1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the PowerPC-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // PPCGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "PPC.h" 17 #include "MCTargetDesc/PPCPredicates.h" 18 #include "PPCCallingConv.h" 19 #include "PPCISelLowering.h" 20 #include "PPCSubtarget.h" 21 #include "PPCTargetMachine.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/MachineConstantPool.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/GetElementPtrTypeIterator.h" 32 #include "llvm/IR/GlobalAlias.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Target/TargetLowering.h" 38 #include "llvm/Target/TargetMachine.h" 39 40 //===----------------------------------------------------------------------===// 41 // 42 // TBD: 43 // fastLowerArguments: Handle simple cases. 44 // PPCMaterializeGV: Handle TLS. 45 // SelectCall: Handle function pointers. 46 // SelectCall: Handle multi-register return values. 47 // SelectCall: Optimize away nops for local calls. 48 // processCallArgs: Handle bit-converted arguments. 49 // finishCall: Handle multi-register return values. 50 // PPCComputeAddress: Handle parameter references as FrameIndex's. 51 // PPCEmitCmp: Handle immediate as operand 1. 52 // SelectCall: Handle small byval arguments. 53 // SelectIntrinsicCall: Implement. 54 // SelectSelect: Implement. 55 // Consider factoring isTypeLegal into the base class. 56 // Implement switches and jump tables. 57 // 58 //===----------------------------------------------------------------------===// 59 using namespace llvm; 60 61 #define DEBUG_TYPE "ppcfastisel" 62 63 namespace { 64 65 typedef struct Address { 66 enum { 67 RegBase, 68 FrameIndexBase 69 } BaseType; 70 71 union { 72 unsigned Reg; 73 int FI; 74 } Base; 75 76 long Offset; 77 78 // Innocuous defaults for our address. 79 Address() 80 : BaseType(RegBase), Offset(0) { 81 Base.Reg = 0; 82 } 83 } Address; 84 85 class PPCFastISel final : public FastISel { 86 87 const TargetMachine &TM; 88 const TargetInstrInfo &TII; 89 const TargetLowering &TLI; 90 const PPCSubtarget *PPCSubTarget; 91 LLVMContext *Context; 92 93 public: 94 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo, 95 const TargetLibraryInfo *LibInfo) 96 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()), 97 TII(*TM.getSubtargetImpl()->getInstrInfo()), 98 TLI(*TM.getSubtargetImpl()->getTargetLowering()), 99 PPCSubTarget(&TM.getSubtarget<PPCSubtarget>()), 100 Context(&FuncInfo.Fn->getContext()) {} 101 102 // Backend specific FastISel code. 103 private: 104 bool fastSelectInstruction(const Instruction *I) override; 105 unsigned fastMaterializeConstant(const Constant *C) override; 106 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 107 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 108 const LoadInst *LI) override; 109 bool fastLowerArguments() override; 110 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override; 111 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 112 const TargetRegisterClass *RC, 113 unsigned Op0, bool Op0IsKill, 114 uint64_t Imm); 115 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 116 const TargetRegisterClass *RC, 117 unsigned Op0, bool Op0IsKill); 118 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 119 const TargetRegisterClass *RC, 120 unsigned Op0, bool Op0IsKill, 121 unsigned Op1, bool Op1IsKill); 122 123 bool fastLowerCall(CallLoweringInfo &CLI) override; 124 125 // Instruction selection routines. 126 private: 127 bool SelectLoad(const Instruction *I); 128 bool SelectStore(const Instruction *I); 129 bool SelectBranch(const Instruction *I); 130 bool SelectIndirectBr(const Instruction *I); 131 bool SelectFPExt(const Instruction *I); 132 bool SelectFPTrunc(const Instruction *I); 133 bool SelectIToFP(const Instruction *I, bool IsSigned); 134 bool SelectFPToI(const Instruction *I, bool IsSigned); 135 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 136 bool SelectRet(const Instruction *I); 137 bool SelectTrunc(const Instruction *I); 138 bool SelectIntExt(const Instruction *I); 139 140 // Utility routines. 141 private: 142 bool isTypeLegal(Type *Ty, MVT &VT); 143 bool isLoadTypeLegal(Type *Ty, MVT &VT); 144 bool isVSFRCRegister(unsigned Register) const { 145 return MRI.getRegClass(Register)->getID() == PPC::VSFRCRegClassID; 146 } 147 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value, 148 bool isZExt, unsigned DestReg); 149 bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 150 const TargetRegisterClass *RC, bool IsZExt = true, 151 unsigned FP64LoadOpc = PPC::LFD); 152 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr); 153 bool PPCComputeAddress(const Value *Obj, Address &Addr); 154 void PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset, 155 unsigned &IndexReg); 156 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 157 unsigned DestReg, bool IsZExt); 158 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT); 159 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT); 160 unsigned PPCMaterializeInt(const Constant *C, MVT VT, bool UseSExt = true); 161 unsigned PPCMaterialize32BitInt(int64_t Imm, 162 const TargetRegisterClass *RC); 163 unsigned PPCMaterialize64BitInt(int64_t Imm, 164 const TargetRegisterClass *RC); 165 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT, 166 unsigned SrcReg, bool IsSigned); 167 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned); 168 169 // Call handling routines. 170 private: 171 bool processCallArgs(SmallVectorImpl<Value*> &Args, 172 SmallVectorImpl<unsigned> &ArgRegs, 173 SmallVectorImpl<MVT> &ArgVTs, 174 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 175 SmallVectorImpl<unsigned> &RegArgs, 176 CallingConv::ID CC, 177 unsigned &NumBytes, 178 bool IsVarArg); 179 bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes); 180 CCAssignFn *usePPC32CCs(unsigned Flag); 181 182 private: 183 #include "PPCGenFastISel.inc" 184 185 }; 186 187 } // end anonymous namespace 188 189 #include "PPCGenCallingConv.inc" 190 191 // Function whose sole purpose is to kill compiler warnings 192 // stemming from unused functions included from PPCGenCallingConv.inc. 193 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) { 194 if (Flag == 1) 195 return CC_PPC32_SVR4; 196 else if (Flag == 2) 197 return CC_PPC32_SVR4_ByVal; 198 else if (Flag == 3) 199 return CC_PPC32_SVR4_VarArg; 200 else 201 return RetCC_PPC; 202 } 203 204 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) { 205 switch (Pred) { 206 // These are not representable with any single compare. 207 case CmpInst::FCMP_FALSE: 208 case CmpInst::FCMP_UEQ: 209 case CmpInst::FCMP_UGT: 210 case CmpInst::FCMP_UGE: 211 case CmpInst::FCMP_ULT: 212 case CmpInst::FCMP_ULE: 213 case CmpInst::FCMP_UNE: 214 case CmpInst::FCMP_TRUE: 215 default: 216 return Optional<PPC::Predicate>(); 217 218 case CmpInst::FCMP_OEQ: 219 case CmpInst::ICMP_EQ: 220 return PPC::PRED_EQ; 221 222 case CmpInst::FCMP_OGT: 223 case CmpInst::ICMP_UGT: 224 case CmpInst::ICMP_SGT: 225 return PPC::PRED_GT; 226 227 case CmpInst::FCMP_OGE: 228 case CmpInst::ICMP_UGE: 229 case CmpInst::ICMP_SGE: 230 return PPC::PRED_GE; 231 232 case CmpInst::FCMP_OLT: 233 case CmpInst::ICMP_ULT: 234 case CmpInst::ICMP_SLT: 235 return PPC::PRED_LT; 236 237 case CmpInst::FCMP_OLE: 238 case CmpInst::ICMP_ULE: 239 case CmpInst::ICMP_SLE: 240 return PPC::PRED_LE; 241 242 case CmpInst::FCMP_ONE: 243 case CmpInst::ICMP_NE: 244 return PPC::PRED_NE; 245 246 case CmpInst::FCMP_ORD: 247 return PPC::PRED_NU; 248 249 case CmpInst::FCMP_UNO: 250 return PPC::PRED_UN; 251 } 252 } 253 254 // Determine whether the type Ty is simple enough to be handled by 255 // fast-isel, and return its equivalent machine type in VT. 256 // FIXME: Copied directly from ARM -- factor into base class? 257 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) { 258 EVT Evt = TLI.getValueType(Ty, true); 259 260 // Only handle simple types. 261 if (Evt == MVT::Other || !Evt.isSimple()) return false; 262 VT = Evt.getSimpleVT(); 263 264 // Handle all legal types, i.e. a register that will directly hold this 265 // value. 266 return TLI.isTypeLegal(VT); 267 } 268 269 // Determine whether the type Ty is simple enough to be handled by 270 // fast-isel as a load target, and return its equivalent machine type in VT. 271 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 272 if (isTypeLegal(Ty, VT)) return true; 273 274 // If this is a type than can be sign or zero-extended to a basic operation 275 // go ahead and accept it now. 276 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) { 277 return true; 278 } 279 280 return false; 281 } 282 283 // Given a value Obj, create an Address object Addr that represents its 284 // address. Return false if we can't handle it. 285 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) { 286 const User *U = nullptr; 287 unsigned Opcode = Instruction::UserOp1; 288 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 289 // Don't walk into other basic blocks unless the object is an alloca from 290 // another block, otherwise it may not have a virtual register assigned. 291 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 292 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 293 Opcode = I->getOpcode(); 294 U = I; 295 } 296 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 297 Opcode = C->getOpcode(); 298 U = C; 299 } 300 301 switch (Opcode) { 302 default: 303 break; 304 case Instruction::BitCast: 305 // Look through bitcasts. 306 return PPCComputeAddress(U->getOperand(0), Addr); 307 case Instruction::IntToPtr: 308 // Look past no-op inttoptrs. 309 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) 310 return PPCComputeAddress(U->getOperand(0), Addr); 311 break; 312 case Instruction::PtrToInt: 313 // Look past no-op ptrtoints. 314 if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) 315 return PPCComputeAddress(U->getOperand(0), Addr); 316 break; 317 case Instruction::GetElementPtr: { 318 Address SavedAddr = Addr; 319 long TmpOffset = Addr.Offset; 320 321 // Iterate through the GEP folding the constants into offsets where 322 // we can. 323 gep_type_iterator GTI = gep_type_begin(U); 324 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end(); 325 II != IE; ++II, ++GTI) { 326 const Value *Op = *II; 327 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 328 const StructLayout *SL = DL.getStructLayout(STy); 329 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 330 TmpOffset += SL->getElementOffset(Idx); 331 } else { 332 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 333 for (;;) { 334 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 335 // Constant-offset addressing. 336 TmpOffset += CI->getSExtValue() * S; 337 break; 338 } 339 if (canFoldAddIntoGEP(U, Op)) { 340 // A compatible add with a constant operand. Fold the constant. 341 ConstantInt *CI = 342 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 343 TmpOffset += CI->getSExtValue() * S; 344 // Iterate on the other operand. 345 Op = cast<AddOperator>(Op)->getOperand(0); 346 continue; 347 } 348 // Unsupported 349 goto unsupported_gep; 350 } 351 } 352 } 353 354 // Try to grab the base operand now. 355 Addr.Offset = TmpOffset; 356 if (PPCComputeAddress(U->getOperand(0), Addr)) return true; 357 358 // We failed, restore everything and try the other options. 359 Addr = SavedAddr; 360 361 unsupported_gep: 362 break; 363 } 364 case Instruction::Alloca: { 365 const AllocaInst *AI = cast<AllocaInst>(Obj); 366 DenseMap<const AllocaInst*, int>::iterator SI = 367 FuncInfo.StaticAllocaMap.find(AI); 368 if (SI != FuncInfo.StaticAllocaMap.end()) { 369 Addr.BaseType = Address::FrameIndexBase; 370 Addr.Base.FI = SI->second; 371 return true; 372 } 373 break; 374 } 375 } 376 377 // FIXME: References to parameters fall through to the behavior 378 // below. They should be able to reference a frame index since 379 // they are stored to the stack, so we can get "ld rx, offset(r1)" 380 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will 381 // just contain the parameter. Try to handle this with a FI. 382 383 // Try to get this in a register if nothing else has worked. 384 if (Addr.Base.Reg == 0) 385 Addr.Base.Reg = getRegForValue(Obj); 386 387 // Prevent assignment of base register to X0, which is inappropriate 388 // for loads and stores alike. 389 if (Addr.Base.Reg != 0) 390 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass); 391 392 return Addr.Base.Reg != 0; 393 } 394 395 // Fix up some addresses that can't be used directly. For example, if 396 // an offset won't fit in an instruction field, we may need to move it 397 // into an index register. 398 void PPCFastISel::PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset, 399 unsigned &IndexReg) { 400 401 // Check whether the offset fits in the instruction field. 402 if (!isInt<16>(Addr.Offset)) 403 UseOffset = false; 404 405 // If this is a stack pointer and the offset needs to be simplified then 406 // put the alloca address into a register, set the base type back to 407 // register and continue. This should almost never happen. 408 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) { 409 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 410 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 411 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0); 412 Addr.Base.Reg = ResultReg; 413 Addr.BaseType = Address::RegBase; 414 } 415 416 if (!UseOffset) { 417 IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context) 418 : Type::getInt64Ty(*Context)); 419 const ConstantInt *Offset = 420 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset)); 421 IndexReg = PPCMaterializeInt(Offset, MVT::i64); 422 assert(IndexReg && "Unexpected error in PPCMaterializeInt!"); 423 } 424 } 425 426 // Emit a load instruction if possible, returning true if we succeeded, 427 // otherwise false. See commentary below for how the register class of 428 // the load is determined. 429 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 430 const TargetRegisterClass *RC, 431 bool IsZExt, unsigned FP64LoadOpc) { 432 unsigned Opc; 433 bool UseOffset = true; 434 435 // If ResultReg is given, it determines the register class of the load. 436 // Otherwise, RC is the register class to use. If the result of the 437 // load isn't anticipated in this block, both may be zero, in which 438 // case we must make a conservative guess. In particular, don't assign 439 // R0 or X0 to the result register, as the result may be used in a load, 440 // store, add-immediate, or isel that won't permit this. (Though 441 // perhaps the spill and reload of live-exit values would handle this?) 442 const TargetRegisterClass *UseRC = 443 (ResultReg ? MRI.getRegClass(ResultReg) : 444 (RC ? RC : 445 (VT == MVT::f64 ? &PPC::F8RCRegClass : 446 (VT == MVT::f32 ? &PPC::F4RCRegClass : 447 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 448 &PPC::GPRC_and_GPRC_NOR0RegClass))))); 449 450 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass); 451 452 switch (VT.SimpleTy) { 453 default: // e.g., vector types not handled 454 return false; 455 case MVT::i8: 456 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8; 457 break; 458 case MVT::i16: 459 Opc = (IsZExt ? 460 (Is32BitInt ? PPC::LHZ : PPC::LHZ8) : 461 (Is32BitInt ? PPC::LHA : PPC::LHA8)); 462 break; 463 case MVT::i32: 464 Opc = (IsZExt ? 465 (Is32BitInt ? PPC::LWZ : PPC::LWZ8) : 466 (Is32BitInt ? PPC::LWA_32 : PPC::LWA)); 467 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0)) 468 UseOffset = false; 469 break; 470 case MVT::i64: 471 Opc = PPC::LD; 472 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && 473 "64-bit load with 32-bit target??"); 474 UseOffset = ((Addr.Offset & 3) == 0); 475 break; 476 case MVT::f32: 477 Opc = PPC::LFS; 478 break; 479 case MVT::f64: 480 Opc = FP64LoadOpc; 481 break; 482 } 483 484 // If necessary, materialize the offset into a register and use 485 // the indexed form. Also handle stack pointers with special needs. 486 unsigned IndexReg = 0; 487 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg); 488 489 // If this is a potential VSX load with an offset of 0, a VSX indexed load can 490 // be used. 491 bool IsVSFRC = (ResultReg != 0) && isVSFRCRegister(ResultReg); 492 if (IsVSFRC && (Opc == PPC::LFD) && 493 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 494 (Addr.Offset == 0)) { 495 UseOffset = false; 496 } 497 498 if (ResultReg == 0) 499 ResultReg = createResultReg(UseRC); 500 501 // Note: If we still have a frame index here, we know the offset is 502 // in range, as otherwise PPCSimplifyAddress would have converted it 503 // into a RegBase. 504 if (Addr.BaseType == Address::FrameIndexBase) { 505 // VSX only provides an indexed load. 506 if (IsVSFRC && Opc == PPC::LFD) return false; 507 508 MachineMemOperand *MMO = 509 FuncInfo.MF->getMachineMemOperand( 510 MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset), 511 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI), 512 MFI.getObjectAlignment(Addr.Base.FI)); 513 514 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 515 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO); 516 517 // Base reg with offset in range. 518 } else if (UseOffset) { 519 // VSX only provides an indexed load. 520 if (IsVSFRC && Opc == PPC::LFD) return false; 521 522 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 523 .addImm(Addr.Offset).addReg(Addr.Base.Reg); 524 525 // Indexed form. 526 } else { 527 // Get the RR opcode corresponding to the RI one. FIXME: It would be 528 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 529 // is hard to get at. 530 switch (Opc) { 531 default: llvm_unreachable("Unexpected opcode!"); 532 case PPC::LBZ: Opc = PPC::LBZX; break; 533 case PPC::LBZ8: Opc = PPC::LBZX8; break; 534 case PPC::LHZ: Opc = PPC::LHZX; break; 535 case PPC::LHZ8: Opc = PPC::LHZX8; break; 536 case PPC::LHA: Opc = PPC::LHAX; break; 537 case PPC::LHA8: Opc = PPC::LHAX8; break; 538 case PPC::LWZ: Opc = PPC::LWZX; break; 539 case PPC::LWZ8: Opc = PPC::LWZX8; break; 540 case PPC::LWA: Opc = PPC::LWAX; break; 541 case PPC::LWA_32: Opc = PPC::LWAX_32; break; 542 case PPC::LD: Opc = PPC::LDX; break; 543 case PPC::LFS: Opc = PPC::LFSX; break; 544 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break; 545 } 546 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 547 .addReg(Addr.Base.Reg).addReg(IndexReg); 548 } 549 550 return true; 551 } 552 553 // Attempt to fast-select a load instruction. 554 bool PPCFastISel::SelectLoad(const Instruction *I) { 555 // FIXME: No atomic loads are supported. 556 if (cast<LoadInst>(I)->isAtomic()) 557 return false; 558 559 // Verify we have a legal type before going any further. 560 MVT VT; 561 if (!isLoadTypeLegal(I->getType(), VT)) 562 return false; 563 564 // See if we can handle this address. 565 Address Addr; 566 if (!PPCComputeAddress(I->getOperand(0), Addr)) 567 return false; 568 569 // Look at the currently assigned register for this instruction 570 // to determine the required register class. This is necessary 571 // to constrain RA from using R0/X0 when this is not legal. 572 unsigned AssignedReg = FuncInfo.ValueMap[I]; 573 const TargetRegisterClass *RC = 574 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 575 576 unsigned ResultReg = 0; 577 if (!PPCEmitLoad(VT, ResultReg, Addr, RC)) 578 return false; 579 updateValueMap(I, ResultReg); 580 return true; 581 } 582 583 // Emit a store instruction to store SrcReg at Addr. 584 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) { 585 assert(SrcReg && "Nothing to store!"); 586 unsigned Opc; 587 bool UseOffset = true; 588 589 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg); 590 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass); 591 592 switch (VT.SimpleTy) { 593 default: // e.g., vector types not handled 594 return false; 595 case MVT::i8: 596 Opc = Is32BitInt ? PPC::STB : PPC::STB8; 597 break; 598 case MVT::i16: 599 Opc = Is32BitInt ? PPC::STH : PPC::STH8; 600 break; 601 case MVT::i32: 602 assert(Is32BitInt && "Not GPRC for i32??"); 603 Opc = PPC::STW; 604 break; 605 case MVT::i64: 606 Opc = PPC::STD; 607 UseOffset = ((Addr.Offset & 3) == 0); 608 break; 609 case MVT::f32: 610 Opc = PPC::STFS; 611 break; 612 case MVT::f64: 613 Opc = PPC::STFD; 614 break; 615 } 616 617 // If necessary, materialize the offset into a register and use 618 // the indexed form. Also handle stack pointers with special needs. 619 unsigned IndexReg = 0; 620 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg); 621 622 // If this is a potential VSX store with an offset of 0, a VSX indexed store 623 // can be used. 624 bool IsVSFRC = isVSFRCRegister(SrcReg); 625 if (IsVSFRC && (Opc == PPC::STFD) && 626 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 627 (Addr.Offset == 0)) { 628 UseOffset = false; 629 } 630 631 // Note: If we still have a frame index here, we know the offset is 632 // in range, as otherwise PPCSimplifyAddress would have converted it 633 // into a RegBase. 634 if (Addr.BaseType == Address::FrameIndexBase) { 635 // VSX only provides an indexed store. 636 if (IsVSFRC && Opc == PPC::STFD) return false; 637 638 MachineMemOperand *MMO = 639 FuncInfo.MF->getMachineMemOperand( 640 MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset), 641 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI), 642 MFI.getObjectAlignment(Addr.Base.FI)); 643 644 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 645 .addReg(SrcReg) 646 .addImm(Addr.Offset) 647 .addFrameIndex(Addr.Base.FI) 648 .addMemOperand(MMO); 649 650 // Base reg with offset in range. 651 } else if (UseOffset) { 652 // VSX only provides an indexed store. 653 if (IsVSFRC && Opc == PPC::STFD) return false; 654 655 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 656 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg); 657 658 // Indexed form. 659 } else { 660 // Get the RR opcode corresponding to the RI one. FIXME: It would be 661 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 662 // is hard to get at. 663 switch (Opc) { 664 default: llvm_unreachable("Unexpected opcode!"); 665 case PPC::STB: Opc = PPC::STBX; break; 666 case PPC::STH : Opc = PPC::STHX; break; 667 case PPC::STW : Opc = PPC::STWX; break; 668 case PPC::STB8: Opc = PPC::STBX8; break; 669 case PPC::STH8: Opc = PPC::STHX8; break; 670 case PPC::STW8: Opc = PPC::STWX8; break; 671 case PPC::STD: Opc = PPC::STDX; break; 672 case PPC::STFS: Opc = PPC::STFSX; break; 673 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break; 674 } 675 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 676 .addReg(SrcReg).addReg(Addr.Base.Reg).addReg(IndexReg); 677 } 678 679 return true; 680 } 681 682 // Attempt to fast-select a store instruction. 683 bool PPCFastISel::SelectStore(const Instruction *I) { 684 Value *Op0 = I->getOperand(0); 685 unsigned SrcReg = 0; 686 687 // FIXME: No atomics loads are supported. 688 if (cast<StoreInst>(I)->isAtomic()) 689 return false; 690 691 // Verify we have a legal type before going any further. 692 MVT VT; 693 if (!isLoadTypeLegal(Op0->getType(), VT)) 694 return false; 695 696 // Get the value to be stored into a register. 697 SrcReg = getRegForValue(Op0); 698 if (SrcReg == 0) 699 return false; 700 701 // See if we can handle this address. 702 Address Addr; 703 if (!PPCComputeAddress(I->getOperand(1), Addr)) 704 return false; 705 706 if (!PPCEmitStore(VT, SrcReg, Addr)) 707 return false; 708 709 return true; 710 } 711 712 // Attempt to fast-select a branch instruction. 713 bool PPCFastISel::SelectBranch(const Instruction *I) { 714 const BranchInst *BI = cast<BranchInst>(I); 715 MachineBasicBlock *BrBB = FuncInfo.MBB; 716 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 717 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 718 719 // For now, just try the simplest case where it's fed by a compare. 720 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 721 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate()); 722 if (!OptPPCPred) 723 return false; 724 725 PPC::Predicate PPCPred = OptPPCPred.getValue(); 726 727 // Take advantage of fall-through opportunities. 728 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 729 std::swap(TBB, FBB); 730 PPCPred = PPC::InvertPredicate(PPCPred); 731 } 732 733 unsigned CondReg = createResultReg(&PPC::CRRCRegClass); 734 735 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(), 736 CondReg)) 737 return false; 738 739 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC)) 740 .addImm(PPCPred).addReg(CondReg).addMBB(TBB); 741 fastEmitBranch(FBB, DbgLoc); 742 FuncInfo.MBB->addSuccessor(TBB); 743 return true; 744 745 } else if (const ConstantInt *CI = 746 dyn_cast<ConstantInt>(BI->getCondition())) { 747 uint64_t Imm = CI->getZExtValue(); 748 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 749 fastEmitBranch(Target, DbgLoc); 750 return true; 751 } 752 753 // FIXME: ARM looks for a case where the block containing the compare 754 // has been split from the block containing the branch. If this happens, 755 // there is a vreg available containing the result of the compare. I'm 756 // not sure we can do much, as we've lost the predicate information with 757 // the compare instruction -- we have a 4-bit CR but don't know which bit 758 // to test here. 759 return false; 760 } 761 762 // Attempt to emit a compare of the two source values. Signed and unsigned 763 // comparisons are supported. Return false if we can't handle it. 764 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2, 765 bool IsZExt, unsigned DestReg) { 766 Type *Ty = SrcValue1->getType(); 767 EVT SrcEVT = TLI.getValueType(Ty, true); 768 if (!SrcEVT.isSimple()) 769 return false; 770 MVT SrcVT = SrcEVT.getSimpleVT(); 771 772 if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits()) 773 return false; 774 775 // See if operand 2 is an immediate encodeable in the compare. 776 // FIXME: Operands are not in canonical order at -O0, so an immediate 777 // operand in position 1 is a lost opportunity for now. We are 778 // similar to ARM in this regard. 779 long Imm = 0; 780 bool UseImm = false; 781 782 // Only 16-bit integer constants can be represented in compares for 783 // PowerPC. Others will be materialized into a register. 784 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) { 785 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || 786 SrcVT == MVT::i8 || SrcVT == MVT::i1) { 787 const APInt &CIVal = ConstInt->getValue(); 788 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue(); 789 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm))) 790 UseImm = true; 791 } 792 } 793 794 unsigned CmpOpc; 795 bool NeedsExt = false; 796 switch (SrcVT.SimpleTy) { 797 default: return false; 798 case MVT::f32: 799 CmpOpc = PPC::FCMPUS; 800 break; 801 case MVT::f64: 802 CmpOpc = PPC::FCMPUD; 803 break; 804 case MVT::i1: 805 case MVT::i8: 806 case MVT::i16: 807 NeedsExt = true; 808 // Intentional fall-through. 809 case MVT::i32: 810 if (!UseImm) 811 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW; 812 else 813 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI; 814 break; 815 case MVT::i64: 816 if (!UseImm) 817 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD; 818 else 819 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI; 820 break; 821 } 822 823 unsigned SrcReg1 = getRegForValue(SrcValue1); 824 if (SrcReg1 == 0) 825 return false; 826 827 unsigned SrcReg2 = 0; 828 if (!UseImm) { 829 SrcReg2 = getRegForValue(SrcValue2); 830 if (SrcReg2 == 0) 831 return false; 832 } 833 834 if (NeedsExt) { 835 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 836 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt)) 837 return false; 838 SrcReg1 = ExtReg; 839 840 if (!UseImm) { 841 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 842 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt)) 843 return false; 844 SrcReg2 = ExtReg; 845 } 846 } 847 848 if (!UseImm) 849 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 850 .addReg(SrcReg1).addReg(SrcReg2); 851 else 852 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 853 .addReg(SrcReg1).addImm(Imm); 854 855 return true; 856 } 857 858 // Attempt to fast-select a floating-point extend instruction. 859 bool PPCFastISel::SelectFPExt(const Instruction *I) { 860 Value *Src = I->getOperand(0); 861 EVT SrcVT = TLI.getValueType(Src->getType(), true); 862 EVT DestVT = TLI.getValueType(I->getType(), true); 863 864 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 865 return false; 866 867 unsigned SrcReg = getRegForValue(Src); 868 if (!SrcReg) 869 return false; 870 871 // No code is generated for a FP extend. 872 updateValueMap(I, SrcReg); 873 return true; 874 } 875 876 // Attempt to fast-select a floating-point truncate instruction. 877 bool PPCFastISel::SelectFPTrunc(const Instruction *I) { 878 Value *Src = I->getOperand(0); 879 EVT SrcVT = TLI.getValueType(Src->getType(), true); 880 EVT DestVT = TLI.getValueType(I->getType(), true); 881 882 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 883 return false; 884 885 unsigned SrcReg = getRegForValue(Src); 886 if (!SrcReg) 887 return false; 888 889 // Round the result to single precision. 890 unsigned DestReg = createResultReg(&PPC::F4RCRegClass); 891 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), DestReg) 892 .addReg(SrcReg); 893 894 updateValueMap(I, DestReg); 895 return true; 896 } 897 898 // Move an i32 or i64 value in a GPR to an f64 value in an FPR. 899 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 900 // those should be used instead of moving via a stack slot when the 901 // subtarget permits. 902 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte 903 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte 904 // case to 8 bytes which produces tighter code but wastes stack space. 905 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg, 906 bool IsSigned) { 907 908 // If necessary, extend 32-bit int to 64-bit. 909 if (SrcVT == MVT::i32) { 910 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 911 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned)) 912 return 0; 913 SrcReg = TmpReg; 914 } 915 916 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 917 Address Addr; 918 Addr.BaseType = Address::FrameIndexBase; 919 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 920 921 // Store the value from the GPR. 922 if (!PPCEmitStore(MVT::i64, SrcReg, Addr)) 923 return 0; 924 925 // Load the integer value into an FPR. The kind of load used depends 926 // on a number of conditions. 927 unsigned LoadOpc = PPC::LFD; 928 929 if (SrcVT == MVT::i32) { 930 if (!IsSigned) { 931 LoadOpc = PPC::LFIWZX; 932 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 933 } else if (PPCSubTarget->hasLFIWAX()) { 934 LoadOpc = PPC::LFIWAX; 935 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 936 } 937 } 938 939 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 940 unsigned ResultReg = 0; 941 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc)) 942 return 0; 943 944 return ResultReg; 945 } 946 947 // Attempt to fast-select an integer-to-floating-point conversion. 948 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) { 949 MVT DstVT; 950 Type *DstTy = I->getType(); 951 if (!isTypeLegal(DstTy, DstVT)) 952 return false; 953 954 if (DstVT != MVT::f32 && DstVT != MVT::f64) 955 return false; 956 957 Value *Src = I->getOperand(0); 958 EVT SrcEVT = TLI.getValueType(Src->getType(), true); 959 if (!SrcEVT.isSimple()) 960 return false; 961 962 MVT SrcVT = SrcEVT.getSimpleVT(); 963 964 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && 965 SrcVT != MVT::i32 && SrcVT != MVT::i64) 966 return false; 967 968 unsigned SrcReg = getRegForValue(Src); 969 if (SrcReg == 0) 970 return false; 971 972 // We can only lower an unsigned convert if we have the newer 973 // floating-point conversion operations. 974 if (!IsSigned && !PPCSubTarget->hasFPCVT()) 975 return false; 976 977 // FIXME: For now we require the newer floating-point conversion operations 978 // (which are present only on P7 and A2 server models) when converting 979 // to single-precision float. Otherwise we have to generate a lot of 980 // fiddly code to avoid double rounding. If necessary, the fiddly code 981 // can be found in PPCTargetLowering::LowerINT_TO_FP(). 982 if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT()) 983 return false; 984 985 // Extend the input if necessary. 986 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) { 987 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 988 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned)) 989 return false; 990 SrcVT = MVT::i64; 991 SrcReg = TmpReg; 992 } 993 994 // Move the integer value to an FPR. 995 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned); 996 if (FPReg == 0) 997 return false; 998 999 // Determine the opcode for the conversion. 1000 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 1001 unsigned DestReg = createResultReg(RC); 1002 unsigned Opc; 1003 1004 if (DstVT == MVT::f32) 1005 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS; 1006 else 1007 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU; 1008 1009 // Generate the convert. 1010 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1011 .addReg(FPReg); 1012 1013 updateValueMap(I, DestReg); 1014 return true; 1015 } 1016 1017 // Move the floating-point value in SrcReg into an integer destination 1018 // register, and return the register (or zero if we can't handle it). 1019 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 1020 // those should be used instead of moving via a stack slot when the 1021 // subtarget permits. 1022 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT, 1023 unsigned SrcReg, bool IsSigned) { 1024 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 1025 // Note that if have STFIWX available, we could use a 4-byte stack 1026 // slot for i32, but this being fast-isel we'll just go with the 1027 // easiest code gen possible. 1028 Address Addr; 1029 Addr.BaseType = Address::FrameIndexBase; 1030 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 1031 1032 // Store the value from the FPR. 1033 if (!PPCEmitStore(MVT::f64, SrcReg, Addr)) 1034 return 0; 1035 1036 // Reload it into a GPR. If we want an i32, modify the address 1037 // to have a 4-byte offset so we load from the right place. 1038 if (VT == MVT::i32) 1039 Addr.Offset = 4; 1040 1041 // Look at the currently assigned register for this instruction 1042 // to determine the required register class. 1043 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1044 const TargetRegisterClass *RC = 1045 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 1046 1047 unsigned ResultReg = 0; 1048 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned)) 1049 return 0; 1050 1051 return ResultReg; 1052 } 1053 1054 // Attempt to fast-select a floating-point-to-integer conversion. 1055 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) { 1056 MVT DstVT, SrcVT; 1057 Type *DstTy = I->getType(); 1058 if (!isTypeLegal(DstTy, DstVT)) 1059 return false; 1060 1061 if (DstVT != MVT::i32 && DstVT != MVT::i64) 1062 return false; 1063 1064 // If we don't have FCTIDUZ and we need it, punt to SelectionDAG. 1065 if (DstVT == MVT::i64 && !IsSigned && !PPCSubTarget->hasFPCVT()) 1066 return false; 1067 1068 Value *Src = I->getOperand(0); 1069 Type *SrcTy = Src->getType(); 1070 if (!isTypeLegal(SrcTy, SrcVT)) 1071 return false; 1072 1073 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1074 return false; 1075 1076 unsigned SrcReg = getRegForValue(Src); 1077 if (SrcReg == 0) 1078 return false; 1079 1080 // Convert f32 to f64 if necessary. This is just a meaningless copy 1081 // to get the register class right. COPY_TO_REGCLASS is needed since 1082 // a COPY from F4RC to F8RC is converted to a F4RC-F4RC copy downstream. 1083 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg); 1084 if (InRC == &PPC::F4RCRegClass) { 1085 unsigned TmpReg = createResultReg(&PPC::F8RCRegClass); 1086 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1087 TII.get(TargetOpcode::COPY_TO_REGCLASS), TmpReg) 1088 .addReg(SrcReg).addImm(PPC::F8RCRegClassID); 1089 SrcReg = TmpReg; 1090 } 1091 1092 // Determine the opcode for the conversion, which takes place 1093 // entirely within FPRs. 1094 unsigned DestReg = createResultReg(&PPC::F8RCRegClass); 1095 unsigned Opc; 1096 1097 if (DstVT == MVT::i32) 1098 if (IsSigned) 1099 Opc = PPC::FCTIWZ; 1100 else 1101 Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ; 1102 else 1103 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ; 1104 1105 // Generate the convert. 1106 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1107 .addReg(SrcReg); 1108 1109 // Now move the integer value from a float register to an integer register. 1110 unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned); 1111 if (IntReg == 0) 1112 return false; 1113 1114 updateValueMap(I, IntReg); 1115 return true; 1116 } 1117 1118 // Attempt to fast-select a binary integer operation that isn't already 1119 // handled automatically. 1120 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1121 EVT DestVT = TLI.getValueType(I->getType(), true); 1122 1123 // We can get here in the case when we have a binary operation on a non-legal 1124 // type and the target independent selector doesn't know how to handle it. 1125 if (DestVT != MVT::i16 && DestVT != MVT::i8) 1126 return false; 1127 1128 // Look at the currently assigned register for this instruction 1129 // to determine the required register class. If there is no register, 1130 // make a conservative choice (don't assign R0). 1131 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1132 const TargetRegisterClass *RC = 1133 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1134 &PPC::GPRC_and_GPRC_NOR0RegClass); 1135 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1136 1137 unsigned Opc; 1138 switch (ISDOpcode) { 1139 default: return false; 1140 case ISD::ADD: 1141 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8; 1142 break; 1143 case ISD::OR: 1144 Opc = IsGPRC ? PPC::OR : PPC::OR8; 1145 break; 1146 case ISD::SUB: 1147 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8; 1148 break; 1149 } 1150 1151 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass); 1152 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1153 if (SrcReg1 == 0) return false; 1154 1155 // Handle case of small immediate operand. 1156 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) { 1157 const APInt &CIVal = ConstInt->getValue(); 1158 int Imm = (int)CIVal.getSExtValue(); 1159 bool UseImm = true; 1160 if (isInt<16>(Imm)) { 1161 switch (Opc) { 1162 default: 1163 llvm_unreachable("Missing case!"); 1164 case PPC::ADD4: 1165 Opc = PPC::ADDI; 1166 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1167 break; 1168 case PPC::ADD8: 1169 Opc = PPC::ADDI8; 1170 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1171 break; 1172 case PPC::OR: 1173 Opc = PPC::ORI; 1174 break; 1175 case PPC::OR8: 1176 Opc = PPC::ORI8; 1177 break; 1178 case PPC::SUBF: 1179 if (Imm == -32768) 1180 UseImm = false; 1181 else { 1182 Opc = PPC::ADDI; 1183 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1184 Imm = -Imm; 1185 } 1186 break; 1187 case PPC::SUBF8: 1188 if (Imm == -32768) 1189 UseImm = false; 1190 else { 1191 Opc = PPC::ADDI8; 1192 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1193 Imm = -Imm; 1194 } 1195 break; 1196 } 1197 1198 if (UseImm) { 1199 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 1200 ResultReg) 1201 .addReg(SrcReg1) 1202 .addImm(Imm); 1203 updateValueMap(I, ResultReg); 1204 return true; 1205 } 1206 } 1207 } 1208 1209 // Reg-reg case. 1210 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1211 if (SrcReg2 == 0) return false; 1212 1213 // Reverse operands for subtract-from. 1214 if (ISDOpcode == ISD::SUB) 1215 std::swap(SrcReg1, SrcReg2); 1216 1217 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 1218 .addReg(SrcReg1).addReg(SrcReg2); 1219 updateValueMap(I, ResultReg); 1220 return true; 1221 } 1222 1223 // Handle arguments to a call that we're attempting to fast-select. 1224 // Return false if the arguments are too complex for us at the moment. 1225 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args, 1226 SmallVectorImpl<unsigned> &ArgRegs, 1227 SmallVectorImpl<MVT> &ArgVTs, 1228 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1229 SmallVectorImpl<unsigned> &RegArgs, 1230 CallingConv::ID CC, 1231 unsigned &NumBytes, 1232 bool IsVarArg) { 1233 SmallVector<CCValAssign, 16> ArgLocs; 1234 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context); 1235 1236 // Reserve space for the linkage area on the stack. 1237 bool isELFv2ABI = PPCSubTarget->isELFv2ABI(); 1238 unsigned LinkageSize = PPCFrameLowering::getLinkageSize(true, false, 1239 isELFv2ABI); 1240 CCInfo.AllocateStack(LinkageSize, 8); 1241 1242 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS); 1243 1244 // Bail out if we can't handle any of the arguments. 1245 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1246 CCValAssign &VA = ArgLocs[I]; 1247 MVT ArgVT = ArgVTs[VA.getValNo()]; 1248 1249 // Skip vector arguments for now, as well as long double and 1250 // uint128_t, and anything that isn't passed in a register. 1251 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 || 1252 !VA.isRegLoc() || VA.needsCustom()) 1253 return false; 1254 1255 // Skip bit-converted arguments for now. 1256 if (VA.getLocInfo() == CCValAssign::BCvt) 1257 return false; 1258 } 1259 1260 // Get a count of how many bytes are to be pushed onto the stack. 1261 NumBytes = CCInfo.getNextStackOffset(); 1262 1263 // The prolog code of the callee may store up to 8 GPR argument registers to 1264 // the stack, allowing va_start to index over them in memory if its varargs. 1265 // Because we cannot tell if this is needed on the caller side, we have to 1266 // conservatively assume that it is needed. As such, make sure we have at 1267 // least enough stack space for the caller to store the 8 GPRs. 1268 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 1269 NumBytes = std::max(NumBytes, LinkageSize + 64); 1270 1271 // Issue CALLSEQ_START. 1272 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1273 TII.get(TII.getCallFrameSetupOpcode())) 1274 .addImm(NumBytes); 1275 1276 // Prepare to assign register arguments. Every argument uses up a 1277 // GPR protocol register even if it's passed in a floating-point 1278 // register. 1279 unsigned NextGPR = PPC::X3; 1280 unsigned NextFPR = PPC::F1; 1281 1282 // Process arguments. 1283 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1284 CCValAssign &VA = ArgLocs[I]; 1285 unsigned Arg = ArgRegs[VA.getValNo()]; 1286 MVT ArgVT = ArgVTs[VA.getValNo()]; 1287 1288 // Handle argument promotion and bitcasts. 1289 switch (VA.getLocInfo()) { 1290 default: 1291 llvm_unreachable("Unknown loc info!"); 1292 case CCValAssign::Full: 1293 break; 1294 case CCValAssign::SExt: { 1295 MVT DestVT = VA.getLocVT(); 1296 const TargetRegisterClass *RC = 1297 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1298 unsigned TmpReg = createResultReg(RC); 1299 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false)) 1300 llvm_unreachable("Failed to emit a sext!"); 1301 ArgVT = DestVT; 1302 Arg = TmpReg; 1303 break; 1304 } 1305 case CCValAssign::AExt: 1306 case CCValAssign::ZExt: { 1307 MVT DestVT = VA.getLocVT(); 1308 const TargetRegisterClass *RC = 1309 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1310 unsigned TmpReg = createResultReg(RC); 1311 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true)) 1312 llvm_unreachable("Failed to emit a zext!"); 1313 ArgVT = DestVT; 1314 Arg = TmpReg; 1315 break; 1316 } 1317 case CCValAssign::BCvt: { 1318 // FIXME: Not yet handled. 1319 llvm_unreachable("Should have bailed before getting here!"); 1320 break; 1321 } 1322 } 1323 1324 // Copy this argument to the appropriate register. 1325 unsigned ArgReg; 1326 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) { 1327 ArgReg = NextFPR++; 1328 ++NextGPR; 1329 } else 1330 ArgReg = NextGPR++; 1331 1332 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1333 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg); 1334 RegArgs.push_back(ArgReg); 1335 } 1336 1337 return true; 1338 } 1339 1340 // For a call that we've determined we can fast-select, finish the 1341 // call sequence and generate a copy to obtain the return value (if any). 1342 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) { 1343 CallingConv::ID CC = CLI.CallConv; 1344 1345 // Issue CallSEQ_END. 1346 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1347 TII.get(TII.getCallFrameDestroyOpcode())) 1348 .addImm(NumBytes).addImm(0); 1349 1350 // Next, generate a copy to obtain the return value. 1351 // FIXME: No multi-register return values yet, though I don't foresee 1352 // any real difficulties there. 1353 if (RetVT != MVT::isVoid) { 1354 SmallVector<CCValAssign, 16> RVLocs; 1355 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 1356 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1357 CCValAssign &VA = RVLocs[0]; 1358 assert(RVLocs.size() == 1 && "No support for multi-reg return values!"); 1359 assert(VA.isRegLoc() && "Can only return in registers!"); 1360 1361 MVT DestVT = VA.getValVT(); 1362 MVT CopyVT = DestVT; 1363 1364 // Ints smaller than a register still arrive in a full 64-bit 1365 // register, so make sure we recognize this. 1366 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) 1367 CopyVT = MVT::i64; 1368 1369 unsigned SourcePhysReg = VA.getLocReg(); 1370 unsigned ResultReg = 0; 1371 1372 if (RetVT == CopyVT) { 1373 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT); 1374 ResultReg = createResultReg(CpyRC); 1375 1376 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1377 TII.get(TargetOpcode::COPY), ResultReg) 1378 .addReg(SourcePhysReg); 1379 1380 // If necessary, round the floating result to single precision. 1381 } else if (CopyVT == MVT::f64) { 1382 ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1383 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), 1384 ResultReg).addReg(SourcePhysReg); 1385 1386 // If only the low half of a general register is needed, generate 1387 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be 1388 // used along the fast-isel path (not lowered), and downstream logic 1389 // also doesn't like a direct subreg copy on a physical reg.) 1390 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) { 1391 ResultReg = createResultReg(&PPC::GPRCRegClass); 1392 // Convert physical register from G8RC to GPRC. 1393 SourcePhysReg -= PPC::X0 - PPC::R0; 1394 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1395 TII.get(TargetOpcode::COPY), ResultReg) 1396 .addReg(SourcePhysReg); 1397 } 1398 1399 assert(ResultReg && "ResultReg unset!"); 1400 CLI.InRegs.push_back(SourcePhysReg); 1401 CLI.ResultReg = ResultReg; 1402 CLI.NumResultRegs = 1; 1403 } 1404 1405 return true; 1406 } 1407 1408 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) { 1409 CallingConv::ID CC = CLI.CallConv; 1410 bool IsTailCall = CLI.IsTailCall; 1411 bool IsVarArg = CLI.IsVarArg; 1412 const Value *Callee = CLI.Callee; 1413 const char *SymName = CLI.SymName; 1414 1415 if (!Callee && !SymName) 1416 return false; 1417 1418 // Allow SelectionDAG isel to handle tail calls. 1419 if (IsTailCall) 1420 return false; 1421 1422 // Let SDISel handle vararg functions. 1423 if (IsVarArg) 1424 return false; 1425 1426 // Handle simple calls for now, with legal return types and 1427 // those that can be extended. 1428 Type *RetTy = CLI.RetTy; 1429 MVT RetVT; 1430 if (RetTy->isVoidTy()) 1431 RetVT = MVT::isVoid; 1432 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 1433 RetVT != MVT::i8) 1434 return false; 1435 1436 // FIXME: No multi-register return values yet. 1437 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 && 1438 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 && 1439 RetVT != MVT::f64) { 1440 SmallVector<CCValAssign, 16> RVLocs; 1441 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context); 1442 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1443 if (RVLocs.size() > 1) 1444 return false; 1445 } 1446 1447 // Bail early if more than 8 arguments, as we only currently 1448 // handle arguments passed in registers. 1449 unsigned NumArgs = CLI.OutVals.size(); 1450 if (NumArgs > 8) 1451 return false; 1452 1453 // Set up the argument vectors. 1454 SmallVector<Value*, 8> Args; 1455 SmallVector<unsigned, 8> ArgRegs; 1456 SmallVector<MVT, 8> ArgVTs; 1457 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 1458 1459 Args.reserve(NumArgs); 1460 ArgRegs.reserve(NumArgs); 1461 ArgVTs.reserve(NumArgs); 1462 ArgFlags.reserve(NumArgs); 1463 1464 for (unsigned i = 0, ie = NumArgs; i != ie; ++i) { 1465 // Only handle easy calls for now. It would be reasonably easy 1466 // to handle <= 8-byte structures passed ByVal in registers, but we 1467 // have to ensure they are right-justified in the register. 1468 ISD::ArgFlagsTy Flags = CLI.OutFlags[i]; 1469 if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal()) 1470 return false; 1471 1472 Value *ArgValue = CLI.OutVals[i]; 1473 Type *ArgTy = ArgValue->getType(); 1474 MVT ArgVT; 1475 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8) 1476 return false; 1477 1478 if (ArgVT.isVector()) 1479 return false; 1480 1481 unsigned Arg = getRegForValue(ArgValue); 1482 if (Arg == 0) 1483 return false; 1484 1485 Args.push_back(ArgValue); 1486 ArgRegs.push_back(Arg); 1487 ArgVTs.push_back(ArgVT); 1488 ArgFlags.push_back(Flags); 1489 } 1490 1491 // Process the arguments. 1492 SmallVector<unsigned, 8> RegArgs; 1493 unsigned NumBytes; 1494 1495 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 1496 RegArgs, CC, NumBytes, IsVarArg)) 1497 return false; 1498 1499 MachineInstrBuilder MIB; 1500 // FIXME: No handling for function pointers yet. This requires 1501 // implementing the function descriptor (OPD) setup. 1502 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 1503 if (!GV) { 1504 // patchpoints are a special case; they always dispatch to a pointer value. 1505 // However, we don't actually want to generate the indirect call sequence 1506 // here (that will be generated, as necessary, during asm printing), and 1507 // the call we generate here will be erased by FastISel::selectPatchpoint, 1508 // so don't try very hard... 1509 if (CLI.IsPatchPoint) 1510 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP)); 1511 else 1512 return false; 1513 } else { 1514 // Build direct call with NOP for TOC restore. 1515 // FIXME: We can and should optimize away the NOP for local calls. 1516 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1517 TII.get(PPC::BL8_NOP)); 1518 // Add callee. 1519 MIB.addGlobalAddress(GV); 1520 } 1521 1522 // Add implicit physical register uses to the call. 1523 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II) 1524 MIB.addReg(RegArgs[II], RegState::Implicit); 1525 1526 // Direct calls in the ELFv2 ABI need the TOC register live into the call. 1527 if (PPCSubTarget->isELFv2ABI()) 1528 MIB.addReg(PPC::X2, RegState::Implicit); 1529 1530 // Add a register mask with the call-preserved registers. Proper 1531 // defs for return values will be added by setPhysRegsDeadExcept(). 1532 MIB.addRegMask(TRI.getCallPreservedMask(CC)); 1533 1534 CLI.Call = MIB; 1535 1536 // Finish off the call including any return values. 1537 return finishCall(RetVT, CLI, NumBytes); 1538 } 1539 1540 // Attempt to fast-select a return instruction. 1541 bool PPCFastISel::SelectRet(const Instruction *I) { 1542 1543 if (!FuncInfo.CanLowerReturn) 1544 return false; 1545 1546 const ReturnInst *Ret = cast<ReturnInst>(I); 1547 const Function &F = *I->getParent()->getParent(); 1548 1549 // Build a list of return value registers. 1550 SmallVector<unsigned, 4> RetRegs; 1551 CallingConv::ID CC = F.getCallingConv(); 1552 1553 if (Ret->getNumOperands() > 0) { 1554 SmallVector<ISD::OutputArg, 4> Outs; 1555 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI); 1556 1557 // Analyze operands of the call, assigning locations to each operand. 1558 SmallVector<CCValAssign, 16> ValLocs; 1559 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context); 1560 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS); 1561 const Value *RV = Ret->getOperand(0); 1562 1563 // FIXME: Only one output register for now. 1564 if (ValLocs.size() > 1) 1565 return false; 1566 1567 // Special case for returning a constant integer of any size. 1568 // Materialize the constant as an i64 and copy it to the return 1569 // register. We still need to worry about properly extending the sign. E.g: 1570 // If the constant has only one bit, it means it is a boolean. Therefore 1571 // we can't use PPCMaterializeInt because it extends the sign which will 1572 // cause negations of the returned value to be incorrect as they are 1573 // implemented as the flip of the least significant bit. 1574 if (isa<ConstantInt>(*RV)) { 1575 const Constant *C = cast<Constant>(RV); 1576 1577 CCValAssign &VA = ValLocs[0]; 1578 1579 unsigned RetReg = VA.getLocReg(); 1580 unsigned SrcReg = PPCMaterializeInt(C, MVT::i64, 1581 VA.getLocInfo() == CCValAssign::SExt); 1582 1583 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1584 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg); 1585 1586 RetRegs.push_back(RetReg); 1587 1588 } else { 1589 unsigned Reg = getRegForValue(RV); 1590 1591 if (Reg == 0) 1592 return false; 1593 1594 // Copy the result values into the output registers. 1595 for (unsigned i = 0; i < ValLocs.size(); ++i) { 1596 1597 CCValAssign &VA = ValLocs[i]; 1598 assert(VA.isRegLoc() && "Can only return in registers!"); 1599 RetRegs.push_back(VA.getLocReg()); 1600 unsigned SrcReg = Reg + VA.getValNo(); 1601 1602 EVT RVEVT = TLI.getValueType(RV->getType()); 1603 if (!RVEVT.isSimple()) 1604 return false; 1605 MVT RVVT = RVEVT.getSimpleVT(); 1606 MVT DestVT = VA.getLocVT(); 1607 1608 if (RVVT != DestVT && RVVT != MVT::i8 && 1609 RVVT != MVT::i16 && RVVT != MVT::i32) 1610 return false; 1611 1612 if (RVVT != DestVT) { 1613 switch (VA.getLocInfo()) { 1614 default: 1615 llvm_unreachable("Unknown loc info!"); 1616 case CCValAssign::Full: 1617 llvm_unreachable("Full value assign but types don't match?"); 1618 case CCValAssign::AExt: 1619 case CCValAssign::ZExt: { 1620 const TargetRegisterClass *RC = 1621 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1622 unsigned TmpReg = createResultReg(RC); 1623 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true)) 1624 return false; 1625 SrcReg = TmpReg; 1626 break; 1627 } 1628 case CCValAssign::SExt: { 1629 const TargetRegisterClass *RC = 1630 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1631 unsigned TmpReg = createResultReg(RC); 1632 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false)) 1633 return false; 1634 SrcReg = TmpReg; 1635 break; 1636 } 1637 } 1638 } 1639 1640 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1641 TII.get(TargetOpcode::COPY), RetRegs[i]) 1642 .addReg(SrcReg); 1643 } 1644 } 1645 } 1646 1647 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1648 TII.get(PPC::BLR8)); 1649 1650 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1651 MIB.addReg(RetRegs[i], RegState::Implicit); 1652 1653 return true; 1654 } 1655 1656 // Attempt to emit an integer extend of SrcReg into DestReg. Both 1657 // signed and zero extensions are supported. Return false if we 1658 // can't handle it. 1659 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1660 unsigned DestReg, bool IsZExt) { 1661 if (DestVT != MVT::i32 && DestVT != MVT::i64) 1662 return false; 1663 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32) 1664 return false; 1665 1666 // Signed extensions use EXTSB, EXTSH, EXTSW. 1667 if (!IsZExt) { 1668 unsigned Opc; 1669 if (SrcVT == MVT::i8) 1670 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64; 1671 else if (SrcVT == MVT::i16) 1672 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64; 1673 else { 1674 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??"); 1675 Opc = PPC::EXTSW_32_64; 1676 } 1677 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1678 .addReg(SrcReg); 1679 1680 // Unsigned 32-bit extensions use RLWINM. 1681 } else if (DestVT == MVT::i32) { 1682 unsigned MB; 1683 if (SrcVT == MVT::i8) 1684 MB = 24; 1685 else { 1686 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??"); 1687 MB = 16; 1688 } 1689 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM), 1690 DestReg) 1691 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31); 1692 1693 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source). 1694 } else { 1695 unsigned MB; 1696 if (SrcVT == MVT::i8) 1697 MB = 56; 1698 else if (SrcVT == MVT::i16) 1699 MB = 48; 1700 else 1701 MB = 32; 1702 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1703 TII.get(PPC::RLDICL_32_64), DestReg) 1704 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB); 1705 } 1706 1707 return true; 1708 } 1709 1710 // Attempt to fast-select an indirect branch instruction. 1711 bool PPCFastISel::SelectIndirectBr(const Instruction *I) { 1712 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1713 if (AddrReg == 0) 1714 return false; 1715 1716 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8)) 1717 .addReg(AddrReg); 1718 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8)); 1719 1720 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1721 for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i) 1722 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]); 1723 1724 return true; 1725 } 1726 1727 // Attempt to fast-select an integer truncate instruction. 1728 bool PPCFastISel::SelectTrunc(const Instruction *I) { 1729 Value *Src = I->getOperand(0); 1730 EVT SrcVT = TLI.getValueType(Src->getType(), true); 1731 EVT DestVT = TLI.getValueType(I->getType(), true); 1732 1733 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16) 1734 return false; 1735 1736 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 1737 return false; 1738 1739 unsigned SrcReg = getRegForValue(Src); 1740 if (!SrcReg) 1741 return false; 1742 1743 // The only interesting case is when we need to switch register classes. 1744 if (SrcVT == MVT::i64) { 1745 unsigned ResultReg = createResultReg(&PPC::GPRCRegClass); 1746 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1747 TII.get(TargetOpcode::COPY), 1748 ResultReg).addReg(SrcReg, 0, PPC::sub_32); 1749 SrcReg = ResultReg; 1750 } 1751 1752 updateValueMap(I, SrcReg); 1753 return true; 1754 } 1755 1756 // Attempt to fast-select an integer extend instruction. 1757 bool PPCFastISel::SelectIntExt(const Instruction *I) { 1758 Type *DestTy = I->getType(); 1759 Value *Src = I->getOperand(0); 1760 Type *SrcTy = Src->getType(); 1761 1762 bool IsZExt = isa<ZExtInst>(I); 1763 unsigned SrcReg = getRegForValue(Src); 1764 if (!SrcReg) return false; 1765 1766 EVT SrcEVT, DestEVT; 1767 SrcEVT = TLI.getValueType(SrcTy, true); 1768 DestEVT = TLI.getValueType(DestTy, true); 1769 if (!SrcEVT.isSimple()) 1770 return false; 1771 if (!DestEVT.isSimple()) 1772 return false; 1773 1774 MVT SrcVT = SrcEVT.getSimpleVT(); 1775 MVT DestVT = DestEVT.getSimpleVT(); 1776 1777 // If we know the register class needed for the result of this 1778 // instruction, use it. Otherwise pick the register class of the 1779 // correct size that does not contain X0/R0, since we don't know 1780 // whether downstream uses permit that assignment. 1781 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1782 const TargetRegisterClass *RC = 1783 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1784 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 1785 &PPC::GPRC_and_GPRC_NOR0RegClass)); 1786 unsigned ResultReg = createResultReg(RC); 1787 1788 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt)) 1789 return false; 1790 1791 updateValueMap(I, ResultReg); 1792 return true; 1793 } 1794 1795 // Attempt to fast-select an instruction that wasn't handled by 1796 // the table-generated machinery. 1797 bool PPCFastISel::fastSelectInstruction(const Instruction *I) { 1798 1799 switch (I->getOpcode()) { 1800 case Instruction::Load: 1801 return SelectLoad(I); 1802 case Instruction::Store: 1803 return SelectStore(I); 1804 case Instruction::Br: 1805 return SelectBranch(I); 1806 case Instruction::IndirectBr: 1807 return SelectIndirectBr(I); 1808 case Instruction::FPExt: 1809 return SelectFPExt(I); 1810 case Instruction::FPTrunc: 1811 return SelectFPTrunc(I); 1812 case Instruction::SIToFP: 1813 return SelectIToFP(I, /*IsSigned*/ true); 1814 case Instruction::UIToFP: 1815 return SelectIToFP(I, /*IsSigned*/ false); 1816 case Instruction::FPToSI: 1817 return SelectFPToI(I, /*IsSigned*/ true); 1818 case Instruction::FPToUI: 1819 return SelectFPToI(I, /*IsSigned*/ false); 1820 case Instruction::Add: 1821 return SelectBinaryIntOp(I, ISD::ADD); 1822 case Instruction::Or: 1823 return SelectBinaryIntOp(I, ISD::OR); 1824 case Instruction::Sub: 1825 return SelectBinaryIntOp(I, ISD::SUB); 1826 case Instruction::Call: 1827 return selectCall(I); 1828 case Instruction::Ret: 1829 return SelectRet(I); 1830 case Instruction::Trunc: 1831 return SelectTrunc(I); 1832 case Instruction::ZExt: 1833 case Instruction::SExt: 1834 return SelectIntExt(I); 1835 // Here add other flavors of Instruction::XXX that automated 1836 // cases don't catch. For example, switches are terminators 1837 // that aren't yet handled. 1838 default: 1839 break; 1840 } 1841 return false; 1842 } 1843 1844 // Materialize a floating-point constant into a register, and return 1845 // the register number (or zero if we failed to handle it). 1846 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) { 1847 // No plans to handle long double here. 1848 if (VT != MVT::f32 && VT != MVT::f64) 1849 return 0; 1850 1851 // All FP constants are loaded from the constant pool. 1852 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 1853 assert(Align > 0 && "Unexpectedly missing alignment information!"); 1854 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 1855 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 1856 CodeModel::Model CModel = TM.getCodeModel(); 1857 1858 MachineMemOperand *MMO = 1859 FuncInfo.MF->getMachineMemOperand( 1860 MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad, 1861 (VT == MVT::f32) ? 4 : 8, Align); 1862 1863 unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD; 1864 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1865 1866 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)). 1867 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) { 1868 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT), 1869 TmpReg) 1870 .addConstantPoolIndex(Idx).addReg(PPC::X2); 1871 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1872 .addImm(0).addReg(TmpReg).addMemOperand(MMO); 1873 } else { 1874 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)). 1875 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1876 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx); 1877 // But for large code model, we must generate a LDtocL followed 1878 // by the LF[SD]. 1879 if (CModel == CodeModel::Large) { 1880 unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1881 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1882 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg); 1883 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1884 .addImm(0).addReg(TmpReg2); 1885 } else 1886 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1887 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO) 1888 .addReg(TmpReg) 1889 .addMemOperand(MMO); 1890 } 1891 1892 return DestReg; 1893 } 1894 1895 // Materialize the address of a global value into a register, and return 1896 // the register number (or zero if we failed to handle it). 1897 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) { 1898 assert(VT == MVT::i64 && "Non-address!"); 1899 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass; 1900 unsigned DestReg = createResultReg(RC); 1901 1902 // Global values may be plain old object addresses, TLS object 1903 // addresses, constant pool entries, or jump tables. How we generate 1904 // code for these may depend on small, medium, or large code model. 1905 CodeModel::Model CModel = TM.getCodeModel(); 1906 1907 // FIXME: Jump tables are not yet required because fast-isel doesn't 1908 // handle switches; if that changes, we need them as well. For now, 1909 // what follows assumes everything's a generic (or TLS) global address. 1910 1911 // FIXME: We don't yet handle the complexity of TLS. 1912 if (GV->isThreadLocal()) 1913 return 0; 1914 1915 // For small code model, generate a simple TOC load. 1916 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) 1917 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc), 1918 DestReg) 1919 .addGlobalAddress(GV) 1920 .addReg(PPC::X2); 1921 else { 1922 // If the address is an externally defined symbol, a symbol with common 1923 // or externally available linkage, a non-local function address, or a 1924 // jump table address (not yet needed), or if we are generating code 1925 // for large code model, we generate: 1926 // LDtocL(GV, ADDIStocHA(%X2, GV)) 1927 // Otherwise we generate: 1928 // ADDItocL(ADDIStocHA(%X2, GV), GV) 1929 // Either way, start with the ADDIStocHA: 1930 unsigned HighPartReg = createResultReg(RC); 1931 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1932 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV); 1933 1934 // If/when switches are implemented, jump tables should be handled 1935 // on the "if" path here. 1936 if (CModel == CodeModel::Large || 1937 (GV->getType()->getElementType()->isFunctionTy() && 1938 (GV->isDeclaration() || GV->isWeakForLinker())) || 1939 GV->isDeclaration() || GV->hasCommonLinkage() || 1940 GV->hasAvailableExternallyLinkage()) 1941 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1942 DestReg).addGlobalAddress(GV).addReg(HighPartReg); 1943 else 1944 // Otherwise generate the ADDItocL. 1945 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL), 1946 DestReg).addReg(HighPartReg).addGlobalAddress(GV); 1947 } 1948 1949 return DestReg; 1950 } 1951 1952 // Materialize a 32-bit integer constant into a register, and return 1953 // the register number (or zero if we failed to handle it). 1954 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm, 1955 const TargetRegisterClass *RC) { 1956 unsigned Lo = Imm & 0xFFFF; 1957 unsigned Hi = (Imm >> 16) & 0xFFFF; 1958 1959 unsigned ResultReg = createResultReg(RC); 1960 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1961 1962 if (isInt<16>(Imm)) 1963 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1964 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg) 1965 .addImm(Imm); 1966 else if (Lo) { 1967 // Both Lo and Hi have nonzero bits. 1968 unsigned TmpReg = createResultReg(RC); 1969 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1970 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg) 1971 .addImm(Hi); 1972 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1973 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg) 1974 .addReg(TmpReg).addImm(Lo); 1975 } else 1976 // Just Hi bits. 1977 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1978 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg) 1979 .addImm(Hi); 1980 1981 return ResultReg; 1982 } 1983 1984 // Materialize a 64-bit integer constant into a register, and return 1985 // the register number (or zero if we failed to handle it). 1986 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm, 1987 const TargetRegisterClass *RC) { 1988 unsigned Remainder = 0; 1989 unsigned Shift = 0; 1990 1991 // If the value doesn't fit in 32 bits, see if we can shift it 1992 // so that it fits in 32 bits. 1993 if (!isInt<32>(Imm)) { 1994 Shift = countTrailingZeros<uint64_t>(Imm); 1995 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 1996 1997 if (isInt<32>(ImmSh)) 1998 Imm = ImmSh; 1999 else { 2000 Remainder = Imm; 2001 Shift = 32; 2002 Imm >>= 32; 2003 } 2004 } 2005 2006 // Handle the high-order 32 bits (if shifted) or the whole 32 bits 2007 // (if not shifted). 2008 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC); 2009 if (!Shift) 2010 return TmpReg1; 2011 2012 // If upper 32 bits were not zero, we've built them and need to shift 2013 // them into place. 2014 unsigned TmpReg2; 2015 if (Imm) { 2016 TmpReg2 = createResultReg(RC); 2017 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR), 2018 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift); 2019 } else 2020 TmpReg2 = TmpReg1; 2021 2022 unsigned TmpReg3, Hi, Lo; 2023 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 2024 TmpReg3 = createResultReg(RC); 2025 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8), 2026 TmpReg3).addReg(TmpReg2).addImm(Hi); 2027 } else 2028 TmpReg3 = TmpReg2; 2029 2030 if ((Lo = Remainder & 0xFFFF)) { 2031 unsigned ResultReg = createResultReg(RC); 2032 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8), 2033 ResultReg).addReg(TmpReg3).addImm(Lo); 2034 return ResultReg; 2035 } 2036 2037 return TmpReg3; 2038 } 2039 2040 2041 // Materialize an integer constant into a register, and return 2042 // the register number (or zero if we failed to handle it). 2043 unsigned PPCFastISel::PPCMaterializeInt(const Constant *C, MVT VT, 2044 bool UseSExt) { 2045 // If we're using CR bit registers for i1 values, handle that as a special 2046 // case first. 2047 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2048 const ConstantInt *CI = cast<ConstantInt>(C); 2049 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2050 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2051 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2052 return ImmReg; 2053 } 2054 2055 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && 2056 VT != MVT::i8 && VT != MVT::i1) 2057 return 0; 2058 2059 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2060 &PPC::GPRCRegClass); 2061 2062 // If the constant is in range, use a load-immediate. 2063 const ConstantInt *CI = cast<ConstantInt>(C); 2064 if (isInt<16>(CI->getSExtValue())) { 2065 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; 2066 unsigned ImmReg = createResultReg(RC); 2067 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg) 2068 .addImm( (UseSExt) ? CI->getSExtValue() : CI->getZExtValue() ); 2069 return ImmReg; 2070 } 2071 2072 // Construct the constant piecewise. 2073 int64_t Imm = CI->getZExtValue(); 2074 2075 if (VT == MVT::i64) 2076 return PPCMaterialize64BitInt(Imm, RC); 2077 else if (VT == MVT::i32) 2078 return PPCMaterialize32BitInt(Imm, RC); 2079 2080 return 0; 2081 } 2082 2083 // Materialize a constant into a register, and return the register 2084 // number (or zero if we failed to handle it). 2085 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) { 2086 EVT CEVT = TLI.getValueType(C->getType(), true); 2087 2088 // Only handle simple types. 2089 if (!CEVT.isSimple()) return 0; 2090 MVT VT = CEVT.getSimpleVT(); 2091 2092 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 2093 return PPCMaterializeFP(CFP, VT); 2094 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 2095 return PPCMaterializeGV(GV, VT); 2096 else if (isa<ConstantInt>(C)) 2097 return PPCMaterializeInt(C, VT, VT != MVT::i1); 2098 2099 return 0; 2100 } 2101 2102 // Materialize the address created by an alloca into a register, and 2103 // return the register number (or zero if we failed to handle it). 2104 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 2105 // Don't handle dynamic allocas. 2106 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 2107 2108 MVT VT; 2109 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 2110 2111 DenseMap<const AllocaInst*, int>::iterator SI = 2112 FuncInfo.StaticAllocaMap.find(AI); 2113 2114 if (SI != FuncInfo.StaticAllocaMap.end()) { 2115 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2116 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 2117 ResultReg).addFrameIndex(SI->second).addImm(0); 2118 return ResultReg; 2119 } 2120 2121 return 0; 2122 } 2123 2124 // Fold loads into extends when possible. 2125 // FIXME: We can have multiple redundant extend/trunc instructions 2126 // following a load. The folding only picks up one. Extend this 2127 // to check subsequent instructions for the same pattern and remove 2128 // them. Thus ResultReg should be the def reg for the last redundant 2129 // instruction in a chain, and all intervening instructions can be 2130 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll 2131 // to add ELF64-NOT: rldicl to the appropriate tests when this works. 2132 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2133 const LoadInst *LI) { 2134 // Verify we have a legal type before going any further. 2135 MVT VT; 2136 if (!isLoadTypeLegal(LI->getType(), VT)) 2137 return false; 2138 2139 // Combine load followed by zero- or sign-extend. 2140 bool IsZExt = false; 2141 switch(MI->getOpcode()) { 2142 default: 2143 return false; 2144 2145 case PPC::RLDICL: 2146 case PPC::RLDICL_32_64: { 2147 IsZExt = true; 2148 unsigned MB = MI->getOperand(3).getImm(); 2149 if ((VT == MVT::i8 && MB <= 56) || 2150 (VT == MVT::i16 && MB <= 48) || 2151 (VT == MVT::i32 && MB <= 32)) 2152 break; 2153 return false; 2154 } 2155 2156 case PPC::RLWINM: 2157 case PPC::RLWINM8: { 2158 IsZExt = true; 2159 unsigned MB = MI->getOperand(3).getImm(); 2160 if ((VT == MVT::i8 && MB <= 24) || 2161 (VT == MVT::i16 && MB <= 16)) 2162 break; 2163 return false; 2164 } 2165 2166 case PPC::EXTSB: 2167 case PPC::EXTSB8: 2168 case PPC::EXTSB8_32_64: 2169 /* There is no sign-extending load-byte instruction. */ 2170 return false; 2171 2172 case PPC::EXTSH: 2173 case PPC::EXTSH8: 2174 case PPC::EXTSH8_32_64: { 2175 if (VT != MVT::i16 && VT != MVT::i8) 2176 return false; 2177 break; 2178 } 2179 2180 case PPC::EXTSW: 2181 case PPC::EXTSW_32_64: { 2182 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8) 2183 return false; 2184 break; 2185 } 2186 } 2187 2188 // See if we can handle this address. 2189 Address Addr; 2190 if (!PPCComputeAddress(LI->getOperand(0), Addr)) 2191 return false; 2192 2193 unsigned ResultReg = MI->getOperand(0).getReg(); 2194 2195 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt)) 2196 return false; 2197 2198 MI->eraseFromParent(); 2199 return true; 2200 } 2201 2202 // Attempt to lower call arguments in a faster way than done by 2203 // the selection DAG code. 2204 bool PPCFastISel::fastLowerArguments() { 2205 // Defer to normal argument lowering for now. It's reasonably 2206 // efficient. Consider doing something like ARM to handle the 2207 // case where all args fit in registers, no varargs, no float 2208 // or vector args. 2209 return false; 2210 } 2211 2212 // Handle materializing integer constants into a register. This is not 2213 // automatically generated for PowerPC, so must be explicitly created here. 2214 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) { 2215 2216 if (Opc != ISD::Constant) 2217 return 0; 2218 2219 // If we're using CR bit registers for i1 values, handle that as a special 2220 // case first. 2221 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2222 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2223 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2224 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2225 return ImmReg; 2226 } 2227 2228 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && 2229 VT != MVT::i8 && VT != MVT::i1) 2230 return 0; 2231 2232 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2233 &PPC::GPRCRegClass); 2234 if (VT == MVT::i64) 2235 return PPCMaterialize64BitInt(Imm, RC); 2236 else 2237 return PPCMaterialize32BitInt(Imm, RC); 2238 } 2239 2240 // Override for ADDI and ADDI8 to set the correct register class 2241 // on RHS operand 0. The automatic infrastructure naively assumes 2242 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost 2243 // for these cases. At the moment, none of the other automatically 2244 // generated RI instructions require special treatment. However, once 2245 // SelectSelect is implemented, "isel" requires similar handling. 2246 // 2247 // Also be conservative about the output register class. Avoid 2248 // assigning R0 or X0 to the output register for GPRC and G8RC 2249 // register classes, as any such result could be used in ADDI, etc., 2250 // where those regs have another meaning. 2251 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2252 const TargetRegisterClass *RC, 2253 unsigned Op0, bool Op0IsKill, 2254 uint64_t Imm) { 2255 if (MachineInstOpcode == PPC::ADDI) 2256 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass); 2257 else if (MachineInstOpcode == PPC::ADDI8) 2258 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass); 2259 2260 const TargetRegisterClass *UseRC = 2261 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2262 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2263 2264 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC, 2265 Op0, Op0IsKill, Imm); 2266 } 2267 2268 // Override for instructions with one register operand to avoid use of 2269 // R0/X0. The automatic infrastructure isn't aware of the context so 2270 // we must be conservative. 2271 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2272 const TargetRegisterClass* RC, 2273 unsigned Op0, bool Op0IsKill) { 2274 const TargetRegisterClass *UseRC = 2275 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2276 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2277 2278 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill); 2279 } 2280 2281 // Override for instructions with two register operands to avoid use 2282 // of R0/X0. The automatic infrastructure isn't aware of the context 2283 // so we must be conservative. 2284 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2285 const TargetRegisterClass* RC, 2286 unsigned Op0, bool Op0IsKill, 2287 unsigned Op1, bool Op1IsKill) { 2288 const TargetRegisterClass *UseRC = 2289 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2290 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2291 2292 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill, 2293 Op1, Op1IsKill); 2294 } 2295 2296 namespace llvm { 2297 // Create the fast instruction selector for PowerPC64 ELF. 2298 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo, 2299 const TargetLibraryInfo *LibInfo) { 2300 const TargetMachine &TM = FuncInfo.MF->getTarget(); 2301 2302 // Only available on 64-bit ELF for now. 2303 const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>(); 2304 if (Subtarget->isPPC64() && Subtarget->isSVR4ABI()) 2305 return new PPCFastISel(FuncInfo, LibInfo); 2306 2307 return nullptr; 2308 } 2309 } 2310