ABI, this is always the case; 3696 // in the ELFv2 ABI, it is true if this is a vararg function or if 3697 // any parameter is located in a stack slot. 3698 3699 bool HasParameterArea = !isELFv2ABI || isVarArg; 3700 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3701 unsigned NumBytes = LinkageSize; 3702 unsigned AvailableFPRs = Num_FPR_Regs; 3703 unsigned AvailableVRs = Num_VR_Regs; 3704 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3705 if (Ins[i].Flags.isNest()) 3706 continue; 3707 3708 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3709 PtrByteSize, LinkageSize, ParamAreaSize, 3710 NumBytes, AvailableFPRs, AvailableVRs, 3711 Subtarget.hasQPX())) 3712 HasParameterArea = true; 3713 } 3714 3715 // Add DAG nodes to load the arguments or copy them out of registers. On 3716 // entry to a function on PPC, the arguments start after the linkage area, 3717 // although the first ones are often in registers. 3718 3719 unsigned ArgOffset = LinkageSize; 3720 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3721 unsigned &QFPR_idx = FPR_idx; 3722 SmallVector<SDValue, 8> MemOps; 3723 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3724 unsigned CurArgIdx = 0; 3725 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3726 SDValue ArgVal; 3727 bool needsLoad = false; 3728 EVT ObjectVT = Ins[ArgNo].VT; 3729 EVT OrigVT = Ins[ArgNo].ArgVT; 3730 unsigned ObjSize = ObjectVT.getStoreSize(); 3731 unsigned ArgSize = ObjSize; 3732 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3733 if (Ins[ArgNo].isOrigArg()) { 3734 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3735 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3736 } 3737 // We re-align the argument offset for each argument, except when using the 3738 // fast calling convention, when we need to make sure we do that only when 3739 // we'll actually use a stack slot. 3740 unsigned CurArgOffset, Align; 3741 auto ComputeArgOffset = [&]() { 3742 /* Respect alignment of argument on the stack. */ 3743 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3744 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3745 CurArgOffset = ArgOffset; 3746 }; 3747 3748 if (CallConv != CallingConv::Fast) { 3749 ComputeArgOffset(); 3750 3751 /* Compute GPR index associated with argument offset. */ 3752 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3753 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3754 } 3755 3756 // FIXME the codegen can be much improved in some cases. 3757 // We do not have to keep everything in memory. 3758 if (Flags.isByVal()) { 3759 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3760 3761 if (CallConv == CallingConv::Fast) 3762 ComputeArgOffset(); 3763 3764 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3765 ObjSize = Flags.getByValSize(); 3766 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3767 // Empty aggregate parameters do not take up registers. Examples: 3768 // struct { } a; 3769 // union { } b; 3770 // int c[0]; 3771 // etc. However, we have to provide a place-holder in InVals, so 3772 // pretend we have an 8-byte item at the current address for that 3773 // purpose. 3774 if (!ObjSize) { 3775 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3776 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3777 InVals.push_back(FIN); 3778 continue; 3779 } 3780 3781 // Create a stack object covering all stack doublewords occupied 3782 // by the argument. If the argument is (fully or partially) on 3783 // the stack, or if the argument is fully in registers but the 3784 // caller has allocated the parameter save anyway, we can refer 3785 // directly to the caller's stack frame. Otherwise, create a 3786 // local copy in our own frame. 3787 int FI; 3788 if (HasParameterArea || 3789 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3790 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3791 else 3792 FI = MFI.CreateStackObject(ArgSize, Align, false); 3793 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3794 3795 // Handle aggregates smaller than 8 bytes. 3796 if (ObjSize < PtrByteSize) { 3797 // The value of the object is its address, which differs from the 3798 // address of the enclosing doubleword on big-endian systems. 3799 SDValue Arg = FIN; 3800 if (!isLittleEndian) { 3801 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3802 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3803 } 3804 InVals.push_back(Arg); 3805 3806 if (GPR_idx != Num_GPR_Regs) { 3807 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3808 FuncInfo->addLiveInAttr(VReg, Flags); 3809 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3810 SDValue Store; 3811 3812 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3813 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3814 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3815 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3816 MachinePointerInfo(&*FuncArg), ObjType); 3817 } else { 3818 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3819 // store the whole register as-is to the parameter save area 3820 // slot. 3821 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3822 MachinePointerInfo(&*FuncArg)); 3823 } 3824 3825 MemOps.push_back(Store); 3826 } 3827 // Whether we copied from a register or not, advance the offset 3828 // into the parameter save area by a full doubleword. 3829 ArgOffset += PtrByteSize; 3830 continue; 3831 } 3832 3833 // The value of the object is its address, which is the address of 3834 // its first stack doubleword. 3835 InVals.push_back(FIN); 3836 3837 // Store whatever pieces of the object are in registers to memory. 3838 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3839 if (GPR_idx == Num_GPR_Regs) 3840 break; 3841 3842 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3843 FuncInfo->addLiveInAttr(VReg, Flags); 3844 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3845 SDValue Addr = FIN; 3846 if (j) { 3847 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3848 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3849 } 3850 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3851 MachinePointerInfo(&*FuncArg, j)); 3852 MemOps.push_back(Store); 3853 ++GPR_idx; 3854 } 3855 ArgOffset += ArgSize; 3856 continue; 3857 } 3858 3859 switch (ObjectVT.getSimpleVT().SimpleTy) { 3860 default: llvm_unreachable("Unhandled argument type!"); 3861 case MVT::i1: 3862 case MVT::i32: 3863 case MVT::i64: 3864 if (Flags.isNest()) { 3865 // The 'nest' parameter, if any, is passed in R11. 3866 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3867 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3868 3869 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3870 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3871 3872 break; 3873 } 3874 3875 // These can be scalar arguments or elements of an integer array type 3876 // passed directly. Clang may use those instead of "byval" aggregate 3877 // types to avoid forcing arguments to memory unnecessarily. 3878 if (GPR_idx != Num_GPR_Regs) { 3879 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3880 FuncInfo->addLiveInAttr(VReg, Flags); 3881 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3882 3883 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3884 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3885 // value to MVT::i64 and then truncate to the correct register size. 3886 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3887 } else { 3888 if (CallConv == CallingConv::Fast) 3889 ComputeArgOffset(); 3890 3891 needsLoad = true; 3892 ArgSize = PtrByteSize; 3893 } 3894 if (CallConv != CallingConv::Fast || needsLoad) 3895 ArgOffset += 8; 3896 break; 3897 3898 case MVT::f32: 3899 case MVT::f64: 3900 // These can be scalar arguments or elements of a float array type 3901 // passed directly. The latter are used to implement ELFv2 homogenous 3902 // float aggregates. 3903 if (FPR_idx != Num_FPR_Regs) { 3904 unsigned VReg; 3905 3906 if (ObjectVT == MVT::f32) 3907 VReg = MF.addLiveIn(FPR[FPR_idx], 3908 Subtarget.hasP8Vector() 3909 ? &PPC::VSSRCRegClass 3910 : &PPC::F4RCRegClass); 3911 else 3912 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3913 ? &PPC::VSFRCRegClass 3914 : &PPC::F8RCRegClass); 3915 3916 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3917 ++FPR_idx; 3918 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3919 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3920 // once we support fp <-> gpr moves. 3921 3922 // This can only ever happen in the presence of f32 array types, 3923 // since otherwise we never run out of FPRs before running out 3924 // of GPRs. 3925 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3926 FuncInfo->addLiveInAttr(VReg, Flags); 3927 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3928 3929 if (ObjectVT == MVT::f32) { 3930 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3931 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3932 DAG.getConstant(32, dl, MVT::i32)); 3933 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3934 } 3935 3936 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3937 } else { 3938 if (CallConv == CallingConv::Fast) 3939 ComputeArgOffset(); 3940 3941 needsLoad = true; 3942 } 3943 3944 // When passing an array of floats, the array occupies consecutive 3945 // space in the argument area; only round up to the next doubleword 3946 // at the end of the array. Otherwise, each float takes 8 bytes. 3947 if (CallConv != CallingConv::Fast || needsLoad) { 3948 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3949 ArgOffset += ArgSize; 3950 if (Flags.isInConsecutiveRegsLast()) 3951 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3952 } 3953 break; 3954 case MVT::v4f32: 3955 case MVT::v4i32: 3956 case MVT::v8i16: 3957 case MVT::v16i8: 3958 case MVT::v2f64: 3959 case MVT::v2i64: 3960 case MVT::v1i128: 3961 case MVT::f128: 3962 if (!Subtarget.hasQPX()) { 3963 // These can be scalar arguments or elements of a vector array type 3964 // passed directly. The latter are used to implement ELFv2 homogenous 3965 // vector aggregates. 3966 if (VR_idx != Num_VR_Regs) { 3967 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3968 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3969 ++VR_idx; 3970 } else { 3971 if (CallConv == CallingConv::Fast) 3972 ComputeArgOffset(); 3973 needsLoad = true; 3974 } 3975 if (CallConv != CallingConv::Fast || needsLoad) 3976 ArgOffset += 16; 3977 break; 3978 } // not QPX 3979 3980 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 3981 "Invalid QPX parameter type"); 3982 LLVM_FALLTHROUGH; 3983 3984 case MVT::v4f64: 3985 case MVT::v4i1: 3986 // QPX vectors are treated like their scalar floating-point subregisters 3987 // (except that they're larger). 3988 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 3989 if (QFPR_idx != Num_QFPR_Regs) { 3990 const TargetRegisterClass *RC; 3991 switch (ObjectVT.getSimpleVT().SimpleTy) { 3992 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 3993 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 3994 default: RC = &PPC::QBRCRegClass; break; 3995 } 3996 3997 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 3998 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3999 ++QFPR_idx; 4000 } else { 4001 if (CallConv == CallingConv::Fast) 4002 ComputeArgOffset(); 4003 needsLoad = true; 4004 } 4005 if (CallConv != CallingConv::Fast || needsLoad) 4006 ArgOffset += Sz; 4007 break; 4008 } 4009 4010 // We need to load the argument to a virtual register if we determined 4011 // above that we ran out of physical registers of the appropriate type. 4012 if (needsLoad) { 4013 if (ObjSize < ArgSize && !isLittleEndian) 4014 CurArgOffset += ArgSize - ObjSize; 4015 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4016 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4017 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4018 } 4019 4020 InVals.push_back(ArgVal); 4021 } 4022 4023 // Area that is at least reserved in the caller of this function. 4024 unsigned MinReservedArea; 4025 if (HasParameterArea) 4026 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4027 else 4028 MinReservedArea = LinkageSize; 4029 4030 // Set the size that is at least reserved in caller of this function. Tail 4031 // call optimized functions' reserved stack space needs to be aligned so that 4032 // taking the difference between two stack areas will result in an aligned 4033 // stack. 4034 MinReservedArea = 4035 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4036 FuncInfo->setMinReservedArea(MinReservedArea); 4037 4038 // If the function takes variable number of arguments, make a frame index for 4039 // the start of the first vararg value... for expansion of llvm.va_start. 4040 if (isVarArg) { 4041 int Depth = ArgOffset; 4042 4043 FuncInfo->setVarArgsFrameIndex( 4044 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4045 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4046 4047 // If this function is vararg, store any remaining integer argument regs 4048 // to their spots on the stack so that they may be loaded by dereferencing 4049 // the result of va_next. 4050 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4051 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4052 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4053 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4054 SDValue Store = 4055 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4056 MemOps.push_back(Store); 4057 // Increment the address by four for the next argument to store 4058 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4059 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4060 } 4061 } 4062 4063 if (!MemOps.empty()) 4064 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4065 4066 return Chain; 4067 } 4068 4069 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4070 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4071 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4072 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4073 // TODO: add description of PPC stack frame format, or at least some docs. 4074 // 4075 MachineFunction &MF = DAG.getMachineFunction(); 4076 MachineFrameInfo &MFI = MF.getFrameInfo(); 4077 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4078 4079 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4080 bool isPPC64 = PtrVT == MVT::i64; 4081 // Potential tail calls could cause overwriting of argument stack slots. 4082 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4083 (CallConv == CallingConv::Fast)); 4084 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4085 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4086 unsigned ArgOffset = LinkageSize; 4087 // Area that is at least reserved in caller of this function. 4088 unsigned MinReservedArea = ArgOffset; 4089 4090 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4091 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4092 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4093 }; 4094 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4095 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4096 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4097 }; 4098 static const MCPhysReg VR[] = { 4099 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4100 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4101 }; 4102 4103 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4104 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4105 const unsigned Num_VR_Regs = array_lengthof( VR); 4106 4107 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4108 4109 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4110 4111 // In 32-bit non-varargs functions, the stack space for vectors is after the 4112 // stack space for non-vectors. We do not use this space unless we have 4113 // too many vectors to fit in registers, something that only occurs in 4114 // constructed examples:), but we have to walk the arglist to figure 4115 // that out...for the pathological case, compute VecArgOffset as the 4116 // start of the vector parameter area. Computing VecArgOffset is the 4117 // entire point of the following loop. 4118 unsigned VecArgOffset = ArgOffset; 4119 if (!isVarArg && !isPPC64) { 4120 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4121 ++ArgNo) { 4122 EVT ObjectVT = Ins[ArgNo].VT; 4123 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4124 4125 if (Flags.isByVal()) { 4126 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4127 unsigned ObjSize = Flags.getByValSize(); 4128 unsigned ArgSize = 4129 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4130 VecArgOffset += ArgSize; 4131 continue; 4132 } 4133 4134 switch(ObjectVT.getSimpleVT().SimpleTy) { 4135 default: llvm_unreachable("Unhandled argument type!"); 4136 case MVT::i1: 4137 case MVT::i32: 4138 case MVT::f32: 4139 VecArgOffset += 4; 4140 break; 4141 case MVT::i64: // PPC64 4142 case MVT::f64: 4143 // FIXME: We are guaranteed to be !isPPC64 at this point. 4144 // Does MVT::i64 apply? 4145 VecArgOffset += 8; 4146 break; 4147 case MVT::v4f32: 4148 case MVT::v4i32: 4149 case MVT::v8i16: 4150 case MVT::v16i8: 4151 // Nothing to do, we're only looking at Nonvector args here. 4152 break; 4153 } 4154 } 4155 } 4156 // We've found where the vector parameter area in memory is. Skip the 4157 // first 12 parameters; these don't use that memory. 4158 VecArgOffset = ((VecArgOffset+15)/16)*16; 4159 VecArgOffset += 12*16; 4160 4161 // Add DAG nodes to load the arguments or copy them out of registers. On 4162 // entry to a function on PPC, the arguments start after the linkage area, 4163 // although the first ones are often in registers. 4164 4165 SmallVector<SDValue, 8> MemOps; 4166 unsigned nAltivecParamsAtEnd = 0; 4167 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4168 unsigned CurArgIdx = 0; 4169 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4170 SDValue ArgVal; 4171 bool needsLoad = false; 4172 EVT ObjectVT = Ins[ArgNo].VT; 4173 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4174 unsigned ArgSize = ObjSize; 4175 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4176 if (Ins[ArgNo].isOrigArg()) { 4177 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4178 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4179 } 4180 unsigned CurArgOffset = ArgOffset; 4181 4182 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4183 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4184 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4185 if (isVarArg || isPPC64) { 4186 MinReservedArea = ((MinReservedArea+15)/16)*16; 4187 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4188 Flags, 4189 PtrByteSize); 4190 } else nAltivecParamsAtEnd++; 4191 } else 4192 // Calculate min reserved area. 4193 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4194 Flags, 4195 PtrByteSize); 4196 4197 // FIXME the codegen can be much improved in some cases. 4198 // We do not have to keep everything in memory. 4199 if (Flags.isByVal()) { 4200 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4201 4202 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4203 ObjSize = Flags.getByValSize(); 4204 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4205 // Objects of size 1 and 2 are right justified, everything else is 4206 // left justified. This means the memory address is adjusted forwards. 4207 if (ObjSize==1 || ObjSize==2) { 4208 CurArgOffset = CurArgOffset + (4 - ObjSize); 4209 } 4210 // The value of the object is its address. 4211 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4212 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4213 InVals.push_back(FIN); 4214 if (ObjSize==1 || ObjSize==2) { 4215 if (GPR_idx != Num_GPR_Regs) { 4216 unsigned VReg; 4217 if (isPPC64) 4218 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4219 else 4220 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4221 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4222 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4223 SDValue Store = 4224 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4225 MachinePointerInfo(&*FuncArg), ObjType); 4226 MemOps.push_back(Store); 4227 ++GPR_idx; 4228 } 4229 4230 ArgOffset += PtrByteSize; 4231 4232 continue; 4233 } 4234 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4235 // Store whatever pieces of the object are in registers 4236 // to memory. ArgOffset will be the address of the beginning 4237 // of the object. 4238 if (GPR_idx != Num_GPR_Regs) { 4239 unsigned VReg; 4240 if (isPPC64) 4241 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4242 else 4243 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4244 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4245 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4246 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4247 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4248 MachinePointerInfo(&*FuncArg, j)); 4249 MemOps.push_back(Store); 4250 ++GPR_idx; 4251 ArgOffset += PtrByteSize; 4252 } else { 4253 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4254 break; 4255 } 4256 } 4257 continue; 4258 } 4259 4260 switch (ObjectVT.getSimpleVT().SimpleTy) { 4261 default: llvm_unreachable("Unhandled argument type!"); 4262 case MVT::i1: 4263 case MVT::i32: 4264 if (!isPPC64) { 4265 if (GPR_idx != Num_GPR_Regs) { 4266 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4267 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4268 4269 if (ObjectVT == MVT::i1) 4270 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4271 4272 ++GPR_idx; 4273 } else { 4274 needsLoad = true; 4275 ArgSize = PtrByteSize; 4276 } 4277 // All int arguments reserve stack space in the Darwin ABI. 4278 ArgOffset += PtrByteSize; 4279 break; 4280 } 4281 LLVM_FALLTHROUGH; 4282 case MVT::i64: // PPC64 4283 if (GPR_idx != Num_GPR_Regs) { 4284 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4285 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4286 4287 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4288 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4289 // value to MVT::i64 and then truncate to the correct register size. 4290 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4291 4292 ++GPR_idx; 4293 } else { 4294 needsLoad = true; 4295 ArgSize = PtrByteSize; 4296 } 4297 // All int arguments reserve stack space in the Darwin ABI. 4298 ArgOffset += 8; 4299 break; 4300 4301 case MVT::f32: 4302 case MVT::f64: 4303 // Every 4 bytes of argument space consumes one of the GPRs available for 4304 // argument passing. 4305 if (GPR_idx != Num_GPR_Regs) { 4306 ++GPR_idx; 4307 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4308 ++GPR_idx; 4309 } 4310 if (FPR_idx != Num_FPR_Regs) { 4311 unsigned VReg; 4312 4313 if (ObjectVT == MVT::f32) 4314 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4315 else 4316 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4317 4318 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4319 ++FPR_idx; 4320 } else { 4321 needsLoad = true; 4322 } 4323 4324 // All FP arguments reserve stack space in the Darwin ABI. 4325 ArgOffset += isPPC64 ? 8 : ObjSize; 4326 break; 4327 case MVT::v4f32: 4328 case MVT::v4i32: 4329 case MVT::v8i16: 4330 case MVT::v16i8: 4331 // Note that vector arguments in registers don't reserve stack space, 4332 // except in varargs functions. 4333 if (VR_idx != Num_VR_Regs) { 4334 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4335 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4336 if (isVarArg) { 4337 while ((ArgOffset % 16) != 0) { 4338 ArgOffset += PtrByteSize; 4339 if (GPR_idx != Num_GPR_Regs) 4340 GPR_idx++; 4341 } 4342 ArgOffset += 16; 4343 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4344 } 4345 ++VR_idx; 4346 } else { 4347 if (!isVarArg && !isPPC64) { 4348 // Vectors go after all the nonvectors. 4349 CurArgOffset = VecArgOffset; 4350 VecArgOffset += 16; 4351 } else { 4352 // Vectors are aligned. 4353 ArgOffset = ((ArgOffset+15)/16)*16; 4354 CurArgOffset = ArgOffset; 4355 ArgOffset += 16; 4356 } 4357 needsLoad = true; 4358 } 4359 break; 4360 } 4361 4362 // We need to load the argument to a virtual register if we determined above 4363 // that we ran out of physical registers of the appropriate type. 4364 if (needsLoad) { 4365 int FI = MFI.CreateFixedObject(ObjSize, 4366 CurArgOffset + (ArgSize - ObjSize), 4367 isImmutable); 4368 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4369 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4370 } 4371 4372 InVals.push_back(ArgVal); 4373 } 4374 4375 // Allow for Altivec parameters at the end, if needed. 4376 if (nAltivecParamsAtEnd) { 4377 MinReservedArea = ((MinReservedArea+15)/16)*16; 4378 MinReservedArea += 16*nAltivecParamsAtEnd; 4379 } 4380 4381 // Area that is at least reserved in the caller of this function. 4382 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4383 4384 // Set the size that is at least reserved in caller of this function. Tail 4385 // call optimized functions' reserved stack space needs to be aligned so that 4386 // taking the difference between two stack areas will result in an aligned 4387 // stack. 4388 MinReservedArea = 4389 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4390 FuncInfo->setMinReservedArea(MinReservedArea); 4391 4392 // If the function takes variable number of arguments, make a frame index for 4393 // the start of the first vararg value... for expansion of llvm.va_start. 4394 if (isVarArg) { 4395 int Depth = ArgOffset; 4396 4397 FuncInfo->setVarArgsFrameIndex( 4398 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4399 Depth, true)); 4400 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4401 4402 // If this function is vararg, store any remaining integer argument regs 4403 // to their spots on the stack so that they may be loaded by dereferencing 4404 // the result of va_next. 4405 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4406 unsigned VReg; 4407 4408 if (isPPC64) 4409 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4410 else 4411 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4412 4413 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4414 SDValue Store = 4415 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4416 MemOps.push_back(Store); 4417 // Increment the address by four for the next argument to store 4418 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4419 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4420 } 4421 } 4422 4423 if (!MemOps.empty()) 4424 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4425 4426 return Chain; 4427 } 4428 4429 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4430 /// adjusted to accommodate the arguments for the tailcall. 4431 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4432 unsigned ParamSize) { 4433 4434 if (!isTailCall) return 0; 4435 4436 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4437 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4438 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4439 // Remember only if the new adjustment is bigger. 4440 if (SPDiff < FI->getTailCallSPDelta()) 4441 FI->setTailCallSPDelta(SPDiff); 4442 4443 return SPDiff; 4444 } 4445 4446 static bool isFunctionGlobalAddress(SDValue Callee); 4447 4448 static bool 4449 callsShareTOCBase(const Function *Caller, SDValue Callee, 4450 const TargetMachine &TM) { 4451 // If !G, Callee can be an external symbol. 4452 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4453 if (!G) 4454 return false; 4455 4456 // The medium and large code models are expected to provide a sufficiently 4457 // large TOC to provide all data addressing needs of a module with a 4458 // single TOC. Since each module will be addressed with a single TOC then we 4459 // only need to check that caller and callee don't cross dso boundaries. 4460 if (CodeModel::Medium == TM.getCodeModel() || 4461 CodeModel::Large == TM.getCodeModel()) 4462 return TM.shouldAssumeDSOLocal(*Caller->getParent(), G->getGlobal()); 4463 4464 // Otherwise we need to ensure callee and caller are in the same section, 4465 // since the linker may allocate multiple TOCs, and we don't know which 4466 // sections will belong to the same TOC base. 4467 4468 const GlobalValue *GV = G->getGlobal(); 4469 if (!GV->isStrongDefinitionForLinker()) 4470 return false; 4471 4472 // Any explicitly-specified sections and section prefixes must also match. 4473 // Also, if we're using -ffunction-sections, then each function is always in 4474 // a different section (the same is true for COMDAT functions). 4475 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4476 GV->getSection() != Caller->getSection()) 4477 return false; 4478 if (const auto *F = dyn_cast<Function>(GV)) { 4479 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4480 return false; 4481 } 4482 4483 // If the callee might be interposed, then we can't assume the ultimate call 4484 // target will be in the same section. Even in cases where we can assume that 4485 // interposition won't happen, in any case where the linker might insert a 4486 // stub to allow for interposition, we must generate code as though 4487 // interposition might occur. To understand why this matters, consider a 4488 // situation where: a -> b -> c where the arrows indicate calls. b and c are 4489 // in the same section, but a is in a different module (i.e. has a different 4490 // TOC base pointer). If the linker allows for interposition between b and c, 4491 // then it will generate a stub for the call edge between b and c which will 4492 // save the TOC pointer into the designated stack slot allocated by b. If we 4493 // return true here, and therefore allow a tail call between b and c, that 4494 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base 4495 // pointer into the stack slot allocated by a (where the a -> b stub saved 4496 // a's TOC base pointer). If we're not considering a tail call, but rather, 4497 // whether a nop is needed after the call instruction in b, because the linker 4498 // will insert a stub, it might complain about a missing nop if we omit it 4499 // (although many don't complain in this case). 4500 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4501 return false; 4502 4503 return true; 4504 } 4505 4506 static bool 4507 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4508 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4509 assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64()); 4510 4511 const unsigned PtrByteSize = 8; 4512 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4513 4514 static const MCPhysReg GPR[] = { 4515 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4516 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4517 }; 4518 static const MCPhysReg VR[] = { 4519 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4520 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4521 }; 4522 4523 const unsigned NumGPRs = array_lengthof(GPR); 4524 const unsigned NumFPRs = 13; 4525 const unsigned NumVRs = array_lengthof(VR); 4526 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4527 4528 unsigned NumBytes = LinkageSize; 4529 unsigned AvailableFPRs = NumFPRs; 4530 unsigned AvailableVRs = NumVRs; 4531 4532 for (const ISD::OutputArg& Param : Outs) { 4533 if (Param.Flags.isNest()) continue; 4534 4535 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4536 PtrByteSize, LinkageSize, ParamAreaSize, 4537 NumBytes, AvailableFPRs, AvailableVRs, 4538 Subtarget.hasQPX())) 4539 return true; 4540 } 4541 return false; 4542 } 4543 4544 static bool 4545 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) { 4546 if (CS.arg_size() != CallerFn->arg_size()) 4547 return false; 4548 4549 ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin(); 4550 ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end(); 4551 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4552 4553 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4554 const Value* CalleeArg = *CalleeArgIter; 4555 const Value* CallerArg = &(*CallerArgIter); 4556 if (CalleeArg == CallerArg) 4557 continue; 4558 4559 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4560 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4561 // } 4562 // 1st argument of callee is undef and has the same type as caller. 4563 if (CalleeArg->getType() == CallerArg->getType() && 4564 isa<UndefValue>(CalleeArg)) 4565 continue; 4566 4567 return false; 4568 } 4569 4570 return true; 4571 } 4572 4573 // Returns true if TCO is possible between the callers and callees 4574 // calling conventions. 4575 static bool 4576 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4577 CallingConv::ID CalleeCC) { 4578 // Tail calls are possible with fastcc and ccc. 4579 auto isTailCallableCC = [] (CallingConv::ID CC){ 4580 return CC == CallingConv::C || CC == CallingConv::Fast; 4581 }; 4582 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4583 return false; 4584 4585 // We can safely tail call both fastcc and ccc callees from a c calling 4586 // convention caller. If the caller is fastcc, we may have less stack space 4587 // than a non-fastcc caller with the same signature so disable tail-calls in 4588 // that case. 4589 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4590 } 4591 4592 bool 4593 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4594 SDValue Callee, 4595 CallingConv::ID CalleeCC, 4596 ImmutableCallSite CS, 4597 bool isVarArg, 4598 const SmallVectorImpl<ISD::OutputArg> &Outs, 4599 const SmallVectorImpl<ISD::InputArg> &Ins, 4600 SelectionDAG& DAG) const { 4601 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4602 4603 if (DisableSCO && !TailCallOpt) return false; 4604 4605 // Variadic argument functions are not supported. 4606 if (isVarArg) return false; 4607 4608 auto &Caller = DAG.getMachineFunction().getFunction(); 4609 // Check that the calling conventions are compatible for tco. 4610 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4611 return false; 4612 4613 // Caller contains any byval parameter is not supported. 4614 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4615 return false; 4616 4617 // Callee contains any byval parameter is not supported, too. 4618 // Note: This is a quick work around, because in some cases, e.g. 4619 // caller's stack size > callee's stack size, we are still able to apply 4620 // sibling call optimization. For example, gcc is able to do SCO for caller1 4621 // in the following example, but not for caller2. 4622 // struct test { 4623 // long int a; 4624 // char ary[56]; 4625 // } gTest; 4626 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4627 // b->a = v.a; 4628 // return 0; 4629 // } 4630 // void caller1(struct test a, struct test c, struct test *b) { 4631 // callee(gTest, b); } 4632 // void caller2(struct test *b) { callee(gTest, b); } 4633 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4634 return false; 4635 4636 // If callee and caller use different calling conventions, we cannot pass 4637 // parameters on stack since offsets for the parameter area may be different. 4638 if (Caller.getCallingConv() != CalleeCC && 4639 needStackSlotPassParameters(Subtarget, Outs)) 4640 return false; 4641 4642 // No TCO/SCO on indirect call because Caller have to restore its TOC 4643 if (!isFunctionGlobalAddress(Callee) && 4644 !isa<ExternalSymbolSDNode>(Callee)) 4645 return false; 4646 4647 // If the caller and callee potentially have different TOC bases then we 4648 // cannot tail call since we need to restore the TOC pointer after the call. 4649 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4650 if (!callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4651 return false; 4652 4653 // TCO allows altering callee ABI, so we don't have to check further. 4654 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4655 return true; 4656 4657 if (DisableSCO) return false; 4658 4659 // If callee use the same argument list that caller is using, then we can 4660 // apply SCO on this case. If it is not, then we need to check if callee needs 4661 // stack for passing arguments. 4662 if (!hasSameArgumentList(&Caller, CS) && 4663 needStackSlotPassParameters(Subtarget, Outs)) { 4664 return false; 4665 } 4666 4667 return true; 4668 } 4669 4670 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4671 /// for tail call optimization. Targets which want to do tail call 4672 /// optimization should implement this function. 4673 bool 4674 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4675 CallingConv::ID CalleeCC, 4676 bool isVarArg, 4677 const SmallVectorImpl<ISD::InputArg> &Ins, 4678 SelectionDAG& DAG) const { 4679 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4680 return false; 4681 4682 // Variable argument functions are not supported. 4683 if (isVarArg) 4684 return false; 4685 4686 MachineFunction &MF = DAG.getMachineFunction(); 4687 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4688 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4689 // Functions containing by val parameters are not supported. 4690 for (unsigned i = 0; i != Ins.size(); i++) { 4691 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4692 if (Flags.isByVal()) return false; 4693 } 4694 4695 // Non-PIC/GOT tail calls are supported. 4696 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4697 return true; 4698 4699 // At the moment we can only do local tail calls (in same module, hidden 4700 // or protected) if we are generating PIC. 4701 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4702 return G->getGlobal()->hasHiddenVisibility() 4703 || G->getGlobal()->hasProtectedVisibility(); 4704 } 4705 4706 return false; 4707 } 4708 4709 /// isCallCompatibleAddress - Return the immediate to use if the specified 4710 /// 32-bit value is representable in the immediate field of a BxA instruction. 4711 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4712 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4713 if (!C) return nullptr; 4714 4715 int Addr = C->getZExtValue(); 4716 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4717 SignExtend32<26>(Addr) != Addr) 4718 return nullptr; // Top 6 bits have to be sext of immediate. 4719 4720 return DAG 4721 .getConstant( 4722 (int)C->getZExtValue() >> 2, SDLoc(Op), 4723 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4724 .getNode(); 4725 } 4726 4727 namespace { 4728 4729 struct TailCallArgumentInfo { 4730 SDValue Arg; 4731 SDValue FrameIdxOp; 4732 int FrameIdx = 0; 4733 4734 TailCallArgumentInfo() = default; 4735 }; 4736 4737 } // end anonymous namespace 4738 4739 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4740 static void StoreTailCallArgumentsToStackSlot( 4741 SelectionDAG &DAG, SDValue Chain, 4742 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4743 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4744 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4745 SDValue Arg = TailCallArgs[i].Arg; 4746 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4747 int FI = TailCallArgs[i].FrameIdx; 4748 // Store relative to framepointer. 4749 MemOpChains.push_back(DAG.getStore( 4750 Chain, dl, Arg, FIN, 4751 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4752 } 4753 } 4754 4755 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4756 /// the appropriate stack slot for the tail call optimized function call. 4757 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4758 SDValue OldRetAddr, SDValue OldFP, 4759 int SPDiff, const SDLoc &dl) { 4760 if (SPDiff) { 4761 // Calculate the new stack slot for the return address. 4762 MachineFunction &MF = DAG.getMachineFunction(); 4763 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4764 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4765 bool isPPC64 = Subtarget.isPPC64(); 4766 int SlotSize = isPPC64 ? 8 : 4; 4767 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4768 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4769 NewRetAddrLoc, true); 4770 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4771 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4772 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4773 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4774 4775 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 4776 // slot as the FP is never overwritten. 4777 if (Subtarget.isDarwinABI()) { 4778 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 4779 int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc, 4780 true); 4781 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 4782 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 4783 MachinePointerInfo::getFixedStack( 4784 DAG.getMachineFunction(), NewFPIdx)); 4785 } 4786 } 4787 return Chain; 4788 } 4789 4790 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4791 /// the position of the argument. 4792 static void 4793 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4794 SDValue Arg, int SPDiff, unsigned ArgOffset, 4795 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4796 int Offset = ArgOffset + SPDiff; 4797 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4798 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4799 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4800 SDValue FIN = DAG.getFrameIndex(FI, VT); 4801 TailCallArgumentInfo Info; 4802 Info.Arg = Arg; 4803 Info.FrameIdxOp = FIN; 4804 Info.FrameIdx = FI; 4805 TailCallArguments.push_back(Info); 4806 } 4807 4808 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4809 /// stack slot. Returns the chain as result and the loaded frame pointers in 4810 /// LROpOut/FPOpout. Used when tail calling. 4811 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4812 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4813 SDValue &FPOpOut, const SDLoc &dl) const { 4814 if (SPDiff) { 4815 // Load the LR and FP stack slot for later adjusting. 4816 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4817 LROpOut = getReturnAddrFrameIndex(DAG); 4818 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4819 Chain = SDValue(LROpOut.getNode(), 1); 4820 4821 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 4822 // slot as the FP is never overwritten. 4823 if (Subtarget.isDarwinABI()) { 4824 FPOpOut = getFramePointerFrameIndex(DAG); 4825 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo()); 4826 Chain = SDValue(FPOpOut.getNode(), 1); 4827 } 4828 } 4829 return Chain; 4830 } 4831 4832 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4833 /// by "Src" to address "Dst" of size "Size". Alignment information is 4834 /// specified by the specific parameter attribute. The copy will be passed as 4835 /// a byval function parameter. 4836 /// Sometimes what we are copying is the end of a larger object, the part that 4837 /// does not fit in registers. 4838 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4839 SDValue Chain, ISD::ArgFlagsTy Flags, 4840 SelectionDAG &DAG, const SDLoc &dl) { 4841 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4842 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4843 false, false, false, MachinePointerInfo(), 4844 MachinePointerInfo()); 4845 } 4846 4847 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4848 /// tail calls. 4849 static void LowerMemOpCallTo( 4850 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4851 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4852 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4853 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4854 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4855 if (!isTailCall) { 4856 if (isVector) { 4857 SDValue StackPtr; 4858 if (isPPC64) 4859 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4860 else 4861 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4862 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4863 DAG.getConstant(ArgOffset, dl, PtrVT)); 4864 } 4865 MemOpChains.push_back( 4866 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4867 // Calculate and remember argument location. 4868 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4869 TailCallArguments); 4870 } 4871 4872 static void 4873 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4874 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4875 SDValue FPOp, 4876 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4877 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4878 // might overwrite each other in case of tail call optimization. 4879 SmallVector<SDValue, 8> MemOpChains2; 4880 // Do not flag preceding copytoreg stuff together with the following stuff. 4881 InFlag = SDValue(); 4882 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4883 MemOpChains2, dl); 4884 if (!MemOpChains2.empty()) 4885 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4886 4887 // Store the return address to the appropriate stack slot. 4888 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4889 4890 // Emit callseq_end just before tailcall node. 4891 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4892 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4893 InFlag = Chain.getValue(1); 4894 } 4895 4896 // Is this global address that of a function that can be called by name? (as 4897 // opposed to something that must hold a descriptor for an indirect call). 4898 static bool isFunctionGlobalAddress(SDValue Callee) { 4899 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4900 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4901 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4902 return false; 4903 4904 return G->getGlobal()->getValueType()->isFunctionTy(); 4905 } 4906 4907 return false; 4908 } 4909 4910 static unsigned 4911 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain, 4912 SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall, 4913 bool isPatchPoint, bool hasNest, 4914 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 4915 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4916 ImmutableCallSite CS, const PPCSubtarget &Subtarget) { 4917 bool isPPC64 = Subtarget.isPPC64(); 4918 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4919 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4920 4921 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4922 NodeTys.push_back(MVT::Other); // Returns a chain 4923 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4924 4925 unsigned CallOpc = PPCISD::CALL; 4926 4927 bool needIndirectCall = true; 4928 if (!isSVR4ABI || !isPPC64) 4929 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4930 // If this is an absolute destination address, use the munged value. 4931 Callee = SDValue(Dest, 0); 4932 needIndirectCall = false; 4933 } 4934 4935 // PC-relative references to external symbols should go through $stub, unless 4936 // we're building with the leopard linker or later, which automatically 4937 // synthesizes these stubs. 4938 const TargetMachine &TM = DAG.getTarget(); 4939 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 4940 const GlobalValue *GV = nullptr; 4941 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4942 GV = G->getGlobal(); 4943 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV); 4944 bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64; 4945 4946 if (isFunctionGlobalAddress(Callee)) { 4947 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4948 // A call to a TLS address is actually an indirect call to a 4949 // thread-specific pointer. 4950 unsigned OpFlags = 0; 4951 if (UsePlt) 4952 OpFlags = PPCII::MO_PLT; 4953 4954 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4955 // every direct call is) turn it into a TargetGlobalAddress / 4956 // TargetExternalSymbol node so that legalize doesn't hack it. 4957 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4958 Callee.getValueType(), 0, OpFlags); 4959 needIndirectCall = false; 4960 } 4961 4962 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4963 unsigned char OpFlags = 0; 4964 4965 if (UsePlt) 4966 OpFlags = PPCII::MO_PLT; 4967 4968 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4969 OpFlags); 4970 needIndirectCall = false; 4971 } 4972 4973 if (isPatchPoint) { 4974 // We'll form an invalid direct call when lowering a patchpoint; the full 4975 // sequence for an indirect call is complicated, and many of the 4976 // instructions introduced might have side effects (and, thus, can't be 4977 // removed later). The call itself will be removed as soon as the 4978 // argument/return lowering is complete, so the fact that it has the wrong 4979 // kind of operands should not really matter. 4980 needIndirectCall = false; 4981 } 4982 4983 if (needIndirectCall) { 4984 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 4985 // to do the call, we can't use PPCISD::CALL. 4986 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 4987 4988 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 4989 // Function pointers in the 64-bit SVR4 ABI do not point to the function 4990 // entry point, but to the function descriptor (the function entry point 4991 // address is part of the function descriptor though). 4992 // The function descriptor is a three doubleword structure with the 4993 // following fields: function entry point, TOC base address and 4994 // environment pointer. 4995 // Thus for a call through a function pointer, the following actions need 4996 // to be performed: 4997 // 1. Save the TOC of the caller in the TOC save area of its stack 4998 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 4999 // 2. Load the address of the function entry point from the function 5000 // descriptor. 5001 // 3. Load the TOC of the callee from the function descriptor into r2. 5002 // 4. Load the environment pointer from the function descriptor into 5003 // r11. 5004 // 5. Branch to the function entry point address. 5005 // 6. On return of the callee, the TOC of the caller needs to be 5006 // restored (this is done in FinishCall()). 5007 // 5008 // The loads are scheduled at the beginning of the call sequence, and the 5009 // register copies are flagged together to ensure that no other 5010 // operations can be scheduled in between. E.g. without flagging the 5011 // copies together, a TOC access in the caller could be scheduled between 5012 // the assignment of the callee TOC and the branch to the callee, which 5013 // results in the TOC access going through the TOC of the callee instead 5014 // of going through the TOC of the caller, which leads to incorrect code. 5015 5016 // Load the address of the function entry point from the function 5017 // descriptor. 5018 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 5019 if (LDChain.getValueType() == MVT::Glue) 5020 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 5021 5022 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5023 ? (MachineMemOperand::MODereferenceable | 5024 MachineMemOperand::MOInvariant) 5025 : MachineMemOperand::MONone; 5026 5027 MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr); 5028 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 5029 /* Alignment = */ 8, MMOFlags); 5030 5031 // Load environment pointer into r11. 5032 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 5033 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 5034 SDValue LoadEnvPtr = 5035 DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16), 5036 /* Alignment = */ 8, MMOFlags); 5037 5038 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 5039 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 5040 SDValue TOCPtr = 5041 DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8), 5042 /* Alignment = */ 8, MMOFlags); 5043 5044 setUsesTOCBasePtr(DAG); 5045 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 5046 InFlag); 5047 Chain = TOCVal.getValue(0); 5048 InFlag = TOCVal.getValue(1); 5049 5050 // If the function call has an explicit 'nest' parameter, it takes the 5051 // place of the environment pointer. 5052 if (!hasNest) { 5053 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 5054 InFlag); 5055 5056 Chain = EnvVal.getValue(0); 5057 InFlag = EnvVal.getValue(1); 5058 } 5059 5060 MTCTROps[0] = Chain; 5061 MTCTROps[1] = LoadFuncPtr; 5062 MTCTROps[2] = InFlag; 5063 } 5064 5065 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 5066 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 5067 InFlag = Chain.getValue(1); 5068 5069 NodeTys.clear(); 5070 NodeTys.push_back(MVT::Other); 5071 NodeTys.push_back(MVT::Glue); 5072 Ops.push_back(Chain); 5073 CallOpc = PPCISD::BCTRL; 5074 Callee.setNode(nullptr); 5075 // Add use of X11 (holding environment pointer) 5076 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest) 5077 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 5078 // Add CTR register as callee so a bctr can be emitted later. 5079 if (isTailCall) 5080 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 5081 } 5082 5083 // If this is a direct call, pass the chain and the callee. 5084 if (Callee.getNode()) { 5085 Ops.push_back(Chain); 5086 Ops.push_back(Callee); 5087 } 5088 // If this is a tail call add stack pointer delta. 5089 if (isTailCall) 5090 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5091 5092 // Add argument registers to the end of the list so that they are known live 5093 // into the call. 5094 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5095 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5096 RegsToPass[i].second.getValueType())); 5097 5098 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live 5099 // into the call. 5100 // We do need to reserve X2 to appease the verifier for the PATCHPOINT. 5101 if (isSVR4ABI && isPPC64) { 5102 setUsesTOCBasePtr(DAG); 5103 5104 // We cannot add X2 as an operand here for PATCHPOINT, because there is no 5105 // way to mark dependencies as implicit here. We will add the X2 dependency 5106 // in EmitInstrWithCustomInserter. 5107 if (!isPatchPoint) 5108 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT)); 5109 } 5110 5111 return CallOpc; 5112 } 5113 5114 SDValue PPCTargetLowering::LowerCallResult( 5115 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5116 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5117 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5118 SmallVector<CCValAssign, 16> RVLocs; 5119 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5120 *DAG.getContext()); 5121 5122 CCRetInfo.AnalyzeCallResult( 5123 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5124 ? RetCC_PPC_Cold 5125 : RetCC_PPC); 5126 5127 // Copy all of the result registers out of their specified physreg. 5128 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5129 CCValAssign &VA = RVLocs[i]; 5130 assert(VA.isRegLoc() && "Can only return in registers!"); 5131 5132 SDValue Val = DAG.getCopyFromReg(Chain, dl, 5133 VA.getLocReg(), VA.getLocVT(), InFlag); 5134 Chain = Val.getValue(1); 5135 InFlag = Val.getValue(2); 5136 5137 switch (VA.getLocInfo()) { 5138 default: llvm_unreachable("Unknown loc info!"); 5139 case CCValAssign::Full: break; 5140 case CCValAssign::AExt: 5141 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5142 break; 5143 case CCValAssign::ZExt: 5144 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5145 DAG.getValueType(VA.getValVT())); 5146 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5147 break; 5148 case CCValAssign::SExt: 5149 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5150 DAG.getValueType(VA.getValVT())); 5151 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5152 break; 5153 } 5154 5155 InVals.push_back(Val); 5156 } 5157 5158 return Chain; 5159 } 5160 5161 SDValue PPCTargetLowering::FinishCall( 5162 CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg, 5163 bool isPatchPoint, bool hasNest, SelectionDAG &DAG, 5164 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag, 5165 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5166 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5167 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const { 5168 std::vector<EVT> NodeTys; 5169 SmallVector<SDValue, 8> Ops; 5170 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 5171 SPDiff, isTailCall, isPatchPoint, hasNest, 5172 RegsToPass, Ops, NodeTys, CS, Subtarget); 5173 5174 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5175 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 5176 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5177 5178 // When performing tail call optimization the callee pops its arguments off 5179 // the stack. Account for this here so these bytes can be pushed back on in 5180 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5181 int BytesCalleePops = 5182 (CallConv == CallingConv::Fast && 5183 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 5184 5185 // Add a register mask operand representing the call-preserved registers. 5186 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5187 const uint32_t *Mask = 5188 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 5189 assert(Mask && "Missing call preserved mask for calling convention"); 5190 Ops.push_back(DAG.getRegisterMask(Mask)); 5191 5192 if (InFlag.getNode()) 5193 Ops.push_back(InFlag); 5194 5195 // Emit tail call. 5196 if (isTailCall) { 5197 assert(((Callee.getOpcode() == ISD::Register && 5198 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5199 Callee.getOpcode() == ISD::TargetExternalSymbol || 5200 Callee.getOpcode() == ISD::TargetGlobalAddress || 5201 isa<ConstantSDNode>(Callee)) && 5202 "Expecting an global address, external symbol, absolute value or register"); 5203 5204 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5205 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 5206 } 5207 5208 // Add a NOP immediately after the branch instruction when using the 64-bit 5209 // SVR4 ABI. At link time, if caller and callee are in a different module and 5210 // thus have a different TOC, the call will be replaced with a call to a stub 5211 // function which saves the current TOC, loads the TOC of the callee and 5212 // branches to the callee. The NOP will be replaced with a load instruction 5213 // which restores the TOC of the caller from the TOC save slot of the current 5214 // stack frame. If caller and callee belong to the same module (and have the 5215 // same TOC), the NOP will remain unchanged. 5216 5217 MachineFunction &MF = DAG.getMachineFunction(); 5218 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() && 5219 !isPatchPoint) { 5220 if (CallOpc == PPCISD::BCTRL) { 5221 // This is a call through a function pointer. 5222 // Restore the caller TOC from the save area into R2. 5223 // See PrepareCall() for more information about calls through function 5224 // pointers in the 64-bit SVR4 ABI. 5225 // We are using a target-specific load with r2 hard coded, because the 5226 // result of a target-independent load would never go directly into r2, 5227 // since r2 is a reserved register (which prevents the register allocator 5228 // from allocating it), resulting in an additional register being 5229 // allocated and an unnecessary move instruction being generated. 5230 CallOpc = PPCISD::BCTRL_LOAD_TOC; 5231 5232 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5233 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 5234 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5235 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5236 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 5237 5238 // The address needs to go after the chain input but before the flag (or 5239 // any other variadic arguments). 5240 Ops.insert(std::next(Ops.begin()), AddTOC); 5241 } else if (CallOpc == PPCISD::CALL && 5242 !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) { 5243 // Otherwise insert NOP for non-local calls. 5244 CallOpc = PPCISD::CALL_NOP; 5245 } 5246 } 5247 5248 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 5249 InFlag = Chain.getValue(1); 5250 5251 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5252 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5253 InFlag, dl); 5254 if (!Ins.empty()) 5255 InFlag = Chain.getValue(1); 5256 5257 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 5258 Ins, dl, DAG, InVals); 5259 } 5260 5261 SDValue 5262 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5263 SmallVectorImpl<SDValue> &InVals) const { 5264 SelectionDAG &DAG = CLI.DAG; 5265 SDLoc &dl = CLI.DL; 5266 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5267 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5268 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5269 SDValue Chain = CLI.Chain; 5270 SDValue Callee = CLI.Callee; 5271 bool &isTailCall = CLI.IsTailCall; 5272 CallingConv::ID CallConv = CLI.CallConv; 5273 bool isVarArg = CLI.IsVarArg; 5274 bool isPatchPoint = CLI.IsPatchPoint; 5275 ImmutableCallSite CS = CLI.CS; 5276 5277 if (isTailCall) { 5278 if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall())) 5279 isTailCall = false; 5280 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5281 isTailCall = 5282 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 5283 isVarArg, Outs, Ins, DAG); 5284 else 5285 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5286 Ins, DAG); 5287 if (isTailCall) { 5288 ++NumTailCalls; 5289 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5290 ++NumSiblingCalls; 5291 5292 assert(isa<GlobalAddressSDNode>(Callee) && 5293 "Callee should be an llvm::Function object."); 5294 LLVM_DEBUG( 5295 const GlobalValue *GV = 5296 cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5297 const unsigned Width = 5298 80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0"); 5299 dbgs() << "TCO caller: " 5300 << left_justify(DAG.getMachineFunction().getName(), Width) 5301 << ", callee linkage: " << GV->getVisibility() << ", " 5302 << GV->getLinkage() << "\n"); 5303 } 5304 } 5305 5306 if (!isTailCall && CS && CS.isMustTailCall()) 5307 report_fatal_error("failed to perform tail call elimination on a call " 5308 "site marked musttail"); 5309 5310 // When long calls (i.e. indirect calls) are always used, calls are always 5311 // made via function pointer. If we have a function name, first translate it 5312 // into a pointer. 5313 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5314 !isTailCall) 5315 Callee = LowerGlobalAddress(Callee, DAG); 5316 5317 if (Subtarget.isSVR4ABI()) { 5318 if (Subtarget.isPPC64()) 5319 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 5320 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5321 dl, DAG, InVals, CS); 5322 else 5323 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 5324 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5325 dl, DAG, InVals, CS); 5326 } 5327 5328 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 5329 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5330 dl, DAG, InVals, CS); 5331 } 5332 5333 SDValue PPCTargetLowering::LowerCall_32SVR4( 5334 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5335 bool isTailCall, bool isPatchPoint, 5336 const SmallVectorImpl<ISD::OutputArg> &Outs, 5337 const SmallVectorImpl<SDValue> &OutVals, 5338 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5339 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5340 ImmutableCallSite CS) const { 5341 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5342 // of the 32-bit SVR4 ABI stack frame layout. 5343 5344 assert((CallConv == CallingConv::C || 5345 CallConv == CallingConv::Cold || 5346 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5347 5348 unsigned PtrByteSize = 4; 5349 5350 MachineFunction &MF = DAG.getMachineFunction(); 5351 5352 // Mark this function as potentially containing a function that contains a 5353 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5354 // and restoring the callers stack pointer in this functions epilog. This is 5355 // done because by tail calling the called function might overwrite the value 5356 // in this function's (MF) stack pointer stack slot 0(SP). 5357 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5358 CallConv == CallingConv::Fast) 5359 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5360 5361 // Count how many bytes are to be pushed on the stack, including the linkage 5362 // area, parameter list area and the part of the local variable space which 5363 // contains copies of aggregates which are passed by value. 5364 5365 // Assign locations to all of the outgoing arguments. 5366 SmallVector<CCValAssign, 16> ArgLocs; 5367 PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 5368 5369 // Reserve space for the linkage area on the stack. 5370 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5371 PtrByteSize); 5372 if (useSoftFloat()) 5373 CCInfo.PreAnalyzeCallOperands(Outs); 5374 5375 if (isVarArg) { 5376 // Handle fixed and variable vector arguments differently. 5377 // Fixed vector arguments go into registers as long as registers are 5378 // available. Variable vector arguments always go into memory. 5379 unsigned NumArgs = Outs.size(); 5380 5381 for (unsigned i = 0; i != NumArgs; ++i) { 5382 MVT ArgVT = Outs[i].VT; 5383 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5384 bool Result; 5385 5386 if (Outs[i].IsFixed) { 5387 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5388 CCInfo); 5389 } else { 5390 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5391 ArgFlags, CCInfo); 5392 } 5393 5394 if (Result) { 5395 #ifndef NDEBUG 5396 errs() << "Call operand #" << i << " has unhandled type " 5397 << EVT(ArgVT).getEVTString() << "\n"; 5398 #endif 5399 llvm_unreachable(nullptr); 5400 } 5401 } 5402 } else { 5403 // All arguments are treated the same. 5404 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5405 } 5406 CCInfo.clearWasPPCF128(); 5407 5408 // Assign locations to all of the outgoing aggregate by value arguments. 5409 SmallVector<CCValAssign, 16> ByValArgLocs; 5410 CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext()); 5411 5412 // Reserve stack space for the allocations in CCInfo. 5413 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 5414 5415 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5416 5417 // Size of the linkage area, parameter list area and the part of the local 5418 // space variable where copies of aggregates which are passed by value are 5419 // stored. 5420 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5421 5422 // Calculate by how many bytes the stack has to be adjusted in case of tail 5423 // call optimization. 5424 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5425 5426 // Adjust the stack pointer for the new arguments... 5427 // These operations are automatically eliminated by the prolog/epilog pass 5428 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5429 SDValue CallSeqStart = Chain; 5430 5431 // Load the return address and frame pointer so it can be moved somewhere else 5432 // later. 5433 SDValue LROp, FPOp; 5434 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5435 5436 // Set up a copy of the stack pointer for use loading and storing any 5437 // arguments that may not fit in the registers available for argument 5438 // passing. 5439 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5440 5441 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5442 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5443 SmallVector<SDValue, 8> MemOpChains; 5444 5445 bool seenFloatArg = false; 5446 // Walk the register/memloc assignments, inserting copies/loads. 5447 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 5448 i != e; 5449 ++i) { 5450 CCValAssign &VA = ArgLocs[i]; 5451 SDValue Arg = OutVals[i]; 5452 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5453 5454 if (Flags.isByVal()) { 5455 // Argument is an aggregate which is passed by value, thus we need to 5456 // create a copy of it in the local variable space of the current stack 5457 // frame (which is the stack frame of the caller) and pass the address of 5458 // this copy to the callee. 5459 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5460 CCValAssign &ByValVA = ByValArgLocs[j++]; 5461 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5462 5463 // Memory reserved in the local variable space of the callers stack frame. 5464 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5465 5466 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5467 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5468 StackPtr, PtrOff); 5469 5470 // Create a copy of the argument in the local area of the current 5471 // stack frame. 5472 SDValue MemcpyCall = 5473 CreateCopyOfByValArgument(Arg, PtrOff, 5474 CallSeqStart.getNode()->getOperand(0), 5475 Flags, DAG, dl); 5476 5477 // This must go outside the CALLSEQ_START..END. 5478 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5479 SDLoc(MemcpyCall)); 5480 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5481 NewCallSeqStart.getNode()); 5482 Chain = CallSeqStart = NewCallSeqStart; 5483 5484 // Pass the address of the aggregate copy on the stack either in a 5485 // physical register or in the parameter list area of the current stack 5486 // frame to the callee. 5487 Arg = PtrOff; 5488 } 5489 5490 // When useCRBits() is true, there can be i1 arguments. 5491 // It is because getRegisterType(MVT::i1) => MVT::i1, 5492 // and for other integer types getRegisterType() => MVT::i32. 5493 // Extend i1 and ensure callee will get i32. 5494 if (Arg.getValueType() == MVT::i1) 5495 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5496 dl, MVT::i32, Arg); 5497 5498 if (VA.isRegLoc()) { 5499 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5500 // Put argument in a physical register. 5501 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5502 } else { 5503 // Put argument in the parameter list area of the current stack frame. 5504 assert(VA.isMemLoc()); 5505 unsigned LocMemOffset = VA.getLocMemOffset(); 5506 5507 if (!isTailCall) { 5508 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5509 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5510 StackPtr, PtrOff); 5511 5512 MemOpChains.push_back( 5513 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5514 } else { 5515 // Calculate and remember argument location. 5516 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5517 TailCallArguments); 5518 } 5519 } 5520 } 5521 5522 if (!MemOpChains.empty()) 5523 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5524 5525 // Build a sequence of copy-to-reg nodes chained together with token chain 5526 // and flag operands which copy the outgoing args into the appropriate regs. 5527 SDValue InFlag; 5528 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5529 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5530 RegsToPass[i].second, InFlag); 5531 InFlag = Chain.getValue(1); 5532 } 5533 5534 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5535 // registers. 5536 if (isVarArg) { 5537 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5538 SDValue Ops[] = { Chain, InFlag }; 5539 5540 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5541 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5542 5543 InFlag = Chain.getValue(1); 5544 } 5545 5546 if (isTailCall) 5547 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5548 TailCallArguments); 5549 5550 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 5551 /* unused except on PPC64 ELFv1 */ false, DAG, 5552 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5553 NumBytes, Ins, InVals, CS); 5554 } 5555 5556 // Copy an argument into memory, being careful to do this outside the 5557 // call sequence for the call to which the argument belongs. 5558 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5559 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5560 SelectionDAG &DAG, const SDLoc &dl) const { 5561 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5562 CallSeqStart.getNode()->getOperand(0), 5563 Flags, DAG, dl); 5564 // The MEMCPY must go outside the CALLSEQ_START..END. 5565 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5566 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5567 SDLoc(MemcpyCall)); 5568 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5569 NewCallSeqStart.getNode()); 5570 return NewCallSeqStart; 5571 } 5572 5573 SDValue PPCTargetLowering::LowerCall_64SVR4( 5574 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5575 bool isTailCall, bool isPatchPoint, 5576 const SmallVectorImpl<ISD::OutputArg> &Outs, 5577 const SmallVectorImpl<SDValue> &OutVals, 5578 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5579 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5580 ImmutableCallSite CS) const { 5581 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5582 bool isLittleEndian = Subtarget.isLittleEndian(); 5583 unsigned NumOps = Outs.size(); 5584 bool hasNest = false; 5585 bool IsSibCall = false; 5586 5587 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5588 unsigned PtrByteSize = 8; 5589 5590 MachineFunction &MF = DAG.getMachineFunction(); 5591 5592 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5593 IsSibCall = true; 5594 5595 // Mark this function as potentially containing a function that contains a 5596 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5597 // and restoring the callers stack pointer in this functions epilog. This is 5598 // done because by tail calling the called function might overwrite the value 5599 // in this function's (MF) stack pointer stack slot 0(SP). 5600 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5601 CallConv == CallingConv::Fast) 5602 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5603 5604 assert(!(CallConv == CallingConv::Fast && isVarArg) && 5605 "fastcc not supported on varargs functions"); 5606 5607 // Count how many bytes are to be pushed on the stack, including the linkage 5608 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5609 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5610 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5611 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5612 unsigned NumBytes = LinkageSize; 5613 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5614 unsigned &QFPR_idx = FPR_idx; 5615 5616 static const MCPhysReg GPR[] = { 5617 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5618 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5619 }; 5620 static const MCPhysReg VR[] = { 5621 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5622 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5623 }; 5624 5625 const unsigned NumGPRs = array_lengthof(GPR); 5626 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5627 const unsigned NumVRs = array_lengthof(VR); 5628 const unsigned NumQFPRs = NumFPRs; 5629 5630 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5631 // can be passed to the callee in registers. 5632 // For the fast calling convention, there is another check below. 5633 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5634 bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast; 5635 if (!HasParameterArea) { 5636 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5637 unsigned AvailableFPRs = NumFPRs; 5638 unsigned AvailableVRs = NumVRs; 5639 unsigned NumBytesTmp = NumBytes; 5640 for (unsigned i = 0; i != NumOps; ++i) { 5641 if (Outs[i].Flags.isNest()) continue; 5642 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5643 PtrByteSize, LinkageSize, ParamAreaSize, 5644 NumBytesTmp, AvailableFPRs, AvailableVRs, 5645 Subtarget.hasQPX())) 5646 HasParameterArea = true; 5647 } 5648 } 5649 5650 // When using the fast calling convention, we don't provide backing for 5651 // arguments that will be in registers. 5652 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5653 5654 // Avoid allocating parameter area for fastcc functions if all the arguments 5655 // can be passed in the registers. 5656 if (CallConv == CallingConv::Fast) 5657 HasParameterArea = false; 5658 5659 // Add up all the space actually used. 5660 for (unsigned i = 0; i != NumOps; ++i) { 5661 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5662 EVT ArgVT = Outs[i].VT; 5663 EVT OrigVT = Outs[i].ArgVT; 5664 5665 if (Flags.isNest()) 5666 continue; 5667 5668 if (CallConv == CallingConv::Fast) { 5669 if (Flags.isByVal()) { 5670 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5671 if (NumGPRsUsed > NumGPRs) 5672 HasParameterArea = true; 5673 } else { 5674 switch (ArgVT.getSimpleVT().SimpleTy) { 5675 default: llvm_unreachable("Unexpected ValueType for argument!"); 5676 case MVT::i1: 5677 case MVT::i32: 5678 case MVT::i64: 5679 if (++NumGPRsUsed <= NumGPRs) 5680 continue; 5681 break; 5682 case MVT::v4i32: 5683 case MVT::v8i16: 5684 case MVT::v16i8: 5685 case MVT::v2f64: 5686 case MVT::v2i64: 5687 case MVT::v1i128: 5688 case MVT::f128: 5689 if (++NumVRsUsed <= NumVRs) 5690 continue; 5691 break; 5692 case MVT::v4f32: 5693 // When using QPX, this is handled like a FP register, otherwise, it 5694 // is an Altivec register. 5695 if (Subtarget.hasQPX()) { 5696 if (++NumFPRsUsed <= NumFPRs) 5697 continue; 5698 } else { 5699 if (++NumVRsUsed <= NumVRs) 5700 continue; 5701 } 5702 break; 5703 case MVT::f32: 5704 case MVT::f64: 5705 case MVT::v4f64: // QPX 5706 case MVT::v4i1: // QPX 5707 if (++NumFPRsUsed <= NumFPRs) 5708 continue; 5709 break; 5710 } 5711 HasParameterArea = true; 5712 } 5713 } 5714 5715 /* Respect alignment of argument on the stack. */ 5716 unsigned Align = 5717 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5718 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 5719 5720 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5721 if (Flags.isInConsecutiveRegsLast()) 5722 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5723 } 5724 5725 unsigned NumBytesActuallyUsed = NumBytes; 5726 5727 // In the old ELFv1 ABI, 5728 // the prolog code of the callee may store up to 8 GPR argument registers to 5729 // the stack, allowing va_start to index over them in memory if its varargs. 5730 // Because we cannot tell if this is needed on the caller side, we have to 5731 // conservatively assume that it is needed. As such, make sure we have at 5732 // least enough stack space for the caller to store the 8 GPRs. 5733 // In the ELFv2 ABI, we allocate the parameter area iff a callee 5734 // really requires memory operands, e.g. a vararg function. 5735 if (HasParameterArea) 5736 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5737 else 5738 NumBytes = LinkageSize; 5739 5740 // Tail call needs the stack to be aligned. 5741 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5742 CallConv == CallingConv::Fast) 5743 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5744 5745 int SPDiff = 0; 5746 5747 // Calculate by how many bytes the stack has to be adjusted in case of tail 5748 // call optimization. 5749 if (!IsSibCall) 5750 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5751 5752 // To protect arguments on the stack from being clobbered in a tail call, 5753 // force all the loads to happen before doing any other lowering. 5754 if (isTailCall) 5755 Chain = DAG.getStackArgumentTokenFactor(Chain); 5756 5757 // Adjust the stack pointer for the new arguments... 5758 // These operations are automatically eliminated by the prolog/epilog pass 5759 if (!IsSibCall) 5760 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5761 SDValue CallSeqStart = Chain; 5762 5763 // Load the return address and frame pointer so it can be move somewhere else 5764 // later. 5765 SDValue LROp, FPOp; 5766 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5767 5768 // Set up a copy of the stack pointer for use loading and storing any 5769 // arguments that may not fit in the registers available for argument 5770 // passing. 5771 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5772 5773 // Figure out which arguments are going to go in registers, and which in 5774 // memory. Also, if this is a vararg function, floating point operations 5775 // must be stored to our stack, and loaded into integer regs as well, if 5776 // any integer regs are available for argument passing. 5777 unsigned ArgOffset = LinkageSize; 5778 5779 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5780 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5781 5782 SmallVector<SDValue, 8> MemOpChains; 5783 for (unsigned i = 0; i != NumOps; ++i) { 5784 SDValue Arg = OutVals[i]; 5785 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5786 EVT ArgVT = Outs[i].VT; 5787 EVT OrigVT = Outs[i].ArgVT; 5788 5789 // PtrOff will be used to store the current argument to the stack if a 5790 // register cannot be found for it. 5791 SDValue PtrOff; 5792 5793 // We re-align the argument offset for each argument, except when using the 5794 // fast calling convention, when we need to make sure we do that only when 5795 // we'll actually use a stack slot. 5796 auto ComputePtrOff = [&]() { 5797 /* Respect alignment of argument on the stack. */ 5798 unsigned Align = 5799 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5800 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 5801 5802 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5803 5804 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5805 }; 5806 5807 if (CallConv != CallingConv::Fast) { 5808 ComputePtrOff(); 5809 5810 /* Compute GPR index associated with argument offset. */ 5811 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 5812 GPR_idx = std::min(GPR_idx, NumGPRs); 5813 } 5814 5815 // Promote integers to 64-bit values. 5816 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 5817 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5818 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5819 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5820 } 5821 5822 // FIXME memcpy is used way more than necessary. Correctness first. 5823 // Note: "by value" is code for passing a structure by value, not 5824 // basic types. 5825 if (Flags.isByVal()) { 5826 // Note: Size includes alignment padding, so 5827 // struct x { short a; char b; } 5828 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 5829 // These are the proper values we need for right-justifying the 5830 // aggregate in a parameter register. 5831 unsigned Size = Flags.getByValSize(); 5832 5833 // An empty aggregate parameter takes up no storage and no 5834 // registers. 5835 if (Size == 0) 5836 continue; 5837 5838 if (CallConv == CallingConv::Fast) 5839 ComputePtrOff(); 5840 5841 // All aggregates smaller than 8 bytes must be passed right-justified. 5842 if (Size==1 || Size==2 || Size==4) { 5843 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 5844 if (GPR_idx != NumGPRs) { 5845 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5846 MachinePointerInfo(), VT); 5847 MemOpChains.push_back(Load.getValue(1)); 5848 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5849 5850 ArgOffset += PtrByteSize; 5851 continue; 5852 } 5853 } 5854 5855 if (GPR_idx == NumGPRs && Size < 8) { 5856 SDValue AddPtr = PtrOff; 5857 if (!isLittleEndian) { 5858 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5859 PtrOff.getValueType()); 5860 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5861 } 5862 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5863 CallSeqStart, 5864 Flags, DAG, dl); 5865 ArgOffset += PtrByteSize; 5866 continue; 5867 } 5868 // Copy entire object into memory. There are cases where gcc-generated 5869 // code assumes it is there, even if it could be put entirely into 5870 // registers. (This is not what the doc says.) 5871 5872 // FIXME: The above statement is likely due to a misunderstanding of the 5873 // documents. All arguments must be copied into the parameter area BY 5874 // THE CALLEE in the event that the callee takes the address of any 5875 // formal argument. That has not yet been implemented. However, it is 5876 // reasonable to use the stack area as a staging area for the register 5877 // load. 5878 5879 // Skip this for small aggregates, as we will use the same slot for a 5880 // right-justified copy, below. 5881 if (Size >= 8) 5882 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5883 CallSeqStart, 5884 Flags, DAG, dl); 5885 5886 // When a register is available, pass a small aggregate right-justified. 5887 if (Size < 8 && GPR_idx != NumGPRs) { 5888 // The easiest way to get this right-justified in a register 5889 // is to copy the structure into the rightmost portion of a 5890 // local variable slot, then load the whole slot into the 5891 // register. 5892 // FIXME: The memcpy seems to produce pretty awful code for 5893 // small aggregates, particularly for packed ones. 5894 // FIXME: It would be preferable to use the slot in the 5895 // parameter save area instead of a new local variable. 5896 SDValue AddPtr = PtrOff; 5897 if (!isLittleEndian) { 5898 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5899 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5900 } 5901 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5902 CallSeqStart, 5903 Flags, DAG, dl); 5904 5905 // Load the slot into the register. 5906 SDValue Load = 5907 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 5908 MemOpChains.push_back(Load.getValue(1)); 5909 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5910 5911 // Done with this argument. 5912 ArgOffset += PtrByteSize; 5913 continue; 5914 } 5915 5916 // For aggregates larger than PtrByteSize, copy the pieces of the 5917 // object that fit into registers from the parameter save area. 5918 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5919 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5920 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5921 if (GPR_idx != NumGPRs) { 5922 SDValue Load = 5923 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 5924 MemOpChains.push_back(Load.getValue(1)); 5925 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5926 ArgOffset += PtrByteSize; 5927 } else { 5928 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5929 break; 5930 } 5931 } 5932 continue; 5933 } 5934 5935 switch (Arg.getSimpleValueType().SimpleTy) { 5936 default: llvm_unreachable("Unexpected ValueType for argument!"); 5937 case MVT::i1: 5938 case MVT::i32: 5939 case MVT::i64: 5940 if (Flags.isNest()) { 5941 // The 'nest' parameter, if any, is passed in R11. 5942 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 5943 hasNest = true; 5944 break; 5945 } 5946 5947 // These can be scalar arguments or elements of an integer array type 5948 // passed directly. Clang may use those instead of "byval" aggregate 5949 // types to avoid forcing arguments to memory unnecessarily. 5950 if (GPR_idx != NumGPRs) { 5951 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5952 } else { 5953 if (CallConv == CallingConv::Fast) 5954 ComputePtrOff(); 5955 5956 assert(HasParameterArea && 5957 "Parameter area must exist to pass an argument in memory."); 5958 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5959 true, isTailCall, false, MemOpChains, 5960 TailCallArguments, dl); 5961 if (CallConv == CallingConv::Fast) 5962 ArgOffset += PtrByteSize; 5963 } 5964 if (CallConv != CallingConv::Fast) 5965 ArgOffset += PtrByteSize; 5966 break; 5967 case MVT::f32: 5968 case MVT::f64: { 5969 // These can be scalar arguments or elements of a float array type 5970 // passed directly. The latter are used to implement ELFv2 homogenous 5971 // float aggregates. 5972 5973 // Named arguments go into FPRs first, and once they overflow, the 5974 // remaining arguments go into GPRs and then the parameter save area. 5975 // Unnamed arguments for vararg functions always go to GPRs and 5976 // then the parameter save area. For now, put all arguments to vararg 5977 // routines always in both locations (FPR *and* GPR or stack slot). 5978 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 5979 bool NeededLoad = false; 5980 5981 // First load the argument into the next available FPR. 5982 if (FPR_idx != NumFPRs) 5983 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5984 5985 // Next, load the argument into GPR or stack slot if needed. 5986 if (!NeedGPROrStack) 5987 ; 5988 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 5989 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 5990 // once we support fp <-> gpr moves. 5991 5992 // In the non-vararg case, this can only ever happen in the 5993 // presence of f32 array types, since otherwise we never run 5994 // out of FPRs before running out of GPRs. 5995 SDValue ArgVal; 5996 5997 // Double values are always passed in a single GPR. 5998 if (Arg.getValueType() != MVT::f32) { 5999 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6000 6001 // Non-array float values are extended and passed in a GPR. 6002 } else if (!Flags.isInConsecutiveRegs()) { 6003 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6004 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6005 6006 // If we have an array of floats, we collect every odd element 6007 // together with its predecessor into one GPR. 6008 } else if (ArgOffset % PtrByteSize != 0) { 6009 SDValue Lo, Hi; 6010 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6011 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6012 if (!isLittleEndian) 6013 std::swap(Lo, Hi); 6014 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6015 6016 // The final element, if even, goes into the first half of a GPR. 6017 } else if (Flags.isInConsecutiveRegsLast()) { 6018 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6019 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6020 if (!isLittleEndian) 6021 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6022 DAG.getConstant(32, dl, MVT::i32)); 6023 6024 // Non-final even elements are skipped; they will be handled 6025 // together the with subsequent argument on the next go-around. 6026 } else 6027 ArgVal = SDValue(); 6028 6029 if (ArgVal.getNode()) 6030 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6031 } else { 6032 if (CallConv == CallingConv::Fast) 6033 ComputePtrOff(); 6034 6035 // Single-precision floating-point values are mapped to the 6036 // second (rightmost) word of the stack doubleword. 6037 if (Arg.getValueType() == MVT::f32 && 6038 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6039 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6040 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6041 } 6042 6043 assert(HasParameterArea && 6044 "Parameter area must exist to pass an argument in memory."); 6045 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6046 true, isTailCall, false, MemOpChains, 6047 TailCallArguments, dl); 6048 6049 NeededLoad = true; 6050 } 6051 // When passing an array of floats, the array occupies consecutive 6052 // space in the argument area; only round up to the next doubleword 6053 // at the end of the array. Otherwise, each float takes 8 bytes. 6054 if (CallConv != CallingConv::Fast || NeededLoad) { 6055 ArgOffset += (Arg.getValueType() == MVT::f32 && 6056 Flags.isInConsecutiveRegs()) ? 4 : 8; 6057 if (Flags.isInConsecutiveRegsLast()) 6058 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6059 } 6060 break; 6061 } 6062 case MVT::v4f32: 6063 case MVT::v4i32: 6064 case MVT::v8i16: 6065 case MVT::v16i8: 6066 case MVT::v2f64: 6067 case MVT::v2i64: 6068 case MVT::v1i128: 6069 case MVT::f128: 6070 if (!Subtarget.hasQPX()) { 6071 // These can be scalar arguments or elements of a vector array type 6072 // passed directly. The latter are used to implement ELFv2 homogenous 6073 // vector aggregates. 6074 6075 // For a varargs call, named arguments go into VRs or on the stack as 6076 // usual; unnamed arguments always go to the stack or the corresponding 6077 // GPRs when within range. For now, we always put the value in both 6078 // locations (or even all three). 6079 if (isVarArg) { 6080 assert(HasParameterArea && 6081 "Parameter area must exist if we have a varargs call."); 6082 // We could elide this store in the case where the object fits 6083 // entirely in R registers. Maybe later. 6084 SDValue Store = 6085 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6086 MemOpChains.push_back(Store); 6087 if (VR_idx != NumVRs) { 6088 SDValue Load = 6089 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6090 MemOpChains.push_back(Load.getValue(1)); 6091 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6092 } 6093 ArgOffset += 16; 6094 for (unsigned i=0; i<16; i+=PtrByteSize) { 6095 if (GPR_idx == NumGPRs) 6096 break; 6097 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6098 DAG.getConstant(i, dl, PtrVT)); 6099 SDValue Load = 6100 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6101 MemOpChains.push_back(Load.getValue(1)); 6102 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6103 } 6104 break; 6105 } 6106 6107 // Non-varargs Altivec params go into VRs or on the stack. 6108 if (VR_idx != NumVRs) { 6109 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6110 } else { 6111 if (CallConv == CallingConv::Fast) 6112 ComputePtrOff(); 6113 6114 assert(HasParameterArea && 6115 "Parameter area must exist to pass an argument in memory."); 6116 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6117 true, isTailCall, true, MemOpChains, 6118 TailCallArguments, dl); 6119 if (CallConv == CallingConv::Fast) 6120 ArgOffset += 16; 6121 } 6122 6123 if (CallConv != CallingConv::Fast) 6124 ArgOffset += 16; 6125 break; 6126 } // not QPX 6127 6128 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 6129 "Invalid QPX parameter type"); 6130 6131 LLVM_FALLTHROUGH; 6132 case MVT::v4f64: 6133 case MVT::v4i1: { 6134 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 6135 if (isVarArg) { 6136 assert(HasParameterArea && 6137 "Parameter area must exist if we have a varargs call."); 6138 // We could elide this store in the case where the object fits 6139 // entirely in R registers. Maybe later. 6140 SDValue Store = 6141 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6142 MemOpChains.push_back(Store); 6143 if (QFPR_idx != NumQFPRs) { 6144 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 6145 PtrOff, MachinePointerInfo()); 6146 MemOpChains.push_back(Load.getValue(1)); 6147 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 6148 } 6149 ArgOffset += (IsF32 ? 16 : 32); 6150 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 6151 if (GPR_idx == NumGPRs) 6152 break; 6153 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6154 DAG.getConstant(i, dl, PtrVT)); 6155 SDValue Load = 6156 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6157 MemOpChains.push_back(Load.getValue(1)); 6158 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6159 } 6160 break; 6161 } 6162 6163 // Non-varargs QPX params go into registers or on the stack. 6164 if (QFPR_idx != NumQFPRs) { 6165 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6166 } else { 6167 if (CallConv == CallingConv::Fast) 6168 ComputePtrOff(); 6169 6170 assert(HasParameterArea && 6171 "Parameter area must exist to pass an argument in memory."); 6172 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6173 true, isTailCall, true, MemOpChains, 6174 TailCallArguments, dl); 6175 if (CallConv == CallingConv::Fast) 6176 ArgOffset += (IsF32 ? 16 : 32); 6177 } 6178 6179 if (CallConv != CallingConv::Fast) 6180 ArgOffset += (IsF32 ? 16 : 32); 6181 break; 6182 } 6183 } 6184 } 6185 6186 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6187 "mismatch in size of parameter area"); 6188 (void)NumBytesActuallyUsed; 6189 6190 if (!MemOpChains.empty()) 6191 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6192 6193 // Check if this is an indirect call (MTCTR/BCTRL). 6194 // See PrepareCall() for more information about calls through function 6195 // pointers in the 64-bit SVR4 ABI. 6196 if (!isTailCall && !isPatchPoint && 6197 !isFunctionGlobalAddress(Callee) && 6198 !isa<ExternalSymbolSDNode>(Callee)) { 6199 // Load r2 into a virtual register and store it to the TOC save area. 6200 setUsesTOCBasePtr(DAG); 6201 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6202 // TOC save area offset. 6203 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6204 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6205 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6206 Chain = DAG.getStore( 6207 Val.getValue(1), dl, Val, AddPtr, 6208 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 6209 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6210 // This does not mean the MTCTR instruction must use R12; it's easier 6211 // to model this as an extra parameter, so do that. 6212 if (isELFv2ABI && !isPatchPoint) 6213 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6214 } 6215 6216 // Build a sequence of copy-to-reg nodes chained together with token chain 6217 // and flag operands which copy the outgoing args into the appropriate regs. 6218 SDValue InFlag; 6219 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6220 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6221 RegsToPass[i].second, InFlag); 6222 InFlag = Chain.getValue(1); 6223 } 6224 6225 if (isTailCall && !IsSibCall) 6226 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6227 TailCallArguments); 6228 6229 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest, 6230 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 6231 SPDiff, NumBytes, Ins, InVals, CS); 6232 } 6233 6234 SDValue PPCTargetLowering::LowerCall_Darwin( 6235 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 6236 bool isTailCall, bool isPatchPoint, 6237 const SmallVectorImpl<ISD::OutputArg> &Outs, 6238 const SmallVectorImpl<SDValue> &OutVals, 6239 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6240 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6241 ImmutableCallSite CS) const { 6242 unsigned NumOps = Outs.size(); 6243 6244 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6245 bool isPPC64 = PtrVT == MVT::i64; 6246 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6247 6248 MachineFunction &MF = DAG.getMachineFunction(); 6249 6250 // Mark this function as potentially containing a function that contains a 6251 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6252 // and restoring the callers stack pointer in this functions epilog. This is 6253 // done because by tail calling the called function might overwrite the value 6254 // in this function's (MF) stack pointer stack slot 0(SP). 6255 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6256 CallConv == CallingConv::Fast) 6257 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6258 6259 // Count how many bytes are to be pushed on the stack, including the linkage 6260 // area, and parameter passing area. We start with 24/48 bytes, which is 6261 // prereserved space for [SP][CR][LR][3 x unused]. 6262 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6263 unsigned NumBytes = LinkageSize; 6264 6265 // Add up all the space actually used. 6266 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6267 // they all go in registers, but we must reserve stack space for them for 6268 // possible use by the caller. In varargs or 64-bit calls, parameters are 6269 // assigned stack space in order, with padding so Altivec parameters are 6270 // 16-byte aligned. 6271 unsigned nAltivecParamsAtEnd = 0; 6272 for (unsigned i = 0; i != NumOps; ++i) { 6273 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6274 EVT ArgVT = Outs[i].VT; 6275 // Varargs Altivec parameters are padded to a 16 byte boundary. 6276 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6277 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6278 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6279 if (!isVarArg && !isPPC64) { 6280 // Non-varargs Altivec parameters go after all the non-Altivec 6281 // parameters; handle those later so we know how much padding we need. 6282 nAltivecParamsAtEnd++; 6283 continue; 6284 } 6285 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6286 NumBytes = ((NumBytes+15)/16)*16; 6287 } 6288 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6289 } 6290 6291 // Allow for Altivec parameters at the end, if needed. 6292 if (nAltivecParamsAtEnd) { 6293 NumBytes = ((NumBytes+15)/16)*16; 6294 NumBytes += 16*nAltivecParamsAtEnd; 6295 } 6296 6297 // The prolog code of the callee may store up to 8 GPR argument registers to 6298 // the stack, allowing va_start to index over them in memory if its varargs. 6299 // Because we cannot tell if this is needed on the caller side, we have to 6300 // conservatively assume that it is needed. As such, make sure we have at 6301 // least enough stack space for the caller to store the 8 GPRs. 6302 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6303 6304 // Tail call needs the stack to be aligned. 6305 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6306 CallConv == CallingConv::Fast) 6307 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6308 6309 // Calculate by how many bytes the stack has to be adjusted in case of tail 6310 // call optimization. 6311 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 6312 6313 // To protect arguments on the stack from being clobbered in a tail call, 6314 // force all the loads to happen before doing any other lowering. 6315 if (isTailCall) 6316 Chain = DAG.getStackArgumentTokenFactor(Chain); 6317 6318 // Adjust the stack pointer for the new arguments... 6319 // These operations are automatically eliminated by the prolog/epilog pass 6320 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6321 SDValue CallSeqStart = Chain; 6322 6323 // Load the return address and frame pointer so it can be move somewhere else 6324 // later. 6325 SDValue LROp, FPOp; 6326 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6327 6328 // Set up a copy of the stack pointer for use loading and storing any 6329 // arguments that may not fit in the registers available for argument 6330 // passing. 6331 SDValue StackPtr; 6332 if (isPPC64) 6333 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6334 else 6335 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6336 6337 // Figure out which arguments are going to go in registers, and which in 6338 // memory. Also, if this is a vararg function, floating point operations 6339 // must be stored to our stack, and loaded into integer regs as well, if 6340 // any integer regs are available for argument passing. 6341 unsigned ArgOffset = LinkageSize; 6342 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6343 6344 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6345 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6346 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6347 }; 6348 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6349 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6350 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6351 }; 6352 static const MCPhysReg VR[] = { 6353 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6354 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6355 }; 6356 const unsigned NumGPRs = array_lengthof(GPR_32); 6357 const unsigned NumFPRs = 13; 6358 const unsigned NumVRs = array_lengthof(VR); 6359 6360 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6361 6362 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6363 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6364 6365 SmallVector<SDValue, 8> MemOpChains; 6366 for (unsigned i = 0; i != NumOps; ++i) { 6367 SDValue Arg = OutVals[i]; 6368 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6369 6370 // PtrOff will be used to store the current argument to the stack if a 6371 // register cannot be found for it. 6372 SDValue PtrOff; 6373 6374 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6375 6376 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6377 6378 // On PPC64, promote integers to 64-bit values. 6379 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6380 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6381 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6382 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6383 } 6384 6385 // FIXME memcpy is used way more than necessary. Correctness first. 6386 // Note: "by value" is code for passing a structure by value, not 6387 // basic types. 6388 if (Flags.isByVal()) { 6389 unsigned Size = Flags.getByValSize(); 6390 // Very small objects are passed right-justified. Everything else is 6391 // passed left-justified. 6392 if (Size==1 || Size==2) { 6393 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6394 if (GPR_idx != NumGPRs) { 6395 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6396 MachinePointerInfo(), VT); 6397 MemOpChains.push_back(Load.getValue(1)); 6398 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6399 6400 ArgOffset += PtrByteSize; 6401 } else { 6402 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6403 PtrOff.getValueType()); 6404 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6405 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6406 CallSeqStart, 6407 Flags, DAG, dl); 6408 ArgOffset += PtrByteSize; 6409 } 6410 continue; 6411 } 6412 // Copy entire object into memory. There are cases where gcc-generated 6413 // code assumes it is there, even if it could be put entirely into 6414 // registers. (This is not what the doc says.) 6415 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6416 CallSeqStart, 6417 Flags, DAG, dl); 6418 6419 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6420 // copy the pieces of the object that fit into registers from the 6421 // parameter save area. 6422 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6423 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6424 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6425 if (GPR_idx != NumGPRs) { 6426 SDValue Load = 6427 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6428 MemOpChains.push_back(Load.getValue(1)); 6429 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6430 ArgOffset += PtrByteSize; 6431 } else { 6432 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6433 break; 6434 } 6435 } 6436 continue; 6437 } 6438 6439 switch (Arg.getSimpleValueType().SimpleTy) { 6440 default: llvm_unreachable("Unexpected ValueType for argument!"); 6441 case MVT::i1: 6442 case MVT::i32: 6443 case MVT::i64: 6444 if (GPR_idx != NumGPRs) { 6445 if (Arg.getValueType() == MVT::i1) 6446 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6447 6448 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6449 } else { 6450 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6451 isPPC64, isTailCall, false, MemOpChains, 6452 TailCallArguments, dl); 6453 } 6454 ArgOffset += PtrByteSize; 6455 break; 6456 case MVT::f32: 6457 case MVT::f64: 6458 if (FPR_idx != NumFPRs) { 6459 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6460 6461 if (isVarArg) { 6462 SDValue Store = 6463 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6464 MemOpChains.push_back(Store); 6465 6466 // Float varargs are always shadowed in available integer registers 6467 if (GPR_idx != NumGPRs) { 6468 SDValue Load = 6469 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6470 MemOpChains.push_back(Load.getValue(1)); 6471 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6472 } 6473 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6474 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6475 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6476 SDValue Load = 6477 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6478 MemOpChains.push_back(Load.getValue(1)); 6479 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6480 } 6481 } else { 6482 // If we have any FPRs remaining, we may also have GPRs remaining. 6483 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6484 // GPRs. 6485 if (GPR_idx != NumGPRs) 6486 ++GPR_idx; 6487 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6488 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6489 ++GPR_idx; 6490 } 6491 } else 6492 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6493 isPPC64, isTailCall, false, MemOpChains, 6494 TailCallArguments, dl); 6495 if (isPPC64) 6496 ArgOffset += 8; 6497 else 6498 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6499 break; 6500 case MVT::v4f32: 6501 case MVT::v4i32: 6502 case MVT::v8i16: 6503 case MVT::v16i8: 6504 if (isVarArg) { 6505 // These go aligned on the stack, or in the corresponding R registers 6506 // when within range. The Darwin PPC ABI doc claims they also go in 6507 // V registers; in fact gcc does this only for arguments that are 6508 // prototyped, not for those that match the ... We do it for all 6509 // arguments, seems to work. 6510 while (ArgOffset % 16 !=0) { 6511 ArgOffset += PtrByteSize; 6512 if (GPR_idx != NumGPRs) 6513 GPR_idx++; 6514 } 6515 // We could elide this store in the case where the object fits 6516 // entirely in R registers. Maybe later. 6517 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6518 DAG.getConstant(ArgOffset, dl, PtrVT)); 6519 SDValue Store = 6520 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6521 MemOpChains.push_back(Store); 6522 if (VR_idx != NumVRs) { 6523 SDValue Load = 6524 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6525 MemOpChains.push_back(Load.getValue(1)); 6526 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6527 } 6528 ArgOffset += 16; 6529 for (unsigned i=0; i<16; i+=PtrByteSize) { 6530 if (GPR_idx == NumGPRs) 6531 break; 6532 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6533 DAG.getConstant(i, dl, PtrVT)); 6534 SDValue Load = 6535 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6536 MemOpChains.push_back(Load.getValue(1)); 6537 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6538 } 6539 break; 6540 } 6541 6542 // Non-varargs Altivec params generally go in registers, but have 6543 // stack space allocated at the end. 6544 if (VR_idx != NumVRs) { 6545 // Doesn't have GPR space allocated. 6546 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6547 } else if (nAltivecParamsAtEnd==0) { 6548 // We are emitting Altivec params in order. 6549 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6550 isPPC64, isTailCall, true, MemOpChains, 6551 TailCallArguments, dl); 6552 ArgOffset += 16; 6553 } 6554 break; 6555 } 6556 } 6557 // If all Altivec parameters fit in registers, as they usually do, 6558 // they get stack space following the non-Altivec parameters. We 6559 // don't track this here because nobody below needs it. 6560 // If there are more Altivec parameters than fit in registers emit 6561 // the stores here. 6562 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 6563 unsigned j = 0; 6564 // Offset is aligned; skip 1st 12 params which go in V registers. 6565 ArgOffset = ((ArgOffset+15)/16)*16; 6566 ArgOffset += 12*16; 6567 for (unsigned i = 0; i != NumOps; ++i) { 6568 SDValue Arg = OutVals[i]; 6569 EVT ArgType = Outs[i].VT; 6570 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6571 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6572 if (++j > NumVRs) { 6573 SDValue PtrOff; 6574 // We are emitting Altivec params in order. 6575 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6576 isPPC64, isTailCall, true, MemOpChains, 6577 TailCallArguments, dl); 6578 ArgOffset += 16; 6579 } 6580 } 6581 } 6582 } 6583 6584 if (!MemOpChains.empty()) 6585 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6586 6587 // On Darwin, R12 must contain the address of an indirect callee. This does 6588 // not mean the MTCTR instruction must use R12; it's easier to model this as 6589 // an extra parameter, so do that. 6590 if (!isTailCall && 6591 !isFunctionGlobalAddress(Callee) && 6592 !isa<ExternalSymbolSDNode>(Callee) && 6593 !isBLACompatibleAddress(Callee, DAG)) 6594 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6595 PPC::R12), Callee)); 6596 6597 // Build a sequence of copy-to-reg nodes chained together with token chain 6598 // and flag operands which copy the outgoing args into the appropriate regs. 6599 SDValue InFlag; 6600 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6601 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6602 RegsToPass[i].second, InFlag); 6603 InFlag = Chain.getValue(1); 6604 } 6605 6606 if (isTailCall) 6607 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6608 TailCallArguments); 6609 6610 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6611 /* unused except on PPC64 ELFv1 */ false, DAG, 6612 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6613 NumBytes, Ins, InVals, CS); 6614 } 6615 6616 bool 6617 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 6618 MachineFunction &MF, bool isVarArg, 6619 const SmallVectorImpl<ISD::OutputArg> &Outs, 6620 LLVMContext &Context) const { 6621 SmallVector<CCValAssign, 16> RVLocs; 6622 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 6623 return CCInfo.CheckReturn( 6624 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 6625 ? RetCC_PPC_Cold 6626 : RetCC_PPC); 6627 } 6628 6629 SDValue 6630 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 6631 bool isVarArg, 6632 const SmallVectorImpl<ISD::OutputArg> &Outs, 6633 const SmallVectorImpl<SDValue> &OutVals, 6634 const SDLoc &dl, SelectionDAG &DAG) const { 6635 SmallVector<CCValAssign, 16> RVLocs; 6636 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 6637 *DAG.getContext()); 6638 CCInfo.AnalyzeReturn(Outs, 6639 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 6640 ? RetCC_PPC_Cold 6641 : RetCC_PPC); 6642 6643 SDValue Flag; 6644 SmallVector<SDValue, 4> RetOps(1, Chain); 6645 6646 // Copy the result values into the output registers. 6647 for (unsigned i = 0; i != RVLocs.size(); ++i) { 6648 CCValAssign &VA = RVLocs[i]; 6649 assert(VA.isRegLoc() && "Can only return in registers!"); 6650 6651 SDValue Arg = OutVals[i]; 6652 6653 switch (VA.getLocInfo()) { 6654 default: llvm_unreachable("Unknown loc info!"); 6655 case CCValAssign::Full: break; 6656 case CCValAssign::AExt: 6657 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 6658 break; 6659 case CCValAssign::ZExt: 6660 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 6661 break; 6662 case CCValAssign::SExt: 6663 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 6664 break; 6665 } 6666 6667 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 6668 Flag = Chain.getValue(1); 6669 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 6670 } 6671 6672 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 6673 const MCPhysReg *I = 6674 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 6675 if (I) { 6676 for (; *I; ++I) { 6677 6678 if (PPC::G8RCRegClass.contains(*I)) 6679 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 6680 else if (PPC::F8RCRegClass.contains(*I)) 6681 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 6682 else if (PPC::CRRCRegClass.contains(*I)) 6683 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 6684 else if (PPC::VRRCRegClass.contains(*I)) 6685 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 6686 else 6687 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 6688 } 6689 } 6690 6691 RetOps[0] = Chain; // Update chain. 6692 6693 // Add the flag if we have it. 6694 if (Flag.getNode()) 6695 RetOps.push_back(Flag); 6696 6697 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 6698 } 6699 6700 SDValue 6701 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 6702 SelectionDAG &DAG) const { 6703 SDLoc dl(Op); 6704 6705 // Get the correct type for integers. 6706 EVT IntVT = Op.getValueType(); 6707 6708 // Get the inputs. 6709 SDValue Chain = Op.getOperand(0); 6710 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6711 // Build a DYNAREAOFFSET node. 6712 SDValue Ops[2] = {Chain, FPSIdx}; 6713 SDVTList VTs = DAG.getVTList(IntVT); 6714 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 6715 } 6716 6717 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 6718 SelectionDAG &DAG) const { 6719 // When we pop the dynamic allocation we need to restore the SP link. 6720 SDLoc dl(Op); 6721 6722 // Get the correct type for pointers. 6723 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6724 6725 // Construct the stack pointer operand. 6726 bool isPPC64 = Subtarget.isPPC64(); 6727 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 6728 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 6729 6730 // Get the operands for the STACKRESTORE. 6731 SDValue Chain = Op.getOperand(0); 6732 SDValue SaveSP = Op.getOperand(1); 6733 6734 // Load the old link SP. 6735 SDValue LoadLinkSP = 6736 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 6737 6738 // Restore the stack pointer. 6739 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 6740 6741 // Store the old link SP. 6742 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 6743 } 6744 6745 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 6746 MachineFunction &MF = DAG.getMachineFunction(); 6747 bool isPPC64 = Subtarget.isPPC64(); 6748 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6749 6750 // Get current frame pointer save index. The users of this index will be 6751 // primarily DYNALLOC instructions. 6752 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6753 int RASI = FI->getReturnAddrSaveIndex(); 6754 6755 // If the frame pointer save index hasn't been defined yet. 6756 if (!RASI) { 6757 // Find out what the fix offset of the frame pointer save area. 6758 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 6759 // Allocate the frame index for frame pointer save area. 6760 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 6761 // Save the result. 6762 FI->setReturnAddrSaveIndex(RASI); 6763 } 6764 return DAG.getFrameIndex(RASI, PtrVT); 6765 } 6766 6767 SDValue 6768 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 6769 MachineFunction &MF = DAG.getMachineFunction(); 6770 bool isPPC64 = Subtarget.isPPC64(); 6771 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6772 6773 // Get current frame pointer save index. The users of this index will be 6774 // primarily DYNALLOC instructions. 6775 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6776 int FPSI = FI->getFramePointerSaveIndex(); 6777 6778 // If the frame pointer save index hasn't been defined yet. 6779 if (!FPSI) { 6780 // Find out what the fix offset of the frame pointer save area. 6781 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 6782 // Allocate the frame index for frame pointer save area. 6783 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 6784 // Save the result. 6785 FI->setFramePointerSaveIndex(FPSI); 6786 } 6787 return DAG.getFrameIndex(FPSI, PtrVT); 6788 } 6789 6790 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 6791 SelectionDAG &DAG) const { 6792 // Get the inputs. 6793 SDValue Chain = Op.getOperand(0); 6794 SDValue Size = Op.getOperand(1); 6795 SDLoc dl(Op); 6796 6797 // Get the correct type for pointers. 6798 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6799 // Negate the size. 6800 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 6801 DAG.getConstant(0, dl, PtrVT), Size); 6802 // Construct a node for the frame pointer save index. 6803 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6804 // Build a DYNALLOC node. 6805 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 6806 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 6807 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 6808 } 6809 6810 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 6811 SelectionDAG &DAG) const { 6812 MachineFunction &MF = DAG.getMachineFunction(); 6813 6814 bool isPPC64 = Subtarget.isPPC64(); 6815 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6816 6817 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 6818 return DAG.getFrameIndex(FI, PtrVT); 6819 } 6820 6821 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 6822 SelectionDAG &DAG) const { 6823 SDLoc DL(Op); 6824 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 6825 DAG.getVTList(MVT::i32, MVT::Other), 6826 Op.getOperand(0), Op.getOperand(1)); 6827 } 6828 6829 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 6830 SelectionDAG &DAG) const { 6831 SDLoc DL(Op); 6832 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 6833 Op.getOperand(0), Op.getOperand(1)); 6834 } 6835 6836 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 6837 if (Op.getValueType().isVector()) 6838 return LowerVectorLoad(Op, DAG); 6839 6840 assert(Op.getValueType() == MVT::i1 && 6841 "Custom lowering only for i1 loads"); 6842 6843 // First, load 8 bits into 32 bits, then truncate to 1 bit. 6844 6845 SDLoc dl(Op); 6846 LoadSDNode *LD = cast<LoadSDNode>(Op); 6847 6848 SDValue Chain = LD->getChain(); 6849 SDValue BasePtr = LD->getBasePtr(); 6850 MachineMemOperand *MMO = LD->getMemOperand(); 6851 6852 SDValue NewLD = 6853 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 6854 BasePtr, MVT::i8, MMO); 6855 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 6856 6857 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 6858 return DAG.getMergeValues(Ops, dl); 6859 } 6860 6861 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 6862 if (Op.getOperand(1).getValueType().isVector()) 6863 return LowerVectorStore(Op, DAG); 6864 6865 assert(Op.getOperand(1).getValueType() == MVT::i1 && 6866 "Custom lowering only for i1 stores"); 6867 6868 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 6869 6870 SDLoc dl(Op); 6871 StoreSDNode *ST = cast<StoreSDNode>(Op); 6872 6873 SDValue Chain = ST->getChain(); 6874 SDValue BasePtr = ST->getBasePtr(); 6875 SDValue Value = ST->getValue(); 6876 MachineMemOperand *MMO = ST->getMemOperand(); 6877 6878 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 6879 Value); 6880 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 6881 } 6882 6883 // FIXME: Remove this once the ANDI glue bug is fixed: 6884 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 6885 assert(Op.getValueType() == MVT::i1 && 6886 "Custom lowering only for i1 results"); 6887 6888 SDLoc DL(Op); 6889 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 6890 Op.getOperand(0)); 6891 } 6892 6893 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 6894 /// possible. 6895 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 6896 // Not FP? Not a fsel. 6897 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 6898 !Op.getOperand(2).getValueType().isFloatingPoint()) 6899 return Op; 6900 6901 // We might be able to do better than this under some circumstances, but in 6902 // general, fsel-based lowering of select is a finite-math-only optimization. 6903 // For more information, see section F.3 of the 2.06 ISA specification. 6904 if (!DAG.getTarget().Options.NoInfsFPMath || 6905 !DAG.getTarget().Options.NoNaNsFPMath) 6906 return Op; 6907 // TODO: Propagate flags from the select rather than global settings. 6908 SDNodeFlags Flags; 6909 Flags.setNoInfs(true); 6910 Flags.setNoNaNs(true); 6911 6912 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 6913 6914 EVT ResVT = Op.getValueType(); 6915 EVT CmpVT = Op.getOperand(0).getValueType(); 6916 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 6917 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 6918 SDLoc dl(Op); 6919 6920 // If the RHS of the comparison is a 0.0, we don't need to do the 6921 // subtraction at all. 6922 SDValue Sel1; 6923 if (isFloatingPointZero(RHS)) 6924 switch (CC) { 6925 default: break; // SETUO etc aren't handled by fsel. 6926 case ISD::SETNE: 6927 std::swap(TV, FV); 6928 LLVM_FALLTHROUGH; 6929 case ISD::SETEQ: 6930 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6931 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6932 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6933 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6934 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6935 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6936 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 6937 case ISD::SETULT: 6938 case ISD::SETLT: 6939 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6940 LLVM_FALLTHROUGH; 6941 case ISD::SETOGE: 6942 case ISD::SETGE: 6943 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6944 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6945 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6946 case ISD::SETUGT: 6947 case ISD::SETGT: 6948 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6949 LLVM_FALLTHROUGH; 6950 case ISD::SETOLE: 6951 case ISD::SETLE: 6952 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6953 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6954 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6955 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 6956 } 6957 6958 SDValue Cmp; 6959 switch (CC) { 6960 default: break; // SETUO etc aren't handled by fsel. 6961 case ISD::SETNE: 6962 std::swap(TV, FV); 6963 LLVM_FALLTHROUGH; 6964 case ISD::SETEQ: 6965 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 6966 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6967 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6968 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6969 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6970 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6971 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6972 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 6973 case ISD::SETULT: 6974 case ISD::SETLT: 6975 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 6976 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6977 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6978 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6979 case ISD::SETOGE: 6980 case ISD::SETGE: 6981 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 6982 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6983 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6984 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6985 case ISD::SETUGT: 6986 case ISD::SETGT: 6987 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 6988 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6989 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6990 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6991 case ISD::SETOLE: 6992 case ISD::SETLE: 6993 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 6994 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6995 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6996 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6997 } 6998 return Op; 6999 } 7000 7001 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 7002 SelectionDAG &DAG, 7003 const SDLoc &dl) const { 7004 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7005 SDValue Src = Op.getOperand(0); 7006 if (Src.getValueType() == MVT::f32) 7007 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7008 7009 SDValue Tmp; 7010 switch (Op.getSimpleValueType().SimpleTy) { 7011 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7012 case MVT::i32: 7013 Tmp = DAG.getNode( 7014 Op.getOpcode() == ISD::FP_TO_SINT 7015 ? PPCISD::FCTIWZ 7016 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7017 dl, MVT::f64, Src); 7018 break; 7019 case MVT::i64: 7020 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7021 "i64 FP_TO_UINT is supported only with FPCVT"); 7022 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7023 PPCISD::FCTIDUZ, 7024 dl, MVT::f64, Src); 7025 break; 7026 } 7027 7028 // Convert the FP value to an int value through memory. 7029 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 7030 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 7031 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 7032 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 7033 MachinePointerInfo MPI = 7034 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 7035 7036 // Emit a store to the stack slot. 7037 SDValue Chain; 7038 if (i32Stack) { 7039 MachineFunction &MF = DAG.getMachineFunction(); 7040 MachineMemOperand *MMO = 7041 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 7042 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 7043 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 7044 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 7045 } else 7046 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI); 7047 7048 // Result is a load from the stack slot. If loading 4 bytes, make sure to 7049 // add in a bias on big endian. 7050 if (Op.getValueType() == MVT::i32 && !i32Stack) { 7051 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 7052 DAG.getConstant(4, dl, FIPtr.getValueType())); 7053 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 7054 } 7055 7056 RLI.Chain = Chain; 7057 RLI.Ptr = FIPtr; 7058 RLI.MPI = MPI; 7059 } 7060 7061 /// Custom lowers floating point to integer conversions to use 7062 /// the direct move instructions available in ISA 2.07 to avoid the 7063 /// need for load/store combinations. 7064 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 7065 SelectionDAG &DAG, 7066 const SDLoc &dl) const { 7067 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7068 SDValue Src = Op.getOperand(0); 7069 7070 if (Src.getValueType() == MVT::f32) 7071 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7072 7073 SDValue Tmp; 7074 switch (Op.getSimpleValueType().SimpleTy) { 7075 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7076 case MVT::i32: 7077 Tmp = DAG.getNode( 7078 Op.getOpcode() == ISD::FP_TO_SINT 7079 ? PPCISD::FCTIWZ 7080 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7081 dl, MVT::f64, Src); 7082 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 7083 break; 7084 case MVT::i64: 7085 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7086 "i64 FP_TO_UINT is supported only with FPCVT"); 7087 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7088 PPCISD::FCTIDUZ, 7089 dl, MVT::f64, Src); 7090 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 7091 break; 7092 } 7093 return Tmp; 7094 } 7095 7096 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 7097 const SDLoc &dl) const { 7098 7099 // FP to INT conversions are legal for f128. 7100 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128)) 7101 return Op; 7102 7103 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 7104 // PPC (the libcall is not available). 7105 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 7106 if (Op.getValueType() == MVT::i32) { 7107 if (Op.getOpcode() == ISD::FP_TO_SINT) { 7108 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7109 MVT::f64, Op.getOperand(0), 7110 DAG.getIntPtrConstant(0, dl)); 7111 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7112 MVT::f64, Op.getOperand(0), 7113 DAG.getIntPtrConstant(1, dl)); 7114 7115 // Add the two halves of the long double in round-to-zero mode. 7116 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 7117 7118 // Now use a smaller FP_TO_SINT. 7119 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 7120 } 7121 if (Op.getOpcode() == ISD::FP_TO_UINT) { 7122 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 7123 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 7124 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 7125 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 7126 // FIXME: generated code sucks. 7127 // TODO: Are there fast-math-flags to propagate to this FSUB? 7128 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 7129 Op.getOperand(0), Tmp); 7130 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 7131 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 7132 DAG.getConstant(0x80000000, dl, MVT::i32)); 7133 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 7134 Op.getOperand(0)); 7135 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 7136 ISD::SETGE); 7137 } 7138 } 7139 7140 return SDValue(); 7141 } 7142 7143 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 7144 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 7145 7146 ReuseLoadInfo RLI; 7147 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7148 7149 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7150 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7151 } 7152 7153 // We're trying to insert a regular store, S, and then a load, L. If the 7154 // incoming value, O, is a load, we might just be able to have our load use the 7155 // address used by O. However, we don't know if anything else will store to 7156 // that address before we can load from it. To prevent this situation, we need 7157 // to insert our load, L, into the chain as a peer of O. To do this, we give L 7158 // the same chain operand as O, we create a token factor from the chain results 7159 // of O and L, and we replace all uses of O's chain result with that token 7160 // factor (see spliceIntoChain below for this last part). 7161 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 7162 ReuseLoadInfo &RLI, 7163 SelectionDAG &DAG, 7164 ISD::LoadExtType ET) const { 7165 SDLoc dl(Op); 7166 if (ET == ISD::NON_EXTLOAD && 7167 (Op.getOpcode() == ISD::FP_TO_UINT || 7168 Op.getOpcode() == ISD::FP_TO_SINT) && 7169 isOperationLegalOrCustom(Op.getOpcode(), 7170 Op.getOperand(0).getValueType())) { 7171 7172 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7173 return true; 7174 } 7175 7176 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 7177 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 7178 LD->isNonTemporal()) 7179 return false; 7180 if (LD->getMemoryVT() != MemVT) 7181 return false; 7182 7183 RLI.Ptr = LD->getBasePtr(); 7184 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 7185 assert(LD->getAddressingMode() == ISD::PRE_INC && 7186 "Non-pre-inc AM on PPC?"); 7187 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 7188 LD->getOffset()); 7189 } 7190 7191 RLI.Chain = LD->getChain(); 7192 RLI.MPI = LD->getPointerInfo(); 7193 RLI.IsDereferenceable = LD->isDereferenceable(); 7194 RLI.IsInvariant = LD->isInvariant(); 7195 RLI.Alignment = LD->getAlignment(); 7196 RLI.AAInfo = LD->getAAInfo(); 7197 RLI.Ranges = LD->getRanges(); 7198 7199 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 7200 return true; 7201 } 7202 7203 // Given the head of the old chain, ResChain, insert a token factor containing 7204 // it and NewResChain, and make users of ResChain now be users of that token 7205 // factor. 7206 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 7207 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 7208 SDValue NewResChain, 7209 SelectionDAG &DAG) const { 7210 if (!ResChain) 7211 return; 7212 7213 SDLoc dl(NewResChain); 7214 7215 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 7216 NewResChain, DAG.getUNDEF(MVT::Other)); 7217 assert(TF.getNode() != NewResChain.getNode() && 7218 "A new TF really is required here"); 7219 7220 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 7221 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 7222 } 7223 7224 /// Analyze profitability of direct move 7225 /// prefer float load to int load plus direct move 7226 /// when there is no integer use of int load 7227 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 7228 SDNode *Origin = Op.getOperand(0).getNode(); 7229 if (Origin->getOpcode() != ISD::LOAD) 7230 return true; 7231 7232 // If there is no LXSIBZX/LXSIHZX, like Power8, 7233 // prefer direct move if the memory size is 1 or 2 bytes. 7234 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 7235 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 7236 return true; 7237 7238 for (SDNode::use_iterator UI = Origin->use_begin(), 7239 UE = Origin->use_end(); 7240 UI != UE; ++UI) { 7241 7242 // Only look at the users of the loaded value. 7243 if (UI.getUse().get().getResNo() != 0) 7244 continue; 7245 7246 if (UI->getOpcode() != ISD::SINT_TO_FP && 7247 UI->getOpcode() != ISD::UINT_TO_FP) 7248 return true; 7249 } 7250 7251 return false; 7252 } 7253 7254 /// Custom lowers integer to floating point conversions to use 7255 /// the direct move instructions available in ISA 2.07 to avoid the 7256 /// need for load/store combinations. 7257 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 7258 SelectionDAG &DAG, 7259 const SDLoc &dl) const { 7260 assert((Op.getValueType() == MVT::f32 || 7261 Op.getValueType() == MVT::f64) && 7262 "Invalid floating point type as target of conversion"); 7263 assert(Subtarget.hasFPCVT() && 7264 "Int to FP conversions with direct moves require FPCVT"); 7265 SDValue FP; 7266 SDValue Src = Op.getOperand(0); 7267 bool SinglePrec = Op.getValueType() == MVT::f32; 7268 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 7269 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 7270 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 7271 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 7272 7273 if (WordInt) { 7274 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 7275 dl, MVT::f64, Src); 7276 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7277 } 7278 else { 7279 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 7280 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7281 } 7282 7283 return FP; 7284 } 7285 7286 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 7287 7288 EVT VecVT = Vec.getValueType(); 7289 assert(VecVT.isVector() && "Expected a vector type."); 7290 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 7291 7292 EVT EltVT = VecVT.getVectorElementType(); 7293 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7294 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7295 7296 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 7297 SmallVector<SDValue, 16> Ops(NumConcat); 7298 Ops[0] = Vec; 7299 SDValue UndefVec = DAG.getUNDEF(VecVT); 7300 for (unsigned i = 1; i < NumConcat; ++i) 7301 Ops[i] = UndefVec; 7302 7303 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 7304 } 7305 7306 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 7307 const SDLoc &dl) const { 7308 7309 unsigned Opc = Op.getOpcode(); 7310 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) && 7311 "Unexpected conversion type"); 7312 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 7313 "Supports conversions to v2f64/v4f32 only."); 7314 7315 bool SignedConv = Opc == ISD::SINT_TO_FP; 7316 bool FourEltRes = Op.getValueType() == MVT::v4f32; 7317 7318 SDValue Wide = widenVec(DAG, Op.getOperand(0), dl); 7319 EVT WideVT = Wide.getValueType(); 7320 unsigned WideNumElts = WideVT.getVectorNumElements(); 7321 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 7322 7323 SmallVector<int, 16> ShuffV; 7324 for (unsigned i = 0; i < WideNumElts; ++i) 7325 ShuffV.push_back(i + WideNumElts); 7326 7327 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 7328 int SaveElts = FourEltRes ? 4 : 2; 7329 if (Subtarget.isLittleEndian()) 7330 for (int i = 0; i < SaveElts; i++) 7331 ShuffV[i * Stride] = i; 7332 else 7333 for (int i = 1; i <= SaveElts; i++) 7334 ShuffV[i * Stride - 1] = i - 1; 7335 7336 SDValue ShuffleSrc2 = 7337 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 7338 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 7339 unsigned ExtendOp = 7340 SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST; 7341 7342 SDValue Extend; 7343 if (!Subtarget.hasP9Altivec() && SignedConv) { 7344 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 7345 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 7346 DAG.getValueType(Op.getOperand(0).getValueType())); 7347 } else 7348 Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange); 7349 7350 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 7351 } 7352 7353 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 7354 SelectionDAG &DAG) const { 7355 SDLoc dl(Op); 7356 7357 EVT InVT = Op.getOperand(0).getValueType(); 7358 EVT OutVT = Op.getValueType(); 7359 if (OutVT.isVector() && OutVT.isFloatingPoint() && 7360 isOperationCustom(Op.getOpcode(), InVT)) 7361 return LowerINT_TO_FPVector(Op, DAG, dl); 7362 7363 // Conversions to f128 are legal. 7364 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128)) 7365 return Op; 7366 7367 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 7368 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 7369 return SDValue(); 7370 7371 SDValue Value = Op.getOperand(0); 7372 // The values are now known to be -1 (false) or 1 (true). To convert this 7373 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7374 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7375 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7376 7377 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 7378 7379 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7380 7381 if (Op.getValueType() != MVT::v4f64) 7382 Value = DAG.getNode(ISD::FP_ROUND, dl, 7383 Op.getValueType(), Value, 7384 DAG.getIntPtrConstant(1, dl)); 7385 return Value; 7386 } 7387 7388 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 7389 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 7390 return SDValue(); 7391 7392 if (Op.getOperand(0).getValueType() == MVT::i1) 7393 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 7394 DAG.getConstantFP(1.0, dl, Op.getValueType()), 7395 DAG.getConstantFP(0.0, dl, Op.getValueType())); 7396 7397 // If we have direct moves, we can do all the conversion, skip the store/load 7398 // however, without FPCVT we can't do most conversions. 7399 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 7400 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 7401 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 7402 7403 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 7404 "UINT_TO_FP is supported only with FPCVT"); 7405 7406 // If we have FCFIDS, then use it when converting to single-precision. 7407 // Otherwise, convert to double-precision and then round. 7408 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7409 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 7410 : PPCISD::FCFIDS) 7411 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 7412 : PPCISD::FCFID); 7413 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7414 ? MVT::f32 7415 : MVT::f64; 7416 7417 if (Op.getOperand(0).getValueType() == MVT::i64) { 7418 SDValue SINT = Op.getOperand(0); 7419 // When converting to single-precision, we actually need to convert 7420 // to double-precision first and then round to single-precision. 7421 // To avoid double-rounding effects during that operation, we have 7422 // to prepare the input operand. Bits that might be truncated when 7423 // converting to double-precision are replaced by a bit that won't 7424 // be lost at this stage, but is below the single-precision rounding 7425 // position. 7426 // 7427 // However, if -enable-unsafe-fp-math is in effect, accept double 7428 // rounding to avoid the extra overhead. 7429 if (Op.getValueType() == MVT::f32 && 7430 !Subtarget.hasFPCVT() && 7431 !DAG.getTarget().Options.UnsafeFPMath) { 7432 7433 // Twiddle input to make sure the low 11 bits are zero. (If this 7434 // is the case, we are guaranteed the value will fit into the 53 bit 7435 // mantissa of an IEEE double-precision value without rounding.) 7436 // If any of those low 11 bits were not zero originally, make sure 7437 // bit 12 (value 2048) is set instead, so that the final rounding 7438 // to single-precision gets the correct result. 7439 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7440 SINT, DAG.getConstant(2047, dl, MVT::i64)); 7441 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 7442 Round, DAG.getConstant(2047, dl, MVT::i64)); 7443 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 7444 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7445 Round, DAG.getConstant(-2048, dl, MVT::i64)); 7446 7447 // However, we cannot use that value unconditionally: if the magnitude 7448 // of the input value is small, the bit-twiddling we did above might 7449 // end up visibly changing the output. Fortunately, in that case, we 7450 // don't need to twiddle bits since the original input will convert 7451 // exactly to double-precision floating-point already. Therefore, 7452 // construct a conditional to use the original value if the top 11 7453 // bits are all sign-bit copies, and use the rounded value computed 7454 // above otherwise. 7455 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 7456 SINT, DAG.getConstant(53, dl, MVT::i32)); 7457 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 7458 Cond, DAG.getConstant(1, dl, MVT::i64)); 7459 Cond = DAG.getSetCC(dl, MVT::i32, 7460 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 7461 7462 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 7463 } 7464 7465 ReuseLoadInfo RLI; 7466 SDValue Bits; 7467 7468 MachineFunction &MF = DAG.getMachineFunction(); 7469 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 7470 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7471 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7472 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7473 } else if (Subtarget.hasLFIWAX() && 7474 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 7475 MachineMemOperand *MMO = 7476 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7477 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7478 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7479 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 7480 DAG.getVTList(MVT::f64, MVT::Other), 7481 Ops, MVT::i32, MMO); 7482 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7483 } else if (Subtarget.hasFPCVT() && 7484 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 7485 MachineMemOperand *MMO = 7486 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7487 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7488 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7489 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 7490 DAG.getVTList(MVT::f64, MVT::Other), 7491 Ops, MVT::i32, MMO); 7492 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7493 } else if (((Subtarget.hasLFIWAX() && 7494 SINT.getOpcode() == ISD::SIGN_EXTEND) || 7495 (Subtarget.hasFPCVT() && 7496 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 7497 SINT.getOperand(0).getValueType() == MVT::i32) { 7498 MachineFrameInfo &MFI = MF.getFrameInfo(); 7499 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7500 7501 int FrameIdx = MFI.CreateStackObject(4, 4, false); 7502 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7503 7504 SDValue Store = 7505 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 7506 MachinePointerInfo::getFixedStack( 7507 DAG.getMachineFunction(), FrameIdx)); 7508 7509 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 7510 "Expected an i32 store"); 7511 7512 RLI.Ptr = FIdx; 7513 RLI.Chain = Store; 7514 RLI.MPI = 7515 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7516 RLI.Alignment = 4; 7517 7518 MachineMemOperand *MMO = 7519 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7520 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7521 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7522 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 7523 PPCISD::LFIWZX : PPCISD::LFIWAX, 7524 dl, DAG.getVTList(MVT::f64, MVT::Other), 7525 Ops, MVT::i32, MMO); 7526 } else 7527 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 7528 7529 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 7530 7531 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 7532 FP = DAG.getNode(ISD::FP_ROUND, dl, 7533 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 7534 return FP; 7535 } 7536 7537 assert(Op.getOperand(0).getValueType() == MVT::i32 && 7538 "Unhandled INT_TO_FP type in custom expander!"); 7539 // Since we only generate this in 64-bit mode, we can take advantage of 7540 // 64-bit registers. In particular, sign extend the input value into the 7541 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 7542 // then lfd it and fcfid it. 7543 MachineFunction &MF = DAG.getMachineFunction(); 7544 MachineFrameInfo &MFI = MF.getFrameInfo(); 7545 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7546 7547 SDValue Ld; 7548 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 7549 ReuseLoadInfo RLI; 7550 bool ReusingLoad; 7551 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 7552 DAG))) { 7553 int FrameIdx = MFI.CreateStackObject(4, 4, false); 7554 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7555 7556 SDValue Store = 7557 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 7558 MachinePointerInfo::getFixedStack( 7559 DAG.getMachineFunction(), FrameIdx)); 7560 7561 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 7562 "Expected an i32 store"); 7563 7564 RLI.Ptr = FIdx; 7565 RLI.Chain = Store; 7566 RLI.MPI = 7567 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7568 RLI.Alignment = 4; 7569 } 7570 7571 MachineMemOperand *MMO = 7572 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7573 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7574 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7575 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 7576 PPCISD::LFIWZX : PPCISD::LFIWAX, 7577 dl, DAG.getVTList(MVT::f64, MVT::Other), 7578 Ops, MVT::i32, MMO); 7579 if (ReusingLoad) 7580 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 7581 } else { 7582 assert(Subtarget.isPPC64() && 7583 "i32->FP without LFIWAX supported only on PPC64"); 7584 7585 int FrameIdx = MFI.CreateStackObject(8, 8, false); 7586 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7587 7588 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 7589 Op.getOperand(0)); 7590 7591 // STD the extended value into the stack slot. 7592 SDValue Store = DAG.getStore( 7593 DAG.getEntryNode(), dl, Ext64, FIdx, 7594 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 7595 7596 // Load the value as a double. 7597 Ld = DAG.getLoad( 7598 MVT::f64, dl, Store, FIdx, 7599 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 7600 } 7601 7602 // FCFID it and return it. 7603 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 7604 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 7605 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 7606 DAG.getIntPtrConstant(0, dl)); 7607 return FP; 7608 } 7609 7610 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 7611 SelectionDAG &DAG) const { 7612 SDLoc dl(Op); 7613 /* 7614 The rounding mode is in bits 30:31 of FPSR, and has the following 7615 settings: 7616 00 Round to nearest 7617 01 Round to 0 7618 10 Round to +inf 7619 11 Round to -inf 7620 7621 FLT_ROUNDS, on the other hand, expects the following: 7622 -1 Undefined 7623 0 Round to 0 7624 1 Round to nearest 7625 2 Round to +inf 7626 3 Round to -inf 7627 7628 To perform the conversion, we do: 7629 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 7630 */ 7631 7632 MachineFunction &MF = DAG.getMachineFunction(); 7633 EVT VT = Op.getValueType(); 7634 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7635 7636 // Save FP Control Word to register 7637 EVT NodeTys[] = { 7638 MVT::f64, // return register 7639 MVT::Glue // unused in this context 7640 }; 7641 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 7642 7643 // Save FP register to stack slot 7644 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 7645 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 7646 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot, 7647 MachinePointerInfo()); 7648 7649 // Load FP Control Word from low 32 bits of stack slot. 7650 SDValue Four = DAG.getConstant(4, dl, PtrVT); 7651 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 7652 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo()); 7653 7654 // Transform as necessary 7655 SDValue CWD1 = 7656 DAG.getNode(ISD::AND, dl, MVT::i32, 7657 CWD, DAG.getConstant(3, dl, MVT::i32)); 7658 SDValue CWD2 = 7659 DAG.getNode(ISD::SRL, dl, MVT::i32, 7660 DAG.getNode(ISD::AND, dl, MVT::i32, 7661 DAG.getNode(ISD::XOR, dl, MVT::i32, 7662 CWD, DAG.getConstant(3, dl, MVT::i32)), 7663 DAG.getConstant(3, dl, MVT::i32)), 7664 DAG.getConstant(1, dl, MVT::i32)); 7665 7666 SDValue RetVal = 7667 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 7668 7669 return DAG.getNode((VT.getSizeInBits() < 16 ? 7670 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 7671 } 7672 7673 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7674 EVT VT = Op.getValueType(); 7675 unsigned BitWidth = VT.getSizeInBits(); 7676 SDLoc dl(Op); 7677 assert(Op.getNumOperands() == 3 && 7678 VT == Op.getOperand(1).getValueType() && 7679 "Unexpected SHL!"); 7680 7681 // Expand into a bunch of logical ops. Note that these ops 7682 // depend on the PPC behavior for oversized shift amounts. 7683 SDValue Lo = Op.getOperand(0); 7684 SDValue Hi = Op.getOperand(1); 7685 SDValue Amt = Op.getOperand(2); 7686 EVT AmtVT = Amt.getValueType(); 7687 7688 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7689 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7690 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 7691 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 7692 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 7693 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7694 DAG.getConstant(-BitWidth, dl, AmtVT)); 7695 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 7696 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 7697 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 7698 SDValue OutOps[] = { OutLo, OutHi }; 7699 return DAG.getMergeValues(OutOps, dl); 7700 } 7701 7702 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7703 EVT VT = Op.getValueType(); 7704 SDLoc dl(Op); 7705 unsigned BitWidth = VT.getSizeInBits(); 7706 assert(Op.getNumOperands() == 3 && 7707 VT == Op.getOperand(1).getValueType() && 7708 "Unexpected SRL!"); 7709 7710 // Expand into a bunch of logical ops. Note that these ops 7711 // depend on the PPC behavior for oversized shift amounts. 7712 SDValue Lo = Op.getOperand(0); 7713 SDValue Hi = Op.getOperand(1); 7714 SDValue Amt = Op.getOperand(2); 7715 EVT AmtVT = Amt.getValueType(); 7716 7717 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7718 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7719 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 7720 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 7721 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7722 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7723 DAG.getConstant(-BitWidth, dl, AmtVT)); 7724 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 7725 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 7726 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 7727 SDValue OutOps[] = { OutLo, OutHi }; 7728 return DAG.getMergeValues(OutOps, dl); 7729 } 7730 7731 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 7732 SDLoc dl(Op); 7733 EVT VT = Op.getValueType(); 7734 unsigned BitWidth = VT.getSizeInBits(); 7735 assert(Op.getNumOperands() == 3 && 7736 VT == Op.getOperand(1).getValueType() && 7737 "Unexpected SRA!"); 7738 7739 // Expand into a bunch of logical ops, followed by a select_cc. 7740 SDValue Lo = Op.getOperand(0); 7741 SDValue Hi = Op.getOperand(1); 7742 SDValue Amt = Op.getOperand(2); 7743 EVT AmtVT = Amt.getValueType(); 7744 7745 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7746 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7747 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 7748 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 7749 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7750 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7751 DAG.getConstant(-BitWidth, dl, AmtVT)); 7752 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 7753 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 7754 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 7755 Tmp4, Tmp6, ISD::SETLE); 7756 SDValue OutOps[] = { OutLo, OutHi }; 7757 return DAG.getMergeValues(OutOps, dl); 7758 } 7759 7760 //===----------------------------------------------------------------------===// 7761 // Vector related lowering. 7762 // 7763 7764 /// BuildSplatI - Build a canonical splati of Val with an element size of 7765 /// SplatSize. Cast the result to VT. 7766 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 7767 SelectionDAG &DAG, const SDLoc &dl) { 7768 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 7769 7770 static const MVT VTys[] = { // canonical VT to use for each size. 7771 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 7772 }; 7773 7774 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 7775 7776 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 7777 if (Val == -1) 7778 SplatSize = 1; 7779 7780 EVT CanonicalVT = VTys[SplatSize-1]; 7781 7782 // Build a canonical splat for this value. 7783 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 7784 } 7785 7786 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 7787 /// specified intrinsic ID. 7788 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 7789 const SDLoc &dl, EVT DestVT = MVT::Other) { 7790 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 7791 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7792 DAG.getConstant(IID, dl, MVT::i32), Op); 7793 } 7794 7795 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 7796 /// specified intrinsic ID. 7797 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 7798 SelectionDAG &DAG, const SDLoc &dl, 7799 EVT DestVT = MVT::Other) { 7800 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 7801 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7802 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 7803 } 7804 7805 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 7806 /// specified intrinsic ID. 7807 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 7808 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 7809 EVT DestVT = MVT::Other) { 7810 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 7811 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7812 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 7813 } 7814 7815 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 7816 /// amount. The result has the specified value type. 7817 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 7818 SelectionDAG &DAG, const SDLoc &dl) { 7819 // Force LHS/RHS to be the right type. 7820 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 7821 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 7822 7823 int Ops[16]; 7824 for (unsigned i = 0; i != 16; ++i) 7825 Ops[i] = i + Amt; 7826 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 7827 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7828 } 7829 7830 /// Do we have an efficient pattern in a .td file for this node? 7831 /// 7832 /// \param V - pointer to the BuildVectorSDNode being matched 7833 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 7834 /// 7835 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 7836 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 7837 /// the opposite is true (expansion is beneficial) are: 7838 /// - The node builds a vector out of integers that are not 32 or 64-bits 7839 /// - The node builds a vector out of constants 7840 /// - The node is a "load-and-splat" 7841 /// In all other cases, we will choose to keep the BUILD_VECTOR. 7842 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 7843 bool HasDirectMove, 7844 bool HasP8Vector) { 7845 EVT VecVT = V->getValueType(0); 7846 bool RightType = VecVT == MVT::v2f64 || 7847 (HasP8Vector && VecVT == MVT::v4f32) || 7848 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 7849 if (!RightType) 7850 return false; 7851 7852 bool IsSplat = true; 7853 bool IsLoad = false; 7854 SDValue Op0 = V->getOperand(0); 7855 7856 // This function is called in a block that confirms the node is not a constant 7857 // splat. So a constant BUILD_VECTOR here means the vector is built out of 7858 // different constants. 7859 if (V->isConstant()) 7860 return false; 7861 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 7862 if (V->getOperand(i).isUndef()) 7863 return false; 7864 // We want to expand nodes that represent load-and-splat even if the 7865 // loaded value is a floating point truncation or conversion to int. 7866 if (V->getOperand(i).getOpcode() == ISD::LOAD || 7867 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 7868 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 7869 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 7870 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 7871 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 7872 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 7873 IsLoad = true; 7874 // If the operands are different or the input is not a load and has more 7875 // uses than just this BV node, then it isn't a splat. 7876 if (V->getOperand(i) != Op0 || 7877 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 7878 IsSplat = false; 7879 } 7880 return !(IsSplat && IsLoad); 7881 } 7882 7883 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 7884 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 7885 7886 SDLoc dl(Op); 7887 SDValue Op0 = Op->getOperand(0); 7888 7889 if (!EnableQuadPrecision || 7890 (Op.getValueType() != MVT::f128 ) || 7891 (Op0.getOpcode() != ISD::BUILD_PAIR) || 7892 (Op0.getOperand(0).getValueType() != MVT::i64) || 7893 (Op0.getOperand(1).getValueType() != MVT::i64)) 7894 return SDValue(); 7895 7896 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 7897 Op0.getOperand(1)); 7898 } 7899 7900 // If this is a case we can't handle, return null and let the default 7901 // expansion code take care of it. If we CAN select this case, and if it 7902 // selects to a single instruction, return Op. Otherwise, if we can codegen 7903 // this case more efficiently than a constant pool load, lower it to the 7904 // sequence of ops that should be used. 7905 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 7906 SelectionDAG &DAG) const { 7907 SDLoc dl(Op); 7908 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 7909 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 7910 7911 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 7912 // We first build an i32 vector, load it into a QPX register, 7913 // then convert it to a floating-point vector and compare it 7914 // to a zero vector to get the boolean result. 7915 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7916 int FrameIdx = MFI.CreateStackObject(16, 16, false); 7917 MachinePointerInfo PtrInfo = 7918 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7919 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7920 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7921 7922 assert(BVN->getNumOperands() == 4 && 7923 "BUILD_VECTOR for v4i1 does not have 4 operands"); 7924 7925 bool IsConst = true; 7926 for (unsigned i = 0; i < 4; ++i) { 7927 if (BVN->getOperand(i).isUndef()) continue; 7928 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 7929 IsConst = false; 7930 break; 7931 } 7932 } 7933 7934 if (IsConst) { 7935 Constant *One = 7936 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 7937 Constant *NegOne = 7938 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 7939 7940 Constant *CV[4]; 7941 for (unsigned i = 0; i < 4; ++i) { 7942 if (BVN->getOperand(i).isUndef()) 7943 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 7944 else if (isNullConstant(BVN->getOperand(i))) 7945 CV[i] = NegOne; 7946 else 7947 CV[i] = One; 7948 } 7949 7950 Constant *CP = ConstantVector::get(CV); 7951 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 7952 16 /* alignment */); 7953 7954 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 7955 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 7956 return DAG.getMemIntrinsicNode( 7957 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 7958 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 7959 } 7960 7961 SmallVector<SDValue, 4> Stores; 7962 for (unsigned i = 0; i < 4; ++i) { 7963 if (BVN->getOperand(i).isUndef()) continue; 7964 7965 unsigned Offset = 4*i; 7966 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7967 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7968 7969 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 7970 if (StoreSize > 4) { 7971 Stores.push_back( 7972 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 7973 PtrInfo.getWithOffset(Offset), MVT::i32)); 7974 } else { 7975 SDValue StoreValue = BVN->getOperand(i); 7976 if (StoreSize < 4) 7977 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 7978 7979 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 7980 PtrInfo.getWithOffset(Offset))); 7981 } 7982 } 7983 7984 SDValue StoreChain; 7985 if (!Stores.empty()) 7986 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7987 else 7988 StoreChain = DAG.getEntryNode(); 7989 7990 // Now load from v4i32 into the QPX register; this will extend it to 7991 // v4i64 but not yet convert it to a floating point. Nevertheless, this 7992 // is typed as v4f64 because the QPX register integer states are not 7993 // explicitly represented. 7994 7995 SDValue Ops[] = {StoreChain, 7996 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 7997 FIdx}; 7998 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 7999 8000 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 8001 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8002 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8003 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 8004 LoadedVect); 8005 8006 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 8007 8008 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 8009 } 8010 8011 // All other QPX vectors are handled by generic code. 8012 if (Subtarget.hasQPX()) 8013 return SDValue(); 8014 8015 // Check if this is a splat of a constant value. 8016 APInt APSplatBits, APSplatUndef; 8017 unsigned SplatBitSize; 8018 bool HasAnyUndefs; 8019 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 8020 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 8021 SplatBitSize > 32) { 8022 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 8023 // lowered to VSX instructions under certain conditions. 8024 // Without VSX, there is no pattern more efficient than expanding the node. 8025 if (Subtarget.hasVSX() && 8026 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 8027 Subtarget.hasP8Vector())) 8028 return Op; 8029 return SDValue(); 8030 } 8031 8032 unsigned SplatBits = APSplatBits.getZExtValue(); 8033 unsigned SplatUndef = APSplatUndef.getZExtValue(); 8034 unsigned SplatSize = SplatBitSize / 8; 8035 8036 // First, handle single instruction cases. 8037 8038 // All zeros? 8039 if (SplatBits == 0) { 8040 // Canonicalize all zero vectors to be v4i32. 8041 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 8042 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 8043 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 8044 } 8045 return Op; 8046 } 8047 8048 // We have XXSPLTIB for constant splats one byte wide 8049 if (Subtarget.hasP9Vector() && SplatSize == 1) { 8050 // This is a splat of 1-byte elements with some elements potentially undef. 8051 // Rather than trying to match undef in the SDAG patterns, ensure that all 8052 // elements are the same constant. 8053 if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) { 8054 SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits, 8055 dl, MVT::i32)); 8056 SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops); 8057 if (Op.getValueType() != MVT::v16i8) 8058 return DAG.getBitcast(Op.getValueType(), NewBV); 8059 return NewBV; 8060 } 8061 8062 // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll 8063 // detect that constant splats like v8i16: 0xABAB are really just splats 8064 // of a 1-byte constant. In this case, we need to convert the node to a 8065 // splat of v16i8 and a bitcast. 8066 if (Op.getValueType() != MVT::v16i8) 8067 return DAG.getBitcast(Op.getValueType(), 8068 DAG.getConstant(SplatBits, dl, MVT::v16i8)); 8069 8070 return Op; 8071 } 8072 8073 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 8074 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 8075 (32-SplatBitSize)); 8076 if (SextVal >= -16 && SextVal <= 15) 8077 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 8078 8079 // Two instruction sequences. 8080 8081 // If this value is in the range [-32,30] and is even, use: 8082 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 8083 // If this value is in the range [17,31] and is odd, use: 8084 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 8085 // If this value is in the range [-31,-17] and is odd, use: 8086 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 8087 // Note the last two are three-instruction sequences. 8088 if (SextVal >= -32 && SextVal <= 31) { 8089 // To avoid having these optimizations undone by constant folding, 8090 // we convert to a pseudo that will be expanded later into one of 8091 // the above forms. 8092 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 8093 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 8094 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 8095 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 8096 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 8097 if (VT == Op.getValueType()) 8098 return RetVal; 8099 else 8100 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 8101 } 8102 8103 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 8104 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 8105 // for fneg/fabs. 8106 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 8107 // Make -1 and vspltisw -1: 8108 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 8109 8110 // Make the VSLW intrinsic, computing 0x8000_0000. 8111 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 8112 OnesV, DAG, dl); 8113 8114 // xor by OnesV to invert it. 8115 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 8116 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8117 } 8118 8119 // Check to see if this is a wide variety of vsplti*, binop self cases. 8120 static const signed char SplatCsts[] = { 8121 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 8122 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 8123 }; 8124 8125 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 8126 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 8127 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 8128 int i = SplatCsts[idx]; 8129 8130 // Figure out what shift amount will be used by altivec if shifted by i in 8131 // this splat size. 8132 unsigned TypeShiftAmt = i & (SplatBitSize-1); 8133 8134 // vsplti + shl self. 8135 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 8136 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8137 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8138 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 8139 Intrinsic::ppc_altivec_vslw 8140 }; 8141 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8142 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8143 } 8144 8145 // vsplti + srl self. 8146 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8147 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8148 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8149 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 8150 Intrinsic::ppc_altivec_vsrw 8151 }; 8152 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8153 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8154 } 8155 8156 // vsplti + sra self. 8157 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8158 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8159 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8160 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 8161 Intrinsic::ppc_altivec_vsraw 8162 }; 8163 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8164 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8165 } 8166 8167 // vsplti + rol self. 8168 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 8169 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 8170 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8171 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8172 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 8173 Intrinsic::ppc_altivec_vrlw 8174 }; 8175 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8176 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8177 } 8178 8179 // t = vsplti c, result = vsldoi t, t, 1 8180 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 8181 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8182 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 8183 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8184 } 8185 // t = vsplti c, result = vsldoi t, t, 2 8186 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 8187 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8188 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 8189 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8190 } 8191 // t = vsplti c, result = vsldoi t, t, 3 8192 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 8193 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8194 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 8195 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8196 } 8197 } 8198 8199 return SDValue(); 8200 } 8201 8202 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 8203 /// the specified operations to build the shuffle. 8204 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 8205 SDValue RHS, SelectionDAG &DAG, 8206 const SDLoc &dl) { 8207 unsigned OpNum = (PFEntry >> 26) & 0x0F; 8208 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 8209 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 8210 8211 enum { 8212 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 8213 OP_VMRGHW, 8214 OP_VMRGLW, 8215 OP_VSPLTISW0, 8216 OP_VSPLTISW1, 8217 OP_VSPLTISW2, 8218 OP_VSPLTISW3, 8219 OP_VSLDOI4, 8220 OP_VSLDOI8, 8221 OP_VSLDOI12 8222 }; 8223 8224 if (OpNum == OP_COPY) { 8225 if (LHSID == (1*9+2)*9+3) return LHS; 8226 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 8227 return RHS; 8228 } 8229 8230 SDValue OpLHS, OpRHS; 8231 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 8232 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 8233 8234 int ShufIdxs[16]; 8235 switch (OpNum) { 8236 default: llvm_unreachable("Unknown i32 permute!"); 8237 case OP_VMRGHW: 8238 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 8239 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 8240 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 8241 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 8242 break; 8243 case OP_VMRGLW: 8244 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 8245 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 8246 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 8247 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 8248 break; 8249 case OP_VSPLTISW0: 8250 for (unsigned i = 0; i != 16; ++i) 8251 ShufIdxs[i] = (i&3)+0; 8252 break; 8253 case OP_VSPLTISW1: 8254 for (unsigned i = 0; i != 16; ++i) 8255 ShufIdxs[i] = (i&3)+4; 8256 break; 8257 case OP_VSPLTISW2: 8258 for (unsigned i = 0; i != 16; ++i) 8259 ShufIdxs[i] = (i&3)+8; 8260 break; 8261 case OP_VSPLTISW3: 8262 for (unsigned i = 0; i != 16; ++i) 8263 ShufIdxs[i] = (i&3)+12; 8264 break; 8265 case OP_VSLDOI4: 8266 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 8267 case OP_VSLDOI8: 8268 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 8269 case OP_VSLDOI12: 8270 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 8271 } 8272 EVT VT = OpLHS.getValueType(); 8273 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 8274 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 8275 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 8276 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8277 } 8278 8279 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 8280 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 8281 /// SDValue. 8282 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 8283 SelectionDAG &DAG) const { 8284 const unsigned BytesInVector = 16; 8285 bool IsLE = Subtarget.isLittleEndian(); 8286 SDLoc dl(N); 8287 SDValue V1 = N->getOperand(0); 8288 SDValue V2 = N->getOperand(1); 8289 unsigned ShiftElts = 0, InsertAtByte = 0; 8290 bool Swap = false; 8291 8292 // Shifts required to get the byte we want at element 7. 8293 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 8294 0, 15, 14, 13, 12, 11, 10, 9}; 8295 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 8296 1, 2, 3, 4, 5, 6, 7, 8}; 8297 8298 ArrayRef<int> Mask = N->getMask(); 8299 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 8300 8301 // For each mask element, find out if we're just inserting something 8302 // from V2 into V1 or vice versa. 8303 // Possible permutations inserting an element from V2 into V1: 8304 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8305 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8306 // ... 8307 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 8308 // Inserting from V1 into V2 will be similar, except mask range will be 8309 // [16,31]. 8310 8311 bool FoundCandidate = false; 8312 // If both vector operands for the shuffle are the same vector, the mask 8313 // will contain only elements from the first one and the second one will be 8314 // undef. 8315 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 8316 // Go through the mask of half-words to find an element that's being moved 8317 // from one vector to the other. 8318 for (unsigned i = 0; i < BytesInVector; ++i) { 8319 unsigned CurrentElement = Mask[i]; 8320 // If 2nd operand is undefined, we should only look for element 7 in the 8321 // Mask. 8322 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 8323 continue; 8324 8325 bool OtherElementsInOrder = true; 8326 // Examine the other elements in the Mask to see if they're in original 8327 // order. 8328 for (unsigned j = 0; j < BytesInVector; ++j) { 8329 if (j == i) 8330 continue; 8331 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 8332 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 8333 // in which we always assume we're always picking from the 1st operand. 8334 int MaskOffset = 8335 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 8336 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 8337 OtherElementsInOrder = false; 8338 break; 8339 } 8340 } 8341 // If other elements are in original order, we record the number of shifts 8342 // we need to get the element we want into element 7. Also record which byte 8343 // in the vector we should insert into. 8344 if (OtherElementsInOrder) { 8345 // If 2nd operand is undefined, we assume no shifts and no swapping. 8346 if (V2.isUndef()) { 8347 ShiftElts = 0; 8348 Swap = false; 8349 } else { 8350 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 8351 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 8352 : BigEndianShifts[CurrentElement & 0xF]; 8353 Swap = CurrentElement < BytesInVector; 8354 } 8355 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 8356 FoundCandidate = true; 8357 break; 8358 } 8359 } 8360 8361 if (!FoundCandidate) 8362 return SDValue(); 8363 8364 // Candidate found, construct the proper SDAG sequence with VINSERTB, 8365 // optionally with VECSHL if shift is required. 8366 if (Swap) 8367 std::swap(V1, V2); 8368 if (V2.isUndef()) 8369 V2 = V1; 8370 if (ShiftElts) { 8371 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8372 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8373 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 8374 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8375 } 8376 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 8377 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8378 } 8379 8380 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 8381 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 8382 /// SDValue. 8383 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 8384 SelectionDAG &DAG) const { 8385 const unsigned NumHalfWords = 8; 8386 const unsigned BytesInVector = NumHalfWords * 2; 8387 // Check that the shuffle is on half-words. 8388 if (!isNByteElemShuffleMask(N, 2, 1)) 8389 return SDValue(); 8390 8391 bool IsLE = Subtarget.isLittleEndian(); 8392 SDLoc dl(N); 8393 SDValue V1 = N->getOperand(0); 8394 SDValue V2 = N->getOperand(1); 8395 unsigned ShiftElts = 0, InsertAtByte = 0; 8396 bool Swap = false; 8397 8398 // Shifts required to get the half-word we want at element 3. 8399 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 8400 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 8401 8402 uint32_t Mask = 0; 8403 uint32_t OriginalOrderLow = 0x1234567; 8404 uint32_t OriginalOrderHigh = 0x89ABCDEF; 8405 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 8406 // 32-bit space, only need 4-bit nibbles per element. 8407 for (unsigned i = 0; i < NumHalfWords; ++i) { 8408 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8409 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 8410 } 8411 8412 // For each mask element, find out if we're just inserting something 8413 // from V2 into V1 or vice versa. Possible permutations inserting an element 8414 // from V2 into V1: 8415 // X, 1, 2, 3, 4, 5, 6, 7 8416 // 0, X, 2, 3, 4, 5, 6, 7 8417 // 0, 1, X, 3, 4, 5, 6, 7 8418 // 0, 1, 2, X, 4, 5, 6, 7 8419 // 0, 1, 2, 3, X, 5, 6, 7 8420 // 0, 1, 2, 3, 4, X, 6, 7 8421 // 0, 1, 2, 3, 4, 5, X, 7 8422 // 0, 1, 2, 3, 4, 5, 6, X 8423 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 8424 8425 bool FoundCandidate = false; 8426 // Go through the mask of half-words to find an element that's being moved 8427 // from one vector to the other. 8428 for (unsigned i = 0; i < NumHalfWords; ++i) { 8429 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8430 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 8431 uint32_t MaskOtherElts = ~(0xF << MaskShift); 8432 uint32_t TargetOrder = 0x0; 8433 8434 // If both vector operands for the shuffle are the same vector, the mask 8435 // will contain only elements from the first one and the second one will be 8436 // undef. 8437 if (V2.isUndef()) { 8438 ShiftElts = 0; 8439 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 8440 TargetOrder = OriginalOrderLow; 8441 Swap = false; 8442 // Skip if not the correct element or mask of other elements don't equal 8443 // to our expected order. 8444 if (MaskOneElt == VINSERTHSrcElem && 8445 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 8446 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 8447 FoundCandidate = true; 8448 break; 8449 } 8450 } else { // If both operands are defined. 8451 // Target order is [8,15] if the current mask is between [0,7]. 8452 TargetOrder = 8453 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 8454 // Skip if mask of other elements don't equal our expected order. 8455 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 8456 // We only need the last 3 bits for the number of shifts. 8457 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 8458 : BigEndianShifts[MaskOneElt & 0x7]; 8459 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 8460 Swap = MaskOneElt < NumHalfWords; 8461 FoundCandidate = true; 8462 break; 8463 } 8464 } 8465 } 8466 8467 if (!FoundCandidate) 8468 return SDValue(); 8469 8470 // Candidate found, construct the proper SDAG sequence with VINSERTH, 8471 // optionally with VECSHL if shift is required. 8472 if (Swap) 8473 std::swap(V1, V2); 8474 if (V2.isUndef()) 8475 V2 = V1; 8476 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 8477 if (ShiftElts) { 8478 // Double ShiftElts because we're left shifting on v16i8 type. 8479 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8480 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 8481 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 8482 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 8483 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8484 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8485 } 8486 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 8487 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 8488 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8489 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8490 } 8491 8492 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 8493 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 8494 /// return the code it can be lowered into. Worst case, it can always be 8495 /// lowered into a vperm. 8496 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 8497 SelectionDAG &DAG) const { 8498 SDLoc dl(Op); 8499 SDValue V1 = Op.getOperand(0); 8500 SDValue V2 = Op.getOperand(1); 8501 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 8502 EVT VT = Op.getValueType(); 8503 bool isLittleEndian = Subtarget.isLittleEndian(); 8504 8505 unsigned ShiftElts, InsertAtByte; 8506 bool Swap = false; 8507 if (Subtarget.hasP9Vector() && 8508 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 8509 isLittleEndian)) { 8510 if (Swap) 8511 std::swap(V1, V2); 8512 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8513 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 8514 if (ShiftElts) { 8515 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 8516 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8517 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 8518 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8519 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8520 } 8521 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 8522 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8523 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8524 } 8525 8526 if (Subtarget.hasP9Altivec()) { 8527 SDValue NewISDNode; 8528 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 8529 return NewISDNode; 8530 8531 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 8532 return NewISDNode; 8533 } 8534 8535 if (Subtarget.hasVSX() && 8536 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 8537 if (Swap) 8538 std::swap(V1, V2); 8539 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8540 SDValue Conv2 = 8541 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 8542 8543 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 8544 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8545 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 8546 } 8547 8548 if (Subtarget.hasVSX() && 8549 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 8550 if (Swap) 8551 std::swap(V1, V2); 8552 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 8553 SDValue Conv2 = 8554 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 8555 8556 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 8557 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8558 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 8559 } 8560 8561 if (Subtarget.hasP9Vector()) { 8562 if (PPC::isXXBRHShuffleMask(SVOp)) { 8563 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 8564 SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv); 8565 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 8566 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 8567 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8568 SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv); 8569 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 8570 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 8571 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 8572 SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv); 8573 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 8574 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 8575 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 8576 SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv); 8577 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 8578 } 8579 } 8580 8581 if (Subtarget.hasVSX()) { 8582 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 8583 int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG); 8584 8585 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8586 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 8587 DAG.getConstant(SplatIdx, dl, MVT::i32)); 8588 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 8589 } 8590 8591 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 8592 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 8593 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 8594 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 8595 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 8596 } 8597 } 8598 8599 if (Subtarget.hasQPX()) { 8600 if (VT.getVectorNumElements() != 4) 8601 return SDValue(); 8602 8603 if (V2.isUndef()) V2 = V1; 8604 8605 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 8606 if (AlignIdx != -1) { 8607 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 8608 DAG.getConstant(AlignIdx, dl, MVT::i32)); 8609 } else if (SVOp->isSplat()) { 8610 int SplatIdx = SVOp->getSplatIndex(); 8611 if (SplatIdx >= 4) { 8612 std::swap(V1, V2); 8613 SplatIdx -= 4; 8614 } 8615 8616 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 8617 DAG.getConstant(SplatIdx, dl, MVT::i32)); 8618 } 8619 8620 // Lower this into a qvgpci/qvfperm pair. 8621 8622 // Compute the qvgpci literal 8623 unsigned idx = 0; 8624 for (unsigned i = 0; i < 4; ++i) { 8625 int m = SVOp->getMaskElt(i); 8626 unsigned mm = m >= 0 ? (unsigned) m : i; 8627 idx |= mm << (3-i)*3; 8628 } 8629 8630 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 8631 DAG.getConstant(idx, dl, MVT::i32)); 8632 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 8633 } 8634 8635 // Cases that are handled by instructions that take permute immediates 8636 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 8637 // selected by the instruction selector. 8638 if (V2.isUndef()) { 8639 if (PPC::isSplatShuffleMask(SVOp, 1) || 8640 PPC::isSplatShuffleMask(SVOp, 2) || 8641 PPC::isSplatShuffleMask(SVOp, 4) || 8642 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 8643 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 8644 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 8645 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 8646 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 8647 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 8648 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 8649 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 8650 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 8651 (Subtarget.hasP8Altivec() && ( 8652 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 8653 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 8654 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 8655 return Op; 8656 } 8657 } 8658 8659 // Altivec has a variety of "shuffle immediates" that take two vector inputs 8660 // and produce a fixed permutation. If any of these match, do not lower to 8661 // VPERM. 8662 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 8663 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 8664 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 8665 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 8666 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 8667 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 8668 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 8669 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 8670 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 8671 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 8672 (Subtarget.hasP8Altivec() && ( 8673 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 8674 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 8675 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 8676 return Op; 8677 8678 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 8679 // perfect shuffle table to emit an optimal matching sequence. 8680 ArrayRef<int> PermMask = SVOp->getMask(); 8681 8682 unsigned PFIndexes[4]; 8683 bool isFourElementShuffle = true; 8684 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 8685 unsigned EltNo = 8; // Start out undef. 8686 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 8687 if (PermMask[i*4+j] < 0) 8688 continue; // Undef, ignore it. 8689 8690 unsigned ByteSource = PermMask[i*4+j]; 8691 if ((ByteSource & 3) != j) { 8692 isFourElementShuffle = false; 8693 break; 8694 } 8695 8696 if (EltNo == 8) { 8697 EltNo = ByteSource/4; 8698 } else if (EltNo != ByteSource/4) { 8699 isFourElementShuffle = false; 8700 break; 8701 } 8702 } 8703 PFIndexes[i] = EltNo; 8704 } 8705 8706 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 8707 // perfect shuffle vector to determine if it is cost effective to do this as 8708 // discrete instructions, or whether we should use a vperm. 8709 // For now, we skip this for little endian until such time as we have a 8710 // little-endian perfect shuffle table. 8711 if (isFourElementShuffle && !isLittleEndian) { 8712 // Compute the index in the perfect shuffle table. 8713 unsigned PFTableIndex = 8714 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 8715 8716 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 8717 unsigned Cost = (PFEntry >> 30); 8718 8719 // Determining when to avoid vperm is tricky. Many things affect the cost 8720 // of vperm, particularly how many times the perm mask needs to be computed. 8721 // For example, if the perm mask can be hoisted out of a loop or is already 8722 // used (perhaps because there are multiple permutes with the same shuffle 8723 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 8724 // the loop requires an extra register. 8725 // 8726 // As a compromise, we only emit discrete instructions if the shuffle can be 8727 // generated in 3 or fewer operations. When we have loop information 8728 // available, if this block is within a loop, we should avoid using vperm 8729 // for 3-operation perms and use a constant pool load instead. 8730 if (Cost < 3) 8731 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 8732 } 8733 8734 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 8735 // vector that will get spilled to the constant pool. 8736 if (V2.isUndef()) V2 = V1; 8737 8738 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 8739 // that it is in input element units, not in bytes. Convert now. 8740 8741 // For little endian, the order of the input vectors is reversed, and 8742 // the permutation mask is complemented with respect to 31. This is 8743 // necessary to produce proper semantics with the big-endian-biased vperm 8744 // instruction. 8745 EVT EltVT = V1.getValueType().getVectorElementType(); 8746 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 8747 8748 SmallVector<SDValue, 16> ResultMask; 8749 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 8750 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 8751 8752 for (unsigned j = 0; j != BytesPerElement; ++j) 8753 if (isLittleEndian) 8754 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 8755 dl, MVT::i32)); 8756 else 8757 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 8758 MVT::i32)); 8759 } 8760 8761 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 8762 if (isLittleEndian) 8763 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 8764 V2, V1, VPermMask); 8765 else 8766 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 8767 V1, V2, VPermMask); 8768 } 8769 8770 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 8771 /// vector comparison. If it is, return true and fill in Opc/isDot with 8772 /// information about the intrinsic. 8773 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 8774 bool &isDot, const PPCSubtarget &Subtarget) { 8775 unsigned IntrinsicID = 8776 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 8777 CompareOpc = -1; 8778 isDot = false; 8779 switch (IntrinsicID) { 8780 default: 8781 return false; 8782 // Comparison predicates. 8783 case Intrinsic::ppc_altivec_vcmpbfp_p: 8784 CompareOpc = 966; 8785 isDot = true; 8786 break; 8787 case Intrinsic::ppc_altivec_vcmpeqfp_p: 8788 CompareOpc = 198; 8789 isDot = true; 8790 break; 8791 case Intrinsic::ppc_altivec_vcmpequb_p: 8792 CompareOpc = 6; 8793 isDot = true; 8794 break; 8795 case Intrinsic::ppc_altivec_vcmpequh_p: 8796 CompareOpc = 70; 8797 isDot = true; 8798 break; 8799 case Intrinsic::ppc_altivec_vcmpequw_p: 8800 CompareOpc = 134; 8801 isDot = true; 8802 break; 8803 case Intrinsic::ppc_altivec_vcmpequd_p: 8804 if (Subtarget.hasP8Altivec()) { 8805 CompareOpc = 199; 8806 isDot = true; 8807 } else 8808 return false; 8809 break; 8810 case Intrinsic::ppc_altivec_vcmpneb_p: 8811 case Intrinsic::ppc_altivec_vcmpneh_p: 8812 case Intrinsic::ppc_altivec_vcmpnew_p: 8813 case Intrinsic::ppc_altivec_vcmpnezb_p: 8814 case Intrinsic::ppc_altivec_vcmpnezh_p: 8815 case Intrinsic::ppc_altivec_vcmpnezw_p: 8816 if (Subtarget.hasP9Altivec()) { 8817 switch (IntrinsicID) { 8818 default: 8819 llvm_unreachable("Unknown comparison intrinsic."); 8820 case Intrinsic::ppc_altivec_vcmpneb_p: 8821 CompareOpc = 7; 8822 break; 8823 case Intrinsic::ppc_altivec_vcmpneh_p: 8824 CompareOpc = 71; 8825 break; 8826 case Intrinsic::ppc_altivec_vcmpnew_p: 8827 CompareOpc = 135; 8828 break; 8829 case Intrinsic::ppc_altivec_vcmpnezb_p: 8830 CompareOpc = 263; 8831 break; 8832 case Intrinsic::ppc_altivec_vcmpnezh_p: 8833 CompareOpc = 327; 8834 break; 8835 case Intrinsic::ppc_altivec_vcmpnezw_p: 8836 CompareOpc = 391; 8837 break; 8838 } 8839 isDot = true; 8840 } else 8841 return false; 8842 break; 8843 case Intrinsic::ppc_altivec_vcmpgefp_p: 8844 CompareOpc = 454; 8845 isDot = true; 8846 break; 8847 case Intrinsic::ppc_altivec_vcmpgtfp_p: 8848 CompareOpc = 710; 8849 isDot = true; 8850 break; 8851 case Intrinsic::ppc_altivec_vcmpgtsb_p: 8852 CompareOpc = 774; 8853 isDot = true; 8854 break; 8855 case Intrinsic::ppc_altivec_vcmpgtsh_p: 8856 CompareOpc = 838; 8857 isDot = true; 8858 break; 8859 case Intrinsic::ppc_altivec_vcmpgtsw_p: 8860 CompareOpc = 902; 8861 isDot = true; 8862 break; 8863 case Intrinsic::ppc_altivec_vcmpgtsd_p: 8864 if (Subtarget.hasP8Altivec()) { 8865 CompareOpc = 967; 8866 isDot = true; 8867 } else 8868 return false; 8869 break; 8870 case Intrinsic::ppc_altivec_vcmpgtub_p: 8871 CompareOpc = 518; 8872 isDot = true; 8873 break; 8874 case Intrinsic::ppc_altivec_vcmpgtuh_p: 8875 CompareOpc = 582; 8876 isDot = true; 8877 break; 8878 case Intrinsic::ppc_altivec_vcmpgtuw_p: 8879 CompareOpc = 646; 8880 isDot = true; 8881 break; 8882 case Intrinsic::ppc_altivec_vcmpgtud_p: 8883 if (Subtarget.hasP8Altivec()) { 8884 CompareOpc = 711; 8885 isDot = true; 8886 } else 8887 return false; 8888 break; 8889 8890 // VSX predicate comparisons use the same infrastructure 8891 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 8892 case Intrinsic::ppc_vsx_xvcmpgedp_p: 8893 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 8894 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 8895 case Intrinsic::ppc_vsx_xvcmpgesp_p: 8896 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 8897 if (Subtarget.hasVSX()) { 8898 switch (IntrinsicID) { 8899 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 8900 CompareOpc = 99; 8901 break; 8902 case Intrinsic::ppc_vsx_xvcmpgedp_p: 8903 CompareOpc = 115; 8904 break; 8905 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 8906 CompareOpc = 107; 8907 break; 8908 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 8909 CompareOpc = 67; 8910 break; 8911 case Intrinsic::ppc_vsx_xvcmpgesp_p: 8912 CompareOpc = 83; 8913 break; 8914 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 8915 CompareOpc = 75; 8916 break; 8917 } 8918 isDot = true; 8919 } else 8920 return false; 8921 break; 8922 8923 // Normal Comparisons. 8924 case Intrinsic::ppc_altivec_vcmpbfp: 8925 CompareOpc = 966; 8926 break; 8927 case Intrinsic::ppc_altivec_vcmpeqfp: 8928 CompareOpc = 198; 8929 break; 8930 case Intrinsic::ppc_altivec_vcmpequb: 8931 CompareOpc = 6; 8932 break; 8933 case Intrinsic::ppc_altivec_vcmpequh: 8934 CompareOpc = 70; 8935 break; 8936 case Intrinsic::ppc_altivec_vcmpequw: 8937 CompareOpc = 134; 8938 break; 8939 case Intrinsic::ppc_altivec_vcmpequd: 8940 if (Subtarget.hasP8Altivec()) 8941 CompareOpc = 199; 8942 else 8943 return false; 8944 break; 8945 case Intrinsic::ppc_altivec_vcmpneb: 8946 case Intrinsic::ppc_altivec_vcmpneh: 8947 case Intrinsic::ppc_altivec_vcmpnew: 8948 case Intrinsic::ppc_altivec_vcmpnezb: 8949 case Intrinsic::ppc_altivec_vcmpnezh: 8950 case Intrinsic::ppc_altivec_vcmpnezw: 8951 if (Subtarget.hasP9Altivec()) 8952 switch (IntrinsicID) { 8953 default: 8954 llvm_unreachable("Unknown comparison intrinsic."); 8955 case Intrinsic::ppc_altivec_vcmpneb: 8956 CompareOpc = 7; 8957 break; 8958 case Intrinsic::ppc_altivec_vcmpneh: 8959 CompareOpc = 71; 8960 break; 8961 case Intrinsic::ppc_altivec_vcmpnew: 8962 CompareOpc = 135; 8963 break; 8964 case Intrinsic::ppc_altivec_vcmpnezb: 8965 CompareOpc = 263; 8966 break; 8967 case Intrinsic::ppc_altivec_vcmpnezh: 8968 CompareOpc = 327; 8969 break; 8970 case Intrinsic::ppc_altivec_vcmpnezw: 8971 CompareOpc = 391; 8972 break; 8973 } 8974 else 8975 return false; 8976 break; 8977 case Intrinsic::ppc_altivec_vcmpgefp: 8978 CompareOpc = 454; 8979 break; 8980 case Intrinsic::ppc_altivec_vcmpgtfp: 8981 CompareOpc = 710; 8982 break; 8983 case Intrinsic::ppc_altivec_vcmpgtsb: 8984 CompareOpc = 774; 8985 break; 8986 case Intrinsic::ppc_altivec_vcmpgtsh: 8987 CompareOpc = 838; 8988 break; 8989 case Intrinsic::ppc_altivec_vcmpgtsw: 8990 CompareOpc = 902; 8991 break; 8992 case Intrinsic::ppc_altivec_vcmpgtsd: 8993 if (Subtarget.hasP8Altivec()) 8994 CompareOpc = 967; 8995 else 8996 return false; 8997 break; 8998 case Intrinsic::ppc_altivec_vcmpgtub: 8999 CompareOpc = 518; 9000 break; 9001 case Intrinsic::ppc_altivec_vcmpgtuh: 9002 CompareOpc = 582; 9003 break; 9004 case Intrinsic::ppc_altivec_vcmpgtuw: 9005 CompareOpc = 646; 9006 break; 9007 case Intrinsic::ppc_altivec_vcmpgtud: 9008 if (Subtarget.hasP8Altivec()) 9009 CompareOpc = 711; 9010 else 9011 return false; 9012 break; 9013 } 9014 return true; 9015 } 9016 9017 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 9018 /// lower, do it, otherwise return null. 9019 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 9020 SelectionDAG &DAG) const { 9021 unsigned IntrinsicID = 9022 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9023 9024 SDLoc dl(Op); 9025 9026 if (IntrinsicID == Intrinsic::thread_pointer) { 9027 // Reads the thread pointer register, used for __builtin_thread_pointer. 9028 if (Subtarget.isPPC64()) 9029 return DAG.getRegister(PPC::X13, MVT::i64); 9030 return DAG.getRegister(PPC::R2, MVT::i32); 9031 } 9032 9033 // If this is a lowered altivec predicate compare, CompareOpc is set to the 9034 // opcode number of the comparison. 9035 int CompareOpc; 9036 bool isDot; 9037 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 9038 return SDValue(); // Don't custom lower most intrinsics. 9039 9040 // If this is a non-dot comparison, make the VCMP node and we are done. 9041 if (!isDot) { 9042 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 9043 Op.getOperand(1), Op.getOperand(2), 9044 DAG.getConstant(CompareOpc, dl, MVT::i32)); 9045 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 9046 } 9047 9048 // Create the PPCISD altivec 'dot' comparison node. 9049 SDValue Ops[] = { 9050 Op.getOperand(2), // LHS 9051 Op.getOperand(3), // RHS 9052 DAG.getConstant(CompareOpc, dl, MVT::i32) 9053 }; 9054 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 9055 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 9056 9057 // Now that we have the comparison, emit a copy from the CR to a GPR. 9058 // This is flagged to the above dot comparison. 9059 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 9060 DAG.getRegister(PPC::CR6, MVT::i32), 9061 CompNode.getValue(1)); 9062 9063 // Unpack the result based on how the target uses it. 9064 unsigned BitNo; // Bit # of CR6. 9065 bool InvertBit; // Invert result? 9066 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 9067 default: // Can't happen, don't crash on invalid number though. 9068 case 0: // Return the value of the EQ bit of CR6. 9069 BitNo = 0; InvertBit = false; 9070 break; 9071 case 1: // Return the inverted value of the EQ bit of CR6. 9072 BitNo = 0; InvertBit = true; 9073 break; 9074 case 2: // Return the value of the LT bit of CR6. 9075 BitNo = 2; InvertBit = false; 9076 break; 9077 case 3: // Return the inverted value of the LT bit of CR6. 9078 BitNo = 2; InvertBit = true; 9079 break; 9080 } 9081 9082 // Shift the bit into the low position. 9083 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 9084 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 9085 // Isolate the bit. 9086 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 9087 DAG.getConstant(1, dl, MVT::i32)); 9088 9089 // If we are supposed to, toggle the bit. 9090 if (InvertBit) 9091 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 9092 DAG.getConstant(1, dl, MVT::i32)); 9093 return Flags; 9094 } 9095 9096 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 9097 SelectionDAG &DAG) const { 9098 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 9099 // the beginning of the argument list. 9100 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 9101 SDLoc DL(Op); 9102 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 9103 case Intrinsic::ppc_cfence: { 9104 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 9105 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 9106 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 9107 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 9108 Op.getOperand(ArgStart + 1)), 9109 Op.getOperand(0)), 9110 0); 9111 } 9112 default: 9113 break; 9114 } 9115 return SDValue(); 9116 } 9117 9118 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const { 9119 // Check for a DIV with the same operands as this REM. 9120 for (auto UI : Op.getOperand(1)->uses()) { 9121 if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) || 9122 (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV)) 9123 if (UI->getOperand(0) == Op.getOperand(0) && 9124 UI->getOperand(1) == Op.getOperand(1)) 9125 return SDValue(); 9126 } 9127 return Op; 9128 } 9129 9130 // Lower scalar BSWAP64 to xxbrd. 9131 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 9132 SDLoc dl(Op); 9133 // MTVSRDD 9134 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 9135 Op.getOperand(0)); 9136 // XXBRD 9137 Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op); 9138 // MFVSRD 9139 int VectorIndex = 0; 9140 if (Subtarget.isLittleEndian()) 9141 VectorIndex = 1; 9142 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 9143 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 9144 return Op; 9145 } 9146 9147 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 9148 // compared to a value that is atomically loaded (atomic loads zero-extend). 9149 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 9150 SelectionDAG &DAG) const { 9151 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 9152 "Expecting an atomic compare-and-swap here."); 9153 SDLoc dl(Op); 9154 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 9155 EVT MemVT = AtomicNode->getMemoryVT(); 9156 if (MemVT.getSizeInBits() >= 32) 9157 return Op; 9158 9159 SDValue CmpOp = Op.getOperand(2); 9160 // If this is already correctly zero-extended, leave it alone. 9161 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 9162 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 9163 return Op; 9164 9165 // Clear the high bits of the compare operand. 9166 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 9167 SDValue NewCmpOp = 9168 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 9169 DAG.getConstant(MaskVal, dl, MVT::i32)); 9170 9171 // Replace the existing compare operand with the properly zero-extended one. 9172 SmallVector<SDValue, 4> Ops; 9173 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 9174 Ops.push_back(AtomicNode->getOperand(i)); 9175 Ops[2] = NewCmpOp; 9176 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 9177 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 9178 auto NodeTy = 9179 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 9180 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 9181 } 9182 9183 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 9184 SelectionDAG &DAG) const { 9185 SDLoc dl(Op); 9186 // Create a stack slot that is 16-byte aligned. 9187 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9188 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9189 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9190 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9191 9192 // Store the input value into Value#0 of the stack slot. 9193 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 9194 MachinePointerInfo()); 9195 // Load it out. 9196 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 9197 } 9198 9199 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 9200 SelectionDAG &DAG) const { 9201 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 9202 "Should only be called for ISD::INSERT_VECTOR_ELT"); 9203 9204 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 9205 // We have legal lowering for constant indices but not for variable ones. 9206 if (!C) 9207 return SDValue(); 9208 9209 EVT VT = Op.getValueType(); 9210 SDLoc dl(Op); 9211 SDValue V1 = Op.getOperand(0); 9212 SDValue V2 = Op.getOperand(1); 9213 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 9214 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 9215 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 9216 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 9217 unsigned InsertAtElement = C->getZExtValue(); 9218 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 9219 if (Subtarget.isLittleEndian()) { 9220 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 9221 } 9222 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 9223 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9224 } 9225 return Op; 9226 } 9227 9228 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 9229 SelectionDAG &DAG) const { 9230 SDLoc dl(Op); 9231 SDNode *N = Op.getNode(); 9232 9233 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 9234 "Unknown extract_vector_elt type"); 9235 9236 SDValue Value = N->getOperand(0); 9237 9238 // The first part of this is like the store lowering except that we don't 9239 // need to track the chain. 9240 9241 // The values are now known to be -1 (false) or 1 (true). To convert this 9242 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9243 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9244 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9245 9246 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9247 // understand how to form the extending load. 9248 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9249 9250 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9251 9252 // Now convert to an integer and store. 9253 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9254 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9255 Value); 9256 9257 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9258 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9259 MachinePointerInfo PtrInfo = 9260 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9261 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9262 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9263 9264 SDValue StoreChain = DAG.getEntryNode(); 9265 SDValue Ops[] = {StoreChain, 9266 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9267 Value, FIdx}; 9268 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9269 9270 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9271 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9272 9273 // Extract the value requested. 9274 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 9275 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9276 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9277 9278 SDValue IntVal = 9279 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 9280 9281 if (!Subtarget.useCRBits()) 9282 return IntVal; 9283 9284 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 9285 } 9286 9287 /// Lowering for QPX v4i1 loads 9288 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 9289 SelectionDAG &DAG) const { 9290 SDLoc dl(Op); 9291 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 9292 SDValue LoadChain = LN->getChain(); 9293 SDValue BasePtr = LN->getBasePtr(); 9294 9295 if (Op.getValueType() == MVT::v4f64 || 9296 Op.getValueType() == MVT::v4f32) { 9297 EVT MemVT = LN->getMemoryVT(); 9298 unsigned Alignment = LN->getAlignment(); 9299 9300 // If this load is properly aligned, then it is legal. 9301 if (Alignment >= MemVT.getStoreSize()) 9302 return Op; 9303 9304 EVT ScalarVT = Op.getValueType().getScalarType(), 9305 ScalarMemVT = MemVT.getScalarType(); 9306 unsigned Stride = ScalarMemVT.getStoreSize(); 9307 9308 SDValue Vals[4], LoadChains[4]; 9309 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9310 SDValue Load; 9311 if (ScalarVT != ScalarMemVT) 9312 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 9313 BasePtr, 9314 LN->getPointerInfo().getWithOffset(Idx * Stride), 9315 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9316 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9317 else 9318 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 9319 LN->getPointerInfo().getWithOffset(Idx * Stride), 9320 MinAlign(Alignment, Idx * Stride), 9321 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9322 9323 if (Idx == 0 && LN->isIndexed()) { 9324 assert(LN->getAddressingMode() == ISD::PRE_INC && 9325 "Unknown addressing mode on vector load"); 9326 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 9327 LN->getAddressingMode()); 9328 } 9329 9330 Vals[Idx] = Load; 9331 LoadChains[Idx] = Load.getValue(1); 9332 9333 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9334 DAG.getConstant(Stride, dl, 9335 BasePtr.getValueType())); 9336 } 9337 9338 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9339 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 9340 9341 if (LN->isIndexed()) { 9342 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 9343 return DAG.getMergeValues(RetOps, dl); 9344 } 9345 9346 SDValue RetOps[] = { Value, TF }; 9347 return DAG.getMergeValues(RetOps, dl); 9348 } 9349 9350 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 9351 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 9352 9353 // To lower v4i1 from a byte array, we load the byte elements of the 9354 // vector and then reuse the BUILD_VECTOR logic. 9355 9356 SDValue VectElmts[4], VectElmtChains[4]; 9357 for (unsigned i = 0; i < 4; ++i) { 9358 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9359 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9360 9361 VectElmts[i] = DAG.getExtLoad( 9362 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 9363 LN->getPointerInfo().getWithOffset(i), MVT::i8, 9364 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9365 VectElmtChains[i] = VectElmts[i].getValue(1); 9366 } 9367 9368 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 9369 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 9370 9371 SDValue RVals[] = { Value, LoadChain }; 9372 return DAG.getMergeValues(RVals, dl); 9373 } 9374 9375 /// Lowering for QPX v4i1 stores 9376 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 9377 SelectionDAG &DAG) const { 9378 SDLoc dl(Op); 9379 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 9380 SDValue StoreChain = SN->getChain(); 9381 SDValue BasePtr = SN->getBasePtr(); 9382 SDValue Value = SN->getValue(); 9383 9384 if (Value.getValueType() == MVT::v4f64 || 9385 Value.getValueType() == MVT::v4f32) { 9386 EVT MemVT = SN->getMemoryVT(); 9387 unsigned Alignment = SN->getAlignment(); 9388 9389 // If this store is properly aligned, then it is legal. 9390 if (Alignment >= MemVT.getStoreSize()) 9391 return Op; 9392 9393 EVT ScalarVT = Value.getValueType().getScalarType(), 9394 ScalarMemVT = MemVT.getScalarType(); 9395 unsigned Stride = ScalarMemVT.getStoreSize(); 9396 9397 SDValue Stores[4]; 9398 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9399 SDValue Ex = DAG.getNode( 9400 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 9401 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 9402 SDValue Store; 9403 if (ScalarVT != ScalarMemVT) 9404 Store = 9405 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 9406 SN->getPointerInfo().getWithOffset(Idx * Stride), 9407 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9408 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 9409 else 9410 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 9411 SN->getPointerInfo().getWithOffset(Idx * Stride), 9412 MinAlign(Alignment, Idx * Stride), 9413 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 9414 9415 if (Idx == 0 && SN->isIndexed()) { 9416 assert(SN->getAddressingMode() == ISD::PRE_INC && 9417 "Unknown addressing mode on vector store"); 9418 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 9419 SN->getAddressingMode()); 9420 } 9421 9422 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9423 DAG.getConstant(Stride, dl, 9424 BasePtr.getValueType())); 9425 Stores[Idx] = Store; 9426 } 9427 9428 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9429 9430 if (SN->isIndexed()) { 9431 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 9432 return DAG.getMergeValues(RetOps, dl); 9433 } 9434 9435 return TF; 9436 } 9437 9438 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 9439 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 9440 9441 // The values are now known to be -1 (false) or 1 (true). To convert this 9442 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9443 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9444 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9445 9446 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9447 // understand how to form the extending load. 9448 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9449 9450 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9451 9452 // Now convert to an integer and store. 9453 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9454 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9455 Value); 9456 9457 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9458 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9459 MachinePointerInfo PtrInfo = 9460 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9461 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9462 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9463 9464 SDValue Ops[] = {StoreChain, 9465 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9466 Value, FIdx}; 9467 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9468 9469 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9470 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9471 9472 // Move data into the byte array. 9473 SDValue Loads[4], LoadChains[4]; 9474 for (unsigned i = 0; i < 4; ++i) { 9475 unsigned Offset = 4*i; 9476 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9477 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9478 9479 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 9480 PtrInfo.getWithOffset(Offset)); 9481 LoadChains[i] = Loads[i].getValue(1); 9482 } 9483 9484 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9485 9486 SDValue Stores[4]; 9487 for (unsigned i = 0; i < 4; ++i) { 9488 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9489 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9490 9491 Stores[i] = DAG.getTruncStore( 9492 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 9493 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 9494 SN->getAAInfo()); 9495 } 9496 9497 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9498 9499 return StoreChain; 9500 } 9501 9502 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 9503 SDLoc dl(Op); 9504 if (Op.getValueType() == MVT::v4i32) { 9505 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9506 9507 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 9508 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 9509 9510 SDValue RHSSwap = // = vrlw RHS, 16 9511 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 9512 9513 // Shrinkify inputs to v8i16. 9514 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 9515 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 9516 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 9517 9518 // Low parts multiplied together, generating 32-bit results (we ignore the 9519 // top parts). 9520 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 9521 LHS, RHS, DAG, dl, MVT::v4i32); 9522 9523 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 9524 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 9525 // Shift the high parts up 16 bits. 9526 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 9527 Neg16, DAG, dl); 9528 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 9529 } else if (Op.getValueType() == MVT::v8i16) { 9530 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9531 9532 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 9533 9534 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 9535 LHS, RHS, Zero, DAG, dl); 9536 } else if (Op.getValueType() == MVT::v16i8) { 9537 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9538 bool isLittleEndian = Subtarget.isLittleEndian(); 9539 9540 // Multiply the even 8-bit parts, producing 16-bit sums. 9541 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 9542 LHS, RHS, DAG, dl, MVT::v8i16); 9543 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 9544 9545 // Multiply the odd 8-bit parts, producing 16-bit sums. 9546 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 9547 LHS, RHS, DAG, dl, MVT::v8i16); 9548 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 9549 9550 // Merge the results together. Because vmuleub and vmuloub are 9551 // instructions with a big-endian bias, we must reverse the 9552 // element numbering and reverse the meaning of "odd" and "even" 9553 // when generating little endian code. 9554 int Ops[16]; 9555 for (unsigned i = 0; i != 8; ++i) { 9556 if (isLittleEndian) { 9557 Ops[i*2 ] = 2*i; 9558 Ops[i*2+1] = 2*i+16; 9559 } else { 9560 Ops[i*2 ] = 2*i+1; 9561 Ops[i*2+1] = 2*i+1+16; 9562 } 9563 } 9564 if (isLittleEndian) 9565 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 9566 else 9567 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 9568 } else { 9569 llvm_unreachable("Unknown mul to lower!"); 9570 } 9571 } 9572 9573 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 9574 9575 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 9576 9577 EVT VT = Op.getValueType(); 9578 assert(VT.isVector() && 9579 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 9580 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 9581 VT == MVT::v16i8) && 9582 "Unexpected vector element type!"); 9583 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 9584 "Current subtarget doesn't support smax v2i64!"); 9585 9586 // For vector abs, it can be lowered to: 9587 // abs x 9588 // ==> 9589 // y = -x 9590 // smax(x, y) 9591 9592 SDLoc dl(Op); 9593 SDValue X = Op.getOperand(0); 9594 SDValue Zero = DAG.getConstant(0, dl, VT); 9595 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 9596 9597 // SMAX patch https://reviews.llvm.org/D47332 9598 // hasn't landed yet, so use intrinsic first here. 9599 // TODO: Should use SMAX directly once SMAX patch landed 9600 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 9601 if (VT == MVT::v2i64) 9602 BifID = Intrinsic::ppc_altivec_vmaxsd; 9603 else if (VT == MVT::v8i16) 9604 BifID = Intrinsic::ppc_altivec_vmaxsh; 9605 else if (VT == MVT::v16i8) 9606 BifID = Intrinsic::ppc_altivec_vmaxsb; 9607 9608 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 9609 } 9610 9611 /// LowerOperation - Provide custom lowering hooks for some operations. 9612 /// 9613 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9614 switch (Op.getOpcode()) { 9615 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 9616 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 9617 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 9618 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 9619 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 9620 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 9621 case ISD::SETCC: return LowerSETCC(Op, DAG); 9622 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 9623 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 9624 9625 // Variable argument lowering. 9626 case ISD::VASTART: return LowerVASTART(Op, DAG); 9627 case ISD::VAARG: return LowerVAARG(Op, DAG); 9628 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 9629 9630 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 9631 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 9632 case ISD::GET_DYNAMIC_AREA_OFFSET: 9633 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 9634 9635 // Exception handling lowering. 9636 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 9637 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 9638 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 9639 9640 case ISD::LOAD: return LowerLOAD(Op, DAG); 9641 case ISD::STORE: return LowerSTORE(Op, DAG); 9642 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 9643 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 9644 case ISD::FP_TO_UINT: 9645 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 9646 case ISD::UINT_TO_FP: 9647 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 9648 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 9649 9650 // Lower 64-bit shifts. 9651 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 9652 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 9653 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 9654 9655 // Vector-related lowering. 9656 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 9657 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 9658 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 9659 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 9660 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 9661 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 9662 case ISD::MUL: return LowerMUL(Op, DAG); 9663 case ISD::ABS: return LowerABS(Op, DAG); 9664 9665 // For counter-based loop handling. 9666 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 9667 9668 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 9669 9670 // Frame & Return address. 9671 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 9672 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 9673 9674 case ISD::INTRINSIC_VOID: 9675 return LowerINTRINSIC_VOID(Op, DAG); 9676 case ISD::SREM: 9677 case ISD::UREM: 9678 return LowerREM(Op, DAG); 9679 case ISD::BSWAP: 9680 return LowerBSWAP(Op, DAG); 9681 case ISD::ATOMIC_CMP_SWAP: 9682 return LowerATOMIC_CMP_SWAP(Op, DAG); 9683 } 9684 } 9685 9686 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 9687 SmallVectorImpl<SDValue>&Results, 9688 SelectionDAG &DAG) const { 9689 SDLoc dl(N); 9690 switch (N->getOpcode()) { 9691 default: 9692 llvm_unreachable("Do not know how to custom type legalize this operation!"); 9693 case ISD::READCYCLECOUNTER: { 9694 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 9695 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 9696 9697 Results.push_back(RTB); 9698 Results.push_back(RTB.getValue(1)); 9699 Results.push_back(RTB.getValue(2)); 9700 break; 9701 } 9702 case ISD::INTRINSIC_W_CHAIN: { 9703 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 9704 Intrinsic::ppc_is_decremented_ctr_nonzero) 9705 break; 9706 9707 assert(N->getValueType(0) == MVT::i1 && 9708 "Unexpected result type for CTR decrement intrinsic"); 9709 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 9710 N->getValueType(0)); 9711 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 9712 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 9713 N->getOperand(1)); 9714 9715 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 9716 Results.push_back(NewInt.getValue(1)); 9717 break; 9718 } 9719 case ISD::VAARG: { 9720 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 9721 return; 9722 9723 EVT VT = N->getValueType(0); 9724 9725 if (VT == MVT::i64) { 9726 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 9727 9728 Results.push_back(NewNode); 9729 Results.push_back(NewNode.getValue(1)); 9730 } 9731 return; 9732 } 9733 case ISD::FP_TO_SINT: 9734 case ISD::FP_TO_UINT: 9735 // LowerFP_TO_INT() can only handle f32 and f64. 9736 if (N->getOperand(0).getValueType() == MVT::ppcf128) 9737 return; 9738 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 9739 return; 9740 case ISD::BITCAST: 9741 // Don't handle bitcast here. 9742 return; 9743 } 9744 } 9745 9746 //===----------------------------------------------------------------------===// 9747 // Other Lowering Code 9748 //===----------------------------------------------------------------------===// 9749 9750 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 9751 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 9752 Function *Func = Intrinsic::getDeclaration(M, Id); 9753 return Builder.CreateCall(Func, {}); 9754 } 9755 9756 // The mappings for emitLeading/TrailingFence is taken from 9757 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 9758 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 9759 Instruction *Inst, 9760 AtomicOrdering Ord) const { 9761 if (Ord == AtomicOrdering::SequentiallyConsistent) 9762 return callIntrinsic(Builder, Intrinsic::ppc_sync); 9763 if (isReleaseOrStronger(Ord)) 9764 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 9765 return nullptr; 9766 } 9767 9768 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 9769 Instruction *Inst, 9770 AtomicOrdering Ord) const { 9771 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 9772 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 9773 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 9774 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 9775 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 9776 return Builder.CreateCall( 9777 Intrinsic::getDeclaration( 9778 Builder.GetInsertBlock()->getParent()->getParent(), 9779 Intrinsic::ppc_cfence, {Inst->getType()}), 9780 {Inst}); 9781 // FIXME: Can use isync for rmw operation. 9782 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 9783 } 9784 return nullptr; 9785 } 9786 9787 MachineBasicBlock * 9788 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 9789 unsigned AtomicSize, 9790 unsigned BinOpcode, 9791 unsigned CmpOpcode, 9792 unsigned CmpPred) const { 9793 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 9794 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 9795 9796 auto LoadMnemonic = PPC::LDARX; 9797 auto StoreMnemonic = PPC::STDCX; 9798 switch (AtomicSize) { 9799 default: 9800 llvm_unreachable("Unexpected size of atomic entity"); 9801 case 1: 9802 LoadMnemonic = PPC::LBARX; 9803 StoreMnemonic = PPC::STBCX; 9804 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 9805 break; 9806 case 2: 9807 LoadMnemonic = PPC::LHARX; 9808 StoreMnemonic = PPC::STHCX; 9809 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 9810 break; 9811 case 4: 9812 LoadMnemonic = PPC::LWARX; 9813 StoreMnemonic = PPC::STWCX; 9814 break; 9815 case 8: 9816 LoadMnemonic = PPC::LDARX; 9817 StoreMnemonic = PPC::STDCX; 9818 break; 9819 } 9820 9821 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9822 MachineFunction *F = BB->getParent(); 9823 MachineFunction::iterator It = ++BB->getIterator(); 9824 9825 unsigned dest = MI.getOperand(0).getReg(); 9826 unsigned ptrA = MI.getOperand(1).getReg(); 9827 unsigned ptrB = MI.getOperand(2).getReg(); 9828 unsigned incr = MI.getOperand(3).getReg(); 9829 DebugLoc dl = MI.getDebugLoc(); 9830 9831 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 9832 MachineBasicBlock *loop2MBB = 9833 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 9834 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9835 F->insert(It, loopMBB); 9836 if (CmpOpcode) 9837 F->insert(It, loop2MBB); 9838 F->insert(It, exitMBB); 9839 exitMBB->splice(exitMBB->begin(), BB, 9840 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9841 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9842 9843 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9844 unsigned TmpReg = (!BinOpcode) ? incr : 9845 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 9846 : &PPC::GPRCRegClass); 9847 9848 // thisMBB: 9849 // ... 9850 // fallthrough --> loopMBB 9851 BB->addSuccessor(loopMBB); 9852 9853 // loopMBB: 9854 // l[wd]arx dest, ptr 9855 // add r0, dest, incr 9856 // st[wd]cx. r0, ptr 9857 // bne- loopMBB 9858 // fallthrough --> exitMBB 9859 9860 // For max/min... 9861 // loopMBB: 9862 // l[wd]arx dest, ptr 9863 // cmpl?[wd] incr, dest 9864 // bgt exitMBB 9865 // loop2MBB: 9866 // st[wd]cx. dest, ptr 9867 // bne- loopMBB 9868 // fallthrough --> exitMBB 9869 9870 BB = loopMBB; 9871 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 9872 .addReg(ptrA).addReg(ptrB); 9873 if (BinOpcode) 9874 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 9875 if (CmpOpcode) { 9876 // Signed comparisons of byte or halfword values must be sign-extended. 9877 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 9878 unsigned ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 9879 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 9880 ExtReg).addReg(dest); 9881 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 9882 .addReg(incr).addReg(ExtReg); 9883 } else 9884 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 9885 .addReg(incr).addReg(dest); 9886 9887 BuildMI(BB, dl, TII->get(PPC::BCC)) 9888 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 9889 BB->addSuccessor(loop2MBB); 9890 BB->addSuccessor(exitMBB); 9891 BB = loop2MBB; 9892 } 9893 BuildMI(BB, dl, TII->get(StoreMnemonic)) 9894 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 9895 BuildMI(BB, dl, TII->get(PPC::BCC)) 9896 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 9897 BB->addSuccessor(loopMBB); 9898 BB->addSuccessor(exitMBB); 9899 9900 // exitMBB: 9901 // ... 9902 BB = exitMBB; 9903 return BB; 9904 } 9905 9906 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 9907 MachineInstr &MI, MachineBasicBlock *BB, 9908 bool is8bit, // operation 9909 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 9910 // If we support part-word atomic mnemonics, just use them 9911 if (Subtarget.hasPartwordAtomics()) 9912 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 9913 CmpPred); 9914 9915 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 9916 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 9917 // In 64 bit mode we have to use 64 bits for addresses, even though the 9918 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 9919 // registers without caring whether they're 32 or 64, but here we're 9920 // doing actual arithmetic on the addresses. 9921 bool is64bit = Subtarget.isPPC64(); 9922 bool isLittleEndian = Subtarget.isLittleEndian(); 9923 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 9924 9925 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9926 MachineFunction *F = BB->getParent(); 9927 MachineFunction::iterator It = ++BB->getIterator(); 9928 9929 unsigned dest = MI.getOperand(0).getReg(); 9930 unsigned ptrA = MI.getOperand(1).getReg(); 9931 unsigned ptrB = MI.getOperand(2).getReg(); 9932 unsigned incr = MI.getOperand(3).getReg(); 9933 DebugLoc dl = MI.getDebugLoc(); 9934 9935 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 9936 MachineBasicBlock *loop2MBB = 9937 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 9938 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9939 F->insert(It, loopMBB); 9940 if (CmpOpcode) 9941 F->insert(It, loop2MBB); 9942 F->insert(It, exitMBB); 9943 exitMBB->splice(exitMBB->begin(), BB, 9944 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9945 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9946 9947 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9948 const TargetRegisterClass *RC = 9949 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 9950 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 9951 9952 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 9953 unsigned Shift1Reg = RegInfo.createVirtualRegister(GPRC); 9954 unsigned ShiftReg = 9955 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 9956 unsigned Incr2Reg = RegInfo.createVirtualRegister(GPRC); 9957 unsigned MaskReg = RegInfo.createVirtualRegister(GPRC); 9958 unsigned Mask2Reg = RegInfo.createVirtualRegister(GPRC); 9959 unsigned Mask3Reg = RegInfo.createVirtualRegister(GPRC); 9960 unsigned Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 9961 unsigned Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 9962 unsigned Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 9963 unsigned TmpDestReg = RegInfo.createVirtualRegister(GPRC); 9964 unsigned Ptr1Reg; 9965 unsigned TmpReg = 9966 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 9967 9968 // thisMBB: 9969 // ... 9970 // fallthrough --> loopMBB 9971 BB->addSuccessor(loopMBB); 9972 9973 // The 4-byte load must be aligned, while a char or short may be 9974 // anywhere in the word. Hence all this nasty bookkeeping code. 9975 // add ptr1, ptrA, ptrB [copy if ptrA==0] 9976 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 9977 // xori shift, shift1, 24 [16] 9978 // rlwinm ptr, ptr1, 0, 0, 29 9979 // slw incr2, incr, shift 9980 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 9981 // slw mask, mask2, shift 9982 // loopMBB: 9983 // lwarx tmpDest, ptr 9984 // add tmp, tmpDest, incr2 9985 // andc tmp2, tmpDest, mask 9986 // and tmp3, tmp, mask 9987 // or tmp4, tmp3, tmp2 9988 // stwcx. tmp4, ptr 9989 // bne- loopMBB 9990 // fallthrough --> exitMBB 9991 // srw dest, tmpDest, shift 9992 if (ptrA != ZeroReg) { 9993 Ptr1Reg = RegInfo.createVirtualRegister(RC); 9994 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 9995 .addReg(ptrA) 9996 .addReg(ptrB); 9997 } else { 9998 Ptr1Reg = ptrB; 9999 } 10000 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 10001 // mode. 10002 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 10003 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 10004 .addImm(3) 10005 .addImm(27) 10006 .addImm(is8bit ? 28 : 27); 10007 if (!isLittleEndian) 10008 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 10009 .addReg(Shift1Reg) 10010 .addImm(is8bit ? 24 : 16); 10011 if (is64bit) 10012 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 10013 .addReg(Ptr1Reg) 10014 .addImm(0) 10015 .addImm(61); 10016 else 10017 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 10018 .addReg(Ptr1Reg) 10019 .addImm(0) 10020 .addImm(0) 10021 .addImm(29); 10022 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 10023 if (is8bit) 10024 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 10025 else { 10026 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 10027 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 10028 .addReg(Mask3Reg) 10029 .addImm(65535); 10030 } 10031 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 10032 .addReg(Mask2Reg) 10033 .addReg(ShiftReg); 10034 10035 BB = loopMBB; 10036 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 10037 .addReg(ZeroReg) 10038 .addReg(PtrReg); 10039 if (BinOpcode) 10040 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 10041 .addReg(Incr2Reg) 10042 .addReg(TmpDestReg); 10043 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 10044 .addReg(TmpDestReg) 10045 .addReg(MaskReg); 10046 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 10047 if (CmpOpcode) { 10048 // For unsigned comparisons, we can directly compare the shifted values. 10049 // For signed comparisons we shift and sign extend. 10050 unsigned SReg = RegInfo.createVirtualRegister(GPRC); 10051 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 10052 .addReg(TmpDestReg) 10053 .addReg(MaskReg); 10054 unsigned ValueReg = SReg; 10055 unsigned CmpReg = Incr2Reg; 10056 if (CmpOpcode == PPC::CMPW) { 10057 ValueReg = RegInfo.createVirtualRegister(GPRC); 10058 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 10059 .addReg(SReg) 10060 .addReg(ShiftReg); 10061 unsigned ValueSReg = RegInfo.createVirtualRegister(GPRC); 10062 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 10063 .addReg(ValueReg); 10064 ValueReg = ValueSReg; 10065 CmpReg = incr; 10066 } 10067 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10068 .addReg(CmpReg) 10069 .addReg(ValueReg); 10070 BuildMI(BB, dl, TII->get(PPC::BCC)) 10071 .addImm(CmpPred) 10072 .addReg(PPC::CR0) 10073 .addMBB(exitMBB); 10074 BB->addSuccessor(loop2MBB); 10075 BB->addSuccessor(exitMBB); 10076 BB = loop2MBB; 10077 } 10078 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 10079 BuildMI(BB, dl, TII->get(PPC::STWCX)) 10080 .addReg(Tmp4Reg) 10081 .addReg(ZeroReg) 10082 .addReg(PtrReg); 10083 BuildMI(BB, dl, TII->get(PPC::BCC)) 10084 .addImm(PPC::PRED_NE) 10085 .addReg(PPC::CR0) 10086 .addMBB(loopMBB); 10087 BB->addSuccessor(loopMBB); 10088 BB->addSuccessor(exitMBB); 10089 10090 // exitMBB: 10091 // ... 10092 BB = exitMBB; 10093 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 10094 .addReg(TmpDestReg) 10095 .addReg(ShiftReg); 10096 return BB; 10097 } 10098 10099 llvm::MachineBasicBlock * 10100 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 10101 MachineBasicBlock *MBB) const { 10102 DebugLoc DL = MI.getDebugLoc(); 10103 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10104 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10105 10106 MachineFunction *MF = MBB->getParent(); 10107 MachineRegisterInfo &MRI = MF->getRegInfo(); 10108 10109 const BasicBlock *BB = MBB->getBasicBlock(); 10110 MachineFunction::iterator I = ++MBB->getIterator(); 10111 10112 unsigned DstReg = MI.getOperand(0).getReg(); 10113 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 10114 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 10115 unsigned mainDstReg = MRI.createVirtualRegister(RC); 10116 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 10117 10118 MVT PVT = getPointerTy(MF->getDataLayout()); 10119 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10120 "Invalid Pointer Size!"); 10121 // For v = setjmp(buf), we generate 10122 // 10123 // thisMBB: 10124 // SjLjSetup mainMBB 10125 // bl mainMBB 10126 // v_restore = 1 10127 // b sinkMBB 10128 // 10129 // mainMBB: 10130 // buf[LabelOffset] = LR 10131 // v_main = 0 10132 // 10133 // sinkMBB: 10134 // v = phi(main, restore) 10135 // 10136 10137 MachineBasicBlock *thisMBB = MBB; 10138 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 10139 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 10140 MF->insert(I, mainMBB); 10141 MF->insert(I, sinkMBB); 10142 10143 MachineInstrBuilder MIB; 10144 10145 // Transfer the remainder of BB and its successor edges to sinkMBB. 10146 sinkMBB->splice(sinkMBB->begin(), MBB, 10147 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 10148 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 10149 10150 // Note that the structure of the jmp_buf used here is not compatible 10151 // with that used by libc, and is not designed to be. Specifically, it 10152 // stores only those 'reserved' registers that LLVM does not otherwise 10153 // understand how to spill. Also, by convention, by the time this 10154 // intrinsic is called, Clang has already stored the frame address in the 10155 // first slot of the buffer and stack address in the third. Following the 10156 // X86 target code, we'll store the jump address in the second slot. We also 10157 // need to save the TOC pointer (R2) to handle jumps between shared 10158 // libraries, and that will be stored in the fourth slot. The thread 10159 // identifier (R13) is not affected. 10160 10161 // thisMBB: 10162 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10163 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10164 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10165 10166 // Prepare IP either in reg. 10167 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 10168 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 10169 unsigned BufReg = MI.getOperand(1).getReg(); 10170 10171 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 10172 setUsesTOCBasePtr(*MBB->getParent()); 10173 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 10174 .addReg(PPC::X2) 10175 .addImm(TOCOffset) 10176 .addReg(BufReg) 10177 .cloneMemRefs(MI); 10178 } 10179 10180 // Naked functions never have a base pointer, and so we use r1. For all 10181 // other functions, this decision must be delayed until during PEI. 10182 unsigned BaseReg; 10183 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 10184 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 10185 else 10186 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 10187 10188 MIB = BuildMI(*thisMBB, MI, DL, 10189 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 10190 .addReg(BaseReg) 10191 .addImm(BPOffset) 10192 .addReg(BufReg) 10193 .cloneMemRefs(MI); 10194 10195 // Setup 10196 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 10197 MIB.addRegMask(TRI->getNoPreservedMask()); 10198 10199 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 10200 10201 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 10202 .addMBB(mainMBB); 10203 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 10204 10205 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 10206 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 10207 10208 // mainMBB: 10209 // mainDstReg = 0 10210 MIB = 10211 BuildMI(mainMBB, DL, 10212 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 10213 10214 // Store IP 10215 if (Subtarget.isPPC64()) { 10216 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 10217 .addReg(LabelReg) 10218 .addImm(LabelOffset) 10219 .addReg(BufReg); 10220 } else { 10221 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 10222 .addReg(LabelReg) 10223 .addImm(LabelOffset) 10224 .addReg(BufReg); 10225 } 10226 MIB.cloneMemRefs(MI); 10227 10228 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 10229 mainMBB->addSuccessor(sinkMBB); 10230 10231 // sinkMBB: 10232 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 10233 TII->get(PPC::PHI), DstReg) 10234 .addReg(mainDstReg).addMBB(mainMBB) 10235 .addReg(restoreDstReg).addMBB(thisMBB); 10236 10237 MI.eraseFromParent(); 10238 return sinkMBB; 10239 } 10240 10241 MachineBasicBlock * 10242 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 10243 MachineBasicBlock *MBB) const { 10244 DebugLoc DL = MI.getDebugLoc(); 10245 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10246 10247 MachineFunction *MF = MBB->getParent(); 10248 MachineRegisterInfo &MRI = MF->getRegInfo(); 10249 10250 MVT PVT = getPointerTy(MF->getDataLayout()); 10251 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10252 "Invalid Pointer Size!"); 10253 10254 const TargetRegisterClass *RC = 10255 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10256 unsigned Tmp = MRI.createVirtualRegister(RC); 10257 // Since FP is only updated here but NOT referenced, it's treated as GPR. 10258 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 10259 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 10260 unsigned BP = 10261 (PVT == MVT::i64) 10262 ? PPC::X30 10263 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 10264 : PPC::R30); 10265 10266 MachineInstrBuilder MIB; 10267 10268 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10269 const int64_t SPOffset = 2 * PVT.getStoreSize(); 10270 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10271 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10272 10273 unsigned BufReg = MI.getOperand(0).getReg(); 10274 10275 // Reload FP (the jumped-to function may not have had a 10276 // frame pointer, and if so, then its r31 will be restored 10277 // as necessary). 10278 if (PVT == MVT::i64) { 10279 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 10280 .addImm(0) 10281 .addReg(BufReg); 10282 } else { 10283 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 10284 .addImm(0) 10285 .addReg(BufReg); 10286 } 10287 MIB.cloneMemRefs(MI); 10288 10289 // Reload IP 10290 if (PVT == MVT::i64) { 10291 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 10292 .addImm(LabelOffset) 10293 .addReg(BufReg); 10294 } else { 10295 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 10296 .addImm(LabelOffset) 10297 .addReg(BufReg); 10298 } 10299 MIB.cloneMemRefs(MI); 10300 10301 // Reload SP 10302 if (PVT == MVT::i64) { 10303 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 10304 .addImm(SPOffset) 10305 .addReg(BufReg); 10306 } else { 10307 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 10308 .addImm(SPOffset) 10309 .addReg(BufReg); 10310 } 10311 MIB.cloneMemRefs(MI); 10312 10313 // Reload BP 10314 if (PVT == MVT::i64) { 10315 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 10316 .addImm(BPOffset) 10317 .addReg(BufReg); 10318 } else { 10319 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 10320 .addImm(BPOffset) 10321 .addReg(BufReg); 10322 } 10323 MIB.cloneMemRefs(MI); 10324 10325 // Reload TOC 10326 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 10327 setUsesTOCBasePtr(*MBB->getParent()); 10328 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 10329 .addImm(TOCOffset) 10330 .addReg(BufReg) 10331 .cloneMemRefs(MI); 10332 } 10333 10334 // Jump 10335 BuildMI(*MBB, MI, DL, 10336 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 10337 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 10338 10339 MI.eraseFromParent(); 10340 return MBB; 10341 } 10342 10343 MachineBasicBlock * 10344 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 10345 MachineBasicBlock *BB) const { 10346 if (MI.getOpcode() == TargetOpcode::STACKMAP || 10347 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 10348 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 10349 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 10350 // Call lowering should have added an r2 operand to indicate a dependence 10351 // on the TOC base pointer value. It can't however, because there is no 10352 // way to mark the dependence as implicit there, and so the stackmap code 10353 // will confuse it with a regular operand. Instead, add the dependence 10354 // here. 10355 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 10356 } 10357 10358 return emitPatchPoint(MI, BB); 10359 } 10360 10361 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 10362 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 10363 return emitEHSjLjSetJmp(MI, BB); 10364 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 10365 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 10366 return emitEHSjLjLongJmp(MI, BB); 10367 } 10368 10369 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10370 10371 // To "insert" these instructions we actually have to insert their 10372 // control-flow patterns. 10373 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10374 MachineFunction::iterator It = ++BB->getIterator(); 10375 10376 MachineFunction *F = BB->getParent(); 10377 10378 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10379 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 10380 MI.getOpcode() == PPC::SELECT_I8) { 10381 SmallVector<MachineOperand, 2> Cond; 10382 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10383 MI.getOpcode() == PPC::SELECT_CC_I8) 10384 Cond.push_back(MI.getOperand(4)); 10385 else 10386 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 10387 Cond.push_back(MI.getOperand(1)); 10388 10389 DebugLoc dl = MI.getDebugLoc(); 10390 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 10391 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 10392 } else if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10393 MI.getOpcode() == PPC::SELECT_CC_I8 || 10394 MI.getOpcode() == PPC::SELECT_CC_F4 || 10395 MI.getOpcode() == PPC::SELECT_CC_F8 || 10396 MI.getOpcode() == PPC::SELECT_CC_F16 || 10397 MI.getOpcode() == PPC::SELECT_CC_QFRC || 10398 MI.getOpcode() == PPC::SELECT_CC_QSRC || 10399 MI.getOpcode() == PPC::SELECT_CC_QBRC || 10400 MI.getOpcode() == PPC::SELECT_CC_VRRC || 10401 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 10402 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 10403 MI.getOpcode() == PPC::SELECT_CC_VSRC || 10404 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 10405 MI.getOpcode() == PPC::SELECT_CC_SPE || 10406 MI.getOpcode() == PPC::SELECT_I4 || 10407 MI.getOpcode() == PPC::SELECT_I8 || 10408 MI.getOpcode() == PPC::SELECT_F4 || 10409 MI.getOpcode() == PPC::SELECT_F8 || 10410 MI.getOpcode() == PPC::SELECT_F16 || 10411 MI.getOpcode() == PPC::SELECT_QFRC || 10412 MI.getOpcode() == PPC::SELECT_QSRC || 10413 MI.getOpcode() == PPC::SELECT_QBRC || 10414 MI.getOpcode() == PPC::SELECT_SPE || 10415 MI.getOpcode() == PPC::SELECT_SPE4 || 10416 MI.getOpcode() == PPC::SELECT_VRRC || 10417 MI.getOpcode() == PPC::SELECT_VSFRC || 10418 MI.getOpcode() == PPC::SELECT_VSSRC || 10419 MI.getOpcode() == PPC::SELECT_VSRC) { 10420 // The incoming instruction knows the destination vreg to set, the 10421 // condition code register to branch on, the true/false values to 10422 // select between, and a branch opcode to use. 10423 10424 // thisMBB: 10425 // ... 10426 // TrueVal = ... 10427 // cmpTY ccX, r1, r2 10428 // bCC copy1MBB 10429 // fallthrough --> copy0MBB 10430 MachineBasicBlock *thisMBB = BB; 10431 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 10432 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 10433 DebugLoc dl = MI.getDebugLoc(); 10434 F->insert(It, copy0MBB); 10435 F->insert(It, sinkMBB); 10436 10437 // Transfer the remainder of BB and its successor edges to sinkMBB. 10438 sinkMBB->splice(sinkMBB->begin(), BB, 10439 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10440 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 10441 10442 // Next, add the true and fallthrough blocks as its successors. 10443 BB->addSuccessor(copy0MBB); 10444 BB->addSuccessor(sinkMBB); 10445 10446 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 10447 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 10448 MI.getOpcode() == PPC::SELECT_F16 || 10449 MI.getOpcode() == PPC::SELECT_SPE4 || 10450 MI.getOpcode() == PPC::SELECT_SPE || 10451 MI.getOpcode() == PPC::SELECT_QFRC || 10452 MI.getOpcode() == PPC::SELECT_QSRC || 10453 MI.getOpcode() == PPC::SELECT_QBRC || 10454 MI.getOpcode() == PPC::SELECT_VRRC || 10455 MI.getOpcode() == PPC::SELECT_VSFRC || 10456 MI.getOpcode() == PPC::SELECT_VSSRC || 10457 MI.getOpcode() == PPC::SELECT_VSRC) { 10458 BuildMI(BB, dl, TII->get(PPC::BC)) 10459 .addReg(MI.getOperand(1).getReg()) 10460 .addMBB(sinkMBB); 10461 } else { 10462 unsigned SelectPred = MI.getOperand(4).getImm(); 10463 BuildMI(BB, dl, TII->get(PPC::BCC)) 10464 .addImm(SelectPred) 10465 .addReg(MI.getOperand(1).getReg()) 10466 .addMBB(sinkMBB); 10467 } 10468 10469 // copy0MBB: 10470 // %FalseValue = ... 10471 // # fallthrough to sinkMBB 10472 BB = copy0MBB; 10473 10474 // Update machine-CFG edges 10475 BB->addSuccessor(sinkMBB); 10476 10477 // sinkMBB: 10478 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 10479 // ... 10480 BB = sinkMBB; 10481 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 10482 .addReg(MI.getOperand(3).getReg()) 10483 .addMBB(copy0MBB) 10484 .addReg(MI.getOperand(2).getReg()) 10485 .addMBB(thisMBB); 10486 } else if (MI.getOpcode() == PPC::ReadTB) { 10487 // To read the 64-bit time-base register on a 32-bit target, we read the 10488 // two halves. Should the counter have wrapped while it was being read, we 10489 // need to try again. 10490 // ... 10491 // readLoop: 10492 // mfspr Rx,TBU # load from TBU 10493 // mfspr Ry,TB # load from TB 10494 // mfspr Rz,TBU # load from TBU 10495 // cmpw crX,Rx,Rz # check if 'old'='new' 10496 // bne readLoop # branch if they're not equal 10497 // ... 10498 10499 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 10500 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 10501 DebugLoc dl = MI.getDebugLoc(); 10502 F->insert(It, readMBB); 10503 F->insert(It, sinkMBB); 10504 10505 // Transfer the remainder of BB and its successor edges to sinkMBB. 10506 sinkMBB->splice(sinkMBB->begin(), BB, 10507 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10508 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 10509 10510 BB->addSuccessor(readMBB); 10511 BB = readMBB; 10512 10513 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10514 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10515 unsigned LoReg = MI.getOperand(0).getReg(); 10516 unsigned HiReg = MI.getOperand(1).getReg(); 10517 10518 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 10519 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 10520 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 10521 10522 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 10523 10524 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 10525 .addReg(HiReg) 10526 .addReg(ReadAgainReg); 10527 BuildMI(BB, dl, TII->get(PPC::BCC)) 10528 .addImm(PPC::PRED_NE) 10529 .addReg(CmpReg) 10530 .addMBB(readMBB); 10531 10532 BB->addSuccessor(readMBB); 10533 BB->addSuccessor(sinkMBB); 10534 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 10535 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 10536 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 10537 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 10538 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 10539 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 10540 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 10541 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 10542 10543 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 10544 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 10545 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 10546 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 10547 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 10548 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 10549 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 10550 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 10551 10552 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 10553 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 10554 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 10555 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 10556 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 10557 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 10558 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 10559 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 10560 10561 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 10562 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 10563 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 10564 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 10565 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 10566 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 10567 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 10568 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 10569 10570 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 10571 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 10572 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 10573 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 10574 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 10575 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 10576 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 10577 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 10578 10579 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 10580 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 10581 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 10582 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 10583 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 10584 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 10585 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 10586 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 10587 10588 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 10589 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 10590 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 10591 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 10592 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 10593 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 10594 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 10595 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 10596 10597 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 10598 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 10599 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 10600 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 10601 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 10602 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 10603 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 10604 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 10605 10606 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 10607 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 10608 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 10609 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 10610 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 10611 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 10612 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 10613 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 10614 10615 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 10616 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 10617 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 10618 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 10619 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 10620 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 10621 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 10622 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 10623 10624 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 10625 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 10626 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 10627 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 10628 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 10629 BB = EmitAtomicBinary(MI, BB, 4, 0); 10630 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 10631 BB = EmitAtomicBinary(MI, BB, 8, 0); 10632 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 10633 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 10634 (Subtarget.hasPartwordAtomics() && 10635 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 10636 (Subtarget.hasPartwordAtomics() && 10637 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 10638 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 10639 10640 auto LoadMnemonic = PPC::LDARX; 10641 auto StoreMnemonic = PPC::STDCX; 10642 switch (MI.getOpcode()) { 10643 default: 10644 llvm_unreachable("Compare and swap of unknown size"); 10645 case PPC::ATOMIC_CMP_SWAP_I8: 10646 LoadMnemonic = PPC::LBARX; 10647 StoreMnemonic = PPC::STBCX; 10648 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 10649 break; 10650 case PPC::ATOMIC_CMP_SWAP_I16: 10651 LoadMnemonic = PPC::LHARX; 10652 StoreMnemonic = PPC::STHCX; 10653 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 10654 break; 10655 case PPC::ATOMIC_CMP_SWAP_I32: 10656 LoadMnemonic = PPC::LWARX; 10657 StoreMnemonic = PPC::STWCX; 10658 break; 10659 case PPC::ATOMIC_CMP_SWAP_I64: 10660 LoadMnemonic = PPC::LDARX; 10661 StoreMnemonic = PPC::STDCX; 10662 break; 10663 } 10664 unsigned dest = MI.getOperand(0).getReg(); 10665 unsigned ptrA = MI.getOperand(1).getReg(); 10666 unsigned ptrB = MI.getOperand(2).getReg(); 10667 unsigned oldval = MI.getOperand(3).getReg(); 10668 unsigned newval = MI.getOperand(4).getReg(); 10669 DebugLoc dl = MI.getDebugLoc(); 10670 10671 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 10672 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 10673 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 10674 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10675 F->insert(It, loop1MBB); 10676 F->insert(It, loop2MBB); 10677 F->insert(It, midMBB); 10678 F->insert(It, exitMBB); 10679 exitMBB->splice(exitMBB->begin(), BB, 10680 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10681 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10682 10683 // thisMBB: 10684 // ... 10685 // fallthrough --> loopMBB 10686 BB->addSuccessor(loop1MBB); 10687 10688 // loop1MBB: 10689 // l[bhwd]arx dest, ptr 10690 // cmp[wd] dest, oldval 10691 // bne- midMBB 10692 // loop2MBB: 10693 // st[bhwd]cx. newval, ptr 10694 // bne- loopMBB 10695 // b exitBB 10696 // midMBB: 10697 // st[bhwd]cx. dest, ptr 10698 // exitBB: 10699 BB = loop1MBB; 10700 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 10701 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 10702 .addReg(oldval) 10703 .addReg(dest); 10704 BuildMI(BB, dl, TII->get(PPC::BCC)) 10705 .addImm(PPC::PRED_NE) 10706 .addReg(PPC::CR0) 10707 .addMBB(midMBB); 10708 BB->addSuccessor(loop2MBB); 10709 BB->addSuccessor(midMBB); 10710 10711 BB = loop2MBB; 10712 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10713 .addReg(newval) 10714 .addReg(ptrA) 10715 .addReg(ptrB); 10716 BuildMI(BB, dl, TII->get(PPC::BCC)) 10717 .addImm(PPC::PRED_NE) 10718 .addReg(PPC::CR0) 10719 .addMBB(loop1MBB); 10720 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 10721 BB->addSuccessor(loop1MBB); 10722 BB->addSuccessor(exitMBB); 10723 10724 BB = midMBB; 10725 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10726 .addReg(dest) 10727 .addReg(ptrA) 10728 .addReg(ptrB); 10729 BB->addSuccessor(exitMBB); 10730 10731 // exitMBB: 10732 // ... 10733 BB = exitMBB; 10734 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 10735 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 10736 // We must use 64-bit registers for addresses when targeting 64-bit, 10737 // since we're actually doing arithmetic on them. Other registers 10738 // can be 32-bit. 10739 bool is64bit = Subtarget.isPPC64(); 10740 bool isLittleEndian = Subtarget.isLittleEndian(); 10741 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 10742 10743 unsigned dest = MI.getOperand(0).getReg(); 10744 unsigned ptrA = MI.getOperand(1).getReg(); 10745 unsigned ptrB = MI.getOperand(2).getReg(); 10746 unsigned oldval = MI.getOperand(3).getReg(); 10747 unsigned newval = MI.getOperand(4).getReg(); 10748 DebugLoc dl = MI.getDebugLoc(); 10749 10750 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 10751 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 10752 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 10753 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10754 F->insert(It, loop1MBB); 10755 F->insert(It, loop2MBB); 10756 F->insert(It, midMBB); 10757 F->insert(It, exitMBB); 10758 exitMBB->splice(exitMBB->begin(), BB, 10759 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10760 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10761 10762 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10763 const TargetRegisterClass *RC = 10764 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10765 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 10766 10767 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 10768 unsigned Shift1Reg = RegInfo.createVirtualRegister(GPRC); 10769 unsigned ShiftReg = 10770 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 10771 unsigned NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 10772 unsigned NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 10773 unsigned OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 10774 unsigned OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 10775 unsigned MaskReg = RegInfo.createVirtualRegister(GPRC); 10776 unsigned Mask2Reg = RegInfo.createVirtualRegister(GPRC); 10777 unsigned Mask3Reg = RegInfo.createVirtualRegister(GPRC); 10778 unsigned Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 10779 unsigned Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 10780 unsigned TmpDestReg = RegInfo.createVirtualRegister(GPRC); 10781 unsigned Ptr1Reg; 10782 unsigned TmpReg = RegInfo.createVirtualRegister(GPRC); 10783 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 10784 // thisMBB: 10785 // ... 10786 // fallthrough --> loopMBB 10787 BB->addSuccessor(loop1MBB); 10788 10789 // The 4-byte load must be aligned, while a char or short may be 10790 // anywhere in the word. Hence all this nasty bookkeeping code. 10791 // add ptr1, ptrA, ptrB [copy if ptrA==0] 10792 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 10793 // xori shift, shift1, 24 [16] 10794 // rlwinm ptr, ptr1, 0, 0, 29 10795 // slw newval2, newval, shift 10796 // slw oldval2, oldval,shift 10797 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 10798 // slw mask, mask2, shift 10799 // and newval3, newval2, mask 10800 // and oldval3, oldval2, mask 10801 // loop1MBB: 10802 // lwarx tmpDest, ptr 10803 // and tmp, tmpDest, mask 10804 // cmpw tmp, oldval3 10805 // bne- midMBB 10806 // loop2MBB: 10807 // andc tmp2, tmpDest, mask 10808 // or tmp4, tmp2, newval3 10809 // stwcx. tmp4, ptr 10810 // bne- loop1MBB 10811 // b exitBB 10812 // midMBB: 10813 // stwcx. tmpDest, ptr 10814 // exitBB: 10815 // srw dest, tmpDest, shift 10816 if (ptrA != ZeroReg) { 10817 Ptr1Reg = RegInfo.createVirtualRegister(RC); 10818 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 10819 .addReg(ptrA) 10820 .addReg(ptrB); 10821 } else { 10822 Ptr1Reg = ptrB; 10823 } 10824 10825 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 10826 // mode. 10827 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 10828 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 10829 .addImm(3) 10830 .addImm(27) 10831 .addImm(is8bit ? 28 : 27); 10832 if (!isLittleEndian) 10833 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 10834 .addReg(Shift1Reg) 10835 .addImm(is8bit ? 24 : 16); 10836 if (is64bit) 10837 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 10838 .addReg(Ptr1Reg) 10839 .addImm(0) 10840 .addImm(61); 10841 else 10842 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 10843 .addReg(Ptr1Reg) 10844 .addImm(0) 10845 .addImm(0) 10846 .addImm(29); 10847 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 10848 .addReg(newval) 10849 .addReg(ShiftReg); 10850 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 10851 .addReg(oldval) 10852 .addReg(ShiftReg); 10853 if (is8bit) 10854 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 10855 else { 10856 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 10857 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 10858 .addReg(Mask3Reg) 10859 .addImm(65535); 10860 } 10861 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 10862 .addReg(Mask2Reg) 10863 .addReg(ShiftReg); 10864 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 10865 .addReg(NewVal2Reg) 10866 .addReg(MaskReg); 10867 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 10868 .addReg(OldVal2Reg) 10869 .addReg(MaskReg); 10870 10871 BB = loop1MBB; 10872 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 10873 .addReg(ZeroReg) 10874 .addReg(PtrReg); 10875 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 10876 .addReg(TmpDestReg) 10877 .addReg(MaskReg); 10878 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 10879 .addReg(TmpReg) 10880 .addReg(OldVal3Reg); 10881 BuildMI(BB, dl, TII->get(PPC::BCC)) 10882 .addImm(PPC::PRED_NE) 10883 .addReg(PPC::CR0) 10884 .addMBB(midMBB); 10885 BB->addSuccessor(loop2MBB); 10886 BB->addSuccessor(midMBB); 10887 10888 BB = loop2MBB; 10889 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 10890 .addReg(TmpDestReg) 10891 .addReg(MaskReg); 10892 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 10893 .addReg(Tmp2Reg) 10894 .addReg(NewVal3Reg); 10895 BuildMI(BB, dl, TII->get(PPC::STWCX)) 10896 .addReg(Tmp4Reg) 10897 .addReg(ZeroReg) 10898 .addReg(PtrReg); 10899 BuildMI(BB, dl, TII->get(PPC::BCC)) 10900 .addImm(PPC::PRED_NE) 10901 .addReg(PPC::CR0) 10902 .addMBB(loop1MBB); 10903 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 10904 BB->addSuccessor(loop1MBB); 10905 BB->addSuccessor(exitMBB); 10906 10907 BB = midMBB; 10908 BuildMI(BB, dl, TII->get(PPC::STWCX)) 10909 .addReg(TmpDestReg) 10910 .addReg(ZeroReg) 10911 .addReg(PtrReg); 10912 BB->addSuccessor(exitMBB); 10913 10914 // exitMBB: 10915 // ... 10916 BB = exitMBB; 10917 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 10918 .addReg(TmpReg) 10919 .addReg(ShiftReg); 10920 } else if (MI.getOpcode() == PPC::FADDrtz) { 10921 // This pseudo performs an FADD with rounding mode temporarily forced 10922 // to round-to-zero. We emit this via custom inserter since the FPSCR 10923 // is not modeled at the SelectionDAG level. 10924 unsigned Dest = MI.getOperand(0).getReg(); 10925 unsigned Src1 = MI.getOperand(1).getReg(); 10926 unsigned Src2 = MI.getOperand(2).getReg(); 10927 DebugLoc dl = MI.getDebugLoc(); 10928 10929 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10930 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 10931 10932 // Save FPSCR value. 10933 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 10934 10935 // Set rounding mode to round-to-zero. 10936 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 10937 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 10938 10939 // Perform addition. 10940 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 10941 10942 // Restore FPSCR value. 10943 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 10944 } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 10945 MI.getOpcode() == PPC::ANDIo_1_GT_BIT || 10946 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 10947 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) { 10948 unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 10949 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) 10950 ? PPC::ANDIo8 10951 : PPC::ANDIo; 10952 bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 10953 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8); 10954 10955 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10956 unsigned Dest = RegInfo.createVirtualRegister( 10957 Opcode == PPC::ANDIo ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 10958 10959 DebugLoc dl = MI.getDebugLoc(); 10960 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 10961 .addReg(MI.getOperand(1).getReg()) 10962 .addImm(1); 10963 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 10964 MI.getOperand(0).getReg()) 10965 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 10966 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 10967 DebugLoc Dl = MI.getDebugLoc(); 10968 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10969 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 10970 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 10971 return BB; 10972 } else { 10973 llvm_unreachable("Unexpected instr type to insert"); 10974 } 10975 10976 MI.eraseFromParent(); // The pseudo instruction is gone now. 10977 return BB; 10978 } 10979 10980 //===----------------------------------------------------------------------===// 10981 // Target Optimization Hooks 10982 //===----------------------------------------------------------------------===// 10983 10984 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 10985 // For the estimates, convergence is quadratic, so we essentially double the 10986 // number of digits correct after every iteration. For both FRE and FRSQRTE, 10987 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 10988 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 10989 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 10990 if (VT.getScalarType() == MVT::f64) 10991 RefinementSteps++; 10992 return RefinementSteps; 10993 } 10994 10995 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 10996 int Enabled, int &RefinementSteps, 10997 bool &UseOneConstNR, 10998 bool Reciprocal) const { 10999 EVT VT = Operand.getValueType(); 11000 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 11001 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 11002 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 11003 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 11004 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 11005 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 11006 if (RefinementSteps == ReciprocalEstimate::Unspecified) 11007 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 11008 11009 UseOneConstNR = true; 11010 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 11011 } 11012 return SDValue(); 11013 } 11014 11015 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 11016 int Enabled, 11017 int &RefinementSteps) const { 11018 EVT VT = Operand.getValueType(); 11019 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 11020 (VT == MVT::f64 && Subtarget.hasFRE()) || 11021 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 11022 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 11023 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 11024 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 11025 if (RefinementSteps == ReciprocalEstimate::Unspecified) 11026 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 11027 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 11028 } 11029 return SDValue(); 11030 } 11031 11032 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 11033 // Note: This functionality is used only when unsafe-fp-math is enabled, and 11034 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 11035 // enabled for division), this functionality is redundant with the default 11036 // combiner logic (once the division -> reciprocal/multiply transformation 11037 // has taken place). As a result, this matters more for older cores than for 11038 // newer ones. 11039 11040 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 11041 // reciprocal if there are two or more FDIVs (for embedded cores with only 11042 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 11043 switch (Subtarget.getDarwinDirective()) { 11044 default: 11045 return 3; 11046 case PPC::DIR_440: 11047 case PPC::DIR_A2: 11048 case PPC::DIR_E500: 11049 case PPC::DIR_E500mc: 11050 case PPC::DIR_E5500: 11051 return 2; 11052 } 11053 } 11054 11055 // isConsecutiveLSLoc needs to work even if all adds have not yet been 11056 // collapsed, and so we need to look through chains of them. 11057 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 11058 int64_t& Offset, SelectionDAG &DAG) { 11059 if (DAG.isBaseWithConstantOffset(Loc)) { 11060 Base = Loc.getOperand(0); 11061 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 11062 11063 // The base might itself be a base plus an offset, and if so, accumulate 11064 // that as well. 11065 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 11066 } 11067 } 11068 11069 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 11070 unsigned Bytes, int Dist, 11071 SelectionDAG &DAG) { 11072 if (VT.getSizeInBits() / 8 != Bytes) 11073 return false; 11074 11075 SDValue BaseLoc = Base->getBasePtr(); 11076 if (Loc.getOpcode() == ISD::FrameIndex) { 11077 if (BaseLoc.getOpcode() != ISD::FrameIndex) 11078 return false; 11079 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 11080 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 11081 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 11082 int FS = MFI.getObjectSize(FI); 11083 int BFS = MFI.getObjectSize(BFI); 11084 if (FS != BFS || FS != (int)Bytes) return false; 11085 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 11086 } 11087 11088 SDValue Base1 = Loc, Base2 = BaseLoc; 11089 int64_t Offset1 = 0, Offset2 = 0; 11090 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 11091 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 11092 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 11093 return true; 11094 11095 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11096 const GlobalValue *GV1 = nullptr; 11097 const GlobalValue *GV2 = nullptr; 11098 Offset1 = 0; 11099 Offset2 = 0; 11100 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 11101 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 11102 if (isGA1 && isGA2 && GV1 == GV2) 11103 return Offset1 == (Offset2 + Dist*Bytes); 11104 return false; 11105 } 11106 11107 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 11108 // not enforce equality of the chain operands. 11109 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 11110 unsigned Bytes, int Dist, 11111 SelectionDAG &DAG) { 11112 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 11113 EVT VT = LS->getMemoryVT(); 11114 SDValue Loc = LS->getBasePtr(); 11115 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 11116 } 11117 11118 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 11119 EVT VT; 11120 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11121 default: return false; 11122 case Intrinsic::ppc_qpx_qvlfd: 11123 case Intrinsic::ppc_qpx_qvlfda: 11124 VT = MVT::v4f64; 11125 break; 11126 case Intrinsic::ppc_qpx_qvlfs: 11127 case Intrinsic::ppc_qpx_qvlfsa: 11128 VT = MVT::v4f32; 11129 break; 11130 case Intrinsic::ppc_qpx_qvlfcd: 11131 case Intrinsic::ppc_qpx_qvlfcda: 11132 VT = MVT::v2f64; 11133 break; 11134 case Intrinsic::ppc_qpx_qvlfcs: 11135 case Intrinsic::ppc_qpx_qvlfcsa: 11136 VT = MVT::v2f32; 11137 break; 11138 case Intrinsic::ppc_qpx_qvlfiwa: 11139 case Intrinsic::ppc_qpx_qvlfiwz: 11140 case Intrinsic::ppc_altivec_lvx: 11141 case Intrinsic::ppc_altivec_lvxl: 11142 case Intrinsic::ppc_vsx_lxvw4x: 11143 case Intrinsic::ppc_vsx_lxvw4x_be: 11144 VT = MVT::v4i32; 11145 break; 11146 case Intrinsic::ppc_vsx_lxvd2x: 11147 case Intrinsic::ppc_vsx_lxvd2x_be: 11148 VT = MVT::v2f64; 11149 break; 11150 case Intrinsic::ppc_altivec_lvebx: 11151 VT = MVT::i8; 11152 break; 11153 case Intrinsic::ppc_altivec_lvehx: 11154 VT = MVT::i16; 11155 break; 11156 case Intrinsic::ppc_altivec_lvewx: 11157 VT = MVT::i32; 11158 break; 11159 } 11160 11161 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 11162 } 11163 11164 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 11165 EVT VT; 11166 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11167 default: return false; 11168 case Intrinsic::ppc_qpx_qvstfd: 11169 case Intrinsic::ppc_qpx_qvstfda: 11170 VT = MVT::v4f64; 11171 break; 11172 case Intrinsic::ppc_qpx_qvstfs: 11173 case Intrinsic::ppc_qpx_qvstfsa: 11174 VT = MVT::v4f32; 11175 break; 11176 case Intrinsic::ppc_qpx_qvstfcd: 11177 case Intrinsic::ppc_qpx_qvstfcda: 11178 VT = MVT::v2f64; 11179 break; 11180 case Intrinsic::ppc_qpx_qvstfcs: 11181 case Intrinsic::ppc_qpx_qvstfcsa: 11182 VT = MVT::v2f32; 11183 break; 11184 case Intrinsic::ppc_qpx_qvstfiw: 11185 case Intrinsic::ppc_qpx_qvstfiwa: 11186 case Intrinsic::ppc_altivec_stvx: 11187 case Intrinsic::ppc_altivec_stvxl: 11188 case Intrinsic::ppc_vsx_stxvw4x: 11189 VT = MVT::v4i32; 11190 break; 11191 case Intrinsic::ppc_vsx_stxvd2x: 11192 VT = MVT::v2f64; 11193 break; 11194 case Intrinsic::ppc_vsx_stxvw4x_be: 11195 VT = MVT::v4i32; 11196 break; 11197 case Intrinsic::ppc_vsx_stxvd2x_be: 11198 VT = MVT::v2f64; 11199 break; 11200 case Intrinsic::ppc_altivec_stvebx: 11201 VT = MVT::i8; 11202 break; 11203 case Intrinsic::ppc_altivec_stvehx: 11204 VT = MVT::i16; 11205 break; 11206 case Intrinsic::ppc_altivec_stvewx: 11207 VT = MVT::i32; 11208 break; 11209 } 11210 11211 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 11212 } 11213 11214 return false; 11215 } 11216 11217 // Return true is there is a nearyby consecutive load to the one provided 11218 // (regardless of alignment). We search up and down the chain, looking though 11219 // token factors and other loads (but nothing else). As a result, a true result 11220 // indicates that it is safe to create a new consecutive load adjacent to the 11221 // load provided. 11222 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 11223 SDValue Chain = LD->getChain(); 11224 EVT VT = LD->getMemoryVT(); 11225 11226 SmallSet<SDNode *, 16> LoadRoots; 11227 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 11228 SmallSet<SDNode *, 16> Visited; 11229 11230 // First, search up the chain, branching to follow all token-factor operands. 11231 // If we find a consecutive load, then we're done, otherwise, record all 11232 // nodes just above the top-level loads and token factors. 11233 while (!Queue.empty()) { 11234 SDNode *ChainNext = Queue.pop_back_val(); 11235 if (!Visited.insert(ChainNext).second) 11236 continue; 11237 11238 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 11239 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 11240 return true; 11241 11242 if (!Visited.count(ChainLD->getChain().getNode())) 11243 Queue.push_back(ChainLD->getChain().getNode()); 11244 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 11245 for (const SDUse &O : ChainNext->ops()) 11246 if (!Visited.count(O.getNode())) 11247 Queue.push_back(O.getNode()); 11248 } else 11249 LoadRoots.insert(ChainNext); 11250 } 11251 11252 // Second, search down the chain, starting from the top-level nodes recorded 11253 // in the first phase. These top-level nodes are the nodes just above all 11254 // loads and token factors. Starting with their uses, recursively look though 11255 // all loads (just the chain uses) and token factors to find a consecutive 11256 // load. 11257 Visited.clear(); 11258 Queue.clear(); 11259 11260 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 11261 IE = LoadRoots.end(); I != IE; ++I) { 11262 Queue.push_back(*I); 11263 11264 while (!Queue.empty()) { 11265 SDNode *LoadRoot = Queue.pop_back_val(); 11266 if (!Visited.insert(LoadRoot).second) 11267 continue; 11268 11269 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 11270 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 11271 return true; 11272 11273 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 11274 UE = LoadRoot->use_end(); UI != UE; ++UI) 11275 if (((isa<MemSDNode>(*UI) && 11276 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 11277 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 11278 Queue.push_back(*UI); 11279 } 11280 } 11281 11282 return false; 11283 } 11284 11285 /// This function is called when we have proved that a SETCC node can be replaced 11286 /// by subtraction (and other supporting instructions) so that the result of 11287 /// comparison is kept in a GPR instead of CR. This function is purely for 11288 /// codegen purposes and has some flags to guide the codegen process. 11289 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 11290 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 11291 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 11292 11293 // Zero extend the operands to the largest legal integer. Originally, they 11294 // must be of a strictly smaller size. 11295 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 11296 DAG.getConstant(Size, DL, MVT::i32)); 11297 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 11298 DAG.getConstant(Size, DL, MVT::i32)); 11299 11300 // Swap if needed. Depends on the condition code. 11301 if (Swap) 11302 std::swap(Op0, Op1); 11303 11304 // Subtract extended integers. 11305 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 11306 11307 // Move the sign bit to the least significant position and zero out the rest. 11308 // Now the least significant bit carries the result of original comparison. 11309 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 11310 DAG.getConstant(Size - 1, DL, MVT::i32)); 11311 auto Final = Shifted; 11312 11313 // Complement the result if needed. Based on the condition code. 11314 if (Complement) 11315 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 11316 DAG.getConstant(1, DL, MVT::i64)); 11317 11318 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 11319 } 11320 11321 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 11322 DAGCombinerInfo &DCI) const { 11323 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 11324 11325 SelectionDAG &DAG = DCI.DAG; 11326 SDLoc DL(N); 11327 11328 // Size of integers being compared has a critical role in the following 11329 // analysis, so we prefer to do this when all types are legal. 11330 if (!DCI.isAfterLegalizeDAG()) 11331 return SDValue(); 11332 11333 // If all users of SETCC extend its value to a legal integer type 11334 // then we replace SETCC with a subtraction 11335 for (SDNode::use_iterator UI = N->use_begin(), 11336 UE = N->use_end(); UI != UE; ++UI) { 11337 if (UI->getOpcode() != ISD::ZERO_EXTEND) 11338 return SDValue(); 11339 } 11340 11341 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 11342 auto OpSize = N->getOperand(0).getValueSizeInBits(); 11343 11344 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 11345 11346 if (OpSize < Size) { 11347 switch (CC) { 11348 default: break; 11349 case ISD::SETULT: 11350 return generateEquivalentSub(N, Size, false, false, DL, DAG); 11351 case ISD::SETULE: 11352 return generateEquivalentSub(N, Size, true, true, DL, DAG); 11353 case ISD::SETUGT: 11354 return generateEquivalentSub(N, Size, false, true, DL, DAG); 11355 case ISD::SETUGE: 11356 return generateEquivalentSub(N, Size, true, false, DL, DAG); 11357 } 11358 } 11359 11360 return SDValue(); 11361 } 11362 11363 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 11364 DAGCombinerInfo &DCI) const { 11365 SelectionDAG &DAG = DCI.DAG; 11366 SDLoc dl(N); 11367 11368 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 11369 // If we're tracking CR bits, we need to be careful that we don't have: 11370 // trunc(binary-ops(zext(x), zext(y))) 11371 // or 11372 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 11373 // such that we're unnecessarily moving things into GPRs when it would be 11374 // better to keep them in CR bits. 11375 11376 // Note that trunc here can be an actual i1 trunc, or can be the effective 11377 // truncation that comes from a setcc or select_cc. 11378 if (N->getOpcode() == ISD::TRUNCATE && 11379 N->getValueType(0) != MVT::i1) 11380 return SDValue(); 11381 11382 if (N->getOperand(0).getValueType() != MVT::i32 && 11383 N->getOperand(0).getValueType() != MVT::i64) 11384 return SDValue(); 11385 11386 if (N->getOpcode() == ISD::SETCC || 11387 N->getOpcode() == ISD::SELECT_CC) { 11388 // If we're looking at a comparison, then we need to make sure that the 11389 // high bits (all except for the first) don't matter the result. 11390 ISD::CondCode CC = 11391 cast<CondCodeSDNode>(N->getOperand( 11392 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 11393 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 11394 11395 if (ISD::isSignedIntSetCC(CC)) { 11396 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 11397 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 11398 return SDValue(); 11399 } else if (ISD::isUnsignedIntSetCC(CC)) { 11400 if (!DAG.MaskedValueIsZero(N->getOperand(0), 11401 APInt::getHighBitsSet(OpBits, OpBits-1)) || 11402 !DAG.MaskedValueIsZero(N->getOperand(1), 11403 APInt::getHighBitsSet(OpBits, OpBits-1))) 11404 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 11405 : SDValue()); 11406 } else { 11407 // This is neither a signed nor an unsigned comparison, just make sure 11408 // that the high bits are equal. 11409 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 11410 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 11411 11412 // We don't really care about what is known about the first bit (if 11413 // anything), so clear it in all masks prior to comparing them. 11414 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 11415 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 11416 11417 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 11418 return SDValue(); 11419 } 11420 } 11421 11422 // We now know that the higher-order bits are irrelevant, we just need to 11423 // make sure that all of the intermediate operations are bit operations, and 11424 // all inputs are extensions. 11425 if (N->getOperand(0).getOpcode() != ISD::AND && 11426 N->getOperand(0).getOpcode() != ISD::OR && 11427 N->getOperand(0).getOpcode() != ISD::XOR && 11428 N->getOperand(0).getOpcode() != ISD::SELECT && 11429 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 11430 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 11431 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 11432 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 11433 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 11434 return SDValue(); 11435 11436 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 11437 N->getOperand(1).getOpcode() != ISD::AND && 11438 N->getOperand(1).getOpcode() != ISD::OR && 11439 N->getOperand(1).getOpcode() != ISD::XOR && 11440 N->getOperand(1).getOpcode() != ISD::SELECT && 11441 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 11442 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 11443 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 11444 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 11445 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 11446 return SDValue(); 11447 11448 SmallVector<SDValue, 4> Inputs; 11449 SmallVector<SDValue, 8> BinOps, PromOps; 11450 SmallPtrSet<SDNode *, 16> Visited; 11451 11452 for (unsigned i = 0; i < 2; ++i) { 11453 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11454 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11455 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 11456 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 11457 isa<ConstantSDNode>(N->getOperand(i))) 11458 Inputs.push_back(N->getOperand(i)); 11459 else 11460 BinOps.push_back(N->getOperand(i)); 11461 11462 if (N->getOpcode() == ISD::TRUNCATE) 11463 break; 11464 } 11465 11466 // Visit all inputs, collect all binary operations (and, or, xor and 11467 // select) that are all fed by extensions. 11468 while (!BinOps.empty()) { 11469 SDValue BinOp = BinOps.back(); 11470 BinOps.pop_back(); 11471 11472 if (!Visited.insert(BinOp.getNode()).second) 11473 continue; 11474 11475 PromOps.push_back(BinOp); 11476 11477 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 11478 // The condition of the select is not promoted. 11479 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 11480 continue; 11481 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 11482 continue; 11483 11484 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11485 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11486 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 11487 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 11488 isa<ConstantSDNode>(BinOp.getOperand(i))) { 11489 Inputs.push_back(BinOp.getOperand(i)); 11490 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 11491 BinOp.getOperand(i).getOpcode() == ISD::OR || 11492 BinOp.getOperand(i).getOpcode() == ISD::XOR || 11493 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 11494 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 11495 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 11496 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11497 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11498 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 11499 BinOps.push_back(BinOp.getOperand(i)); 11500 } else { 11501 // We have an input that is not an extension or another binary 11502 // operation; we'll abort this transformation. 11503 return SDValue(); 11504 } 11505 } 11506 } 11507 11508 // Make sure that this is a self-contained cluster of operations (which 11509 // is not quite the same thing as saying that everything has only one 11510 // use). 11511 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11512 if (isa<ConstantSDNode>(Inputs[i])) 11513 continue; 11514 11515 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 11516 UE = Inputs[i].getNode()->use_end(); 11517 UI != UE; ++UI) { 11518 SDNode *User = *UI; 11519 if (User != N && !Visited.count(User)) 11520 return SDValue(); 11521 11522 // Make sure that we're not going to promote the non-output-value 11523 // operand(s) or SELECT or SELECT_CC. 11524 // FIXME: Although we could sometimes handle this, and it does occur in 11525 // practice that one of the condition inputs to the select is also one of 11526 // the outputs, we currently can't deal with this. 11527 if (User->getOpcode() == ISD::SELECT) { 11528 if (User->getOperand(0) == Inputs[i]) 11529 return SDValue(); 11530 } else if (User->getOpcode() == ISD::SELECT_CC) { 11531 if (User->getOperand(0) == Inputs[i] || 11532 User->getOperand(1) == Inputs[i]) 11533 return SDValue(); 11534 } 11535 } 11536 } 11537 11538 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 11539 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 11540 UE = PromOps[i].getNode()->use_end(); 11541 UI != UE; ++UI) { 11542 SDNode *User = *UI; 11543 if (User != N && !Visited.count(User)) 11544 return SDValue(); 11545 11546 // Make sure that we're not going to promote the non-output-value 11547 // operand(s) or SELECT or SELECT_CC. 11548 // FIXME: Although we could sometimes handle this, and it does occur in 11549 // practice that one of the condition inputs to the select is also one of 11550 // the outputs, we currently can't deal with this. 11551 if (User->getOpcode() == ISD::SELECT) { 11552 if (User->getOperand(0) == PromOps[i]) 11553 return SDValue(); 11554 } else if (User->getOpcode() == ISD::SELECT_CC) { 11555 if (User->getOperand(0) == PromOps[i] || 11556 User->getOperand(1) == PromOps[i]) 11557 return SDValue(); 11558 } 11559 } 11560 } 11561 11562 // Replace all inputs with the extension operand. 11563 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11564 // Constants may have users outside the cluster of to-be-promoted nodes, 11565 // and so we need to replace those as we do the promotions. 11566 if (isa<ConstantSDNode>(Inputs[i])) 11567 continue; 11568 else 11569 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 11570 } 11571 11572 std::list<HandleSDNode> PromOpHandles; 11573 for (auto &PromOp : PromOps) 11574 PromOpHandles.emplace_back(PromOp); 11575 11576 // Replace all operations (these are all the same, but have a different 11577 // (i1) return type). DAG.getNode will validate that the types of 11578 // a binary operator match, so go through the list in reverse so that 11579 // we've likely promoted both operands first. Any intermediate truncations or 11580 // extensions disappear. 11581 while (!PromOpHandles.empty()) { 11582 SDValue PromOp = PromOpHandles.back().getValue(); 11583 PromOpHandles.pop_back(); 11584 11585 if (PromOp.getOpcode() == ISD::TRUNCATE || 11586 PromOp.getOpcode() == ISD::SIGN_EXTEND || 11587 PromOp.getOpcode() == ISD::ZERO_EXTEND || 11588 PromOp.getOpcode() == ISD::ANY_EXTEND) { 11589 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 11590 PromOp.getOperand(0).getValueType() != MVT::i1) { 11591 // The operand is not yet ready (see comment below). 11592 PromOpHandles.emplace_front(PromOp); 11593 continue; 11594 } 11595 11596 SDValue RepValue = PromOp.getOperand(0); 11597 if (isa<ConstantSDNode>(RepValue)) 11598 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 11599 11600 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 11601 continue; 11602 } 11603 11604 unsigned C; 11605 switch (PromOp.getOpcode()) { 11606 default: C = 0; break; 11607 case ISD::SELECT: C = 1; break; 11608 case ISD::SELECT_CC: C = 2; break; 11609 } 11610 11611 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 11612 PromOp.getOperand(C).getValueType() != MVT::i1) || 11613 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 11614 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 11615 // The to-be-promoted operands of this node have not yet been 11616 // promoted (this should be rare because we're going through the 11617 // list backward, but if one of the operands has several users in 11618 // this cluster of to-be-promoted nodes, it is possible). 11619 PromOpHandles.emplace_front(PromOp); 11620 continue; 11621 } 11622 11623 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 11624 PromOp.getNode()->op_end()); 11625 11626 // If there are any constant inputs, make sure they're replaced now. 11627 for (unsigned i = 0; i < 2; ++i) 11628 if (isa<ConstantSDNode>(Ops[C+i])) 11629 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 11630 11631 DAG.ReplaceAllUsesOfValueWith(PromOp, 11632 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 11633 } 11634 11635 // Now we're left with the initial truncation itself. 11636 if (N->getOpcode() == ISD::TRUNCATE) 11637 return N->getOperand(0); 11638 11639 // Otherwise, this is a comparison. The operands to be compared have just 11640 // changed type (to i1), but everything else is the same. 11641 return SDValue(N, 0); 11642 } 11643 11644 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 11645 DAGCombinerInfo &DCI) const { 11646 SelectionDAG &DAG = DCI.DAG; 11647 SDLoc dl(N); 11648 11649 // If we're tracking CR bits, we need to be careful that we don't have: 11650 // zext(binary-ops(trunc(x), trunc(y))) 11651 // or 11652 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 11653 // such that we're unnecessarily moving things into CR bits that can more 11654 // efficiently stay in GPRs. Note that if we're not certain that the high 11655 // bits are set as required by the final extension, we still may need to do 11656 // some masking to get the proper behavior. 11657 11658 // This same functionality is important on PPC64 when dealing with 11659 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 11660 // the return values of functions. Because it is so similar, it is handled 11661 // here as well. 11662 11663 if (N->getValueType(0) != MVT::i32 && 11664 N->getValueType(0) != MVT::i64) 11665 return SDValue(); 11666 11667 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 11668 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 11669 return SDValue(); 11670 11671 if (N->getOperand(0).getOpcode() != ISD::AND && 11672 N->getOperand(0).getOpcode() != ISD::OR && 11673 N->getOperand(0).getOpcode() != ISD::XOR && 11674 N->getOperand(0).getOpcode() != ISD::SELECT && 11675 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 11676 return SDValue(); 11677 11678 SmallVector<SDValue, 4> Inputs; 11679 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 11680 SmallPtrSet<SDNode *, 16> Visited; 11681 11682 // Visit all inputs, collect all binary operations (and, or, xor and 11683 // select) that are all fed by truncations. 11684 while (!BinOps.empty()) { 11685 SDValue BinOp = BinOps.back(); 11686 BinOps.pop_back(); 11687 11688 if (!Visited.insert(BinOp.getNode()).second) 11689 continue; 11690 11691 PromOps.push_back(BinOp); 11692 11693 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 11694 // The condition of the select is not promoted. 11695 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 11696 continue; 11697 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 11698 continue; 11699 11700 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 11701 isa<ConstantSDNode>(BinOp.getOperand(i))) { 11702 Inputs.push_back(BinOp.getOperand(i)); 11703 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 11704 BinOp.getOperand(i).getOpcode() == ISD::OR || 11705 BinOp.getOperand(i).getOpcode() == ISD::XOR || 11706 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 11707 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 11708 BinOps.push_back(BinOp.getOperand(i)); 11709 } else { 11710 // We have an input that is not a truncation or another binary 11711 // operation; we'll abort this transformation. 11712 return SDValue(); 11713 } 11714 } 11715 } 11716 11717 // The operands of a select that must be truncated when the select is 11718 // promoted because the operand is actually part of the to-be-promoted set. 11719 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 11720 11721 // Make sure that this is a self-contained cluster of operations (which 11722 // is not quite the same thing as saying that everything has only one 11723 // use). 11724 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11725 if (isa<ConstantSDNode>(Inputs[i])) 11726 continue; 11727 11728 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 11729 UE = Inputs[i].getNode()->use_end(); 11730 UI != UE; ++UI) { 11731 SDNode *User = *UI; 11732 if (User != N && !Visited.count(User)) 11733 return SDValue(); 11734 11735 // If we're going to promote the non-output-value operand(s) or SELECT or 11736 // SELECT_CC, record them for truncation. 11737 if (User->getOpcode() == ISD::SELECT) { 11738 if (User->getOperand(0) == Inputs[i]) 11739 SelectTruncOp[0].insert(std::make_pair(User, 11740 User->getOperand(0).getValueType())); 11741 } else if (User->getOpcode() == ISD::SELECT_CC) { 11742 if (User->getOperand(0) == Inputs[i]) 11743 SelectTruncOp[0].insert(std::make_pair(User, 11744 User->getOperand(0).getValueType())); 11745 if (User->getOperand(1) == Inputs[i]) 11746 SelectTruncOp[1].insert(std::make_pair(User, 11747 User->getOperand(1).getValueType())); 11748 } 11749 } 11750 } 11751 11752 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 11753 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 11754 UE = PromOps[i].getNode()->use_end(); 11755 UI != UE; ++UI) { 11756 SDNode *User = *UI; 11757 if (User != N && !Visited.count(User)) 11758 return SDValue(); 11759 11760 // If we're going to promote the non-output-value operand(s) or SELECT or 11761 // SELECT_CC, record them for truncation. 11762 if (User->getOpcode() == ISD::SELECT) { 11763 if (User->getOperand(0) == PromOps[i]) 11764 SelectTruncOp[0].insert(std::make_pair(User, 11765 User->getOperand(0).getValueType())); 11766 } else if (User->getOpcode() == ISD::SELECT_CC) { 11767 if (User->getOperand(0) == PromOps[i]) 11768 SelectTruncOp[0].insert(std::make_pair(User, 11769 User->getOperand(0).getValueType())); 11770 if (User->getOperand(1) == PromOps[i]) 11771 SelectTruncOp[1].insert(std::make_pair(User, 11772 User->getOperand(1).getValueType())); 11773 } 11774 } 11775 } 11776 11777 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 11778 bool ReallyNeedsExt = false; 11779 if (N->getOpcode() != ISD::ANY_EXTEND) { 11780 // If all of the inputs are not already sign/zero extended, then 11781 // we'll still need to do that at the end. 11782 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11783 if (isa<ConstantSDNode>(Inputs[i])) 11784 continue; 11785 11786 unsigned OpBits = 11787 Inputs[i].getOperand(0).getValueSizeInBits(); 11788 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 11789 11790 if ((N->getOpcode() == ISD::ZERO_EXTEND && 11791 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 11792 APInt::getHighBitsSet(OpBits, 11793 OpBits-PromBits))) || 11794 (N->getOpcode() == ISD::SIGN_EXTEND && 11795 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 11796 (OpBits-(PromBits-1)))) { 11797 ReallyNeedsExt = true; 11798 break; 11799 } 11800 } 11801 } 11802 11803 // Replace all inputs, either with the truncation operand, or a 11804 // truncation or extension to the final output type. 11805 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11806 // Constant inputs need to be replaced with the to-be-promoted nodes that 11807 // use them because they might have users outside of the cluster of 11808 // promoted nodes. 11809 if (isa<ConstantSDNode>(Inputs[i])) 11810 continue; 11811 11812 SDValue InSrc = Inputs[i].getOperand(0); 11813 if (Inputs[i].getValueType() == N->getValueType(0)) 11814 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 11815 else if (N->getOpcode() == ISD::SIGN_EXTEND) 11816 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 11817 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 11818 else if (N->getOpcode() == ISD::ZERO_EXTEND) 11819 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 11820 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 11821 else 11822 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 11823 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 11824 } 11825 11826 std::list<HandleSDNode> PromOpHandles; 11827 for (auto &PromOp : PromOps) 11828 PromOpHandles.emplace_back(PromOp); 11829 11830 // Replace all operations (these are all the same, but have a different 11831 // (promoted) return type). DAG.getNode will validate that the types of 11832 // a binary operator match, so go through the list in reverse so that 11833 // we've likely promoted both operands first. 11834 while (!PromOpHandles.empty()) { 11835 SDValue PromOp = PromOpHandles.back().getValue(); 11836 PromOpHandles.pop_back(); 11837 11838 unsigned C; 11839 switch (PromOp.getOpcode()) { 11840 default: C = 0; break; 11841 case ISD::SELECT: C = 1; break; 11842 case ISD::SELECT_CC: C = 2; break; 11843 } 11844 11845 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 11846 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 11847 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 11848 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 11849 // The to-be-promoted operands of this node have not yet been 11850 // promoted (this should be rare because we're going through the 11851 // list backward, but if one of the operands has several users in 11852 // this cluster of to-be-promoted nodes, it is possible). 11853 PromOpHandles.emplace_front(PromOp); 11854 continue; 11855 } 11856 11857 // For SELECT and SELECT_CC nodes, we do a similar check for any 11858 // to-be-promoted comparison inputs. 11859 if (PromOp.getOpcode() == ISD::SELECT || 11860 PromOp.getOpcode() == ISD::SELECT_CC) { 11861 if ((SelectTruncOp[0].count(PromOp.getNode()) && 11862 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 11863 (SelectTruncOp[1].count(PromOp.getNode()) && 11864 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 11865 PromOpHandles.emplace_front(PromOp); 11866 continue; 11867 } 11868 } 11869 11870 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 11871 PromOp.getNode()->op_end()); 11872 11873 // If this node has constant inputs, then they'll need to be promoted here. 11874 for (unsigned i = 0; i < 2; ++i) { 11875 if (!isa<ConstantSDNode>(Ops[C+i])) 11876 continue; 11877 if (Ops[C+i].getValueType() == N->getValueType(0)) 11878 continue; 11879 11880 if (N->getOpcode() == ISD::SIGN_EXTEND) 11881 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 11882 else if (N->getOpcode() == ISD::ZERO_EXTEND) 11883 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 11884 else 11885 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 11886 } 11887 11888 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 11889 // truncate them again to the original value type. 11890 if (PromOp.getOpcode() == ISD::SELECT || 11891 PromOp.getOpcode() == ISD::SELECT_CC) { 11892 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 11893 if (SI0 != SelectTruncOp[0].end()) 11894 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 11895 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 11896 if (SI1 != SelectTruncOp[1].end()) 11897 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 11898 } 11899 11900 DAG.ReplaceAllUsesOfValueWith(PromOp, 11901 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 11902 } 11903 11904 // Now we're left with the initial extension itself. 11905 if (!ReallyNeedsExt) 11906 return N->getOperand(0); 11907 11908 // To zero extend, just mask off everything except for the first bit (in the 11909 // i1 case). 11910 if (N->getOpcode() == ISD::ZERO_EXTEND) 11911 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 11912 DAG.getConstant(APInt::getLowBitsSet( 11913 N->getValueSizeInBits(0), PromBits), 11914 dl, N->getValueType(0))); 11915 11916 assert(N->getOpcode() == ISD::SIGN_EXTEND && 11917 "Invalid extension type"); 11918 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 11919 SDValue ShiftCst = 11920 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 11921 return DAG.getNode( 11922 ISD::SRA, dl, N->getValueType(0), 11923 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 11924 ShiftCst); 11925 } 11926 11927 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 11928 DAGCombinerInfo &DCI) const { 11929 assert(N->getOpcode() == ISD::SETCC && 11930 "Should be called with a SETCC node"); 11931 11932 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 11933 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 11934 SDValue LHS = N->getOperand(0); 11935 SDValue RHS = N->getOperand(1); 11936 11937 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 11938 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 11939 LHS.hasOneUse()) 11940 std::swap(LHS, RHS); 11941 11942 // x == 0-y --> x+y == 0 11943 // x != 0-y --> x+y != 0 11944 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 11945 RHS.hasOneUse()) { 11946 SDLoc DL(N); 11947 SelectionDAG &DAG = DCI.DAG; 11948 EVT VT = N->getValueType(0); 11949 EVT OpVT = LHS.getValueType(); 11950 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 11951 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 11952 } 11953 } 11954 11955 return DAGCombineTruncBoolExt(N, DCI); 11956 } 11957 11958 // Is this an extending load from an f32 to an f64? 11959 static bool isFPExtLoad(SDValue Op) { 11960 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 11961 return LD->getExtensionType() == ISD::EXTLOAD && 11962 Op.getValueType() == MVT::f64; 11963 return false; 11964 } 11965 11966 /// Reduces the number of fp-to-int conversion when building a vector. 11967 /// 11968 /// If this vector is built out of floating to integer conversions, 11969 /// transform it to a vector built out of floating point values followed by a 11970 /// single floating to integer conversion of the vector. 11971 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 11972 /// becomes (fptosi (build_vector ($A, $B, ...))) 11973 SDValue PPCTargetLowering:: 11974 combineElementTruncationToVectorTruncation(SDNode *N, 11975 DAGCombinerInfo &DCI) const { 11976 assert(N->getOpcode() == ISD::BUILD_VECTOR && 11977 "Should be called with a BUILD_VECTOR node"); 11978 11979 SelectionDAG &DAG = DCI.DAG; 11980 SDLoc dl(N); 11981 11982 SDValue FirstInput = N->getOperand(0); 11983 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 11984 "The input operand must be an fp-to-int conversion."); 11985 11986 // This combine happens after legalization so the fp_to_[su]i nodes are 11987 // already converted to PPCSISD nodes. 11988 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 11989 if (FirstConversion == PPCISD::FCTIDZ || 11990 FirstConversion == PPCISD::FCTIDUZ || 11991 FirstConversion == PPCISD::FCTIWZ || 11992 FirstConversion == PPCISD::FCTIWUZ) { 11993 bool IsSplat = true; 11994 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 11995 FirstConversion == PPCISD::FCTIWUZ; 11996 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 11997 SmallVector<SDValue, 4> Ops; 11998 EVT TargetVT = N->getValueType(0); 11999 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 12000 SDValue NextOp = N->getOperand(i); 12001 if (NextOp.getOpcode() != PPCISD::MFVSR) 12002 return SDValue(); 12003 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 12004 if (NextConversion != FirstConversion) 12005 return SDValue(); 12006 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 12007 // This is not valid if the input was originally double precision. It is 12008 // also not profitable to do unless this is an extending load in which 12009 // case doing this combine will allow us to combine consecutive loads. 12010 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 12011 return SDValue(); 12012 if (N->getOperand(i) != FirstInput) 12013 IsSplat = false; 12014 } 12015 12016 // If this is a splat, we leave it as-is since there will be only a single 12017 // fp-to-int conversion followed by a splat of the integer. This is better 12018 // for 32-bit and smaller ints and neutral for 64-bit ints. 12019 if (IsSplat) 12020 return SDValue(); 12021 12022 // Now that we know we have the right type of node, get its operands 12023 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 12024 SDValue In = N->getOperand(i).getOperand(0); 12025 if (Is32Bit) { 12026 // For 32-bit values, we need to add an FP_ROUND node (if we made it 12027 // here, we know that all inputs are extending loads so this is safe). 12028 if (In.isUndef()) 12029 Ops.push_back(DAG.getUNDEF(SrcVT)); 12030 else { 12031 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 12032 MVT::f32, In.getOperand(0), 12033 DAG.getIntPtrConstant(1, dl)); 12034 Ops.push_back(Trunc); 12035 } 12036 } else 12037 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 12038 } 12039 12040 unsigned Opcode; 12041 if (FirstConversion == PPCISD::FCTIDZ || 12042 FirstConversion == PPCISD::FCTIWZ) 12043 Opcode = ISD::FP_TO_SINT; 12044 else 12045 Opcode = ISD::FP_TO_UINT; 12046 12047 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 12048 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 12049 return DAG.getNode(Opcode, dl, TargetVT, BV); 12050 } 12051 return SDValue(); 12052 } 12053 12054 /// Reduce the number of loads when building a vector. 12055 /// 12056 /// Building a vector out of multiple loads can be converted to a load 12057 /// of the vector type if the loads are consecutive. If the loads are 12058 /// consecutive but in descending order, a shuffle is added at the end 12059 /// to reorder the vector. 12060 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 12061 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12062 "Should be called with a BUILD_VECTOR node"); 12063 12064 SDLoc dl(N); 12065 bool InputsAreConsecutiveLoads = true; 12066 bool InputsAreReverseConsecutive = true; 12067 unsigned ElemSize = N->getValueType(0).getScalarSizeInBits() / 8; 12068 SDValue FirstInput = N->getOperand(0); 12069 bool IsRoundOfExtLoad = false; 12070 12071 if (FirstInput.getOpcode() == ISD::FP_ROUND && 12072 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 12073 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 12074 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 12075 } 12076 // Not a build vector of (possibly fp_rounded) loads. 12077 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 12078 N->getNumOperands() == 1) 12079 return SDValue(); 12080 12081 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 12082 // If any inputs are fp_round(extload), they all must be. 12083 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 12084 return SDValue(); 12085 12086 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 12087 N->getOperand(i); 12088 if (NextInput.getOpcode() != ISD::LOAD) 12089 return SDValue(); 12090 12091 SDValue PreviousInput = 12092 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 12093 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 12094 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 12095 12096 // If any inputs are fp_round(extload), they all must be. 12097 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 12098 return SDValue(); 12099 12100 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 12101 InputsAreConsecutiveLoads = false; 12102 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 12103 InputsAreReverseConsecutive = false; 12104 12105 // Exit early if the loads are neither consecutive nor reverse consecutive. 12106 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 12107 return SDValue(); 12108 } 12109 12110 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 12111 "The loads cannot be both consecutive and reverse consecutive."); 12112 12113 SDValue FirstLoadOp = 12114 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 12115 SDValue LastLoadOp = 12116 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 12117 N->getOperand(N->getNumOperands()-1); 12118 12119 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 12120 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 12121 if (InputsAreConsecutiveLoads) { 12122 assert(LD1 && "Input needs to be a LoadSDNode."); 12123 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 12124 LD1->getBasePtr(), LD1->getPointerInfo(), 12125 LD1->getAlignment()); 12126 } 12127 if (InputsAreReverseConsecutive) { 12128 assert(LDL && "Input needs to be a LoadSDNode."); 12129 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 12130 LDL->getBasePtr(), LDL->getPointerInfo(), 12131 LDL->getAlignment()); 12132 SmallVector<int, 16> Ops; 12133 for (int i = N->getNumOperands() - 1; i >= 0; i--) 12134 Ops.push_back(i); 12135 12136 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 12137 DAG.getUNDEF(N->getValueType(0)), Ops); 12138 } 12139 return SDValue(); 12140 } 12141 12142 // This function adds the required vector_shuffle needed to get 12143 // the elements of the vector extract in the correct position 12144 // as specified by the CorrectElems encoding. 12145 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 12146 SDValue Input, uint64_t Elems, 12147 uint64_t CorrectElems) { 12148 SDLoc dl(N); 12149 12150 unsigned NumElems = Input.getValueType().getVectorNumElements(); 12151 SmallVector<int, 16> ShuffleMask(NumElems, -1); 12152 12153 // Knowing the element indices being extracted from the original 12154 // vector and the order in which they're being inserted, just put 12155 // them at element indices required for the instruction. 12156 for (unsigned i = 0; i < N->getNumOperands(); i++) { 12157 if (DAG.getDataLayout().isLittleEndian()) 12158 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 12159 else 12160 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 12161 CorrectElems = CorrectElems >> 8; 12162 Elems = Elems >> 8; 12163 } 12164 12165 SDValue Shuffle = 12166 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 12167 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 12168 12169 EVT Ty = N->getValueType(0); 12170 SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle); 12171 return BV; 12172 } 12173 12174 // Look for build vector patterns where input operands come from sign 12175 // extended vector_extract elements of specific indices. If the correct indices 12176 // aren't used, add a vector shuffle to fix up the indices and create a new 12177 // PPCISD:SExtVElems node which selects the vector sign extend instructions 12178 // during instruction selection. 12179 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 12180 // This array encodes the indices that the vector sign extend instructions 12181 // extract from when extending from one type to another for both BE and LE. 12182 // The right nibble of each byte corresponds to the LE incides. 12183 // and the left nibble of each byte corresponds to the BE incides. 12184 // For example: 0x3074B8FC byte->word 12185 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 12186 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 12187 // For example: 0x000070F8 byte->double word 12188 // For LE: the allowed indices are: 0x0,0x8 12189 // For BE: the allowed indices are: 0x7,0xF 12190 uint64_t TargetElems[] = { 12191 0x3074B8FC, // b->w 12192 0x000070F8, // b->d 12193 0x10325476, // h->w 12194 0x00003074, // h->d 12195 0x00001032, // w->d 12196 }; 12197 12198 uint64_t Elems = 0; 12199 int Index; 12200 SDValue Input; 12201 12202 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 12203 if (!Op) 12204 return false; 12205 if (Op.getOpcode() != ISD::SIGN_EXTEND && 12206 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 12207 return false; 12208 12209 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 12210 // of the right width. 12211 SDValue Extract = Op.getOperand(0); 12212 if (Extract.getOpcode() == ISD::ANY_EXTEND) 12213 Extract = Extract.getOperand(0); 12214 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 12215 return false; 12216 12217 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 12218 if (!ExtOp) 12219 return false; 12220 12221 Index = ExtOp->getZExtValue(); 12222 if (Input && Input != Extract.getOperand(0)) 12223 return false; 12224 12225 if (!Input) 12226 Input = Extract.getOperand(0); 12227 12228 Elems = Elems << 8; 12229 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 12230 Elems |= Index; 12231 12232 return true; 12233 }; 12234 12235 // If the build vector operands aren't sign extended vector extracts, 12236 // of the same input vector, then return. 12237 for (unsigned i = 0; i < N->getNumOperands(); i++) { 12238 if (!isSExtOfVecExtract(N->getOperand(i))) { 12239 return SDValue(); 12240 } 12241 } 12242 12243 // If the vector extract indicies are not correct, add the appropriate 12244 // vector_shuffle. 12245 int TgtElemArrayIdx; 12246 int InputSize = Input.getValueType().getScalarSizeInBits(); 12247 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 12248 if (InputSize + OutputSize == 40) 12249 TgtElemArrayIdx = 0; 12250 else if (InputSize + OutputSize == 72) 12251 TgtElemArrayIdx = 1; 12252 else if (InputSize + OutputSize == 48) 12253 TgtElemArrayIdx = 2; 12254 else if (InputSize + OutputSize == 80) 12255 TgtElemArrayIdx = 3; 12256 else if (InputSize + OutputSize == 96) 12257 TgtElemArrayIdx = 4; 12258 else 12259 return SDValue(); 12260 12261 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 12262 CorrectElems = DAG.getDataLayout().isLittleEndian() 12263 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 12264 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 12265 if (Elems != CorrectElems) { 12266 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 12267 } 12268 12269 // Regular lowering will catch cases where a shuffle is not needed. 12270 return SDValue(); 12271 } 12272 12273 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 12274 DAGCombinerInfo &DCI) const { 12275 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12276 "Should be called with a BUILD_VECTOR node"); 12277 12278 SelectionDAG &DAG = DCI.DAG; 12279 SDLoc dl(N); 12280 12281 if (!Subtarget.hasVSX()) 12282 return SDValue(); 12283 12284 // The target independent DAG combiner will leave a build_vector of 12285 // float-to-int conversions intact. We can generate MUCH better code for 12286 // a float-to-int conversion of a vector of floats. 12287 SDValue FirstInput = N->getOperand(0); 12288 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 12289 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 12290 if (Reduced) 12291 return Reduced; 12292 } 12293 12294 // If we're building a vector out of consecutive loads, just load that 12295 // vector type. 12296 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 12297 if (Reduced) 12298 return Reduced; 12299 12300 // If we're building a vector out of extended elements from another vector 12301 // we have P9 vector integer extend instructions. The code assumes legal 12302 // input types (i.e. it can't handle things like v4i16) so do not run before 12303 // legalization. 12304 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 12305 Reduced = combineBVOfVecSExt(N, DAG); 12306 if (Reduced) 12307 return Reduced; 12308 } 12309 12310 12311 if (N->getValueType(0) != MVT::v2f64) 12312 return SDValue(); 12313 12314 // Looking for: 12315 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 12316 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 12317 FirstInput.getOpcode() != ISD::UINT_TO_FP) 12318 return SDValue(); 12319 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 12320 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 12321 return SDValue(); 12322 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 12323 return SDValue(); 12324 12325 SDValue Ext1 = FirstInput.getOperand(0); 12326 SDValue Ext2 = N->getOperand(1).getOperand(0); 12327 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 12328 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 12329 return SDValue(); 12330 12331 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 12332 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 12333 if (!Ext1Op || !Ext2Op) 12334 return SDValue(); 12335 if (Ext1.getValueType() != MVT::i32 || 12336 Ext2.getValueType() != MVT::i32) 12337 if (Ext1.getOperand(0) != Ext2.getOperand(0)) 12338 return SDValue(); 12339 12340 int FirstElem = Ext1Op->getZExtValue(); 12341 int SecondElem = Ext2Op->getZExtValue(); 12342 int SubvecIdx; 12343 if (FirstElem == 0 && SecondElem == 1) 12344 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 12345 else if (FirstElem == 2 && SecondElem == 3) 12346 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 12347 else 12348 return SDValue(); 12349 12350 SDValue SrcVec = Ext1.getOperand(0); 12351 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 12352 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 12353 return DAG.getNode(NodeType, dl, MVT::v2f64, 12354 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 12355 } 12356 12357 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 12358 DAGCombinerInfo &DCI) const { 12359 assert((N->getOpcode() == ISD::SINT_TO_FP || 12360 N->getOpcode() == ISD::UINT_TO_FP) && 12361 "Need an int -> FP conversion node here"); 12362 12363 if (useSoftFloat() || !Subtarget.has64BitSupport()) 12364 return SDValue(); 12365 12366 SelectionDAG &DAG = DCI.DAG; 12367 SDLoc dl(N); 12368 SDValue Op(N, 0); 12369 12370 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 12371 // from the hardware. 12372 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 12373 return SDValue(); 12374 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 12375 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 12376 return SDValue(); 12377 12378 SDValue FirstOperand(Op.getOperand(0)); 12379 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 12380 (FirstOperand.getValueType() == MVT::i8 || 12381 FirstOperand.getValueType() == MVT::i16); 12382 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 12383 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 12384 bool DstDouble = Op.getValueType() == MVT::f64; 12385 unsigned ConvOp = Signed ? 12386 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 12387 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 12388 SDValue WidthConst = 12389 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 12390 dl, false); 12391 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 12392 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 12393 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 12394 DAG.getVTList(MVT::f64, MVT::Other), 12395 Ops, MVT::i8, LDN->getMemOperand()); 12396 12397 // For signed conversion, we need to sign-extend the value in the VSR 12398 if (Signed) { 12399 SDValue ExtOps[] = { Ld, WidthConst }; 12400 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 12401 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 12402 } else 12403 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 12404 } 12405 12406 12407 // For i32 intermediate values, unfortunately, the conversion functions 12408 // leave the upper 32 bits of the value are undefined. Within the set of 12409 // scalar instructions, we have no method for zero- or sign-extending the 12410 // value. Thus, we cannot handle i32 intermediate values here. 12411 if (Op.getOperand(0).getValueType() == MVT::i32) 12412 return SDValue(); 12413 12414 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 12415 "UINT_TO_FP is supported only with FPCVT"); 12416 12417 // If we have FCFIDS, then use it when converting to single-precision. 12418 // Otherwise, convert to double-precision and then round. 12419 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 12420 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 12421 : PPCISD::FCFIDS) 12422 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 12423 : PPCISD::FCFID); 12424 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 12425 ? MVT::f32 12426 : MVT::f64; 12427 12428 // If we're converting from a float, to an int, and back to a float again, 12429 // then we don't need the store/load pair at all. 12430 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 12431 Subtarget.hasFPCVT()) || 12432 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 12433 SDValue Src = Op.getOperand(0).getOperand(0); 12434 if (Src.getValueType() == MVT::f32) { 12435 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 12436 DCI.AddToWorklist(Src.getNode()); 12437 } else if (Src.getValueType() != MVT::f64) { 12438 // Make sure that we don't pick up a ppc_fp128 source value. 12439 return SDValue(); 12440 } 12441 12442 unsigned FCTOp = 12443 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 12444 PPCISD::FCTIDUZ; 12445 12446 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 12447 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 12448 12449 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 12450 FP = DAG.getNode(ISD::FP_ROUND, dl, 12451 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 12452 DCI.AddToWorklist(FP.getNode()); 12453 } 12454 12455 return FP; 12456 } 12457 12458 return SDValue(); 12459 } 12460 12461 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 12462 // builtins) into loads with swaps. 12463 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 12464 DAGCombinerInfo &DCI) const { 12465 SelectionDAG &DAG = DCI.DAG; 12466 SDLoc dl(N); 12467 SDValue Chain; 12468 SDValue Base; 12469 MachineMemOperand *MMO; 12470 12471 switch (N->getOpcode()) { 12472 default: 12473 llvm_unreachable("Unexpected opcode for little endian VSX load"); 12474 case ISD::LOAD: { 12475 LoadSDNode *LD = cast<LoadSDNode>(N); 12476 Chain = LD->getChain(); 12477 Base = LD->getBasePtr(); 12478 MMO = LD->getMemOperand(); 12479 // If the MMO suggests this isn't a load of a full vector, leave 12480 // things alone. For a built-in, we have to make the change for 12481 // correctness, so if there is a size problem that will be a bug. 12482 if (MMO->getSize() < 16) 12483 return SDValue(); 12484 break; 12485 } 12486 case ISD::INTRINSIC_W_CHAIN: { 12487 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 12488 Chain = Intrin->getChain(); 12489 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 12490 // us what we want. Get operand 2 instead. 12491 Base = Intrin->getOperand(2); 12492 MMO = Intrin->getMemOperand(); 12493 break; 12494 } 12495 } 12496 12497 MVT VecTy = N->getValueType(0).getSimpleVT(); 12498 12499 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 12500 // aligned and the type is a vector with elements up to 4 bytes 12501 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 12502 && VecTy.getScalarSizeInBits() <= 32 ) { 12503 return SDValue(); 12504 } 12505 12506 SDValue LoadOps[] = { Chain, Base }; 12507 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 12508 DAG.getVTList(MVT::v2f64, MVT::Other), 12509 LoadOps, MVT::v2f64, MMO); 12510 12511 DCI.AddToWorklist(Load.getNode()); 12512 Chain = Load.getValue(1); 12513 SDValue Swap = DAG.getNode( 12514 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 12515 DCI.AddToWorklist(Swap.getNode()); 12516 12517 // Add a bitcast if the resulting load type doesn't match v2f64. 12518 if (VecTy != MVT::v2f64) { 12519 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 12520 DCI.AddToWorklist(N.getNode()); 12521 // Package {bitcast value, swap's chain} to match Load's shape. 12522 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 12523 N, Swap.getValue(1)); 12524 } 12525 12526 return Swap; 12527 } 12528 12529 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 12530 // builtins) into stores with swaps. 12531 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 12532 DAGCombinerInfo &DCI) const { 12533 SelectionDAG &DAG = DCI.DAG; 12534 SDLoc dl(N); 12535 SDValue Chain; 12536 SDValue Base; 12537 unsigned SrcOpnd; 12538 MachineMemOperand *MMO; 12539 12540 switch (N->getOpcode()) { 12541 default: 12542 llvm_unreachable("Unexpected opcode for little endian VSX store"); 12543 case ISD::STORE: { 12544 StoreSDNode *ST = cast<StoreSDNode>(N); 12545 Chain = ST->getChain(); 12546 Base = ST->getBasePtr(); 12547 MMO = ST->getMemOperand(); 12548 SrcOpnd = 1; 12549 // If the MMO suggests this isn't a store of a full vector, leave 12550 // things alone. For a built-in, we have to make the change for 12551 // correctness, so if there is a size problem that will be a bug. 12552 if (MMO->getSize() < 16) 12553 return SDValue(); 12554 break; 12555 } 12556 case ISD::INTRINSIC_VOID: { 12557 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 12558 Chain = Intrin->getChain(); 12559 // Intrin->getBasePtr() oddly does not get what we want. 12560 Base = Intrin->getOperand(3); 12561 MMO = Intrin->getMemOperand(); 12562 SrcOpnd = 2; 12563 break; 12564 } 12565 } 12566 12567 SDValue Src = N->getOperand(SrcOpnd); 12568 MVT VecTy = Src.getValueType().getSimpleVT(); 12569 12570 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 12571 // aligned and the type is a vector with elements up to 4 bytes 12572 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 12573 && VecTy.getScalarSizeInBits() <= 32 ) { 12574 return SDValue(); 12575 } 12576 12577 // All stores are done as v2f64 and possible bit cast. 12578 if (VecTy != MVT::v2f64) { 12579 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 12580 DCI.AddToWorklist(Src.getNode()); 12581 } 12582 12583 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 12584 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 12585 DCI.AddToWorklist(Swap.getNode()); 12586 Chain = Swap.getValue(1); 12587 SDValue StoreOps[] = { Chain, Swap, Base }; 12588 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 12589 DAG.getVTList(MVT::Other), 12590 StoreOps, VecTy, MMO); 12591 DCI.AddToWorklist(Store.getNode()); 12592 return Store; 12593 } 12594 12595 // Handle DAG combine for STORE (FP_TO_INT F). 12596 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 12597 DAGCombinerInfo &DCI) const { 12598 12599 SelectionDAG &DAG = DCI.DAG; 12600 SDLoc dl(N); 12601 unsigned Opcode = N->getOperand(1).getOpcode(); 12602 12603 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 12604 && "Not a FP_TO_INT Instruction!"); 12605 12606 SDValue Val = N->getOperand(1).getOperand(0); 12607 EVT Op1VT = N->getOperand(1).getValueType(); 12608 EVT ResVT = Val.getValueType(); 12609 12610 // Floating point types smaller than 32 bits are not legal on Power. 12611 if (ResVT.getScalarSizeInBits() < 32) 12612 return SDValue(); 12613 12614 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 12615 bool ValidTypeForStoreFltAsInt = 12616 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 12617 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 12618 12619 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() || 12620 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 12621 return SDValue(); 12622 12623 // Extend f32 values to f64 12624 if (ResVT.getScalarSizeInBits() == 32) { 12625 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 12626 DCI.AddToWorklist(Val.getNode()); 12627 } 12628 12629 // Set signed or unsigned conversion opcode. 12630 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 12631 PPCISD::FP_TO_SINT_IN_VSR : 12632 PPCISD::FP_TO_UINT_IN_VSR; 12633 12634 Val = DAG.getNode(ConvOpcode, 12635 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 12636 DCI.AddToWorklist(Val.getNode()); 12637 12638 // Set number of bytes being converted. 12639 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 12640 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 12641 DAG.getIntPtrConstant(ByteSize, dl, false), 12642 DAG.getValueType(Op1VT) }; 12643 12644 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 12645 DAG.getVTList(MVT::Other), Ops, 12646 cast<StoreSDNode>(N)->getMemoryVT(), 12647 cast<StoreSDNode>(N)->getMemOperand()); 12648 12649 DCI.AddToWorklist(Val.getNode()); 12650 return Val; 12651 } 12652 12653 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 12654 DAGCombinerInfo &DCI) const { 12655 SelectionDAG &DAG = DCI.DAG; 12656 SDLoc dl(N); 12657 switch (N->getOpcode()) { 12658 default: break; 12659 case ISD::ADD: 12660 return combineADD(N, DCI); 12661 case ISD::SHL: 12662 return combineSHL(N, DCI); 12663 case ISD::SRA: 12664 return combineSRA(N, DCI); 12665 case ISD::SRL: 12666 return combineSRL(N, DCI); 12667 case PPCISD::SHL: 12668 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 12669 return N->getOperand(0); 12670 break; 12671 case PPCISD::SRL: 12672 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 12673 return N->getOperand(0); 12674 break; 12675 case PPCISD::SRA: 12676 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 12677 if (C->isNullValue() || // 0 >>s V -> 0. 12678 C->isAllOnesValue()) // -1 >>s V -> -1. 12679 return N->getOperand(0); 12680 } 12681 break; 12682 case ISD::SIGN_EXTEND: 12683 case ISD::ZERO_EXTEND: 12684 case ISD::ANY_EXTEND: 12685 return DAGCombineExtBoolTrunc(N, DCI); 12686 case ISD::TRUNCATE: 12687 return combineTRUNCATE(N, DCI); 12688 case ISD::SETCC: 12689 if (SDValue CSCC = combineSetCC(N, DCI)) 12690 return CSCC; 12691 LLVM_FALLTHROUGH; 12692 case ISD::SELECT_CC: 12693 return DAGCombineTruncBoolExt(N, DCI); 12694 case ISD::SINT_TO_FP: 12695 case ISD::UINT_TO_FP: 12696 return combineFPToIntToFP(N, DCI); 12697 case ISD::STORE: { 12698 12699 EVT Op1VT = N->getOperand(1).getValueType(); 12700 unsigned Opcode = N->getOperand(1).getOpcode(); 12701 12702 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 12703 SDValue Val= combineStoreFPToInt(N, DCI); 12704 if (Val) 12705 return Val; 12706 } 12707 12708 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 12709 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 12710 N->getOperand(1).getNode()->hasOneUse() && 12711 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 12712 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 12713 12714 // STBRX can only handle simple types and it makes no sense to store less 12715 // two bytes in byte-reversed order. 12716 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 12717 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 12718 break; 12719 12720 SDValue BSwapOp = N->getOperand(1).getOperand(0); 12721 // Do an any-extend to 32-bits if this is a half-word input. 12722 if (BSwapOp.getValueType() == MVT::i16) 12723 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 12724 12725 // If the type of BSWAP operand is wider than stored memory width 12726 // it need to be shifted to the right side before STBRX. 12727 if (Op1VT.bitsGT(mVT)) { 12728 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 12729 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 12730 DAG.getConstant(Shift, dl, MVT::i32)); 12731 // Need to truncate if this is a bswap of i64 stored as i32/i16. 12732 if (Op1VT == MVT::i64) 12733 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 12734 } 12735 12736 SDValue Ops[] = { 12737 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 12738 }; 12739 return 12740 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 12741 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 12742 cast<StoreSDNode>(N)->getMemOperand()); 12743 } 12744 12745 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 12746 // So it can increase the chance of CSE constant construction. 12747 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 12748 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 12749 // Need to sign-extended to 64-bits to handle negative values. 12750 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 12751 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 12752 MemVT.getSizeInBits()); 12753 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 12754 12755 // DAG.getTruncStore() can't be used here because it doesn't accept 12756 // the general (base + offset) addressing mode. 12757 // So we use UpdateNodeOperands and setTruncatingStore instead. 12758 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 12759 N->getOperand(3)); 12760 cast<StoreSDNode>(N)->setTruncatingStore(true); 12761 return SDValue(N, 0); 12762 } 12763 12764 // For little endian, VSX stores require generating xxswapd/lxvd2x. 12765 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 12766 if (Op1VT.isSimple()) { 12767 MVT StoreVT = Op1VT.getSimpleVT(); 12768 if (Subtarget.needsSwapsForVSXMemOps() && 12769 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 12770 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 12771 return expandVSXStoreForLE(N, DCI); 12772 } 12773 break; 12774 } 12775 case ISD::LOAD: { 12776 LoadSDNode *LD = cast<LoadSDNode>(N); 12777 EVT VT = LD->getValueType(0); 12778 12779 // For little endian, VSX loads require generating lxvd2x/xxswapd. 12780 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 12781 if (VT.isSimple()) { 12782 MVT LoadVT = VT.getSimpleVT(); 12783 if (Subtarget.needsSwapsForVSXMemOps() && 12784 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 12785 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 12786 return expandVSXLoadForLE(N, DCI); 12787 } 12788 12789 // We sometimes end up with a 64-bit integer load, from which we extract 12790 // two single-precision floating-point numbers. This happens with 12791 // std::complex<float>, and other similar structures, because of the way we 12792 // canonicalize structure copies. However, if we lack direct moves, 12793 // then the final bitcasts from the extracted integer values to the 12794 // floating-point numbers turn into store/load pairs. Even with direct moves, 12795 // just loading the two floating-point numbers is likely better. 12796 auto ReplaceTwoFloatLoad = [&]() { 12797 if (VT != MVT::i64) 12798 return false; 12799 12800 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 12801 LD->isVolatile()) 12802 return false; 12803 12804 // We're looking for a sequence like this: 12805 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 12806 // t16: i64 = srl t13, Constant:i32<32> 12807 // t17: i32 = truncate t16 12808 // t18: f32 = bitcast t17 12809 // t19: i32 = truncate t13 12810 // t20: f32 = bitcast t19 12811 12812 if (!LD->hasNUsesOfValue(2, 0)) 12813 return false; 12814 12815 auto UI = LD->use_begin(); 12816 while (UI.getUse().getResNo() != 0) ++UI; 12817 SDNode *Trunc = *UI++; 12818 while (UI.getUse().getResNo() != 0) ++UI; 12819 SDNode *RightShift = *UI; 12820 if (Trunc->getOpcode() != ISD::TRUNCATE) 12821 std::swap(Trunc, RightShift); 12822 12823 if (Trunc->getOpcode() != ISD::TRUNCATE || 12824 Trunc->getValueType(0) != MVT::i32 || 12825 !Trunc->hasOneUse()) 12826 return false; 12827 if (RightShift->getOpcode() != ISD::SRL || 12828 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 12829 RightShift->getConstantOperandVal(1) != 32 || 12830 !RightShift->hasOneUse()) 12831 return false; 12832 12833 SDNode *Trunc2 = *RightShift->use_begin(); 12834 if (Trunc2->getOpcode() != ISD::TRUNCATE || 12835 Trunc2->getValueType(0) != MVT::i32 || 12836 !Trunc2->hasOneUse()) 12837 return false; 12838 12839 SDNode *Bitcast = *Trunc->use_begin(); 12840 SDNode *Bitcast2 = *Trunc2->use_begin(); 12841 12842 if (Bitcast->getOpcode() != ISD::BITCAST || 12843 Bitcast->getValueType(0) != MVT::f32) 12844 return false; 12845 if (Bitcast2->getOpcode() != ISD::BITCAST || 12846 Bitcast2->getValueType(0) != MVT::f32) 12847 return false; 12848 12849 if (Subtarget.isLittleEndian()) 12850 std::swap(Bitcast, Bitcast2); 12851 12852 // Bitcast has the second float (in memory-layout order) and Bitcast2 12853 // has the first one. 12854 12855 SDValue BasePtr = LD->getBasePtr(); 12856 if (LD->isIndexed()) { 12857 assert(LD->getAddressingMode() == ISD::PRE_INC && 12858 "Non-pre-inc AM on PPC?"); 12859 BasePtr = 12860 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 12861 LD->getOffset()); 12862 } 12863 12864 auto MMOFlags = 12865 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 12866 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 12867 LD->getPointerInfo(), LD->getAlignment(), 12868 MMOFlags, LD->getAAInfo()); 12869 SDValue AddPtr = 12870 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 12871 BasePtr, DAG.getIntPtrConstant(4, dl)); 12872 SDValue FloatLoad2 = DAG.getLoad( 12873 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 12874 LD->getPointerInfo().getWithOffset(4), 12875 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 12876 12877 if (LD->isIndexed()) { 12878 // Note that DAGCombine should re-form any pre-increment load(s) from 12879 // what is produced here if that makes sense. 12880 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 12881 } 12882 12883 DCI.CombineTo(Bitcast2, FloatLoad); 12884 DCI.CombineTo(Bitcast, FloatLoad2); 12885 12886 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 12887 SDValue(FloatLoad2.getNode(), 1)); 12888 return true; 12889 }; 12890 12891 if (ReplaceTwoFloatLoad()) 12892 return SDValue(N, 0); 12893 12894 EVT MemVT = LD->getMemoryVT(); 12895 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 12896 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 12897 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 12898 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 12899 if (LD->isUnindexed() && VT.isVector() && 12900 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 12901 // P8 and later hardware should just use LOAD. 12902 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 12903 VT == MVT::v4i32 || VT == MVT::v4f32)) || 12904 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 12905 LD->getAlignment() >= ScalarABIAlignment)) && 12906 LD->getAlignment() < ABIAlignment) { 12907 // This is a type-legal unaligned Altivec or QPX load. 12908 SDValue Chain = LD->getChain(); 12909 SDValue Ptr = LD->getBasePtr(); 12910 bool isLittleEndian = Subtarget.isLittleEndian(); 12911 12912 // This implements the loading of unaligned vectors as described in 12913 // the venerable Apple Velocity Engine overview. Specifically: 12914 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 12915 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 12916 // 12917 // The general idea is to expand a sequence of one or more unaligned 12918 // loads into an alignment-based permutation-control instruction (lvsl 12919 // or lvsr), a series of regular vector loads (which always truncate 12920 // their input address to an aligned address), and a series of 12921 // permutations. The results of these permutations are the requested 12922 // loaded values. The trick is that the last "extra" load is not taken 12923 // from the address you might suspect (sizeof(vector) bytes after the 12924 // last requested load), but rather sizeof(vector) - 1 bytes after the 12925 // last requested vector. The point of this is to avoid a page fault if 12926 // the base address happened to be aligned. This works because if the 12927 // base address is aligned, then adding less than a full vector length 12928 // will cause the last vector in the sequence to be (re)loaded. 12929 // Otherwise, the next vector will be fetched as you might suspect was 12930 // necessary. 12931 12932 // We might be able to reuse the permutation generation from 12933 // a different base address offset from this one by an aligned amount. 12934 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 12935 // optimization later. 12936 Intrinsic::ID Intr, IntrLD, IntrPerm; 12937 MVT PermCntlTy, PermTy, LDTy; 12938 if (Subtarget.hasAltivec()) { 12939 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 12940 Intrinsic::ppc_altivec_lvsl; 12941 IntrLD = Intrinsic::ppc_altivec_lvx; 12942 IntrPerm = Intrinsic::ppc_altivec_vperm; 12943 PermCntlTy = MVT::v16i8; 12944 PermTy = MVT::v4i32; 12945 LDTy = MVT::v4i32; 12946 } else { 12947 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 12948 Intrinsic::ppc_qpx_qvlpcls; 12949 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 12950 Intrinsic::ppc_qpx_qvlfs; 12951 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 12952 PermCntlTy = MVT::v4f64; 12953 PermTy = MVT::v4f64; 12954 LDTy = MemVT.getSimpleVT(); 12955 } 12956 12957 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 12958 12959 // Create the new MMO for the new base load. It is like the original MMO, 12960 // but represents an area in memory almost twice the vector size centered 12961 // on the original address. If the address is unaligned, we might start 12962 // reading up to (sizeof(vector)-1) bytes below the address of the 12963 // original unaligned load. 12964 MachineFunction &MF = DAG.getMachineFunction(); 12965 MachineMemOperand *BaseMMO = 12966 MF.getMachineMemOperand(LD->getMemOperand(), 12967 -(long)MemVT.getStoreSize()+1, 12968 2*MemVT.getStoreSize()-1); 12969 12970 // Create the new base load. 12971 SDValue LDXIntID = 12972 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 12973 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 12974 SDValue BaseLoad = 12975 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 12976 DAG.getVTList(PermTy, MVT::Other), 12977 BaseLoadOps, LDTy, BaseMMO); 12978 12979 // Note that the value of IncOffset (which is provided to the next 12980 // load's pointer info offset value, and thus used to calculate the 12981 // alignment), and the value of IncValue (which is actually used to 12982 // increment the pointer value) are different! This is because we 12983 // require the next load to appear to be aligned, even though it 12984 // is actually offset from the base pointer by a lesser amount. 12985 int IncOffset = VT.getSizeInBits() / 8; 12986 int IncValue = IncOffset; 12987 12988 // Walk (both up and down) the chain looking for another load at the real 12989 // (aligned) offset (the alignment of the other load does not matter in 12990 // this case). If found, then do not use the offset reduction trick, as 12991 // that will prevent the loads from being later combined (as they would 12992 // otherwise be duplicates). 12993 if (!findConsecutiveLoad(LD, DAG)) 12994 --IncValue; 12995 12996 SDValue Increment = 12997 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 12998 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 12999 13000 MachineMemOperand *ExtraMMO = 13001 MF.getMachineMemOperand(LD->getMemOperand(), 13002 1, 2*MemVT.getStoreSize()-1); 13003 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 13004 SDValue ExtraLoad = 13005 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 13006 DAG.getVTList(PermTy, MVT::Other), 13007 ExtraLoadOps, LDTy, ExtraMMO); 13008 13009 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 13010 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 13011 13012 // Because vperm has a big-endian bias, we must reverse the order 13013 // of the input vectors and complement the permute control vector 13014 // when generating little endian code. We have already handled the 13015 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 13016 // and ExtraLoad here. 13017 SDValue Perm; 13018 if (isLittleEndian) 13019 Perm = BuildIntrinsicOp(IntrPerm, 13020 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 13021 else 13022 Perm = BuildIntrinsicOp(IntrPerm, 13023 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 13024 13025 if (VT != PermTy) 13026 Perm = Subtarget.hasAltivec() ? 13027 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 13028 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 13029 DAG.getTargetConstant(1, dl, MVT::i64)); 13030 // second argument is 1 because this rounding 13031 // is always exact. 13032 13033 // The output of the permutation is our loaded result, the TokenFactor is 13034 // our new chain. 13035 DCI.CombineTo(N, Perm, TF); 13036 return SDValue(N, 0); 13037 } 13038 } 13039 break; 13040 case ISD::INTRINSIC_WO_CHAIN: { 13041 bool isLittleEndian = Subtarget.isLittleEndian(); 13042 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 13043 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 13044 : Intrinsic::ppc_altivec_lvsl); 13045 if ((IID == Intr || 13046 IID == Intrinsic::ppc_qpx_qvlpcld || 13047 IID == Intrinsic::ppc_qpx_qvlpcls) && 13048 N->getOperand(1)->getOpcode() == ISD::ADD) { 13049 SDValue Add = N->getOperand(1); 13050 13051 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 13052 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 13053 13054 if (DAG.MaskedValueIsZero(Add->getOperand(1), 13055 APInt::getAllOnesValue(Bits /* alignment */) 13056 .zext(Add.getScalarValueSizeInBits()))) { 13057 SDNode *BasePtr = Add->getOperand(0).getNode(); 13058 for (SDNode::use_iterator UI = BasePtr->use_begin(), 13059 UE = BasePtr->use_end(); 13060 UI != UE; ++UI) { 13061 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13062 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 13063 // We've found another LVSL/LVSR, and this address is an aligned 13064 // multiple of that one. The results will be the same, so use the 13065 // one we've just found instead. 13066 13067 return SDValue(*UI, 0); 13068 } 13069 } 13070 } 13071 13072 if (isa<ConstantSDNode>(Add->getOperand(1))) { 13073 SDNode *BasePtr = Add->getOperand(0).getNode(); 13074 for (SDNode::use_iterator UI = BasePtr->use_begin(), 13075 UE = BasePtr->use_end(); UI != UE; ++UI) { 13076 if (UI->getOpcode() == ISD::ADD && 13077 isa<ConstantSDNode>(UI->getOperand(1)) && 13078 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 13079 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 13080 (1ULL << Bits) == 0) { 13081 SDNode *OtherAdd = *UI; 13082 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 13083 VE = OtherAdd->use_end(); VI != VE; ++VI) { 13084 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13085 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 13086 return SDValue(*VI, 0); 13087 } 13088 } 13089 } 13090 } 13091 } 13092 } 13093 13094 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 13095 // Expose the vabsduw/h/b opportunity for down stream 13096 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 13097 (IID == Intrinsic::ppc_altivec_vmaxsw || 13098 IID == Intrinsic::ppc_altivec_vmaxsh || 13099 IID == Intrinsic::ppc_altivec_vmaxsb)) { 13100 SDValue V1 = N->getOperand(1); 13101 SDValue V2 = N->getOperand(2); 13102 if ((V1.getSimpleValueType() == MVT::v4i32 || 13103 V1.getSimpleValueType() == MVT::v8i16 || 13104 V1.getSimpleValueType() == MVT::v16i8) && 13105 V1.getSimpleValueType() == V2.getSimpleValueType()) { 13106 // (0-a, a) 13107 if (V1.getOpcode() == ISD::SUB && 13108 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 13109 V1.getOperand(1) == V2) { 13110 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 13111 } 13112 // (a, 0-a) 13113 if (V2.getOpcode() == ISD::SUB && 13114 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 13115 V2.getOperand(1) == V1) { 13116 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 13117 } 13118 // (x-y, y-x) 13119 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 13120 V1.getOperand(0) == V2.getOperand(1) && 13121 V1.getOperand(1) == V2.getOperand(0)) { 13122 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 13123 } 13124 } 13125 } 13126 } 13127 13128 break; 13129 case ISD::INTRINSIC_W_CHAIN: 13130 // For little endian, VSX loads require generating lxvd2x/xxswapd. 13131 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 13132 if (Subtarget.needsSwapsForVSXMemOps()) { 13133 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13134 default: 13135 break; 13136 case Intrinsic::ppc_vsx_lxvw4x: 13137 case Intrinsic::ppc_vsx_lxvd2x: 13138 return expandVSXLoadForLE(N, DCI); 13139 } 13140 } 13141 break; 13142 case ISD::INTRINSIC_VOID: 13143 // For little endian, VSX stores require generating xxswapd/stxvd2x. 13144 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 13145 if (Subtarget.needsSwapsForVSXMemOps()) { 13146 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13147 default: 13148 break; 13149 case Intrinsic::ppc_vsx_stxvw4x: 13150 case Intrinsic::ppc_vsx_stxvd2x: 13151 return expandVSXStoreForLE(N, DCI); 13152 } 13153 } 13154 break; 13155 case ISD::BSWAP: 13156 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 13157 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 13158 N->getOperand(0).hasOneUse() && 13159 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 13160 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 13161 N->getValueType(0) == MVT::i64))) { 13162 SDValue Load = N->getOperand(0); 13163 LoadSDNode *LD = cast<LoadSDNode>(Load); 13164 // Create the byte-swapping load. 13165 SDValue Ops[] = { 13166 LD->getChain(), // Chain 13167 LD->getBasePtr(), // Ptr 13168 DAG.getValueType(N->getValueType(0)) // VT 13169 }; 13170 SDValue BSLoad = 13171 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 13172 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 13173 MVT::i64 : MVT::i32, MVT::Other), 13174 Ops, LD->getMemoryVT(), LD->getMemOperand()); 13175 13176 // If this is an i16 load, insert the truncate. 13177 SDValue ResVal = BSLoad; 13178 if (N->getValueType(0) == MVT::i16) 13179 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 13180 13181 // First, combine the bswap away. This makes the value produced by the 13182 // load dead. 13183 DCI.CombineTo(N, ResVal); 13184 13185 // Next, combine the load away, we give it a bogus result value but a real 13186 // chain result. The result value is dead because the bswap is dead. 13187 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 13188 13189 // Return N so it doesn't get rechecked! 13190 return SDValue(N, 0); 13191 } 13192 break; 13193 case PPCISD::VCMP: 13194 // If a VCMPo node already exists with exactly the same operands as this 13195 // node, use its result instead of this node (VCMPo computes both a CR6 and 13196 // a normal output). 13197 // 13198 if (!N->getOperand(0).hasOneUse() && 13199 !N->getOperand(1).hasOneUse() && 13200 !N->getOperand(2).hasOneUse()) { 13201 13202 // Scan all of the users of the LHS, looking for VCMPo's that match. 13203 SDNode *VCMPoNode = nullptr; 13204 13205 SDNode *LHSN = N->getOperand(0).getNode(); 13206 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 13207 UI != E; ++UI) 13208 if (UI->getOpcode() == PPCISD::VCMPo && 13209 UI->getOperand(1) == N->getOperand(1) && 13210 UI->getOperand(2) == N->getOperand(2) && 13211 UI->getOperand(0) == N->getOperand(0)) { 13212 VCMPoNode = *UI; 13213 break; 13214 } 13215 13216 // If there is no VCMPo node, or if the flag value has a single use, don't 13217 // transform this. 13218 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 13219 break; 13220 13221 // Look at the (necessarily single) use of the flag value. If it has a 13222 // chain, this transformation is more complex. Note that multiple things 13223 // could use the value result, which we should ignore. 13224 SDNode *FlagUser = nullptr; 13225 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 13226 FlagUser == nullptr; ++UI) { 13227 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 13228 SDNode *User = *UI; 13229 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 13230 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 13231 FlagUser = User; 13232 break; 13233 } 13234 } 13235 } 13236 13237 // If the user is a MFOCRF instruction, we know this is safe. 13238 // Otherwise we give up for right now. 13239 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 13240 return SDValue(VCMPoNode, 0); 13241 } 13242 break; 13243 case ISD::BRCOND: { 13244 SDValue Cond = N->getOperand(1); 13245 SDValue Target = N->getOperand(2); 13246 13247 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 13248 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 13249 Intrinsic::ppc_is_decremented_ctr_nonzero) { 13250 13251 // We now need to make the intrinsic dead (it cannot be instruction 13252 // selected). 13253 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 13254 assert(Cond.getNode()->hasOneUse() && 13255 "Counter decrement has more than one use"); 13256 13257 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 13258 N->getOperand(0), Target); 13259 } 13260 } 13261 break; 13262 case ISD::BR_CC: { 13263 // If this is a branch on an altivec predicate comparison, lower this so 13264 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 13265 // lowering is done pre-legalize, because the legalizer lowers the predicate 13266 // compare down to code that is difficult to reassemble. 13267 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 13268 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 13269 13270 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 13271 // value. If so, pass-through the AND to get to the intrinsic. 13272 if (LHS.getOpcode() == ISD::AND && 13273 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 13274 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 13275 Intrinsic::ppc_is_decremented_ctr_nonzero && 13276 isa<ConstantSDNode>(LHS.getOperand(1)) && 13277 !isNullConstant(LHS.getOperand(1))) 13278 LHS = LHS.getOperand(0); 13279 13280 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 13281 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 13282 Intrinsic::ppc_is_decremented_ctr_nonzero && 13283 isa<ConstantSDNode>(RHS)) { 13284 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 13285 "Counter decrement comparison is not EQ or NE"); 13286 13287 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 13288 bool isBDNZ = (CC == ISD::SETEQ && Val) || 13289 (CC == ISD::SETNE && !Val); 13290 13291 // We now need to make the intrinsic dead (it cannot be instruction 13292 // selected). 13293 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 13294 assert(LHS.getNode()->hasOneUse() && 13295 "Counter decrement has more than one use"); 13296 13297 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 13298 N->getOperand(0), N->getOperand(4)); 13299 } 13300 13301 int CompareOpc; 13302 bool isDot; 13303 13304 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13305 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 13306 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 13307 assert(isDot && "Can't compare against a vector result!"); 13308 13309 // If this is a comparison against something other than 0/1, then we know 13310 // that the condition is never/always true. 13311 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 13312 if (Val != 0 && Val != 1) { 13313 if (CC == ISD::SETEQ) // Cond never true, remove branch. 13314 return N->getOperand(0); 13315 // Always !=, turn it into an unconditional branch. 13316 return DAG.getNode(ISD::BR, dl, MVT::Other, 13317 N->getOperand(0), N->getOperand(4)); 13318 } 13319 13320 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 13321 13322 // Create the PPCISD altivec 'dot' comparison node. 13323 SDValue Ops[] = { 13324 LHS.getOperand(2), // LHS of compare 13325 LHS.getOperand(3), // RHS of compare 13326 DAG.getConstant(CompareOpc, dl, MVT::i32) 13327 }; 13328 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 13329 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 13330 13331 // Unpack the result based on how the target uses it. 13332 PPC::Predicate CompOpc; 13333 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 13334 default: // Can't happen, don't crash on invalid number though. 13335 case 0: // Branch on the value of the EQ bit of CR6. 13336 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 13337 break; 13338 case 1: // Branch on the inverted value of the EQ bit of CR6. 13339 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 13340 break; 13341 case 2: // Branch on the value of the LT bit of CR6. 13342 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 13343 break; 13344 case 3: // Branch on the inverted value of the LT bit of CR6. 13345 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 13346 break; 13347 } 13348 13349 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 13350 DAG.getConstant(CompOpc, dl, MVT::i32), 13351 DAG.getRegister(PPC::CR6, MVT::i32), 13352 N->getOperand(4), CompNode.getValue(1)); 13353 } 13354 break; 13355 } 13356 case ISD::BUILD_VECTOR: 13357 return DAGCombineBuildVector(N, DCI); 13358 case ISD::ABS: 13359 return combineABS(N, DCI); 13360 case ISD::VSELECT: 13361 return combineVSelect(N, DCI); 13362 } 13363 13364 return SDValue(); 13365 } 13366 13367 SDValue 13368 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 13369 SelectionDAG &DAG, 13370 SmallVectorImpl<SDNode *> &Created) const { 13371 // fold (sdiv X, pow2) 13372 EVT VT = N->getValueType(0); 13373 if (VT == MVT::i64 && !Subtarget.isPPC64()) 13374 return SDValue(); 13375 if ((VT != MVT::i32 && VT != MVT::i64) || 13376 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 13377 return SDValue(); 13378 13379 SDLoc DL(N); 13380 SDValue N0 = N->getOperand(0); 13381 13382 bool IsNegPow2 = (-Divisor).isPowerOf2(); 13383 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 13384 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 13385 13386 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 13387 Created.push_back(Op.getNode()); 13388 13389 if (IsNegPow2) { 13390 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 13391 Created.push_back(Op.getNode()); 13392 } 13393 13394 return Op; 13395 } 13396 13397 //===----------------------------------------------------------------------===// 13398 // Inline Assembly Support 13399 //===----------------------------------------------------------------------===// 13400 13401 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 13402 KnownBits &Known, 13403 const APInt &DemandedElts, 13404 const SelectionDAG &DAG, 13405 unsigned Depth) const { 13406 Known.resetAll(); 13407 switch (Op.getOpcode()) { 13408 default: break; 13409 case PPCISD::LBRX: { 13410 // lhbrx is known to have the top bits cleared out. 13411 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 13412 Known.Zero = 0xFFFF0000; 13413 break; 13414 } 13415 case ISD::INTRINSIC_WO_CHAIN: { 13416 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 13417 default: break; 13418 case Intrinsic::ppc_altivec_vcmpbfp_p: 13419 case Intrinsic::ppc_altivec_vcmpeqfp_p: 13420 case Intrinsic::ppc_altivec_vcmpequb_p: 13421 case Intrinsic::ppc_altivec_vcmpequh_p: 13422 case Intrinsic::ppc_altivec_vcmpequw_p: 13423 case Intrinsic::ppc_altivec_vcmpequd_p: 13424 case Intrinsic::ppc_altivec_vcmpgefp_p: 13425 case Intrinsic::ppc_altivec_vcmpgtfp_p: 13426 case Intrinsic::ppc_altivec_vcmpgtsb_p: 13427 case Intrinsic::ppc_altivec_vcmpgtsh_p: 13428 case Intrinsic::ppc_altivec_vcmpgtsw_p: 13429 case Intrinsic::ppc_altivec_vcmpgtsd_p: 13430 case Intrinsic::ppc_altivec_vcmpgtub_p: 13431 case Intrinsic::ppc_altivec_vcmpgtuh_p: 13432 case Intrinsic::ppc_altivec_vcmpgtuw_p: 13433 case Intrinsic::ppc_altivec_vcmpgtud_p: 13434 Known.Zero = ~1U; // All bits but the low one are known to be zero. 13435 break; 13436 } 13437 } 13438 } 13439 } 13440 13441 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 13442 switch (Subtarget.getDarwinDirective()) { 13443 default: break; 13444 case PPC::DIR_970: 13445 case PPC::DIR_PWR4: 13446 case PPC::DIR_PWR5: 13447 case PPC::DIR_PWR5X: 13448 case PPC::DIR_PWR6: 13449 case PPC::DIR_PWR6X: 13450 case PPC::DIR_PWR7: 13451 case PPC::DIR_PWR8: 13452 case PPC::DIR_PWR9: { 13453 if (!ML) 13454 break; 13455 13456 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 13457 13458 // For small loops (between 5 and 8 instructions), align to a 32-byte 13459 // boundary so that the entire loop fits in one instruction-cache line. 13460 uint64_t LoopSize = 0; 13461 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 13462 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 13463 LoopSize += TII->getInstSizeInBytes(*J); 13464 if (LoopSize > 32) 13465 break; 13466 } 13467 13468 if (LoopSize > 16 && LoopSize <= 32) 13469 return 5; 13470 13471 break; 13472 } 13473 } 13474 13475 return TargetLowering::getPrefLoopAlignment(ML); 13476 } 13477 13478 /// getConstraintType - Given a constraint, return the type of 13479 /// constraint it is for this target. 13480 PPCTargetLowering::ConstraintType 13481 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 13482 if (Constraint.size() == 1) { 13483 switch (Constraint[0]) { 13484 default: break; 13485 case 'b': 13486 case 'r': 13487 case 'f': 13488 case 'd': 13489 case 'v': 13490 case 'y': 13491 return C_RegisterClass; 13492 case 'Z': 13493 // FIXME: While Z does indicate a memory constraint, it specifically 13494 // indicates an r+r address (used in conjunction with the 'y' modifier 13495 // in the replacement string). Currently, we're forcing the base 13496 // register to be r0 in the asm printer (which is interpreted as zero) 13497 // and forming the complete address in the second register. This is 13498 // suboptimal. 13499 return C_Memory; 13500 } 13501 } else if (Constraint == "wc") { // individual CR bits. 13502 return C_RegisterClass; 13503 } else if (Constraint == "wa" || Constraint == "wd" || 13504 Constraint == "wf" || Constraint == "ws" || 13505 Constraint == "wi") { 13506 return C_RegisterClass; // VSX registers. 13507 } 13508 return TargetLowering::getConstraintType(Constraint); 13509 } 13510 13511 /// Examine constraint type and operand type and determine a weight value. 13512 /// This object must already have been set up with the operand type 13513 /// and the current alternative constraint selected. 13514 TargetLowering::ConstraintWeight 13515 PPCTargetLowering::getSingleConstraintMatchWeight( 13516 AsmOperandInfo &info, const char *constraint) const { 13517 ConstraintWeight weight = CW_Invalid; 13518 Value *CallOperandVal = info.CallOperandVal; 13519 // If we don't have a value, we can't do a match, 13520 // but allow it at the lowest weight. 13521 if (!CallOperandVal) 13522 return CW_Default; 13523 Type *type = CallOperandVal->getType(); 13524 13525 // Look at the constraint type. 13526 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 13527 return CW_Register; // an individual CR bit. 13528 else if ((StringRef(constraint) == "wa" || 13529 StringRef(constraint) == "wd" || 13530 StringRef(constraint) == "wf") && 13531 type->isVectorTy()) 13532 return CW_Register; 13533 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 13534 return CW_Register; 13535 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 13536 return CW_Register; // just hold 64-bit integers data. 13537 13538 switch (*constraint) { 13539 default: 13540 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 13541 break; 13542 case 'b': 13543 if (type->isIntegerTy()) 13544 weight = CW_Register; 13545 break; 13546 case 'f': 13547 if (type->isFloatTy()) 13548 weight = CW_Register; 13549 break; 13550 case 'd': 13551 if (type->isDoubleTy()) 13552 weight = CW_Register; 13553 break; 13554 case 'v': 13555 if (type->isVectorTy()) 13556 weight = CW_Register; 13557 break; 13558 case 'y': 13559 weight = CW_Register; 13560 break; 13561 case 'Z': 13562 weight = CW_Memory; 13563 break; 13564 } 13565 return weight; 13566 } 13567 13568 std::pair<unsigned, const TargetRegisterClass *> 13569 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 13570 StringRef Constraint, 13571 MVT VT) const { 13572 if (Constraint.size() == 1) { 13573 // GCC RS6000 Constraint Letters 13574 switch (Constraint[0]) { 13575 case 'b': // R1-R31 13576 if (VT == MVT::i64 && Subtarget.isPPC64()) 13577 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 13578 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 13579 case 'r': // R0-R31 13580 if (VT == MVT::i64 && Subtarget.isPPC64()) 13581 return std::make_pair(0U, &PPC::G8RCRegClass); 13582 return std::make_pair(0U, &PPC::GPRCRegClass); 13583 // 'd' and 'f' constraints are both defined to be "the floating point 13584 // registers", where one is for 32-bit and the other for 64-bit. We don't 13585 // really care overly much here so just give them all the same reg classes. 13586 case 'd': 13587 case 'f': 13588 if (Subtarget.hasSPE()) { 13589 if (VT == MVT::f32 || VT == MVT::i32) 13590 return std::make_pair(0U, &PPC::SPE4RCRegClass); 13591 if (VT == MVT::f64 || VT == MVT::i64) 13592 return std::make_pair(0U, &PPC::SPERCRegClass); 13593 } else { 13594 if (VT == MVT::f32 || VT == MVT::i32) 13595 return std::make_pair(0U, &PPC::F4RCRegClass); 13596 if (VT == MVT::f64 || VT == MVT::i64) 13597 return std::make_pair(0U, &PPC::F8RCRegClass); 13598 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 13599 return std::make_pair(0U, &PPC::QFRCRegClass); 13600 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 13601 return std::make_pair(0U, &PPC::QSRCRegClass); 13602 } 13603 break; 13604 case 'v': 13605 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 13606 return std::make_pair(0U, &PPC::QFRCRegClass); 13607 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 13608 return std::make_pair(0U, &PPC::QSRCRegClass); 13609 if (Subtarget.hasAltivec()) 13610 return std::make_pair(0U, &PPC::VRRCRegClass); 13611 break; 13612 case 'y': // crrc 13613 return std::make_pair(0U, &PPC::CRRCRegClass); 13614 } 13615 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 13616 // An individual CR bit. 13617 return std::make_pair(0U, &PPC::CRBITRCRegClass); 13618 } else if ((Constraint == "wa" || Constraint == "wd" || 13619 Constraint == "wf" || Constraint == "wi") && 13620 Subtarget.hasVSX()) { 13621 return std::make_pair(0U, &PPC::VSRCRegClass); 13622 } else if (Constraint == "ws" && Subtarget.hasVSX()) { 13623 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 13624 return std::make_pair(0U, &PPC::VSSRCRegClass); 13625 else 13626 return std::make_pair(0U, &PPC::VSFRCRegClass); 13627 } 13628 13629 std::pair<unsigned, const TargetRegisterClass *> R = 13630 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 13631 13632 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 13633 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 13634 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 13635 // register. 13636 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 13637 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 13638 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 13639 PPC::GPRCRegClass.contains(R.first)) 13640 return std::make_pair(TRI->getMatchingSuperReg(R.first, 13641 PPC::sub_32, &PPC::G8RCRegClass), 13642 &PPC::G8RCRegClass); 13643 13644 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 13645 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 13646 R.first = PPC::CR0; 13647 R.second = &PPC::CRRCRegClass; 13648 } 13649 13650 return R; 13651 } 13652 13653 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 13654 /// vector. If it is invalid, don't add anything to Ops. 13655 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 13656 std::string &Constraint, 13657 std::vector<SDValue>&Ops, 13658 SelectionDAG &DAG) const { 13659 SDValue Result; 13660 13661 // Only support length 1 constraints. 13662 if (Constraint.length() > 1) return; 13663 13664 char Letter = Constraint[0]; 13665 switch (Letter) { 13666 default: break; 13667 case 'I': 13668 case 'J': 13669 case 'K': 13670 case 'L': 13671 case 'M': 13672 case 'N': 13673 case 'O': 13674 case 'P': { 13675 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 13676 if (!CST) return; // Must be an immediate to match. 13677 SDLoc dl(Op); 13678 int64_t Value = CST->getSExtValue(); 13679 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 13680 // numbers are printed as such. 13681 switch (Letter) { 13682 default: llvm_unreachable("Unknown constraint letter!"); 13683 case 'I': // "I" is a signed 16-bit constant. 13684 if (isInt<16>(Value)) 13685 Result = DAG.getTargetConstant(Value, dl, TCVT); 13686 break; 13687 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 13688 if (isShiftedUInt<16, 16>(Value)) 13689 Result = DAG.getTargetConstant(Value, dl, TCVT); 13690 break; 13691 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 13692 if (isShiftedInt<16, 16>(Value)) 13693 Result = DAG.getTargetConstant(Value, dl, TCVT); 13694 break; 13695 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 13696 if (isUInt<16>(Value)) 13697 Result = DAG.getTargetConstant(Value, dl, TCVT); 13698 break; 13699 case 'M': // "M" is a constant that is greater than 31. 13700 if (Value > 31) 13701 Result = DAG.getTargetConstant(Value, dl, TCVT); 13702 break; 13703 case 'N': // "N" is a positive constant that is an exact power of two. 13704 if (Value > 0 && isPowerOf2_64(Value)) 13705 Result = DAG.getTargetConstant(Value, dl, TCVT); 13706 break; 13707 case 'O': // "O" is the constant zero. 13708 if (Value == 0) 13709 Result = DAG.getTargetConstant(Value, dl, TCVT); 13710 break; 13711 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 13712 if (isInt<16>(-Value)) 13713 Result = DAG.getTargetConstant(Value, dl, TCVT); 13714 break; 13715 } 13716 break; 13717 } 13718 } 13719 13720 if (Result.getNode()) { 13721 Ops.push_back(Result); 13722 return; 13723 } 13724 13725 // Handle standard constraint letters. 13726 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 13727 } 13728 13729 // isLegalAddressingMode - Return true if the addressing mode represented 13730 // by AM is legal for this target, for a load/store of the specified type. 13731 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 13732 const AddrMode &AM, Type *Ty, 13733 unsigned AS, Instruction *I) const { 13734 // PPC does not allow r+i addressing modes for vectors! 13735 if (Ty->isVectorTy() && AM.BaseOffs != 0) 13736 return false; 13737 13738 // PPC allows a sign-extended 16-bit immediate field. 13739 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 13740 return false; 13741 13742 // No global is ever allowed as a base. 13743 if (AM.BaseGV) 13744 return false; 13745 13746 // PPC only support r+r, 13747 switch (AM.Scale) { 13748 case 0: // "r+i" or just "i", depending on HasBaseReg. 13749 break; 13750 case 1: 13751 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 13752 return false; 13753 // Otherwise we have r+r or r+i. 13754 break; 13755 case 2: 13756 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 13757 return false; 13758 // Allow 2*r as r+r. 13759 break; 13760 default: 13761 // No other scales are supported. 13762 return false; 13763 } 13764 13765 return true; 13766 } 13767 13768 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 13769 SelectionDAG &DAG) const { 13770 MachineFunction &MF = DAG.getMachineFunction(); 13771 MachineFrameInfo &MFI = MF.getFrameInfo(); 13772 MFI.setReturnAddressIsTaken(true); 13773 13774 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 13775 return SDValue(); 13776 13777 SDLoc dl(Op); 13778 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 13779 13780 // Make sure the function does not optimize away the store of the RA to 13781 // the stack. 13782 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 13783 FuncInfo->setLRStoreRequired(); 13784 bool isPPC64 = Subtarget.isPPC64(); 13785 auto PtrVT = getPointerTy(MF.getDataLayout()); 13786 13787 if (Depth > 0) { 13788 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 13789 SDValue Offset = 13790 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 13791 isPPC64 ? MVT::i64 : MVT::i32); 13792 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 13793 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 13794 MachinePointerInfo()); 13795 } 13796 13797 // Just load the return address off the stack. 13798 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 13799 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 13800 MachinePointerInfo()); 13801 } 13802 13803 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 13804 SelectionDAG &DAG) const { 13805 SDLoc dl(Op); 13806 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 13807 13808 MachineFunction &MF = DAG.getMachineFunction(); 13809 MachineFrameInfo &MFI = MF.getFrameInfo(); 13810 MFI.setFrameAddressIsTaken(true); 13811 13812 EVT PtrVT = getPointerTy(MF.getDataLayout()); 13813 bool isPPC64 = PtrVT == MVT::i64; 13814 13815 // Naked functions never have a frame pointer, and so we use r1. For all 13816 // other functions, this decision must be delayed until during PEI. 13817 unsigned FrameReg; 13818 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 13819 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 13820 else 13821 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 13822 13823 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 13824 PtrVT); 13825 while (Depth--) 13826 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 13827 FrameAddr, MachinePointerInfo()); 13828 return FrameAddr; 13829 } 13830 13831 // FIXME? Maybe this could be a TableGen attribute on some registers and 13832 // this table could be generated automatically from RegInfo. 13833 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 13834 SelectionDAG &DAG) const { 13835 bool isPPC64 = Subtarget.isPPC64(); 13836 bool isDarwinABI = Subtarget.isDarwinABI(); 13837 13838 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 13839 (!isPPC64 && VT != MVT::i32)) 13840 report_fatal_error("Invalid register global variable type"); 13841 13842 bool is64Bit = isPPC64 && VT == MVT::i64; 13843 unsigned Reg = StringSwitch<unsigned>(RegName) 13844 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 13845 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 13846 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 13847 (is64Bit ? PPC::X13 : PPC::R13)) 13848 .Default(0); 13849 13850 if (Reg) 13851 return Reg; 13852 report_fatal_error("Invalid register name global variable"); 13853 } 13854 13855 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 13856 // 32-bit SVR4 ABI access everything as got-indirect. 13857 if (Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 13858 return true; 13859 13860 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 13861 // If it is small or large code model, module locals are accessed 13862 // indirectly by loading their address from .toc/.got. The difference 13863 // is that for large code model we have ADDISTocHa + LDtocL and for 13864 // small code model we simply have LDtoc. 13865 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 13866 return true; 13867 13868 // JumpTable and BlockAddress are accessed as got-indirect. 13869 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 13870 return true; 13871 13872 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) { 13873 const GlobalValue *GV = G->getGlobal(); 13874 unsigned char GVFlags = Subtarget.classifyGlobalReference(GV); 13875 // The NLP flag indicates that a global access has to use an 13876 // extra indirection. 13877 if (GVFlags & PPCII::MO_NLP_FLAG) 13878 return true; 13879 } 13880 13881 return false; 13882 } 13883 13884 bool 13885 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 13886 // The PowerPC target isn't yet aware of offsets. 13887 return false; 13888 } 13889 13890 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 13891 const CallInst &I, 13892 MachineFunction &MF, 13893 unsigned Intrinsic) const { 13894 switch (Intrinsic) { 13895 case Intrinsic::ppc_qpx_qvlfd: 13896 case Intrinsic::ppc_qpx_qvlfs: 13897 case Intrinsic::ppc_qpx_qvlfcd: 13898 case Intrinsic::ppc_qpx_qvlfcs: 13899 case Intrinsic::ppc_qpx_qvlfiwa: 13900 case Intrinsic::ppc_qpx_qvlfiwz: 13901 case Intrinsic::ppc_altivec_lvx: 13902 case Intrinsic::ppc_altivec_lvxl: 13903 case Intrinsic::ppc_altivec_lvebx: 13904 case Intrinsic::ppc_altivec_lvehx: 13905 case Intrinsic::ppc_altivec_lvewx: 13906 case Intrinsic::ppc_vsx_lxvd2x: 13907 case Intrinsic::ppc_vsx_lxvw4x: { 13908 EVT VT; 13909 switch (Intrinsic) { 13910 case Intrinsic::ppc_altivec_lvebx: 13911 VT = MVT::i8; 13912 break; 13913 case Intrinsic::ppc_altivec_lvehx: 13914 VT = MVT::i16; 13915 break; 13916 case Intrinsic::ppc_altivec_lvewx: 13917 VT = MVT::i32; 13918 break; 13919 case Intrinsic::ppc_vsx_lxvd2x: 13920 VT = MVT::v2f64; 13921 break; 13922 case Intrinsic::ppc_qpx_qvlfd: 13923 VT = MVT::v4f64; 13924 break; 13925 case Intrinsic::ppc_qpx_qvlfs: 13926 VT = MVT::v4f32; 13927 break; 13928 case Intrinsic::ppc_qpx_qvlfcd: 13929 VT = MVT::v2f64; 13930 break; 13931 case Intrinsic::ppc_qpx_qvlfcs: 13932 VT = MVT::v2f32; 13933 break; 13934 default: 13935 VT = MVT::v4i32; 13936 break; 13937 } 13938 13939 Info.opc = ISD::INTRINSIC_W_CHAIN; 13940 Info.memVT = VT; 13941 Info.ptrVal = I.getArgOperand(0); 13942 Info.offset = -VT.getStoreSize()+1; 13943 Info.size = 2*VT.getStoreSize()-1; 13944 Info.align = 1; 13945 Info.flags = MachineMemOperand::MOLoad; 13946 return true; 13947 } 13948 case Intrinsic::ppc_qpx_qvlfda: 13949 case Intrinsic::ppc_qpx_qvlfsa: 13950 case Intrinsic::ppc_qpx_qvlfcda: 13951 case Intrinsic::ppc_qpx_qvlfcsa: 13952 case Intrinsic::ppc_qpx_qvlfiwaa: 13953 case Intrinsic::ppc_qpx_qvlfiwza: { 13954 EVT VT; 13955 switch (Intrinsic) { 13956 case Intrinsic::ppc_qpx_qvlfda: 13957 VT = MVT::v4f64; 13958 break; 13959 case Intrinsic::ppc_qpx_qvlfsa: 13960 VT = MVT::v4f32; 13961 break; 13962 case Intrinsic::ppc_qpx_qvlfcda: 13963 VT = MVT::v2f64; 13964 break; 13965 case Intrinsic::ppc_qpx_qvlfcsa: 13966 VT = MVT::v2f32; 13967 break; 13968 default: 13969 VT = MVT::v4i32; 13970 break; 13971 } 13972 13973 Info.opc = ISD::INTRINSIC_W_CHAIN; 13974 Info.memVT = VT; 13975 Info.ptrVal = I.getArgOperand(0); 13976 Info.offset = 0; 13977 Info.size = VT.getStoreSize(); 13978 Info.align = 1; 13979 Info.flags = MachineMemOperand::MOLoad; 13980 return true; 13981 } 13982 case Intrinsic::ppc_qpx_qvstfd: 13983 case Intrinsic::ppc_qpx_qvstfs: 13984 case Intrinsic::ppc_qpx_qvstfcd: 13985 case Intrinsic::ppc_qpx_qvstfcs: 13986 case Intrinsic::ppc_qpx_qvstfiw: 13987 case Intrinsic::ppc_altivec_stvx: 13988 case Intrinsic::ppc_altivec_stvxl: 13989 case Intrinsic::ppc_altivec_stvebx: 13990 case Intrinsic::ppc_altivec_stvehx: 13991 case Intrinsic::ppc_altivec_stvewx: 13992 case Intrinsic::ppc_vsx_stxvd2x: 13993 case Intrinsic::ppc_vsx_stxvw4x: { 13994 EVT VT; 13995 switch (Intrinsic) { 13996 case Intrinsic::ppc_altivec_stvebx: 13997 VT = MVT::i8; 13998 break; 13999 case Intrinsic::ppc_altivec_stvehx: 14000 VT = MVT::i16; 14001 break; 14002 case Intrinsic::ppc_altivec_stvewx: 14003 VT = MVT::i32; 14004 break; 14005 case Intrinsic::ppc_vsx_stxvd2x: 14006 VT = MVT::v2f64; 14007 break; 14008 case Intrinsic::ppc_qpx_qvstfd: 14009 VT = MVT::v4f64; 14010 break; 14011 case Intrinsic::ppc_qpx_qvstfs: 14012 VT = MVT::v4f32; 14013 break; 14014 case Intrinsic::ppc_qpx_qvstfcd: 14015 VT = MVT::v2f64; 14016 break; 14017 case Intrinsic::ppc_qpx_qvstfcs: 14018 VT = MVT::v2f32; 14019 break; 14020 default: 14021 VT = MVT::v4i32; 14022 break; 14023 } 14024 14025 Info.opc = ISD::INTRINSIC_VOID; 14026 Info.memVT = VT; 14027 Info.ptrVal = I.getArgOperand(1); 14028 Info.offset = -VT.getStoreSize()+1; 14029 Info.size = 2*VT.getStoreSize()-1; 14030 Info.align = 1; 14031 Info.flags = MachineMemOperand::MOStore; 14032 return true; 14033 } 14034 case Intrinsic::ppc_qpx_qvstfda: 14035 case Intrinsic::ppc_qpx_qvstfsa: 14036 case Intrinsic::ppc_qpx_qvstfcda: 14037 case Intrinsic::ppc_qpx_qvstfcsa: 14038 case Intrinsic::ppc_qpx_qvstfiwa: { 14039 EVT VT; 14040 switch (Intrinsic) { 14041 case Intrinsic::ppc_qpx_qvstfda: 14042 VT = MVT::v4f64; 14043 break; 14044 case Intrinsic::ppc_qpx_qvstfsa: 14045 VT = MVT::v4f32; 14046 break; 14047 case Intrinsic::ppc_qpx_qvstfcda: 14048 VT = MVT::v2f64; 14049 break; 14050 case Intrinsic::ppc_qpx_qvstfcsa: 14051 VT = MVT::v2f32; 14052 break; 14053 default: 14054 VT = MVT::v4i32; 14055 break; 14056 } 14057 14058 Info.opc = ISD::INTRINSIC_VOID; 14059 Info.memVT = VT; 14060 Info.ptrVal = I.getArgOperand(1); 14061 Info.offset = 0; 14062 Info.size = VT.getStoreSize(); 14063 Info.align = 1; 14064 Info.flags = MachineMemOperand::MOStore; 14065 return true; 14066 } 14067 default: 14068 break; 14069 } 14070 14071 return false; 14072 } 14073 14074 /// getOptimalMemOpType - Returns the target specific optimal type for load 14075 /// and store operations as a result of memset, memcpy, and memmove 14076 /// lowering. If DstAlign is zero that means it's safe to destination 14077 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 14078 /// means there isn't a need to check it against alignment requirement, 14079 /// probably because the source does not need to be loaded. If 'IsMemset' is 14080 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 14081 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 14082 /// source is constant so it does not need to be loaded. 14083 /// It returns EVT::Other if the type should be determined using generic 14084 /// target-independent logic. 14085 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 14086 unsigned DstAlign, unsigned SrcAlign, 14087 bool IsMemset, bool ZeroMemset, 14088 bool MemcpyStrSrc, 14089 MachineFunction &MF) const { 14090 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 14091 const Function &F = MF.getFunction(); 14092 // When expanding a memset, require at least two QPX instructions to cover 14093 // the cost of loading the value to be stored from the constant pool. 14094 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 14095 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 14096 !F.hasFnAttribute(Attribute::NoImplicitFloat)) { 14097 return MVT::v4f64; 14098 } 14099 14100 // We should use Altivec/VSX loads and stores when available. For unaligned 14101 // addresses, unaligned VSX loads are only fast starting with the P8. 14102 if (Subtarget.hasAltivec() && Size >= 16 && 14103 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 14104 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 14105 return MVT::v4i32; 14106 } 14107 14108 if (Subtarget.isPPC64()) { 14109 return MVT::i64; 14110 } 14111 14112 return MVT::i32; 14113 } 14114 14115 /// Returns true if it is beneficial to convert a load of a constant 14116 /// to just the constant itself. 14117 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 14118 Type *Ty) const { 14119 assert(Ty->isIntegerTy()); 14120 14121 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 14122 return !(BitSize == 0 || BitSize > 64); 14123 } 14124 14125 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 14126 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 14127 return false; 14128 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 14129 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 14130 return NumBits1 == 64 && NumBits2 == 32; 14131 } 14132 14133 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 14134 if (!VT1.isInteger() || !VT2.isInteger()) 14135 return false; 14136 unsigned NumBits1 = VT1.getSizeInBits(); 14137 unsigned NumBits2 = VT2.getSizeInBits(); 14138 return NumBits1 == 64 && NumBits2 == 32; 14139 } 14140 14141 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 14142 // Generally speaking, zexts are not free, but they are free when they can be 14143 // folded with other operations. 14144 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 14145 EVT MemVT = LD->getMemoryVT(); 14146 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 14147 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 14148 (LD->getExtensionType() == ISD::NON_EXTLOAD || 14149 LD->getExtensionType() == ISD::ZEXTLOAD)) 14150 return true; 14151 } 14152 14153 // FIXME: Add other cases... 14154 // - 32-bit shifts with a zext to i64 14155 // - zext after ctlz, bswap, etc. 14156 // - zext after and by a constant mask 14157 14158 return TargetLowering::isZExtFree(Val, VT2); 14159 } 14160 14161 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 14162 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 14163 "invalid fpext types"); 14164 // Extending to float128 is not free. 14165 if (DestVT == MVT::f128) 14166 return false; 14167 return true; 14168 } 14169 14170 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 14171 return isInt<16>(Imm) || isUInt<16>(Imm); 14172 } 14173 14174 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 14175 return isInt<16>(Imm) || isUInt<16>(Imm); 14176 } 14177 14178 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 14179 unsigned, 14180 unsigned, 14181 bool *Fast) const { 14182 if (DisablePPCUnaligned) 14183 return false; 14184 14185 // PowerPC supports unaligned memory access for simple non-vector types. 14186 // Although accessing unaligned addresses is not as efficient as accessing 14187 // aligned addresses, it is generally more efficient than manual expansion, 14188 // and generally only traps for software emulation when crossing page 14189 // boundaries. 14190 14191 if (!VT.isSimple()) 14192 return false; 14193 14194 if (VT.getSimpleVT().isVector()) { 14195 if (Subtarget.hasVSX()) { 14196 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 14197 VT != MVT::v4f32 && VT != MVT::v4i32) 14198 return false; 14199 } else { 14200 return false; 14201 } 14202 } 14203 14204 if (VT == MVT::ppcf128) 14205 return false; 14206 14207 if (Fast) 14208 *Fast = true; 14209 14210 return true; 14211 } 14212 14213 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 14214 VT = VT.getScalarType(); 14215 14216 if (!VT.isSimple()) 14217 return false; 14218 14219 switch (VT.getSimpleVT().SimpleTy) { 14220 case MVT::f32: 14221 case MVT::f64: 14222 return true; 14223 case MVT::f128: 14224 return (EnableQuadPrecision && Subtarget.hasP9Vector()); 14225 default: 14226 break; 14227 } 14228 14229 return false; 14230 } 14231 14232 const MCPhysReg * 14233 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 14234 // LR is a callee-save register, but we must treat it as clobbered by any call 14235 // site. Hence we include LR in the scratch registers, which are in turn added 14236 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 14237 // to CTR, which is used by any indirect call. 14238 static const MCPhysReg ScratchRegs[] = { 14239 PPC::X12, PPC::LR8, PPC::CTR8, 0 14240 }; 14241 14242 return ScratchRegs; 14243 } 14244 14245 unsigned PPCTargetLowering::getExceptionPointerRegister( 14246 const Constant *PersonalityFn) const { 14247 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 14248 } 14249 14250 unsigned PPCTargetLowering::getExceptionSelectorRegister( 14251 const Constant *PersonalityFn) const { 14252 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 14253 } 14254 14255 bool 14256 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 14257 EVT VT , unsigned DefinedValues) const { 14258 if (VT == MVT::v2i64) 14259 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 14260 14261 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 14262 return true; 14263 14264 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 14265 } 14266 14267 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 14268 if (DisableILPPref || Subtarget.enableMachineScheduler()) 14269 return TargetLowering::getSchedulingPreference(N); 14270 14271 return Sched::ILP; 14272 } 14273 14274 // Create a fast isel object. 14275 FastISel * 14276 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 14277 const TargetLibraryInfo *LibInfo) const { 14278 return PPC::createFastISel(FuncInfo, LibInfo); 14279 } 14280 14281 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 14282 if (Subtarget.isDarwinABI()) return; 14283 if (!Subtarget.isPPC64()) return; 14284 14285 // Update IsSplitCSR in PPCFunctionInfo 14286 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 14287 PFI->setIsSplitCSR(true); 14288 } 14289 14290 void PPCTargetLowering::insertCopiesSplitCSR( 14291 MachineBasicBlock *Entry, 14292 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 14293 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 14294 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 14295 if (!IStart) 14296 return; 14297 14298 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 14299 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 14300 MachineBasicBlock::iterator MBBI = Entry->begin(); 14301 for (const MCPhysReg *I = IStart; *I; ++I) { 14302 const TargetRegisterClass *RC = nullptr; 14303 if (PPC::G8RCRegClass.contains(*I)) 14304 RC = &PPC::G8RCRegClass; 14305 else if (PPC::F8RCRegClass.contains(*I)) 14306 RC = &PPC::F8RCRegClass; 14307 else if (PPC::CRRCRegClass.contains(*I)) 14308 RC = &PPC::CRRCRegClass; 14309 else if (PPC::VRRCRegClass.contains(*I)) 14310 RC = &PPC::VRRCRegClass; 14311 else 14312 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 14313 14314 unsigned NewVR = MRI->createVirtualRegister(RC); 14315 // Create copy from CSR to a virtual register. 14316 // FIXME: this currently does not emit CFI pseudo-instructions, it works 14317 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 14318 // nounwind. If we want to generalize this later, we may need to emit 14319 // CFI pseudo-instructions. 14320 assert(Entry->getParent()->getFunction().hasFnAttribute( 14321 Attribute::NoUnwind) && 14322 "Function should be nounwind in insertCopiesSplitCSR!"); 14323 Entry->addLiveIn(*I); 14324 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 14325 .addReg(*I); 14326 14327 // Insert the copy-back instructions right before the terminator 14328 for (auto *Exit : Exits) 14329 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 14330 TII->get(TargetOpcode::COPY), *I) 14331 .addReg(NewVR); 14332 } 14333 } 14334 14335 // Override to enable LOAD_STACK_GUARD lowering on Linux. 14336 bool PPCTargetLowering::useLoadStackGuardNode() const { 14337 if (!Subtarget.isTargetLinux()) 14338 return TargetLowering::useLoadStackGuardNode(); 14339 return true; 14340 } 14341 14342 // Override to disable global variable loading on Linux. 14343 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 14344 if (!Subtarget.isTargetLinux()) 14345 return TargetLowering::insertSSPDeclarations(M); 14346 } 14347 14348 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 14349 if (!VT.isSimple() || !Subtarget.hasVSX()) 14350 return false; 14351 14352 switch(VT.getSimpleVT().SimpleTy) { 14353 default: 14354 // For FP types that are currently not supported by PPC backend, return 14355 // false. Examples: f16, f80. 14356 return false; 14357 case MVT::f32: 14358 case MVT::f64: 14359 case MVT::ppcf128: 14360 return Imm.isPosZero(); 14361 } 14362 } 14363 14364 // For vector shift operation op, fold 14365 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 14366 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 14367 SelectionDAG &DAG) { 14368 SDValue N0 = N->getOperand(0); 14369 SDValue N1 = N->getOperand(1); 14370 EVT VT = N0.getValueType(); 14371 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 14372 unsigned Opcode = N->getOpcode(); 14373 unsigned TargetOpcode; 14374 14375 switch (Opcode) { 14376 default: 14377 llvm_unreachable("Unexpected shift operation"); 14378 case ISD::SHL: 14379 TargetOpcode = PPCISD::SHL; 14380 break; 14381 case ISD::SRL: 14382 TargetOpcode = PPCISD::SRL; 14383 break; 14384 case ISD::SRA: 14385 TargetOpcode = PPCISD::SRA; 14386 break; 14387 } 14388 14389 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 14390 N1->getOpcode() == ISD::AND) 14391 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 14392 if (Mask->getZExtValue() == OpSizeInBits - 1) 14393 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 14394 14395 return SDValue(); 14396 } 14397 14398 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 14399 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 14400 return Value; 14401 14402 SDValue N0 = N->getOperand(0); 14403 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 14404 if (!Subtarget.isISA3_0() || 14405 N0.getOpcode() != ISD::SIGN_EXTEND || 14406 N0.getOperand(0).getValueType() != MVT::i32 || 14407 CN1 == nullptr || N->getValueType(0) != MVT::i64) 14408 return SDValue(); 14409 14410 // We can't save an operation here if the value is already extended, and 14411 // the existing shift is easier to combine. 14412 SDValue ExtsSrc = N0.getOperand(0); 14413 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 14414 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 14415 return SDValue(); 14416 14417 SDLoc DL(N0); 14418 SDValue ShiftBy = SDValue(CN1, 0); 14419 // We want the shift amount to be i32 on the extswli, but the shift could 14420 // have an i64. 14421 if (ShiftBy.getValueType() == MVT::i64) 14422 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 14423 14424 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 14425 ShiftBy); 14426 } 14427 14428 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 14429 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 14430 return Value; 14431 14432 return SDValue(); 14433 } 14434 14435 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 14436 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 14437 return Value; 14438 14439 return SDValue(); 14440 } 14441 14442 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 14443 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 14444 // When C is zero, the equation (addi Z, -C) can be simplified to Z 14445 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 14446 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 14447 const PPCSubtarget &Subtarget) { 14448 if (!Subtarget.isPPC64()) 14449 return SDValue(); 14450 14451 SDValue LHS = N->getOperand(0); 14452 SDValue RHS = N->getOperand(1); 14453 14454 auto isZextOfCompareWithConstant = [](SDValue Op) { 14455 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 14456 Op.getValueType() != MVT::i64) 14457 return false; 14458 14459 SDValue Cmp = Op.getOperand(0); 14460 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 14461 Cmp.getOperand(0).getValueType() != MVT::i64) 14462 return false; 14463 14464 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 14465 int64_t NegConstant = 0 - Constant->getSExtValue(); 14466 // Due to the limitations of the addi instruction, 14467 // -C is required to be [-32768, 32767]. 14468 return isInt<16>(NegConstant); 14469 } 14470 14471 return false; 14472 }; 14473 14474 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 14475 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 14476 14477 // If there is a pattern, canonicalize a zext operand to the RHS. 14478 if (LHSHasPattern && !RHSHasPattern) 14479 std::swap(LHS, RHS); 14480 else if (!LHSHasPattern && !RHSHasPattern) 14481 return SDValue(); 14482 14483 SDLoc DL(N); 14484 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 14485 SDValue Cmp = RHS.getOperand(0); 14486 SDValue Z = Cmp.getOperand(0); 14487 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 14488 14489 assert(Constant && "Constant Should not be a null pointer."); 14490 int64_t NegConstant = 0 - Constant->getSExtValue(); 14491 14492 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 14493 default: break; 14494 case ISD::SETNE: { 14495 // when C == 0 14496 // --> addze X, (addic Z, -1).carry 14497 // / 14498 // add X, (zext(setne Z, C))-- 14499 // \ when -32768 <= -C <= 32767 && C != 0 14500 // --> addze X, (addic (addi Z, -C), -1).carry 14501 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 14502 DAG.getConstant(NegConstant, DL, MVT::i64)); 14503 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 14504 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 14505 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 14506 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 14507 SDValue(Addc.getNode(), 1)); 14508 } 14509 case ISD::SETEQ: { 14510 // when C == 0 14511 // --> addze X, (subfic Z, 0).carry 14512 // / 14513 // add X, (zext(sete Z, C))-- 14514 // \ when -32768 <= -C <= 32767 && C != 0 14515 // --> addze X, (subfic (addi Z, -C), 0).carry 14516 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 14517 DAG.getConstant(NegConstant, DL, MVT::i64)); 14518 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 14519 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 14520 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 14521 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 14522 SDValue(Subc.getNode(), 1)); 14523 } 14524 } 14525 14526 return SDValue(); 14527 } 14528 14529 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 14530 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 14531 return Value; 14532 14533 return SDValue(); 14534 } 14535 14536 // Detect TRUNCATE operations on bitcasts of float128 values. 14537 // What we are looking for here is the situtation where we extract a subset 14538 // of bits from a 128 bit float. 14539 // This can be of two forms: 14540 // 1) BITCAST of f128 feeding TRUNCATE 14541 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 14542 // The reason this is required is because we do not have a legal i128 type 14543 // and so we want to prevent having to store the f128 and then reload part 14544 // of it. 14545 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 14546 DAGCombinerInfo &DCI) const { 14547 // If we are using CRBits then try that first. 14548 if (Subtarget.useCRBits()) { 14549 // Check if CRBits did anything and return that if it did. 14550 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 14551 return CRTruncValue; 14552 } 14553 14554 SDLoc dl(N); 14555 SDValue Op0 = N->getOperand(0); 14556 14557 // Looking for a truncate of i128 to i64. 14558 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 14559 return SDValue(); 14560 14561 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 14562 14563 // SRL feeding TRUNCATE. 14564 if (Op0.getOpcode() == ISD::SRL) { 14565 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 14566 // The right shift has to be by 64 bits. 14567 if (!ConstNode || ConstNode->getZExtValue() != 64) 14568 return SDValue(); 14569 14570 // Switch the element number to extract. 14571 EltToExtract = EltToExtract ? 0 : 1; 14572 // Update Op0 past the SRL. 14573 Op0 = Op0.getOperand(0); 14574 } 14575 14576 // BITCAST feeding a TRUNCATE possibly via SRL. 14577 if (Op0.getOpcode() == ISD::BITCAST && 14578 Op0.getValueType() == MVT::i128 && 14579 Op0.getOperand(0).getValueType() == MVT::f128) { 14580 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 14581 return DCI.DAG.getNode( 14582 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 14583 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 14584 } 14585 return SDValue(); 14586 } 14587 14588 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 14589 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 14590 if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64()) 14591 return false; 14592 14593 // If not a tail call then no need to proceed. 14594 if (!CI->isTailCall()) 14595 return false; 14596 14597 // If tail calls are disabled for the caller then we are done. 14598 const Function *Caller = CI->getParent()->getParent(); 14599 auto Attr = Caller->getFnAttribute("disable-tail-calls"); 14600 if (Attr.getValueAsString() == "true") 14601 return false; 14602 14603 // If sibling calls have been disabled and tail-calls aren't guaranteed 14604 // there is no reason to duplicate. 14605 auto &TM = getTargetMachine(); 14606 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 14607 return false; 14608 14609 // Can't tail call a function called indirectly, or if it has variadic args. 14610 const Function *Callee = CI->getCalledFunction(); 14611 if (!Callee || Callee->isVarArg()) 14612 return false; 14613 14614 // Make sure the callee and caller calling conventions are eligible for tco. 14615 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 14616 CI->getCallingConv())) 14617 return false; 14618 14619 // If the function is local then we have a good chance at tail-calling it 14620 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 14621 } 14622 14623 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 14624 if (!Subtarget.hasVSX()) 14625 return false; 14626 if (Subtarget.hasP9Vector() && VT == MVT::f128) 14627 return true; 14628 return VT == MVT::f32 || VT == MVT::f64 || 14629 VT == MVT::v4f32 || VT == MVT::v2f64; 14630 } 14631 14632 bool PPCTargetLowering:: 14633 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 14634 const Value *Mask = AndI.getOperand(1); 14635 // If the mask is suitable for andi. or andis. we should sink the and. 14636 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 14637 // Can't handle constants wider than 64-bits. 14638 if (CI->getBitWidth() > 64) 14639 return false; 14640 int64_t ConstVal = CI->getZExtValue(); 14641 return isUInt<16>(ConstVal) || 14642 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 14643 } 14644 14645 // For non-constant masks, we can always use the record-form and. 14646 return true; 14647 } 14648 14649 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 14650 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 14651 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 14652 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 14653 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 14654 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 14655 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 14656 assert(Subtarget.hasP9Altivec() && 14657 "Only combine this when P9 altivec supported!"); 14658 EVT VT = N->getValueType(0); 14659 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 14660 return SDValue(); 14661 14662 SelectionDAG &DAG = DCI.DAG; 14663 SDLoc dl(N); 14664 if (N->getOperand(0).getOpcode() == ISD::SUB) { 14665 // Even for signed integers, if it's known to be positive (as signed 14666 // integer) due to zero-extended inputs. 14667 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 14668 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 14669 if ((SubOpcd0 == ISD::ZERO_EXTEND || 14670 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 14671 (SubOpcd1 == ISD::ZERO_EXTEND || 14672 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 14673 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 14674 N->getOperand(0)->getOperand(0), 14675 N->getOperand(0)->getOperand(1), 14676 DAG.getTargetConstant(0, dl, MVT::i32)); 14677 } 14678 14679 // For type v4i32, it can be optimized with xvnegsp + vabsduw 14680 if (N->getOperand(0).getValueType() == MVT::v4i32 && 14681 N->getOperand(0).hasOneUse()) { 14682 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 14683 N->getOperand(0)->getOperand(0), 14684 N->getOperand(0)->getOperand(1), 14685 DAG.getTargetConstant(1, dl, MVT::i32)); 14686 } 14687 } 14688 14689 return SDValue(); 14690 } 14691 14692 // For type v4i32/v8ii16/v16i8, transform 14693 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 14694 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 14695 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 14696 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 14697 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 14698 DAGCombinerInfo &DCI) const { 14699 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 14700 assert(Subtarget.hasP9Altivec() && 14701 "Only combine this when P9 altivec supported!"); 14702 14703 SelectionDAG &DAG = DCI.DAG; 14704 SDLoc dl(N); 14705 SDValue Cond = N->getOperand(0); 14706 SDValue TrueOpnd = N->getOperand(1); 14707 SDValue FalseOpnd = N->getOperand(2); 14708 EVT VT = N->getOperand(1).getValueType(); 14709 14710 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 14711 FalseOpnd.getOpcode() != ISD::SUB) 14712 return SDValue(); 14713 14714 // ABSD only available for type v4i32/v8i16/v16i8 14715 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 14716 return SDValue(); 14717 14718 // At least to save one more dependent computation 14719 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 14720 return SDValue(); 14721 14722 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 14723 14724 // Can only handle unsigned comparison here 14725 switch (CC) { 14726 default: 14727 return SDValue(); 14728 case ISD::SETUGT: 14729 case ISD::SETUGE: 14730 break; 14731 case ISD::SETULT: 14732 case ISD::SETULE: 14733 std::swap(TrueOpnd, FalseOpnd); 14734 break; 14735 } 14736 14737 SDValue CmpOpnd1 = Cond.getOperand(0); 14738 SDValue CmpOpnd2 = Cond.getOperand(1); 14739 14740 // SETCC CmpOpnd1 CmpOpnd2 cond 14741 // TrueOpnd = CmpOpnd1 - CmpOpnd2 14742 // FalseOpnd = CmpOpnd2 - CmpOpnd1 14743 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 14744 TrueOpnd.getOperand(1) == CmpOpnd2 && 14745 FalseOpnd.getOperand(0) == CmpOpnd2 && 14746 FalseOpnd.getOperand(1) == CmpOpnd1) { 14747 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 14748 CmpOpnd1, CmpOpnd2, 14749 DAG.getTargetConstant(0, dl, MVT::i32)); 14750 } 14751 14752 return SDValue(); 14753 } 14754