1 //===- MipsAsmPrinter.cpp - Mips LLVM Assembly Printer --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a printer that converts from our internal representation 11 // of machine-dependent LLVM code to GAS-format MIPS assembly language. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "MipsAsmPrinter.h" 16 #include "InstPrinter/MipsInstPrinter.h" 17 #include "MCTargetDesc/MipsABIInfo.h" 18 #include "MCTargetDesc/MipsBaseInfo.h" 19 #include "MCTargetDesc/MipsMCNaCl.h" 20 #include "MCTargetDesc/MipsMCTargetDesc.h" 21 #include "Mips.h" 22 #include "MipsMCInstLower.h" 23 #include "MipsMachineFunction.h" 24 #include "MipsSubtarget.h" 25 #include "MipsTargetMachine.h" 26 #include "MipsTargetStreamer.h" 27 #include "llvm/ADT/SmallString.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/BinaryFormat/ELF.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineJumpTableInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/MC/MCContext.h" 48 #include "llvm/MC/MCExpr.h" 49 #include "llvm/MC/MCInst.h" 50 #include "llvm/MC/MCInstBuilder.h" 51 #include "llvm/MC/MCObjectFileInfo.h" 52 #include "llvm/MC/MCSectionELF.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/MC/MCSymbolELF.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/TargetRegistry.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetMachine.h" 60 #include <cassert> 61 #include <cstdint> 62 #include <map> 63 #include <memory> 64 #include <string> 65 #include <vector> 66 67 using namespace llvm; 68 69 #define DEBUG_TYPE "mips-asm-printer" 70 71 extern cl::opt<bool> EmitJalrReloc; 72 73 MipsTargetStreamer &MipsAsmPrinter::getTargetStreamer() const { 74 return static_cast<MipsTargetStreamer &>(*OutStreamer->getTargetStreamer()); 75 } 76 77 bool MipsAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 78 Subtarget = &MF.getSubtarget<MipsSubtarget>(); 79 80 MipsFI = MF.getInfo<MipsFunctionInfo>(); 81 if (Subtarget->inMips16Mode()) 82 for (std::map< 83 const char *, 84 const Mips16HardFloatInfo::FuncSignature *>::const_iterator 85 it = MipsFI->StubsNeeded.begin(); 86 it != MipsFI->StubsNeeded.end(); ++it) { 87 const char *Symbol = it->first; 88 const Mips16HardFloatInfo::FuncSignature *Signature = it->second; 89 if (StubsNeeded.find(Symbol) == StubsNeeded.end()) 90 StubsNeeded[Symbol] = Signature; 91 } 92 MCP = MF.getConstantPool(); 93 94 // In NaCl, all indirect jump targets must be aligned to bundle size. 95 if (Subtarget->isTargetNaCl()) 96 NaClAlignIndirectJumpTargets(MF); 97 98 AsmPrinter::runOnMachineFunction(MF); 99 100 emitXRayTable(); 101 102 return true; 103 } 104 105 bool MipsAsmPrinter::lowerOperand(const MachineOperand &MO, MCOperand &MCOp) { 106 MCOp = MCInstLowering.LowerOperand(MO); 107 return MCOp.isValid(); 108 } 109 110 #include "MipsGenMCPseudoLowering.inc" 111 112 // Lower PseudoReturn/PseudoIndirectBranch/PseudoIndirectBranch64 to JR, JR_MM, 113 // JALR, or JALR64 as appropriate for the target. 114 void MipsAsmPrinter::emitPseudoIndirectBranch(MCStreamer &OutStreamer, 115 const MachineInstr *MI) { 116 bool HasLinkReg = false; 117 bool InMicroMipsMode = Subtarget->inMicroMipsMode(); 118 MCInst TmpInst0; 119 120 if (Subtarget->hasMips64r6()) { 121 // MIPS64r6 should use (JALR64 ZERO_64, $rs) 122 TmpInst0.setOpcode(Mips::JALR64); 123 HasLinkReg = true; 124 } else if (Subtarget->hasMips32r6()) { 125 // MIPS32r6 should use (JALR ZERO, $rs) 126 if (InMicroMipsMode) 127 TmpInst0.setOpcode(Mips::JRC16_MMR6); 128 else { 129 TmpInst0.setOpcode(Mips::JALR); 130 HasLinkReg = true; 131 } 132 } else if (Subtarget->inMicroMipsMode()) 133 // microMIPS should use (JR_MM $rs) 134 TmpInst0.setOpcode(Mips::JR_MM); 135 else { 136 // Everything else should use (JR $rs) 137 TmpInst0.setOpcode(Mips::JR); 138 } 139 140 MCOperand MCOp; 141 142 if (HasLinkReg) { 143 unsigned ZeroReg = Subtarget->isGP64bit() ? Mips::ZERO_64 : Mips::ZERO; 144 TmpInst0.addOperand(MCOperand::createReg(ZeroReg)); 145 } 146 147 lowerOperand(MI->getOperand(0), MCOp); 148 TmpInst0.addOperand(MCOp); 149 150 EmitToStreamer(OutStreamer, TmpInst0); 151 } 152 153 // If there is an MO_JALR operand, insert: 154 // 155 // .reloc tmplabel, R_{MICRO}MIPS_JALR, symbol 156 // tmplabel: 157 // 158 // This is an optimization hint for the linker which may then replace 159 // an indirect call with a direct branch. 160 static void emitDirectiveRelocJalr(const MachineInstr &MI, 161 MCContext &OutContext, 162 TargetMachine &TM, 163 MCStreamer &OutStreamer, 164 const MipsSubtarget &Subtarget) { 165 for (unsigned int I = MI.getDesc().getNumOperands(), E = MI.getNumOperands(); 166 I < E; ++I) { 167 MachineOperand MO = MI.getOperand(I); 168 if (MO.isMCSymbol() && (MO.getTargetFlags() & MipsII::MO_JALR)) { 169 MCSymbol *Callee = MO.getMCSymbol(); 170 if (Callee && !Callee->getName().empty()) { 171 MCSymbol *OffsetLabel = OutContext.createTempSymbol(); 172 const MCExpr *OffsetExpr = 173 MCSymbolRefExpr::create(OffsetLabel, OutContext); 174 const MCExpr *CaleeExpr = 175 MCSymbolRefExpr::create(Callee, OutContext); 176 OutStreamer.EmitRelocDirective 177 (*OffsetExpr, 178 Subtarget.inMicroMipsMode() ? "R_MICROMIPS_JALR" : "R_MIPS_JALR", 179 CaleeExpr, SMLoc(), *TM.getMCSubtargetInfo()); 180 OutStreamer.EmitLabel(OffsetLabel); 181 return; 182 } 183 } 184 } 185 } 186 187 void MipsAsmPrinter::EmitInstruction(const MachineInstr *MI) { 188 MipsTargetStreamer &TS = getTargetStreamer(); 189 unsigned Opc = MI->getOpcode(); 190 TS.forbidModuleDirective(); 191 192 if (MI->isDebugValue()) { 193 SmallString<128> Str; 194 raw_svector_ostream OS(Str); 195 196 PrintDebugValueComment(MI, OS); 197 return; 198 } 199 if (MI->isDebugLabel()) 200 return; 201 202 // If we just ended a constant pool, mark it as such. 203 if (InConstantPool && Opc != Mips::CONSTPOOL_ENTRY) { 204 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 205 InConstantPool = false; 206 } 207 if (Opc == Mips::CONSTPOOL_ENTRY) { 208 // CONSTPOOL_ENTRY - This instruction represents a floating 209 // constant pool in the function. The first operand is the ID# 210 // for this instruction, the second is the index into the 211 // MachineConstantPool that this is, the third is the size in 212 // bytes of this constant pool entry. 213 // The required alignment is specified on the basic block holding this MI. 214 // 215 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 216 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 217 218 // If this is the first entry of the pool, mark it. 219 if (!InConstantPool) { 220 OutStreamer->EmitDataRegion(MCDR_DataRegion); 221 InConstantPool = true; 222 } 223 224 OutStreamer->EmitLabel(GetCPISymbol(LabelId)); 225 226 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 227 if (MCPE.isMachineConstantPoolEntry()) 228 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 229 else 230 EmitGlobalConstant(MF->getDataLayout(), MCPE.Val.ConstVal); 231 return; 232 } 233 234 switch (Opc) { 235 case Mips::PATCHABLE_FUNCTION_ENTER: 236 LowerPATCHABLE_FUNCTION_ENTER(*MI); 237 return; 238 case Mips::PATCHABLE_FUNCTION_EXIT: 239 LowerPATCHABLE_FUNCTION_EXIT(*MI); 240 return; 241 case Mips::PATCHABLE_TAIL_CALL: 242 LowerPATCHABLE_TAIL_CALL(*MI); 243 return; 244 } 245 246 if (EmitJalrReloc && 247 (MI->isReturn() || MI->isCall() || MI->isIndirectBranch())) { 248 emitDirectiveRelocJalr(*MI, OutContext, TM, *OutStreamer, *Subtarget); 249 } 250 251 MachineBasicBlock::const_instr_iterator I = MI->getIterator(); 252 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end(); 253 254 do { 255 // Do any auto-generated pseudo lowerings. 256 if (emitPseudoExpansionLowering(*OutStreamer, &*I)) 257 continue; 258 259 if (I->getOpcode() == Mips::PseudoReturn || 260 I->getOpcode() == Mips::PseudoReturn64 || 261 I->getOpcode() == Mips::PseudoIndirectBranch || 262 I->getOpcode() == Mips::PseudoIndirectBranch64 || 263 I->getOpcode() == Mips::TAILCALLREG || 264 I->getOpcode() == Mips::TAILCALLREG64) { 265 emitPseudoIndirectBranch(*OutStreamer, &*I); 266 continue; 267 } 268 269 // The inMips16Mode() test is not permanent. 270 // Some instructions are marked as pseudo right now which 271 // would make the test fail for the wrong reason but 272 // that will be fixed soon. We need this here because we are 273 // removing another test for this situation downstream in the 274 // callchain. 275 // 276 if (I->isPseudo() && !Subtarget->inMips16Mode() 277 && !isLongBranchPseudo(I->getOpcode())) 278 llvm_unreachable("Pseudo opcode found in EmitInstruction()"); 279 280 MCInst TmpInst0; 281 MCInstLowering.Lower(&*I, TmpInst0); 282 EmitToStreamer(*OutStreamer, TmpInst0); 283 } while ((++I != E) && I->isInsideBundle()); // Delay slot check 284 } 285 286 //===----------------------------------------------------------------------===// 287 // 288 // Mips Asm Directives 289 // 290 // -- Frame directive "frame Stackpointer, Stacksize, RARegister" 291 // Describe the stack frame. 292 // 293 // -- Mask directives "(f)mask bitmask, offset" 294 // Tells the assembler which registers are saved and where. 295 // bitmask - contain a little endian bitset indicating which registers are 296 // saved on function prologue (e.g. with a 0x80000000 mask, the 297 // assembler knows the register 31 (RA) is saved at prologue. 298 // offset - the position before stack pointer subtraction indicating where 299 // the first saved register on prologue is located. (e.g. with a 300 // 301 // Consider the following function prologue: 302 // 303 // .frame $fp,48,$ra 304 // .mask 0xc0000000,-8 305 // addiu $sp, $sp, -48 306 // sw $ra, 40($sp) 307 // sw $fp, 36($sp) 308 // 309 // With a 0xc0000000 mask, the assembler knows the register 31 (RA) and 310 // 30 (FP) are saved at prologue. As the save order on prologue is from 311 // left to right, RA is saved first. A -8 offset means that after the 312 // stack pointer subtration, the first register in the mask (RA) will be 313 // saved at address 48-8=40. 314 // 315 //===----------------------------------------------------------------------===// 316 317 //===----------------------------------------------------------------------===// 318 // Mask directives 319 //===----------------------------------------------------------------------===// 320 321 // Create a bitmask with all callee saved registers for CPU or Floating Point 322 // registers. For CPU registers consider RA, GP and FP for saving if necessary. 323 void MipsAsmPrinter::printSavedRegsBitmask() { 324 // CPU and FPU Saved Registers Bitmasks 325 unsigned CPUBitmask = 0, FPUBitmask = 0; 326 int CPUTopSavedRegOff, FPUTopSavedRegOff; 327 328 // Set the CPU and FPU Bitmasks 329 const MachineFrameInfo &MFI = MF->getFrameInfo(); 330 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 331 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 332 // size of stack area to which FP callee-saved regs are saved. 333 unsigned CPURegSize = TRI->getRegSizeInBits(Mips::GPR32RegClass) / 8; 334 unsigned FGR32RegSize = TRI->getRegSizeInBits(Mips::FGR32RegClass) / 8; 335 unsigned AFGR64RegSize = TRI->getRegSizeInBits(Mips::AFGR64RegClass) / 8; 336 bool HasAFGR64Reg = false; 337 unsigned CSFPRegsSize = 0; 338 339 for (const auto &I : CSI) { 340 unsigned Reg = I.getReg(); 341 unsigned RegNum = TRI->getEncodingValue(Reg); 342 343 // If it's a floating point register, set the FPU Bitmask. 344 // If it's a general purpose register, set the CPU Bitmask. 345 if (Mips::FGR32RegClass.contains(Reg)) { 346 FPUBitmask |= (1 << RegNum); 347 CSFPRegsSize += FGR32RegSize; 348 } else if (Mips::AFGR64RegClass.contains(Reg)) { 349 FPUBitmask |= (3 << RegNum); 350 CSFPRegsSize += AFGR64RegSize; 351 HasAFGR64Reg = true; 352 } else if (Mips::GPR32RegClass.contains(Reg)) 353 CPUBitmask |= (1 << RegNum); 354 } 355 356 // FP Regs are saved right below where the virtual frame pointer points to. 357 FPUTopSavedRegOff = FPUBitmask ? 358 (HasAFGR64Reg ? -AFGR64RegSize : -FGR32RegSize) : 0; 359 360 // CPU Regs are saved below FP Regs. 361 CPUTopSavedRegOff = CPUBitmask ? -CSFPRegsSize - CPURegSize : 0; 362 363 MipsTargetStreamer &TS = getTargetStreamer(); 364 // Print CPUBitmask 365 TS.emitMask(CPUBitmask, CPUTopSavedRegOff); 366 367 // Print FPUBitmask 368 TS.emitFMask(FPUBitmask, FPUTopSavedRegOff); 369 } 370 371 //===----------------------------------------------------------------------===// 372 // Frame and Set directives 373 //===----------------------------------------------------------------------===// 374 375 /// Frame Directive 376 void MipsAsmPrinter::emitFrameDirective() { 377 const TargetRegisterInfo &RI = *MF->getSubtarget().getRegisterInfo(); 378 379 unsigned stackReg = RI.getFrameRegister(*MF); 380 unsigned returnReg = RI.getRARegister(); 381 unsigned stackSize = MF->getFrameInfo().getStackSize(); 382 383 getTargetStreamer().emitFrame(stackReg, stackSize, returnReg); 384 } 385 386 /// Emit Set directives. 387 const char *MipsAsmPrinter::getCurrentABIString() const { 388 switch (static_cast<MipsTargetMachine &>(TM).getABI().GetEnumValue()) { 389 case MipsABIInfo::ABI::O32: return "abi32"; 390 case MipsABIInfo::ABI::N32: return "abiN32"; 391 case MipsABIInfo::ABI::N64: return "abi64"; 392 default: llvm_unreachable("Unknown Mips ABI"); 393 } 394 } 395 396 void MipsAsmPrinter::EmitFunctionEntryLabel() { 397 MipsTargetStreamer &TS = getTargetStreamer(); 398 399 // NaCl sandboxing requires that indirect call instructions are masked. 400 // This means that function entry points should be bundle-aligned. 401 if (Subtarget->isTargetNaCl()) 402 EmitAlignment(std::max(MF->getAlignment(), MIPS_NACL_BUNDLE_ALIGN)); 403 404 if (Subtarget->inMicroMipsMode()) { 405 TS.emitDirectiveSetMicroMips(); 406 TS.setUsesMicroMips(); 407 TS.updateABIInfo(*Subtarget); 408 } else 409 TS.emitDirectiveSetNoMicroMips(); 410 411 if (Subtarget->inMips16Mode()) 412 TS.emitDirectiveSetMips16(); 413 else 414 TS.emitDirectiveSetNoMips16(); 415 416 TS.emitDirectiveEnt(*CurrentFnSym); 417 OutStreamer->EmitLabel(CurrentFnSym); 418 } 419 420 /// EmitFunctionBodyStart - Targets can override this to emit stuff before 421 /// the first basic block in the function. 422 void MipsAsmPrinter::EmitFunctionBodyStart() { 423 MipsTargetStreamer &TS = getTargetStreamer(); 424 425 MCInstLowering.Initialize(&MF->getContext()); 426 427 bool IsNakedFunction = MF->getFunction().hasFnAttribute(Attribute::Naked); 428 if (!IsNakedFunction) 429 emitFrameDirective(); 430 431 if (!IsNakedFunction) 432 printSavedRegsBitmask(); 433 434 if (!Subtarget->inMips16Mode()) { 435 TS.emitDirectiveSetNoReorder(); 436 TS.emitDirectiveSetNoMacro(); 437 TS.emitDirectiveSetNoAt(); 438 } 439 } 440 441 /// EmitFunctionBodyEnd - Targets can override this to emit stuff after 442 /// the last basic block in the function. 443 void MipsAsmPrinter::EmitFunctionBodyEnd() { 444 MipsTargetStreamer &TS = getTargetStreamer(); 445 446 // There are instruction for this macros, but they must 447 // always be at the function end, and we can't emit and 448 // break with BB logic. 449 if (!Subtarget->inMips16Mode()) { 450 TS.emitDirectiveSetAt(); 451 TS.emitDirectiveSetMacro(); 452 TS.emitDirectiveSetReorder(); 453 } 454 TS.emitDirectiveEnd(CurrentFnSym->getName()); 455 // Make sure to terminate any constant pools that were at the end 456 // of the function. 457 if (!InConstantPool) 458 return; 459 InConstantPool = false; 460 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 461 } 462 463 void MipsAsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 464 AsmPrinter::EmitBasicBlockEnd(MBB); 465 MipsTargetStreamer &TS = getTargetStreamer(); 466 if (MBB.empty()) 467 TS.emitDirectiveInsn(); 468 } 469 470 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 471 /// exactly one predecessor and the control transfer mechanism between 472 /// the predecessor and this block is a fall-through. 473 bool MipsAsmPrinter::isBlockOnlyReachableByFallthrough(const MachineBasicBlock* 474 MBB) const { 475 // The predecessor has to be immediately before this block. 476 const MachineBasicBlock *Pred = *MBB->pred_begin(); 477 478 // If the predecessor is a switch statement, assume a jump table 479 // implementation, so it is not a fall through. 480 if (const BasicBlock *bb = Pred->getBasicBlock()) 481 if (isa<SwitchInst>(bb->getTerminator())) 482 return false; 483 484 // If this is a landing pad, it isn't a fall through. If it has no preds, 485 // then nothing falls through to it. 486 if (MBB->isEHPad() || MBB->pred_empty()) 487 return false; 488 489 // If there isn't exactly one predecessor, it can't be a fall through. 490 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI; 491 ++PI2; 492 493 if (PI2 != MBB->pred_end()) 494 return false; 495 496 // The predecessor has to be immediately before this block. 497 if (!Pred->isLayoutSuccessor(MBB)) 498 return false; 499 500 // If the block is completely empty, then it definitely does fall through. 501 if (Pred->empty()) 502 return true; 503 504 // Otherwise, check the last instruction. 505 // Check if the last terminator is an unconditional branch. 506 MachineBasicBlock::const_iterator I = Pred->end(); 507 while (I != Pred->begin() && !(--I)->isTerminator()) ; 508 509 return !I->isBarrier(); 510 } 511 512 // Print out an operand for an inline asm expression. 513 bool MipsAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 514 unsigned AsmVariant, const char *ExtraCode, 515 raw_ostream &O) { 516 // Does this asm operand have a single letter operand modifier? 517 if (ExtraCode && ExtraCode[0]) { 518 if (ExtraCode[1] != 0) return true; // Unknown modifier. 519 520 const MachineOperand &MO = MI->getOperand(OpNum); 521 switch (ExtraCode[0]) { 522 default: 523 // See if this is a generic print operand 524 return AsmPrinter::PrintAsmOperand(MI,OpNum,AsmVariant,ExtraCode,O); 525 case 'X': // hex const int 526 if ((MO.getType()) != MachineOperand::MO_Immediate) 527 return true; 528 O << "0x" << Twine::utohexstr(MO.getImm()); 529 return false; 530 case 'x': // hex const int (low 16 bits) 531 if ((MO.getType()) != MachineOperand::MO_Immediate) 532 return true; 533 O << "0x" << Twine::utohexstr(MO.getImm() & 0xffff); 534 return false; 535 case 'd': // decimal const int 536 if ((MO.getType()) != MachineOperand::MO_Immediate) 537 return true; 538 O << MO.getImm(); 539 return false; 540 case 'm': // decimal const int minus 1 541 if ((MO.getType()) != MachineOperand::MO_Immediate) 542 return true; 543 O << MO.getImm() - 1; 544 return false; 545 case 'y': // exact log2 546 if ((MO.getType()) != MachineOperand::MO_Immediate) 547 return true; 548 if (!isPowerOf2_64(MO.getImm())) 549 return true; 550 O << Log2_64(MO.getImm()); 551 return false; 552 case 'z': 553 // $0 if zero, regular printing otherwise 554 if (MO.getType() == MachineOperand::MO_Immediate && MO.getImm() == 0) { 555 O << "$0"; 556 return false; 557 } 558 // If not, call printOperand as normal. 559 break; 560 case 'D': // Second part of a double word register operand 561 case 'L': // Low order register of a double word register operand 562 case 'M': // High order register of a double word register operand 563 { 564 if (OpNum == 0) 565 return true; 566 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 567 if (!FlagsOP.isImm()) 568 return true; 569 unsigned Flags = FlagsOP.getImm(); 570 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 571 // Number of registers represented by this operand. We are looking 572 // for 2 for 32 bit mode and 1 for 64 bit mode. 573 if (NumVals != 2) { 574 if (Subtarget->isGP64bit() && NumVals == 1 && MO.isReg()) { 575 unsigned Reg = MO.getReg(); 576 O << '$' << MipsInstPrinter::getRegisterName(Reg); 577 return false; 578 } 579 return true; 580 } 581 582 unsigned RegOp = OpNum; 583 if (!Subtarget->isGP64bit()){ 584 // Endianness reverses which register holds the high or low value 585 // between M and L. 586 switch(ExtraCode[0]) { 587 case 'M': 588 RegOp = (Subtarget->isLittle()) ? OpNum + 1 : OpNum; 589 break; 590 case 'L': 591 RegOp = (Subtarget->isLittle()) ? OpNum : OpNum + 1; 592 break; 593 case 'D': // Always the second part 594 RegOp = OpNum + 1; 595 } 596 if (RegOp >= MI->getNumOperands()) 597 return true; 598 const MachineOperand &MO = MI->getOperand(RegOp); 599 if (!MO.isReg()) 600 return true; 601 unsigned Reg = MO.getReg(); 602 O << '$' << MipsInstPrinter::getRegisterName(Reg); 603 return false; 604 } 605 break; 606 } 607 case 'w': 608 // Print MSA registers for the 'f' constraint 609 // In LLVM, the 'w' modifier doesn't need to do anything. 610 // We can just call printOperand as normal. 611 break; 612 } 613 } 614 615 printOperand(MI, OpNum, O); 616 return false; 617 } 618 619 bool MipsAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 620 unsigned OpNum, unsigned AsmVariant, 621 const char *ExtraCode, 622 raw_ostream &O) { 623 assert(OpNum + 1 < MI->getNumOperands() && "Insufficient operands"); 624 const MachineOperand &BaseMO = MI->getOperand(OpNum); 625 const MachineOperand &OffsetMO = MI->getOperand(OpNum + 1); 626 assert(BaseMO.isReg() && "Unexpected base pointer for inline asm memory operand."); 627 assert(OffsetMO.isImm() && "Unexpected offset for inline asm memory operand."); 628 int Offset = OffsetMO.getImm(); 629 630 // Currently we are expecting either no ExtraCode or 'D','M','L'. 631 if (ExtraCode) { 632 switch (ExtraCode[0]) { 633 case 'D': 634 Offset += 4; 635 break; 636 case 'M': 637 if (Subtarget->isLittle()) 638 Offset += 4; 639 break; 640 case 'L': 641 if (!Subtarget->isLittle()) 642 Offset += 4; 643 break; 644 default: 645 return true; // Unknown modifier. 646 } 647 } 648 649 O << Offset << "($" << MipsInstPrinter::getRegisterName(BaseMO.getReg()) 650 << ")"; 651 652 return false; 653 } 654 655 void MipsAsmPrinter::printOperand(const MachineInstr *MI, int opNum, 656 raw_ostream &O) { 657 const MachineOperand &MO = MI->getOperand(opNum); 658 bool closeP = false; 659 660 if (MO.getTargetFlags()) 661 closeP = true; 662 663 switch(MO.getTargetFlags()) { 664 case MipsII::MO_GPREL: O << "%gp_rel("; break; 665 case MipsII::MO_GOT_CALL: O << "%call16("; break; 666 case MipsII::MO_GOT: O << "%got("; break; 667 case MipsII::MO_ABS_HI: O << "%hi("; break; 668 case MipsII::MO_ABS_LO: O << "%lo("; break; 669 case MipsII::MO_HIGHER: O << "%higher("; break; 670 case MipsII::MO_HIGHEST: O << "%highest(("; break; 671 case MipsII::MO_TLSGD: O << "%tlsgd("; break; 672 case MipsII::MO_GOTTPREL: O << "%gottprel("; break; 673 case MipsII::MO_TPREL_HI: O << "%tprel_hi("; break; 674 case MipsII::MO_TPREL_LO: O << "%tprel_lo("; break; 675 case MipsII::MO_GPOFF_HI: O << "%hi(%neg(%gp_rel("; break; 676 case MipsII::MO_GPOFF_LO: O << "%lo(%neg(%gp_rel("; break; 677 case MipsII::MO_GOT_DISP: O << "%got_disp("; break; 678 case MipsII::MO_GOT_PAGE: O << "%got_page("; break; 679 case MipsII::MO_GOT_OFST: O << "%got_ofst("; break; 680 } 681 682 switch (MO.getType()) { 683 case MachineOperand::MO_Register: 684 O << '$' 685 << StringRef(MipsInstPrinter::getRegisterName(MO.getReg())).lower(); 686 break; 687 688 case MachineOperand::MO_Immediate: 689 O << MO.getImm(); 690 break; 691 692 case MachineOperand::MO_MachineBasicBlock: 693 MO.getMBB()->getSymbol()->print(O, MAI); 694 return; 695 696 case MachineOperand::MO_GlobalAddress: 697 getSymbol(MO.getGlobal())->print(O, MAI); 698 break; 699 700 case MachineOperand::MO_BlockAddress: { 701 MCSymbol *BA = GetBlockAddressSymbol(MO.getBlockAddress()); 702 O << BA->getName(); 703 break; 704 } 705 706 case MachineOperand::MO_ConstantPoolIndex: 707 O << getDataLayout().getPrivateGlobalPrefix() << "CPI" 708 << getFunctionNumber() << "_" << MO.getIndex(); 709 if (MO.getOffset()) 710 O << "+" << MO.getOffset(); 711 break; 712 713 default: 714 llvm_unreachable("<unknown operand type>"); 715 } 716 717 if (closeP) O << ")"; 718 } 719 720 void MipsAsmPrinter:: 721 printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O) { 722 // Load/Store memory operands -- imm($reg) 723 // If PIC target the target is loaded as the 724 // pattern lw $25,%call16($28) 725 726 // opNum can be invalid if instruction has reglist as operand. 727 // MemOperand is always last operand of instruction (base + offset). 728 switch (MI->getOpcode()) { 729 default: 730 break; 731 case Mips::SWM32_MM: 732 case Mips::LWM32_MM: 733 opNum = MI->getNumOperands() - 2; 734 break; 735 } 736 737 printOperand(MI, opNum+1, O); 738 O << "("; 739 printOperand(MI, opNum, O); 740 O << ")"; 741 } 742 743 void MipsAsmPrinter:: 744 printMemOperandEA(const MachineInstr *MI, int opNum, raw_ostream &O) { 745 // when using stack locations for not load/store instructions 746 // print the same way as all normal 3 operand instructions. 747 printOperand(MI, opNum, O); 748 O << ", "; 749 printOperand(MI, opNum+1, O); 750 } 751 752 void MipsAsmPrinter:: 753 printFCCOperand(const MachineInstr *MI, int opNum, raw_ostream &O, 754 const char *Modifier) { 755 const MachineOperand &MO = MI->getOperand(opNum); 756 O << Mips::MipsFCCToString((Mips::CondCode)MO.getImm()); 757 } 758 759 void MipsAsmPrinter:: 760 printRegisterList(const MachineInstr *MI, int opNum, raw_ostream &O) { 761 for (int i = opNum, e = MI->getNumOperands(); i != e; ++i) { 762 if (i != opNum) O << ", "; 763 printOperand(MI, i, O); 764 } 765 } 766 767 void MipsAsmPrinter::EmitStartOfAsmFile(Module &M) { 768 MipsTargetStreamer &TS = getTargetStreamer(); 769 770 // MipsTargetStreamer has an initialization order problem when emitting an 771 // object file directly (see MipsTargetELFStreamer for full details). Work 772 // around it by re-initializing the PIC state here. 773 TS.setPic(OutContext.getObjectFileInfo()->isPositionIndependent()); 774 775 // Compute MIPS architecture attributes based on the default subtarget 776 // that we'd have constructed. Module level directives aren't LTO 777 // clean anyhow. 778 // FIXME: For ifunc related functions we could iterate over and look 779 // for a feature string that doesn't match the default one. 780 const Triple &TT = TM.getTargetTriple(); 781 StringRef CPU = MIPS_MC::selectMipsCPU(TT, TM.getTargetCPU()); 782 StringRef FS = TM.getTargetFeatureString(); 783 const MipsTargetMachine &MTM = static_cast<const MipsTargetMachine &>(TM); 784 const MipsSubtarget STI(TT, CPU, FS, MTM.isLittleEndian(), MTM, 0); 785 786 bool IsABICalls = STI.isABICalls(); 787 const MipsABIInfo &ABI = MTM.getABI(); 788 if (IsABICalls) { 789 TS.emitDirectiveAbiCalls(); 790 // FIXME: This condition should be a lot more complicated that it is here. 791 // Ideally it should test for properties of the ABI and not the ABI 792 // itself. 793 // For the moment, I'm only correcting enough to make MIPS-IV work. 794 if (!isPositionIndependent() && STI.hasSym32()) 795 TS.emitDirectiveOptionPic0(); 796 } 797 798 // Tell the assembler which ABI we are using 799 std::string SectionName = std::string(".mdebug.") + getCurrentABIString(); 800 OutStreamer->SwitchSection( 801 OutContext.getELFSection(SectionName, ELF::SHT_PROGBITS, 0)); 802 803 // NaN: At the moment we only support: 804 // 1. .nan legacy (default) 805 // 2. .nan 2008 806 STI.isNaN2008() ? TS.emitDirectiveNaN2008() 807 : TS.emitDirectiveNaNLegacy(); 808 809 // TODO: handle O64 ABI 810 811 TS.updateABIInfo(STI); 812 813 // We should always emit a '.module fp=...' but binutils 2.24 does not accept 814 // it. We therefore emit it when it contradicts the ABI defaults (-mfpxx or 815 // -mfp64) and omit it otherwise. 816 if ((ABI.IsO32() && (STI.isABI_FPXX() || STI.isFP64bit())) || 817 STI.useSoftFloat()) 818 TS.emitDirectiveModuleFP(); 819 820 // We should always emit a '.module [no]oddspreg' but binutils 2.24 does not 821 // accept it. We therefore emit it when it contradicts the default or an 822 // option has changed the default (i.e. FPXX) and omit it otherwise. 823 if (ABI.IsO32() && (!STI.useOddSPReg() || STI.isABI_FPXX())) 824 TS.emitDirectiveModuleOddSPReg(); 825 } 826 827 void MipsAsmPrinter::emitInlineAsmStart() const { 828 MipsTargetStreamer &TS = getTargetStreamer(); 829 830 // GCC's choice of assembler options for inline assembly code ('at', 'macro' 831 // and 'reorder') is different from LLVM's choice for generated code ('noat', 832 // 'nomacro' and 'noreorder'). 833 // In order to maintain compatibility with inline assembly code which depends 834 // on GCC's assembler options being used, we have to switch to those options 835 // for the duration of the inline assembly block and then switch back. 836 TS.emitDirectiveSetPush(); 837 TS.emitDirectiveSetAt(); 838 TS.emitDirectiveSetMacro(); 839 TS.emitDirectiveSetReorder(); 840 OutStreamer->AddBlankLine(); 841 } 842 843 void MipsAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 844 const MCSubtargetInfo *EndInfo) const { 845 OutStreamer->AddBlankLine(); 846 getTargetStreamer().emitDirectiveSetPop(); 847 } 848 849 void MipsAsmPrinter::EmitJal(const MCSubtargetInfo &STI, MCSymbol *Symbol) { 850 MCInst I; 851 I.setOpcode(Mips::JAL); 852 I.addOperand( 853 MCOperand::createExpr(MCSymbolRefExpr::create(Symbol, OutContext))); 854 OutStreamer->EmitInstruction(I, STI); 855 } 856 857 void MipsAsmPrinter::EmitInstrReg(const MCSubtargetInfo &STI, unsigned Opcode, 858 unsigned Reg) { 859 MCInst I; 860 I.setOpcode(Opcode); 861 I.addOperand(MCOperand::createReg(Reg)); 862 OutStreamer->EmitInstruction(I, STI); 863 } 864 865 void MipsAsmPrinter::EmitInstrRegReg(const MCSubtargetInfo &STI, 866 unsigned Opcode, unsigned Reg1, 867 unsigned Reg2) { 868 MCInst I; 869 // 870 // Because of the current td files for Mips32, the operands for MTC1 871 // appear backwards from their normal assembly order. It's not a trivial 872 // change to fix this in the td file so we adjust for it here. 873 // 874 if (Opcode == Mips::MTC1) { 875 unsigned Temp = Reg1; 876 Reg1 = Reg2; 877 Reg2 = Temp; 878 } 879 I.setOpcode(Opcode); 880 I.addOperand(MCOperand::createReg(Reg1)); 881 I.addOperand(MCOperand::createReg(Reg2)); 882 OutStreamer->EmitInstruction(I, STI); 883 } 884 885 void MipsAsmPrinter::EmitInstrRegRegReg(const MCSubtargetInfo &STI, 886 unsigned Opcode, unsigned Reg1, 887 unsigned Reg2, unsigned Reg3) { 888 MCInst I; 889 I.setOpcode(Opcode); 890 I.addOperand(MCOperand::createReg(Reg1)); 891 I.addOperand(MCOperand::createReg(Reg2)); 892 I.addOperand(MCOperand::createReg(Reg3)); 893 OutStreamer->EmitInstruction(I, STI); 894 } 895 896 void MipsAsmPrinter::EmitMovFPIntPair(const MCSubtargetInfo &STI, 897 unsigned MovOpc, unsigned Reg1, 898 unsigned Reg2, unsigned FPReg1, 899 unsigned FPReg2, bool LE) { 900 if (!LE) { 901 unsigned temp = Reg1; 902 Reg1 = Reg2; 903 Reg2 = temp; 904 } 905 EmitInstrRegReg(STI, MovOpc, Reg1, FPReg1); 906 EmitInstrRegReg(STI, MovOpc, Reg2, FPReg2); 907 } 908 909 void MipsAsmPrinter::EmitSwapFPIntParams(const MCSubtargetInfo &STI, 910 Mips16HardFloatInfo::FPParamVariant PV, 911 bool LE, bool ToFP) { 912 using namespace Mips16HardFloatInfo; 913 914 unsigned MovOpc = ToFP ? Mips::MTC1 : Mips::MFC1; 915 switch (PV) { 916 case FSig: 917 EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12); 918 break; 919 case FFSig: 920 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F14, LE); 921 break; 922 case FDSig: 923 EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12); 924 EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE); 925 break; 926 case DSig: 927 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE); 928 break; 929 case DDSig: 930 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE); 931 EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE); 932 break; 933 case DFSig: 934 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE); 935 EmitInstrRegReg(STI, MovOpc, Mips::A2, Mips::F14); 936 break; 937 case NoSig: 938 return; 939 } 940 } 941 942 void MipsAsmPrinter::EmitSwapFPIntRetval( 943 const MCSubtargetInfo &STI, Mips16HardFloatInfo::FPReturnVariant RV, 944 bool LE) { 945 using namespace Mips16HardFloatInfo; 946 947 unsigned MovOpc = Mips::MFC1; 948 switch (RV) { 949 case FRet: 950 EmitInstrRegReg(STI, MovOpc, Mips::V0, Mips::F0); 951 break; 952 case DRet: 953 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE); 954 break; 955 case CFRet: 956 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE); 957 break; 958 case CDRet: 959 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE); 960 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F2, Mips::F3, LE); 961 break; 962 case NoFPRet: 963 break; 964 } 965 } 966 967 void MipsAsmPrinter::EmitFPCallStub( 968 const char *Symbol, const Mips16HardFloatInfo::FuncSignature *Signature) { 969 using namespace Mips16HardFloatInfo; 970 971 MCSymbol *MSymbol = OutContext.getOrCreateSymbol(StringRef(Symbol)); 972 bool LE = getDataLayout().isLittleEndian(); 973 // Construct a local MCSubtargetInfo here. 974 // This is because the MachineFunction won't exist (but have not yet been 975 // freed) and since we're at the global level we can use the default 976 // constructed subtarget. 977 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 978 TM.getTargetTriple().str(), TM.getTargetCPU(), 979 TM.getTargetFeatureString())); 980 981 // 982 // .global xxxx 983 // 984 OutStreamer->EmitSymbolAttribute(MSymbol, MCSA_Global); 985 const char *RetType; 986 // 987 // make the comment field identifying the return and parameter 988 // types of the floating point stub 989 // # Stub function to call rettype xxxx (params) 990 // 991 switch (Signature->RetSig) { 992 case FRet: 993 RetType = "float"; 994 break; 995 case DRet: 996 RetType = "double"; 997 break; 998 case CFRet: 999 RetType = "complex"; 1000 break; 1001 case CDRet: 1002 RetType = "double complex"; 1003 break; 1004 case NoFPRet: 1005 RetType = ""; 1006 break; 1007 } 1008 const char *Parms; 1009 switch (Signature->ParamSig) { 1010 case FSig: 1011 Parms = "float"; 1012 break; 1013 case FFSig: 1014 Parms = "float, float"; 1015 break; 1016 case FDSig: 1017 Parms = "float, double"; 1018 break; 1019 case DSig: 1020 Parms = "double"; 1021 break; 1022 case DDSig: 1023 Parms = "double, double"; 1024 break; 1025 case DFSig: 1026 Parms = "double, float"; 1027 break; 1028 case NoSig: 1029 Parms = ""; 1030 break; 1031 } 1032 OutStreamer->AddComment("\t# Stub function to call " + Twine(RetType) + " " + 1033 Twine(Symbol) + " (" + Twine(Parms) + ")"); 1034 // 1035 // probably not necessary but we save and restore the current section state 1036 // 1037 OutStreamer->PushSection(); 1038 // 1039 // .section mips16.call.fpxxxx,"ax",@progbits 1040 // 1041 MCSectionELF *M = OutContext.getELFSection( 1042 ".mips16.call.fp." + std::string(Symbol), ELF::SHT_PROGBITS, 1043 ELF::SHF_ALLOC | ELF::SHF_EXECINSTR); 1044 OutStreamer->SwitchSection(M, nullptr); 1045 // 1046 // .align 2 1047 // 1048 OutStreamer->EmitValueToAlignment(4); 1049 MipsTargetStreamer &TS = getTargetStreamer(); 1050 // 1051 // .set nomips16 1052 // .set nomicromips 1053 // 1054 TS.emitDirectiveSetNoMips16(); 1055 TS.emitDirectiveSetNoMicroMips(); 1056 // 1057 // .ent __call_stub_fp_xxxx 1058 // .type __call_stub_fp_xxxx,@function 1059 // __call_stub_fp_xxxx: 1060 // 1061 std::string x = "__call_stub_fp_" + std::string(Symbol); 1062 MCSymbolELF *Stub = 1063 cast<MCSymbolELF>(OutContext.getOrCreateSymbol(StringRef(x))); 1064 TS.emitDirectiveEnt(*Stub); 1065 MCSymbol *MType = 1066 OutContext.getOrCreateSymbol("__call_stub_fp_" + Twine(Symbol)); 1067 OutStreamer->EmitSymbolAttribute(MType, MCSA_ELF_TypeFunction); 1068 OutStreamer->EmitLabel(Stub); 1069 1070 // Only handle non-pic for now. 1071 assert(!isPositionIndependent() && 1072 "should not be here if we are compiling pic"); 1073 TS.emitDirectiveSetReorder(); 1074 // 1075 // We need to add a MipsMCExpr class to MCTargetDesc to fully implement 1076 // stubs without raw text but this current patch is for compiler generated 1077 // functions and they all return some value. 1078 // The calling sequence for non pic is different in that case and we need 1079 // to implement %lo and %hi in order to handle the case of no return value 1080 // See the corresponding method in Mips16HardFloat for details. 1081 // 1082 // mov the return address to S2. 1083 // we have no stack space to store it and we are about to make another call. 1084 // We need to make sure that the enclosing function knows to save S2 1085 // This should have already been handled. 1086 // 1087 // Mov $18, $31 1088 1089 EmitInstrRegRegReg(*STI, Mips::OR, Mips::S2, Mips::RA, Mips::ZERO); 1090 1091 EmitSwapFPIntParams(*STI, Signature->ParamSig, LE, true); 1092 1093 // Jal xxxx 1094 // 1095 EmitJal(*STI, MSymbol); 1096 1097 // fix return values 1098 EmitSwapFPIntRetval(*STI, Signature->RetSig, LE); 1099 // 1100 // do the return 1101 // if (Signature->RetSig == NoFPRet) 1102 // llvm_unreachable("should not be any stubs here with no return value"); 1103 // else 1104 EmitInstrReg(*STI, Mips::JR, Mips::S2); 1105 1106 MCSymbol *Tmp = OutContext.createTempSymbol(); 1107 OutStreamer->EmitLabel(Tmp); 1108 const MCSymbolRefExpr *E = MCSymbolRefExpr::create(Stub, OutContext); 1109 const MCSymbolRefExpr *T = MCSymbolRefExpr::create(Tmp, OutContext); 1110 const MCExpr *T_min_E = MCBinaryExpr::createSub(T, E, OutContext); 1111 OutStreamer->emitELFSize(Stub, T_min_E); 1112 TS.emitDirectiveEnd(x); 1113 OutStreamer->PopSection(); 1114 } 1115 1116 void MipsAsmPrinter::EmitEndOfAsmFile(Module &M) { 1117 // Emit needed stubs 1118 // 1119 for (std::map< 1120 const char *, 1121 const Mips16HardFloatInfo::FuncSignature *>::const_iterator 1122 it = StubsNeeded.begin(); 1123 it != StubsNeeded.end(); ++it) { 1124 const char *Symbol = it->first; 1125 const Mips16HardFloatInfo::FuncSignature *Signature = it->second; 1126 EmitFPCallStub(Symbol, Signature); 1127 } 1128 // return to the text section 1129 OutStreamer->SwitchSection(OutContext.getObjectFileInfo()->getTextSection()); 1130 } 1131 1132 void MipsAsmPrinter::EmitSled(const MachineInstr &MI, SledKind Kind) { 1133 const uint8_t NoopsInSledCount = Subtarget->isGP64bit() ? 15 : 11; 1134 // For mips32 we want to emit the following pattern: 1135 // 1136 // .Lxray_sled_N: 1137 // ALIGN 1138 // B .tmpN 1139 // 11 NOP instructions (44 bytes) 1140 // ADDIU T9, T9, 52 1141 // .tmpN 1142 // 1143 // We need the 44 bytes (11 instructions) because at runtime, we'd 1144 // be patching over the full 48 bytes (12 instructions) with the following 1145 // pattern: 1146 // 1147 // ADDIU SP, SP, -8 1148 // NOP 1149 // SW RA, 4(SP) 1150 // SW T9, 0(SP) 1151 // LUI T9, %hi(__xray_FunctionEntry/Exit) 1152 // ORI T9, T9, %lo(__xray_FunctionEntry/Exit) 1153 // LUI T0, %hi(function_id) 1154 // JALR T9 1155 // ORI T0, T0, %lo(function_id) 1156 // LW T9, 0(SP) 1157 // LW RA, 4(SP) 1158 // ADDIU SP, SP, 8 1159 // 1160 // We add 52 bytes to t9 because we want to adjust the function pointer to 1161 // the actual start of function i.e. the address just after the noop sled. 1162 // We do this because gp displacement relocation is emitted at the start of 1163 // of the function i.e after the nop sled and to correctly calculate the 1164 // global offset table address, t9 must hold the address of the instruction 1165 // containing the gp displacement relocation. 1166 // FIXME: Is this correct for the static relocation model? 1167 // 1168 // For mips64 we want to emit the following pattern: 1169 // 1170 // .Lxray_sled_N: 1171 // ALIGN 1172 // B .tmpN 1173 // 15 NOP instructions (60 bytes) 1174 // .tmpN 1175 // 1176 // We need the 60 bytes (15 instructions) because at runtime, we'd 1177 // be patching over the full 64 bytes (16 instructions) with the following 1178 // pattern: 1179 // 1180 // DADDIU SP, SP, -16 1181 // NOP 1182 // SD RA, 8(SP) 1183 // SD T9, 0(SP) 1184 // LUI T9, %highest(__xray_FunctionEntry/Exit) 1185 // ORI T9, T9, %higher(__xray_FunctionEntry/Exit) 1186 // DSLL T9, T9, 16 1187 // ORI T9, T9, %hi(__xray_FunctionEntry/Exit) 1188 // DSLL T9, T9, 16 1189 // ORI T9, T9, %lo(__xray_FunctionEntry/Exit) 1190 // LUI T0, %hi(function_id) 1191 // JALR T9 1192 // ADDIU T0, T0, %lo(function_id) 1193 // LD T9, 0(SP) 1194 // LD RA, 8(SP) 1195 // DADDIU SP, SP, 16 1196 // 1197 OutStreamer->EmitCodeAlignment(4); 1198 auto CurSled = OutContext.createTempSymbol("xray_sled_", true); 1199 OutStreamer->EmitLabel(CurSled); 1200 auto Target = OutContext.createTempSymbol(); 1201 1202 // Emit "B .tmpN" instruction, which jumps over the nop sled to the actual 1203 // start of function 1204 const MCExpr *TargetExpr = MCSymbolRefExpr::create( 1205 Target, MCSymbolRefExpr::VariantKind::VK_None, OutContext); 1206 EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::BEQ) 1207 .addReg(Mips::ZERO) 1208 .addReg(Mips::ZERO) 1209 .addExpr(TargetExpr)); 1210 1211 for (int8_t I = 0; I < NoopsInSledCount; I++) 1212 EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::SLL) 1213 .addReg(Mips::ZERO) 1214 .addReg(Mips::ZERO) 1215 .addImm(0)); 1216 1217 OutStreamer->EmitLabel(Target); 1218 1219 if (!Subtarget->isGP64bit()) { 1220 EmitToStreamer(*OutStreamer, 1221 MCInstBuilder(Mips::ADDiu) 1222 .addReg(Mips::T9) 1223 .addReg(Mips::T9) 1224 .addImm(0x34)); 1225 } 1226 1227 recordSled(CurSled, MI, Kind); 1228 } 1229 1230 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI) { 1231 EmitSled(MI, SledKind::FUNCTION_ENTER); 1232 } 1233 1234 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr &MI) { 1235 EmitSled(MI, SledKind::FUNCTION_EXIT); 1236 } 1237 1238 void MipsAsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI) { 1239 EmitSled(MI, SledKind::TAIL_CALL); 1240 } 1241 1242 void MipsAsmPrinter::PrintDebugValueComment(const MachineInstr *MI, 1243 raw_ostream &OS) { 1244 // TODO: implement 1245 } 1246 1247 // Emit .dtprelword or .dtpreldword directive 1248 // and value for debug thread local expression. 1249 void MipsAsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const { 1250 if (auto *MipsExpr = dyn_cast<MipsMCExpr>(Value)) { 1251 if (MipsExpr && MipsExpr->getKind() == MipsMCExpr::MEK_DTPREL) { 1252 switch (Size) { 1253 case 4: 1254 OutStreamer->EmitDTPRel32Value(MipsExpr->getSubExpr()); 1255 break; 1256 case 8: 1257 OutStreamer->EmitDTPRel64Value(MipsExpr->getSubExpr()); 1258 break; 1259 default: 1260 llvm_unreachable("Unexpected size of expression value."); 1261 } 1262 return; 1263 } 1264 } 1265 AsmPrinter::EmitDebugValue(Value, Size); 1266 } 1267 1268 // Align all targets of indirect branches on bundle size. Used only if target 1269 // is NaCl. 1270 void MipsAsmPrinter::NaClAlignIndirectJumpTargets(MachineFunction &MF) { 1271 // Align all blocks that are jumped to through jump table. 1272 if (MachineJumpTableInfo *JtInfo = MF.getJumpTableInfo()) { 1273 const std::vector<MachineJumpTableEntry> &JT = JtInfo->getJumpTables(); 1274 for (unsigned I = 0; I < JT.size(); ++I) { 1275 const std::vector<MachineBasicBlock*> &MBBs = JT[I].MBBs; 1276 1277 for (unsigned J = 0; J < MBBs.size(); ++J) 1278 MBBs[J]->setAlignment(MIPS_NACL_BUNDLE_ALIGN); 1279 } 1280 } 1281 1282 // If basic block address is taken, block can be target of indirect branch. 1283 for (auto &MBB : MF) { 1284 if (MBB.hasAddressTaken()) 1285 MBB.setAlignment(MIPS_NACL_BUNDLE_ALIGN); 1286 } 1287 } 1288 1289 bool MipsAsmPrinter::isLongBranchPseudo(int Opcode) const { 1290 return (Opcode == Mips::LONG_BRANCH_LUi 1291 || Opcode == Mips::LONG_BRANCH_LUi2Op 1292 || Opcode == Mips::LONG_BRANCH_LUi2Op_64 1293 || Opcode == Mips::LONG_BRANCH_ADDiu 1294 || Opcode == Mips::LONG_BRANCH_ADDiu2Op 1295 || Opcode == Mips::LONG_BRANCH_DADDiu 1296 || Opcode == Mips::LONG_BRANCH_DADDiu2Op); 1297 } 1298 1299 // Force static initialization. 1300 extern "C" void LLVMInitializeMipsAsmPrinter() { 1301 RegisterAsmPrinter<MipsAsmPrinter> X(getTheMipsTarget()); 1302 RegisterAsmPrinter<MipsAsmPrinter> Y(getTheMipselTarget()); 1303 RegisterAsmPrinter<MipsAsmPrinter> A(getTheMips64Target()); 1304 RegisterAsmPrinter<MipsAsmPrinter> B(getTheMips64elTarget()); 1305 } 1306