1 //===- RDFGraph.cpp -------------------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Target-independent, SSA-based data flow graph for register data flow (RDF). 11 // 12 #include "RDFGraph.h" 13 #include "RDFRegisters.h" 14 #include "llvm/ADT/BitVector.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/CodeGen/MachineBasicBlock.h" 18 #include "llvm/CodeGen/MachineDominanceFrontier.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstr.h" 22 #include "llvm/CodeGen/MachineOperand.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetLowering.h" 26 #include "llvm/CodeGen/TargetRegisterInfo.h" 27 #include "llvm/CodeGen/TargetSubtargetInfo.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/MC/LaneBitmask.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCRegisterInfo.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <algorithm> 36 #include <cassert> 37 #include <cstdint> 38 #include <cstring> 39 #include <iterator> 40 #include <set> 41 #include <utility> 42 #include <vector> 43 44 using namespace llvm; 45 using namespace rdf; 46 47 // Printing functions. Have them here first, so that the rest of the code 48 // can use them. 49 namespace llvm { 50 namespace rdf { 51 52 raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P) { 53 if (!P.Mask.all()) 54 OS << ':' << PrintLaneMask(P.Mask); 55 return OS; 56 } 57 58 template<> 59 raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) { 60 auto &TRI = P.G.getTRI(); 61 if (P.Obj.Reg > 0 && P.Obj.Reg < TRI.getNumRegs()) 62 OS << TRI.getName(P.Obj.Reg); 63 else 64 OS << '#' << P.Obj.Reg; 65 OS << PrintLaneMaskOpt(P.Obj.Mask); 66 return OS; 67 } 68 69 template<> 70 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) { 71 auto NA = P.G.addr<NodeBase*>(P.Obj); 72 uint16_t Attrs = NA.Addr->getAttrs(); 73 uint16_t Kind = NodeAttrs::kind(Attrs); 74 uint16_t Flags = NodeAttrs::flags(Attrs); 75 switch (NodeAttrs::type(Attrs)) { 76 case NodeAttrs::Code: 77 switch (Kind) { 78 case NodeAttrs::Func: OS << 'f'; break; 79 case NodeAttrs::Block: OS << 'b'; break; 80 case NodeAttrs::Stmt: OS << 's'; break; 81 case NodeAttrs::Phi: OS << 'p'; break; 82 default: OS << "c?"; break; 83 } 84 break; 85 case NodeAttrs::Ref: 86 if (Flags & NodeAttrs::Undef) 87 OS << '/'; 88 if (Flags & NodeAttrs::Dead) 89 OS << '\\'; 90 if (Flags & NodeAttrs::Preserving) 91 OS << '+'; 92 if (Flags & NodeAttrs::Clobbering) 93 OS << '~'; 94 switch (Kind) { 95 case NodeAttrs::Use: OS << 'u'; break; 96 case NodeAttrs::Def: OS << 'd'; break; 97 case NodeAttrs::Block: OS << 'b'; break; 98 default: OS << "r?"; break; 99 } 100 break; 101 default: 102 OS << '?'; 103 break; 104 } 105 OS << P.Obj; 106 if (Flags & NodeAttrs::Shadow) 107 OS << '"'; 108 return OS; 109 } 110 111 static void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA, 112 const DataFlowGraph &G) { 113 OS << Print<NodeId>(RA.Id, G) << '<' 114 << Print<RegisterRef>(RA.Addr->getRegRef(G), G) << '>'; 115 if (RA.Addr->getFlags() & NodeAttrs::Fixed) 116 OS << '!'; 117 } 118 119 template<> 120 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<DefNode*>> &P) { 121 printRefHeader(OS, P.Obj, P.G); 122 OS << '('; 123 if (NodeId N = P.Obj.Addr->getReachingDef()) 124 OS << Print<NodeId>(N, P.G); 125 OS << ','; 126 if (NodeId N = P.Obj.Addr->getReachedDef()) 127 OS << Print<NodeId>(N, P.G); 128 OS << ','; 129 if (NodeId N = P.Obj.Addr->getReachedUse()) 130 OS << Print<NodeId>(N, P.G); 131 OS << "):"; 132 if (NodeId N = P.Obj.Addr->getSibling()) 133 OS << Print<NodeId>(N, P.G); 134 return OS; 135 } 136 137 template<> 138 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<UseNode*>> &P) { 139 printRefHeader(OS, P.Obj, P.G); 140 OS << '('; 141 if (NodeId N = P.Obj.Addr->getReachingDef()) 142 OS << Print<NodeId>(N, P.G); 143 OS << "):"; 144 if (NodeId N = P.Obj.Addr->getSibling()) 145 OS << Print<NodeId>(N, P.G); 146 return OS; 147 } 148 149 template<> 150 raw_ostream &operator<< (raw_ostream &OS, 151 const Print<NodeAddr<PhiUseNode*>> &P) { 152 printRefHeader(OS, P.Obj, P.G); 153 OS << '('; 154 if (NodeId N = P.Obj.Addr->getReachingDef()) 155 OS << Print<NodeId>(N, P.G); 156 OS << ','; 157 if (NodeId N = P.Obj.Addr->getPredecessor()) 158 OS << Print<NodeId>(N, P.G); 159 OS << "):"; 160 if (NodeId N = P.Obj.Addr->getSibling()) 161 OS << Print<NodeId>(N, P.G); 162 return OS; 163 } 164 165 template<> 166 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<RefNode*>> &P) { 167 switch (P.Obj.Addr->getKind()) { 168 case NodeAttrs::Def: 169 OS << PrintNode<DefNode*>(P.Obj, P.G); 170 break; 171 case NodeAttrs::Use: 172 if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef) 173 OS << PrintNode<PhiUseNode*>(P.Obj, P.G); 174 else 175 OS << PrintNode<UseNode*>(P.Obj, P.G); 176 break; 177 } 178 return OS; 179 } 180 181 template<> 182 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeList> &P) { 183 unsigned N = P.Obj.size(); 184 for (auto I : P.Obj) { 185 OS << Print<NodeId>(I.Id, P.G); 186 if (--N) 187 OS << ' '; 188 } 189 return OS; 190 } 191 192 template<> 193 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) { 194 unsigned N = P.Obj.size(); 195 for (auto I : P.Obj) { 196 OS << Print<NodeId>(I, P.G); 197 if (--N) 198 OS << ' '; 199 } 200 return OS; 201 } 202 203 namespace { 204 205 template <typename T> 206 struct PrintListV { 207 PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {} 208 209 using Type = T; 210 const NodeList &List; 211 const DataFlowGraph &G; 212 }; 213 214 template <typename T> 215 raw_ostream &operator<< (raw_ostream &OS, const PrintListV<T> &P) { 216 unsigned N = P.List.size(); 217 for (NodeAddr<T> A : P.List) { 218 OS << PrintNode<T>(A, P.G); 219 if (--N) 220 OS << ", "; 221 } 222 return OS; 223 } 224 225 } // end anonymous namespace 226 227 template<> 228 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) { 229 OS << Print<NodeId>(P.Obj.Id, P.G) << ": phi [" 230 << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']'; 231 return OS; 232 } 233 234 template<> 235 raw_ostream &operator<< (raw_ostream &OS, 236 const Print<NodeAddr<StmtNode*>> &P) { 237 const MachineInstr &MI = *P.Obj.Addr->getCode(); 238 unsigned Opc = MI.getOpcode(); 239 OS << Print<NodeId>(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc); 240 // Print the target for calls and branches (for readability). 241 if (MI.isCall() || MI.isBranch()) { 242 MachineInstr::const_mop_iterator T = 243 llvm::find_if(MI.operands(), 244 [] (const MachineOperand &Op) -> bool { 245 return Op.isMBB() || Op.isGlobal() || Op.isSymbol(); 246 }); 247 if (T != MI.operands_end()) { 248 OS << ' '; 249 if (T->isMBB()) 250 OS << printMBBReference(*T->getMBB()); 251 else if (T->isGlobal()) 252 OS << T->getGlobal()->getName(); 253 else if (T->isSymbol()) 254 OS << T->getSymbolName(); 255 } 256 } 257 OS << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']'; 258 return OS; 259 } 260 261 template<> 262 raw_ostream &operator<< (raw_ostream &OS, 263 const Print<NodeAddr<InstrNode*>> &P) { 264 switch (P.Obj.Addr->getKind()) { 265 case NodeAttrs::Phi: 266 OS << PrintNode<PhiNode*>(P.Obj, P.G); 267 break; 268 case NodeAttrs::Stmt: 269 OS << PrintNode<StmtNode*>(P.Obj, P.G); 270 break; 271 default: 272 OS << "instr? " << Print<NodeId>(P.Obj.Id, P.G); 273 break; 274 } 275 return OS; 276 } 277 278 template<> 279 raw_ostream &operator<< (raw_ostream &OS, 280 const Print<NodeAddr<BlockNode*>> &P) { 281 MachineBasicBlock *BB = P.Obj.Addr->getCode(); 282 unsigned NP = BB->pred_size(); 283 std::vector<int> Ns; 284 auto PrintBBs = [&OS] (std::vector<int> Ns) -> void { 285 unsigned N = Ns.size(); 286 for (int I : Ns) { 287 OS << "%bb." << I; 288 if (--N) 289 OS << ", "; 290 } 291 }; 292 293 OS << Print<NodeId>(P.Obj.Id, P.G) << ": --- " << printMBBReference(*BB) 294 << " --- preds(" << NP << "): "; 295 for (MachineBasicBlock *B : BB->predecessors()) 296 Ns.push_back(B->getNumber()); 297 PrintBBs(Ns); 298 299 unsigned NS = BB->succ_size(); 300 OS << " succs(" << NS << "): "; 301 Ns.clear(); 302 for (MachineBasicBlock *B : BB->successors()) 303 Ns.push_back(B->getNumber()); 304 PrintBBs(Ns); 305 OS << '\n'; 306 307 for (auto I : P.Obj.Addr->members(P.G)) 308 OS << PrintNode<InstrNode*>(I, P.G) << '\n'; 309 return OS; 310 } 311 312 template<> 313 raw_ostream &operator<< (raw_ostream &OS, 314 const Print<NodeAddr<FuncNode*>> &P) { 315 OS << "DFG dump:[\n" << Print<NodeId>(P.Obj.Id, P.G) << ": Function: " 316 << P.Obj.Addr->getCode()->getName() << '\n'; 317 for (auto I : P.Obj.Addr->members(P.G)) 318 OS << PrintNode<BlockNode*>(I, P.G) << '\n'; 319 OS << "]\n"; 320 return OS; 321 } 322 323 template<> 324 raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) { 325 OS << '{'; 326 for (auto I : P.Obj) 327 OS << ' ' << Print<RegisterRef>(I, P.G); 328 OS << " }"; 329 return OS; 330 } 331 332 template<> 333 raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterAggr> &P) { 334 P.Obj.print(OS); 335 return OS; 336 } 337 338 template<> 339 raw_ostream &operator<< (raw_ostream &OS, 340 const Print<DataFlowGraph::DefStack> &P) { 341 for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) { 342 OS << Print<NodeId>(I->Id, P.G) 343 << '<' << Print<RegisterRef>(I->Addr->getRegRef(P.G), P.G) << '>'; 344 I.down(); 345 if (I != E) 346 OS << ' '; 347 } 348 return OS; 349 } 350 351 } // end namespace rdf 352 } // end namespace llvm 353 354 // Node allocation functions. 355 // 356 // Node allocator is like a slab memory allocator: it allocates blocks of 357 // memory in sizes that are multiples of the size of a node. Each block has 358 // the same size. Nodes are allocated from the currently active block, and 359 // when it becomes full, a new one is created. 360 // There is a mapping scheme between node id and its location in a block, 361 // and within that block is described in the header file. 362 // 363 void NodeAllocator::startNewBlock() { 364 void *T = MemPool.Allocate(NodesPerBlock*NodeMemSize, NodeMemSize); 365 char *P = static_cast<char*>(T); 366 Blocks.push_back(P); 367 // Check if the block index is still within the allowed range, i.e. less 368 // than 2^N, where N is the number of bits in NodeId for the block index. 369 // BitsPerIndex is the number of bits per node index. 370 assert((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) && 371 "Out of bits for block index"); 372 ActiveEnd = P; 373 } 374 375 bool NodeAllocator::needNewBlock() { 376 if (Blocks.empty()) 377 return true; 378 379 char *ActiveBegin = Blocks.back(); 380 uint32_t Index = (ActiveEnd-ActiveBegin)/NodeMemSize; 381 return Index >= NodesPerBlock; 382 } 383 384 NodeAddr<NodeBase*> NodeAllocator::New() { 385 if (needNewBlock()) 386 startNewBlock(); 387 388 uint32_t ActiveB = Blocks.size()-1; 389 uint32_t Index = (ActiveEnd - Blocks[ActiveB])/NodeMemSize; 390 NodeAddr<NodeBase*> NA = { reinterpret_cast<NodeBase*>(ActiveEnd), 391 makeId(ActiveB, Index) }; 392 ActiveEnd += NodeMemSize; 393 return NA; 394 } 395 396 NodeId NodeAllocator::id(const NodeBase *P) const { 397 uintptr_t A = reinterpret_cast<uintptr_t>(P); 398 for (unsigned i = 0, n = Blocks.size(); i != n; ++i) { 399 uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]); 400 if (A < B || A >= B + NodesPerBlock*NodeMemSize) 401 continue; 402 uint32_t Idx = (A-B)/NodeMemSize; 403 return makeId(i, Idx); 404 } 405 llvm_unreachable("Invalid node address"); 406 } 407 408 void NodeAllocator::clear() { 409 MemPool.Reset(); 410 Blocks.clear(); 411 ActiveEnd = nullptr; 412 } 413 414 // Insert node NA after "this" in the circular chain. 415 void NodeBase::append(NodeAddr<NodeBase*> NA) { 416 NodeId Nx = Next; 417 // If NA is already "next", do nothing. 418 if (Next != NA.Id) { 419 Next = NA.Id; 420 NA.Addr->Next = Nx; 421 } 422 } 423 424 // Fundamental node manipulator functions. 425 426 // Obtain the register reference from a reference node. 427 RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const { 428 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); 429 if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef) 430 return G.unpack(Ref.PR); 431 assert(Ref.Op != nullptr); 432 return G.makeRegRef(*Ref.Op); 433 } 434 435 // Set the register reference in the reference node directly (for references 436 // in phi nodes). 437 void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) { 438 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); 439 assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef); 440 Ref.PR = G.pack(RR); 441 } 442 443 // Set the register reference in the reference node based on a machine 444 // operand (for references in statement nodes). 445 void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) { 446 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); 447 assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)); 448 (void)G; 449 Ref.Op = Op; 450 } 451 452 // Get the owner of a given reference node. 453 NodeAddr<NodeBase*> RefNode::getOwner(const DataFlowGraph &G) { 454 NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext()); 455 456 while (NA.Addr != this) { 457 if (NA.Addr->getType() == NodeAttrs::Code) 458 return NA; 459 NA = G.addr<NodeBase*>(NA.Addr->getNext()); 460 } 461 llvm_unreachable("No owner in circular list"); 462 } 463 464 // Connect the def node to the reaching def node. 465 void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) { 466 Ref.RD = DA.Id; 467 Ref.Sib = DA.Addr->getReachedDef(); 468 DA.Addr->setReachedDef(Self); 469 } 470 471 // Connect the use node to the reaching def node. 472 void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) { 473 Ref.RD = DA.Id; 474 Ref.Sib = DA.Addr->getReachedUse(); 475 DA.Addr->setReachedUse(Self); 476 } 477 478 // Get the first member of the code node. 479 NodeAddr<NodeBase*> CodeNode::getFirstMember(const DataFlowGraph &G) const { 480 if (Code.FirstM == 0) 481 return NodeAddr<NodeBase*>(); 482 return G.addr<NodeBase*>(Code.FirstM); 483 } 484 485 // Get the last member of the code node. 486 NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const { 487 if (Code.LastM == 0) 488 return NodeAddr<NodeBase*>(); 489 return G.addr<NodeBase*>(Code.LastM); 490 } 491 492 // Add node NA at the end of the member list of the given code node. 493 void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) { 494 NodeAddr<NodeBase*> ML = getLastMember(G); 495 if (ML.Id != 0) { 496 ML.Addr->append(NA); 497 } else { 498 Code.FirstM = NA.Id; 499 NodeId Self = G.id(this); 500 NA.Addr->setNext(Self); 501 } 502 Code.LastM = NA.Id; 503 } 504 505 // Add node NA after member node MA in the given code node. 506 void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA, 507 const DataFlowGraph &G) { 508 MA.Addr->append(NA); 509 if (Code.LastM == MA.Id) 510 Code.LastM = NA.Id; 511 } 512 513 // Remove member node NA from the given code node. 514 void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) { 515 NodeAddr<NodeBase*> MA = getFirstMember(G); 516 assert(MA.Id != 0); 517 518 // Special handling if the member to remove is the first member. 519 if (MA.Id == NA.Id) { 520 if (Code.LastM == MA.Id) { 521 // If it is the only member, set both first and last to 0. 522 Code.FirstM = Code.LastM = 0; 523 } else { 524 // Otherwise, advance the first member. 525 Code.FirstM = MA.Addr->getNext(); 526 } 527 return; 528 } 529 530 while (MA.Addr != this) { 531 NodeId MX = MA.Addr->getNext(); 532 if (MX == NA.Id) { 533 MA.Addr->setNext(NA.Addr->getNext()); 534 // If the member to remove happens to be the last one, update the 535 // LastM indicator. 536 if (Code.LastM == NA.Id) 537 Code.LastM = MA.Id; 538 return; 539 } 540 MA = G.addr<NodeBase*>(MX); 541 } 542 llvm_unreachable("No such member"); 543 } 544 545 // Return the list of all members of the code node. 546 NodeList CodeNode::members(const DataFlowGraph &G) const { 547 static auto True = [] (NodeAddr<NodeBase*>) -> bool { return true; }; 548 return members_if(True, G); 549 } 550 551 // Return the owner of the given instr node. 552 NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) { 553 NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext()); 554 555 while (NA.Addr != this) { 556 assert(NA.Addr->getType() == NodeAttrs::Code); 557 if (NA.Addr->getKind() == NodeAttrs::Block) 558 return NA; 559 NA = G.addr<NodeBase*>(NA.Addr->getNext()); 560 } 561 llvm_unreachable("No owner in circular list"); 562 } 563 564 // Add the phi node PA to the given block node. 565 void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) { 566 NodeAddr<NodeBase*> M = getFirstMember(G); 567 if (M.Id == 0) { 568 addMember(PA, G); 569 return; 570 } 571 572 assert(M.Addr->getType() == NodeAttrs::Code); 573 if (M.Addr->getKind() == NodeAttrs::Stmt) { 574 // If the first member of the block is a statement, insert the phi as 575 // the first member. 576 Code.FirstM = PA.Id; 577 PA.Addr->setNext(M.Id); 578 } else { 579 // If the first member is a phi, find the last phi, and append PA to it. 580 assert(M.Addr->getKind() == NodeAttrs::Phi); 581 NodeAddr<NodeBase*> MN = M; 582 do { 583 M = MN; 584 MN = G.addr<NodeBase*>(M.Addr->getNext()); 585 assert(MN.Addr->getType() == NodeAttrs::Code); 586 } while (MN.Addr->getKind() == NodeAttrs::Phi); 587 588 // M is the last phi. 589 addMemberAfter(M, PA, G); 590 } 591 } 592 593 // Find the block node corresponding to the machine basic block BB in the 594 // given func node. 595 NodeAddr<BlockNode*> FuncNode::findBlock(const MachineBasicBlock *BB, 596 const DataFlowGraph &G) const { 597 auto EqBB = [BB] (NodeAddr<NodeBase*> NA) -> bool { 598 return NodeAddr<BlockNode*>(NA).Addr->getCode() == BB; 599 }; 600 NodeList Ms = members_if(EqBB, G); 601 if (!Ms.empty()) 602 return Ms[0]; 603 return NodeAddr<BlockNode*>(); 604 } 605 606 // Get the block node for the entry block in the given function. 607 NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) { 608 MachineBasicBlock *EntryB = &getCode()->front(); 609 return findBlock(EntryB, G); 610 } 611 612 // Target operand information. 613 // 614 615 // For a given instruction, check if there are any bits of RR that can remain 616 // unchanged across this def. 617 bool TargetOperandInfo::isPreserving(const MachineInstr &In, unsigned OpNum) 618 const { 619 return TII.isPredicated(In); 620 } 621 622 // Check if the definition of RR produces an unspecified value. 623 bool TargetOperandInfo::isClobbering(const MachineInstr &In, unsigned OpNum) 624 const { 625 const MachineOperand &Op = In.getOperand(OpNum); 626 if (Op.isRegMask()) 627 return true; 628 assert(Op.isReg()); 629 if (In.isCall()) 630 if (Op.isDef() && Op.isDead()) 631 return true; 632 return false; 633 } 634 635 // Check if the given instruction specifically requires 636 bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum) 637 const { 638 if (In.isCall() || In.isReturn() || In.isInlineAsm()) 639 return true; 640 // Check for a tail call. 641 if (In.isBranch()) 642 for (const MachineOperand &O : In.operands()) 643 if (O.isGlobal() || O.isSymbol()) 644 return true; 645 646 const MCInstrDesc &D = In.getDesc(); 647 if (!D.getImplicitDefs() && !D.getImplicitUses()) 648 return false; 649 const MachineOperand &Op = In.getOperand(OpNum); 650 // If there is a sub-register, treat the operand as non-fixed. Currently, 651 // fixed registers are those that are listed in the descriptor as implicit 652 // uses or defs, and those lists do not allow sub-registers. 653 if (Op.getSubReg() != 0) 654 return false; 655 RegisterId Reg = Op.getReg(); 656 const MCPhysReg *ImpR = Op.isDef() ? D.getImplicitDefs() 657 : D.getImplicitUses(); 658 if (!ImpR) 659 return false; 660 while (*ImpR) 661 if (*ImpR++ == Reg) 662 return true; 663 return false; 664 } 665 666 // 667 // The data flow graph construction. 668 // 669 670 DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, 671 const TargetRegisterInfo &tri, const MachineDominatorTree &mdt, 672 const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi) 673 : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi), 674 LiveIns(PRI) { 675 } 676 677 // The implementation of the definition stack. 678 // Each register reference has its own definition stack. In particular, 679 // for a register references "Reg" and "Reg:subreg" will each have their 680 // own definition stacks. 681 682 // Construct a stack iterator. 683 DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S, 684 bool Top) : DS(S) { 685 if (!Top) { 686 // Initialize to bottom. 687 Pos = 0; 688 return; 689 } 690 // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty). 691 Pos = DS.Stack.size(); 692 while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos-1])) 693 Pos--; 694 } 695 696 // Return the size of the stack, including block delimiters. 697 unsigned DataFlowGraph::DefStack::size() const { 698 unsigned S = 0; 699 for (auto I = top(), E = bottom(); I != E; I.down()) 700 S++; 701 return S; 702 } 703 704 // Remove the top entry from the stack. Remove all intervening delimiters 705 // so that after this, the stack is either empty, or the top of the stack 706 // is a non-delimiter. 707 void DataFlowGraph::DefStack::pop() { 708 assert(!empty()); 709 unsigned P = nextDown(Stack.size()); 710 Stack.resize(P); 711 } 712 713 // Push a delimiter for block node N on the stack. 714 void DataFlowGraph::DefStack::start_block(NodeId N) { 715 assert(N != 0); 716 Stack.push_back(NodeAddr<DefNode*>(nullptr, N)); 717 } 718 719 // Remove all nodes from the top of the stack, until the delimited for 720 // block node N is encountered. Remove the delimiter as well. In effect, 721 // this will remove from the stack all definitions from block N. 722 void DataFlowGraph::DefStack::clear_block(NodeId N) { 723 assert(N != 0); 724 unsigned P = Stack.size(); 725 while (P > 0) { 726 bool Found = isDelimiter(Stack[P-1], N); 727 P--; 728 if (Found) 729 break; 730 } 731 // This will also remove the delimiter, if found. 732 Stack.resize(P); 733 } 734 735 // Move the stack iterator up by one. 736 unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const { 737 // Get the next valid position after P (skipping all delimiters). 738 // The input position P does not have to point to a non-delimiter. 739 unsigned SS = Stack.size(); 740 bool IsDelim; 741 assert(P < SS); 742 do { 743 P++; 744 IsDelim = isDelimiter(Stack[P-1]); 745 } while (P < SS && IsDelim); 746 assert(!IsDelim); 747 return P; 748 } 749 750 // Move the stack iterator down by one. 751 unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const { 752 // Get the preceding valid position before P (skipping all delimiters). 753 // The input position P does not have to point to a non-delimiter. 754 assert(P > 0 && P <= Stack.size()); 755 bool IsDelim = isDelimiter(Stack[P-1]); 756 do { 757 if (--P == 0) 758 break; 759 IsDelim = isDelimiter(Stack[P-1]); 760 } while (P > 0 && IsDelim); 761 assert(!IsDelim); 762 return P; 763 } 764 765 // Register information. 766 767 RegisterSet DataFlowGraph::getLandingPadLiveIns() const { 768 RegisterSet LR; 769 const Function &F = MF.getFunction(); 770 const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn() 771 : nullptr; 772 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 773 if (RegisterId R = TLI.getExceptionPointerRegister(PF)) 774 LR.insert(RegisterRef(R)); 775 if (RegisterId R = TLI.getExceptionSelectorRegister(PF)) 776 LR.insert(RegisterRef(R)); 777 return LR; 778 } 779 780 // Node management functions. 781 782 // Get the pointer to the node with the id N. 783 NodeBase *DataFlowGraph::ptr(NodeId N) const { 784 if (N == 0) 785 return nullptr; 786 return Memory.ptr(N); 787 } 788 789 // Get the id of the node at the address P. 790 NodeId DataFlowGraph::id(const NodeBase *P) const { 791 if (P == nullptr) 792 return 0; 793 return Memory.id(P); 794 } 795 796 // Allocate a new node and set the attributes to Attrs. 797 NodeAddr<NodeBase*> DataFlowGraph::newNode(uint16_t Attrs) { 798 NodeAddr<NodeBase*> P = Memory.New(); 799 P.Addr->init(); 800 P.Addr->setAttrs(Attrs); 801 return P; 802 } 803 804 // Make a copy of the given node B, except for the data-flow links, which 805 // are set to 0. 806 NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) { 807 NodeAddr<NodeBase*> NA = newNode(0); 808 memcpy(NA.Addr, B.Addr, sizeof(NodeBase)); 809 // Ref nodes need to have the data-flow links reset. 810 if (NA.Addr->getType() == NodeAttrs::Ref) { 811 NodeAddr<RefNode*> RA = NA; 812 RA.Addr->setReachingDef(0); 813 RA.Addr->setSibling(0); 814 if (NA.Addr->getKind() == NodeAttrs::Def) { 815 NodeAddr<DefNode*> DA = NA; 816 DA.Addr->setReachedDef(0); 817 DA.Addr->setReachedUse(0); 818 } 819 } 820 return NA; 821 } 822 823 // Allocation routines for specific node types/kinds. 824 825 NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner, 826 MachineOperand &Op, uint16_t Flags) { 827 NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags); 828 UA.Addr->setRegRef(&Op, *this); 829 return UA; 830 } 831 832 NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner, 833 RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) { 834 NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags); 835 assert(Flags & NodeAttrs::PhiRef); 836 PUA.Addr->setRegRef(RR, *this); 837 PUA.Addr->setPredecessor(PredB.Id); 838 return PUA; 839 } 840 841 NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner, 842 MachineOperand &Op, uint16_t Flags) { 843 NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags); 844 DA.Addr->setRegRef(&Op, *this); 845 return DA; 846 } 847 848 NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner, 849 RegisterRef RR, uint16_t Flags) { 850 NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags); 851 assert(Flags & NodeAttrs::PhiRef); 852 DA.Addr->setRegRef(RR, *this); 853 return DA; 854 } 855 856 NodeAddr<PhiNode*> DataFlowGraph::newPhi(NodeAddr<BlockNode*> Owner) { 857 NodeAddr<PhiNode*> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi); 858 Owner.Addr->addPhi(PA, *this); 859 return PA; 860 } 861 862 NodeAddr<StmtNode*> DataFlowGraph::newStmt(NodeAddr<BlockNode*> Owner, 863 MachineInstr *MI) { 864 NodeAddr<StmtNode*> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt); 865 SA.Addr->setCode(MI); 866 Owner.Addr->addMember(SA, *this); 867 return SA; 868 } 869 870 NodeAddr<BlockNode*> DataFlowGraph::newBlock(NodeAddr<FuncNode*> Owner, 871 MachineBasicBlock *BB) { 872 NodeAddr<BlockNode*> BA = newNode(NodeAttrs::Code | NodeAttrs::Block); 873 BA.Addr->setCode(BB); 874 Owner.Addr->addMember(BA, *this); 875 return BA; 876 } 877 878 NodeAddr<FuncNode*> DataFlowGraph::newFunc(MachineFunction *MF) { 879 NodeAddr<FuncNode*> FA = newNode(NodeAttrs::Code | NodeAttrs::Func); 880 FA.Addr->setCode(MF); 881 return FA; 882 } 883 884 // Build the data flow graph. 885 void DataFlowGraph::build(unsigned Options) { 886 reset(); 887 Func = newFunc(&MF); 888 889 if (MF.empty()) 890 return; 891 892 for (MachineBasicBlock &B : MF) { 893 NodeAddr<BlockNode*> BA = newBlock(Func, &B); 894 BlockNodes.insert(std::make_pair(&B, BA)); 895 for (MachineInstr &I : B) { 896 if (I.isDebugInstr()) 897 continue; 898 buildStmt(BA, I); 899 } 900 } 901 902 NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this); 903 NodeList Blocks = Func.Addr->members(*this); 904 905 // Collect information about block references. 906 RegisterSet AllRefs; 907 for (NodeAddr<BlockNode*> BA : Blocks) 908 for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) 909 for (NodeAddr<RefNode*> RA : IA.Addr->members(*this)) 910 AllRefs.insert(RA.Addr->getRegRef(*this)); 911 912 // Collect function live-ins and entry block live-ins. 913 MachineRegisterInfo &MRI = MF.getRegInfo(); 914 MachineBasicBlock &EntryB = *EA.Addr->getCode(); 915 assert(EntryB.pred_empty() && "Function entry block has predecessors"); 916 for (std::pair<unsigned,unsigned> P : MRI.liveins()) 917 LiveIns.insert(RegisterRef(P.first)); 918 if (MRI.tracksLiveness()) { 919 for (auto I : EntryB.liveins()) 920 LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask)); 921 } 922 923 // Add function-entry phi nodes for the live-in registers. 924 //for (std::pair<RegisterId,LaneBitmask> P : LiveIns) { 925 for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) { 926 RegisterRef RR = *I; 927 NodeAddr<PhiNode*> PA = newPhi(EA); 928 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; 929 NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); 930 PA.Addr->addMember(DA, *this); 931 } 932 933 // Add phis for landing pads. 934 // Landing pads, unlike usual backs blocks, are not entered through 935 // branches in the program, or fall-throughs from other blocks. They 936 // are entered from the exception handling runtime and target's ABI 937 // may define certain registers as defined on entry to such a block. 938 RegisterSet EHRegs = getLandingPadLiveIns(); 939 if (!EHRegs.empty()) { 940 for (NodeAddr<BlockNode*> BA : Blocks) { 941 const MachineBasicBlock &B = *BA.Addr->getCode(); 942 if (!B.isEHPad()) 943 continue; 944 945 // Prepare a list of NodeIds of the block's predecessors. 946 NodeList Preds; 947 for (MachineBasicBlock *PB : B.predecessors()) 948 Preds.push_back(findBlock(PB)); 949 950 // Build phi nodes for each live-in. 951 for (RegisterRef RR : EHRegs) { 952 NodeAddr<PhiNode*> PA = newPhi(BA); 953 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; 954 // Add def: 955 NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); 956 PA.Addr->addMember(DA, *this); 957 // Add uses (no reaching defs for phi uses): 958 for (NodeAddr<BlockNode*> PBA : Preds) { 959 NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA); 960 PA.Addr->addMember(PUA, *this); 961 } 962 } 963 } 964 } 965 966 // Build a map "PhiM" which will contain, for each block, the set 967 // of references that will require phi definitions in that block. 968 BlockRefsMap PhiM; 969 for (NodeAddr<BlockNode*> BA : Blocks) 970 recordDefsForDF(PhiM, BA); 971 for (NodeAddr<BlockNode*> BA : Blocks) 972 buildPhis(PhiM, AllRefs, BA); 973 974 // Link all the refs. This will recursively traverse the dominator tree. 975 DefStackMap DM; 976 linkBlockRefs(DM, EA); 977 978 // Finally, remove all unused phi nodes. 979 if (!(Options & BuildOptions::KeepDeadPhis)) 980 removeUnusedPhis(); 981 } 982 983 RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const { 984 assert(PhysicalRegisterInfo::isRegMaskId(Reg) || 985 TargetRegisterInfo::isPhysicalRegister(Reg)); 986 assert(Reg != 0); 987 if (Sub != 0) 988 Reg = TRI.getSubReg(Reg, Sub); 989 return RegisterRef(Reg); 990 } 991 992 RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const { 993 assert(Op.isReg() || Op.isRegMask()); 994 if (Op.isReg()) 995 return makeRegRef(Op.getReg(), Op.getSubReg()); 996 return RegisterRef(PRI.getRegMaskId(Op.getRegMask()), LaneBitmask::getAll()); 997 } 998 999 RegisterRef DataFlowGraph::restrictRef(RegisterRef AR, RegisterRef BR) const { 1000 if (AR.Reg == BR.Reg) { 1001 LaneBitmask M = AR.Mask & BR.Mask; 1002 return M.any() ? RegisterRef(AR.Reg, M) : RegisterRef(); 1003 } 1004 #ifndef NDEBUG 1005 // RegisterRef NAR = PRI.normalize(AR); 1006 // RegisterRef NBR = PRI.normalize(BR); 1007 // assert(NAR.Reg != NBR.Reg); 1008 #endif 1009 // This isn't strictly correct, because the overlap may happen in the 1010 // part masked out. 1011 if (PRI.alias(AR, BR)) 1012 return AR; 1013 return RegisterRef(); 1014 } 1015 1016 // For each stack in the map DefM, push the delimiter for block B on it. 1017 void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) { 1018 // Push block delimiters. 1019 for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I) 1020 I->second.start_block(B); 1021 } 1022 1023 // Remove all definitions coming from block B from each stack in DefM. 1024 void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) { 1025 // Pop all defs from this block from the definition stack. Defs that were 1026 // added to the map during the traversal of instructions will not have a 1027 // delimiter, but for those, the whole stack will be emptied. 1028 for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I) 1029 I->second.clear_block(B); 1030 1031 // Finally, remove empty stacks from the map. 1032 for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) { 1033 NextI = std::next(I); 1034 // This preserves the validity of iterators other than I. 1035 if (I->second.empty()) 1036 DefM.erase(I); 1037 } 1038 } 1039 1040 // Push all definitions from the instruction node IA to an appropriate 1041 // stack in DefM. 1042 void DataFlowGraph::pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) { 1043 pushClobbers(IA, DefM); 1044 pushDefs(IA, DefM); 1045 } 1046 1047 // Push all definitions from the instruction node IA to an appropriate 1048 // stack in DefM. 1049 void DataFlowGraph::pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DefM) { 1050 NodeSet Visited; 1051 std::set<RegisterId> Defined; 1052 1053 // The important objectives of this function are: 1054 // - to be able to handle instructions both while the graph is being 1055 // constructed, and after the graph has been constructed, and 1056 // - maintain proper ordering of definitions on the stack for each 1057 // register reference: 1058 // - if there are two or more related defs in IA (i.e. coming from 1059 // the same machine operand), then only push one def on the stack, 1060 // - if there are multiple unrelated defs of non-overlapping 1061 // subregisters of S, then the stack for S will have both (in an 1062 // unspecified order), but the order does not matter from the data- 1063 // -flow perspective. 1064 1065 for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) { 1066 if (Visited.count(DA.Id)) 1067 continue; 1068 if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering)) 1069 continue; 1070 1071 NodeList Rel = getRelatedRefs(IA, DA); 1072 NodeAddr<DefNode*> PDA = Rel.front(); 1073 RegisterRef RR = PDA.Addr->getRegRef(*this); 1074 1075 // Push the definition on the stack for the register and all aliases. 1076 // The def stack traversal in linkNodeUp will check the exact aliasing. 1077 DefM[RR.Reg].push(DA); 1078 Defined.insert(RR.Reg); 1079 for (RegisterId A : PRI.getAliasSet(RR.Reg)) { 1080 // Check that we don't push the same def twice. 1081 assert(A != RR.Reg); 1082 if (!Defined.count(A)) 1083 DefM[A].push(DA); 1084 } 1085 // Mark all the related defs as visited. 1086 for (NodeAddr<NodeBase*> T : Rel) 1087 Visited.insert(T.Id); 1088 } 1089 } 1090 1091 // Push all definitions from the instruction node IA to an appropriate 1092 // stack in DefM. 1093 void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) { 1094 NodeSet Visited; 1095 #ifndef NDEBUG 1096 std::set<RegisterId> Defined; 1097 #endif 1098 1099 // The important objectives of this function are: 1100 // - to be able to handle instructions both while the graph is being 1101 // constructed, and after the graph has been constructed, and 1102 // - maintain proper ordering of definitions on the stack for each 1103 // register reference: 1104 // - if there are two or more related defs in IA (i.e. coming from 1105 // the same machine operand), then only push one def on the stack, 1106 // - if there are multiple unrelated defs of non-overlapping 1107 // subregisters of S, then the stack for S will have both (in an 1108 // unspecified order), but the order does not matter from the data- 1109 // -flow perspective. 1110 1111 for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) { 1112 if (Visited.count(DA.Id)) 1113 continue; 1114 if (DA.Addr->getFlags() & NodeAttrs::Clobbering) 1115 continue; 1116 1117 NodeList Rel = getRelatedRefs(IA, DA); 1118 NodeAddr<DefNode*> PDA = Rel.front(); 1119 RegisterRef RR = PDA.Addr->getRegRef(*this); 1120 #ifndef NDEBUG 1121 // Assert if the register is defined in two or more unrelated defs. 1122 // This could happen if there are two or more def operands defining it. 1123 if (!Defined.insert(RR.Reg).second) { 1124 MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode(); 1125 dbgs() << "Multiple definitions of register: " 1126 << Print<RegisterRef>(RR, *this) << " in\n " << *MI << "in " 1127 << printMBBReference(*MI->getParent()) << '\n'; 1128 llvm_unreachable(nullptr); 1129 } 1130 #endif 1131 // Push the definition on the stack for the register and all aliases. 1132 // The def stack traversal in linkNodeUp will check the exact aliasing. 1133 DefM[RR.Reg].push(DA); 1134 for (RegisterId A : PRI.getAliasSet(RR.Reg)) { 1135 // Check that we don't push the same def twice. 1136 assert(A != RR.Reg); 1137 DefM[A].push(DA); 1138 } 1139 // Mark all the related defs as visited. 1140 for (NodeAddr<NodeBase*> T : Rel) 1141 Visited.insert(T.Id); 1142 } 1143 } 1144 1145 // Return the list of all reference nodes related to RA, including RA itself. 1146 // See "getNextRelated" for the meaning of a "related reference". 1147 NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA, 1148 NodeAddr<RefNode*> RA) const { 1149 assert(IA.Id != 0 && RA.Id != 0); 1150 1151 NodeList Refs; 1152 NodeId Start = RA.Id; 1153 do { 1154 Refs.push_back(RA); 1155 RA = getNextRelated(IA, RA); 1156 } while (RA.Id != 0 && RA.Id != Start); 1157 return Refs; 1158 } 1159 1160 // Clear all information in the graph. 1161 void DataFlowGraph::reset() { 1162 Memory.clear(); 1163 BlockNodes.clear(); 1164 Func = NodeAddr<FuncNode*>(); 1165 } 1166 1167 // Return the next reference node in the instruction node IA that is related 1168 // to RA. Conceptually, two reference nodes are related if they refer to the 1169 // same instance of a register access, but differ in flags or other minor 1170 // characteristics. Specific examples of related nodes are shadow reference 1171 // nodes. 1172 // Return the equivalent of nullptr if there are no more related references. 1173 NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA, 1174 NodeAddr<RefNode*> RA) const { 1175 assert(IA.Id != 0 && RA.Id != 0); 1176 1177 auto Related = [this,RA](NodeAddr<RefNode*> TA) -> bool { 1178 if (TA.Addr->getKind() != RA.Addr->getKind()) 1179 return false; 1180 if (TA.Addr->getRegRef(*this) != RA.Addr->getRegRef(*this)) 1181 return false; 1182 return true; 1183 }; 1184 auto RelatedStmt = [&Related,RA](NodeAddr<RefNode*> TA) -> bool { 1185 return Related(TA) && 1186 &RA.Addr->getOp() == &TA.Addr->getOp(); 1187 }; 1188 auto RelatedPhi = [&Related,RA](NodeAddr<RefNode*> TA) -> bool { 1189 if (!Related(TA)) 1190 return false; 1191 if (TA.Addr->getKind() != NodeAttrs::Use) 1192 return true; 1193 // For phi uses, compare predecessor blocks. 1194 const NodeAddr<const PhiUseNode*> TUA = TA; 1195 const NodeAddr<const PhiUseNode*> RUA = RA; 1196 return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor(); 1197 }; 1198 1199 RegisterRef RR = RA.Addr->getRegRef(*this); 1200 if (IA.Addr->getKind() == NodeAttrs::Stmt) 1201 return RA.Addr->getNextRef(RR, RelatedStmt, true, *this); 1202 return RA.Addr->getNextRef(RR, RelatedPhi, true, *this); 1203 } 1204 1205 // Find the next node related to RA in IA that satisfies condition P. 1206 // If such a node was found, return a pair where the second element is the 1207 // located node. If such a node does not exist, return a pair where the 1208 // first element is the element after which such a node should be inserted, 1209 // and the second element is a null-address. 1210 template <typename Predicate> 1211 std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>> 1212 DataFlowGraph::locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA, 1213 Predicate P) const { 1214 assert(IA.Id != 0 && RA.Id != 0); 1215 1216 NodeAddr<RefNode*> NA; 1217 NodeId Start = RA.Id; 1218 while (true) { 1219 NA = getNextRelated(IA, RA); 1220 if (NA.Id == 0 || NA.Id == Start) 1221 break; 1222 if (P(NA)) 1223 break; 1224 RA = NA; 1225 } 1226 1227 if (NA.Id != 0 && NA.Id != Start) 1228 return std::make_pair(RA, NA); 1229 return std::make_pair(RA, NodeAddr<RefNode*>()); 1230 } 1231 1232 // Get the next shadow node in IA corresponding to RA, and optionally create 1233 // such a node if it does not exist. 1234 NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA, 1235 NodeAddr<RefNode*> RA, bool Create) { 1236 assert(IA.Id != 0 && RA.Id != 0); 1237 1238 uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow; 1239 auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool { 1240 return TA.Addr->getFlags() == Flags; 1241 }; 1242 auto Loc = locateNextRef(IA, RA, IsShadow); 1243 if (Loc.second.Id != 0 || !Create) 1244 return Loc.second; 1245 1246 // Create a copy of RA and mark is as shadow. 1247 NodeAddr<RefNode*> NA = cloneNode(RA); 1248 NA.Addr->setFlags(Flags | NodeAttrs::Shadow); 1249 IA.Addr->addMemberAfter(Loc.first, NA, *this); 1250 return NA; 1251 } 1252 1253 // Get the next shadow node in IA corresponding to RA. Return null-address 1254 // if such a node does not exist. 1255 NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA, 1256 NodeAddr<RefNode*> RA) const { 1257 assert(IA.Id != 0 && RA.Id != 0); 1258 uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow; 1259 auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool { 1260 return TA.Addr->getFlags() == Flags; 1261 }; 1262 return locateNextRef(IA, RA, IsShadow).second; 1263 } 1264 1265 // Create a new statement node in the block node BA that corresponds to 1266 // the machine instruction MI. 1267 void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) { 1268 NodeAddr<StmtNode*> SA = newStmt(BA, &In); 1269 1270 auto isCall = [] (const MachineInstr &In) -> bool { 1271 if (In.isCall()) 1272 return true; 1273 // Is tail call? 1274 if (In.isBranch()) { 1275 for (const MachineOperand &Op : In.operands()) 1276 if (Op.isGlobal() || Op.isSymbol()) 1277 return true; 1278 // Assume indirect branches are calls. This is for the purpose of 1279 // keeping implicit operands, and so it won't hurt on intra-function 1280 // indirect branches. 1281 if (In.isIndirectBranch()) 1282 return true; 1283 } 1284 return false; 1285 }; 1286 1287 auto isDefUndef = [this] (const MachineInstr &In, RegisterRef DR) -> bool { 1288 // This instruction defines DR. Check if there is a use operand that 1289 // would make DR live on entry to the instruction. 1290 for (const MachineOperand &Op : In.operands()) { 1291 if (!Op.isReg() || Op.getReg() == 0 || !Op.isUse() || Op.isUndef()) 1292 continue; 1293 RegisterRef UR = makeRegRef(Op); 1294 if (PRI.alias(DR, UR)) 1295 return false; 1296 } 1297 return true; 1298 }; 1299 1300 bool IsCall = isCall(In); 1301 unsigned NumOps = In.getNumOperands(); 1302 1303 // Avoid duplicate implicit defs. This will not detect cases of implicit 1304 // defs that define registers that overlap, but it is not clear how to 1305 // interpret that in the absence of explicit defs. Overlapping explicit 1306 // defs are likely illegal already. 1307 BitVector DoneDefs(TRI.getNumRegs()); 1308 // Process explicit defs first. 1309 for (unsigned OpN = 0; OpN < NumOps; ++OpN) { 1310 MachineOperand &Op = In.getOperand(OpN); 1311 if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) 1312 continue; 1313 unsigned R = Op.getReg(); 1314 if (!R || !TargetRegisterInfo::isPhysicalRegister(R)) 1315 continue; 1316 uint16_t Flags = NodeAttrs::None; 1317 if (TOI.isPreserving(In, OpN)) { 1318 Flags |= NodeAttrs::Preserving; 1319 // If the def is preserving, check if it is also undefined. 1320 if (isDefUndef(In, makeRegRef(Op))) 1321 Flags |= NodeAttrs::Undef; 1322 } 1323 if (TOI.isClobbering(In, OpN)) 1324 Flags |= NodeAttrs::Clobbering; 1325 if (TOI.isFixedReg(In, OpN)) 1326 Flags |= NodeAttrs::Fixed; 1327 if (IsCall && Op.isDead()) 1328 Flags |= NodeAttrs::Dead; 1329 NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); 1330 SA.Addr->addMember(DA, *this); 1331 assert(!DoneDefs.test(R)); 1332 DoneDefs.set(R); 1333 } 1334 1335 // Process reg-masks (as clobbers). 1336 BitVector DoneClobbers(TRI.getNumRegs()); 1337 for (unsigned OpN = 0; OpN < NumOps; ++OpN) { 1338 MachineOperand &Op = In.getOperand(OpN); 1339 if (!Op.isRegMask()) 1340 continue; 1341 uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed | 1342 NodeAttrs::Dead; 1343 NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); 1344 SA.Addr->addMember(DA, *this); 1345 // Record all clobbered registers in DoneDefs. 1346 const uint32_t *RM = Op.getRegMask(); 1347 for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i) 1348 if (!(RM[i/32] & (1u << (i%32)))) 1349 DoneClobbers.set(i); 1350 } 1351 1352 // Process implicit defs, skipping those that have already been added 1353 // as explicit. 1354 for (unsigned OpN = 0; OpN < NumOps; ++OpN) { 1355 MachineOperand &Op = In.getOperand(OpN); 1356 if (!Op.isReg() || !Op.isDef() || !Op.isImplicit()) 1357 continue; 1358 unsigned R = Op.getReg(); 1359 if (!R || !TargetRegisterInfo::isPhysicalRegister(R) || DoneDefs.test(R)) 1360 continue; 1361 RegisterRef RR = makeRegRef(Op); 1362 uint16_t Flags = NodeAttrs::None; 1363 if (TOI.isPreserving(In, OpN)) { 1364 Flags |= NodeAttrs::Preserving; 1365 // If the def is preserving, check if it is also undefined. 1366 if (isDefUndef(In, RR)) 1367 Flags |= NodeAttrs::Undef; 1368 } 1369 if (TOI.isClobbering(In, OpN)) 1370 Flags |= NodeAttrs::Clobbering; 1371 if (TOI.isFixedReg(In, OpN)) 1372 Flags |= NodeAttrs::Fixed; 1373 if (IsCall && Op.isDead()) { 1374 if (DoneClobbers.test(R)) 1375 continue; 1376 Flags |= NodeAttrs::Dead; 1377 } 1378 NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); 1379 SA.Addr->addMember(DA, *this); 1380 DoneDefs.set(R); 1381 } 1382 1383 for (unsigned OpN = 0; OpN < NumOps; ++OpN) { 1384 MachineOperand &Op = In.getOperand(OpN); 1385 if (!Op.isReg() || !Op.isUse()) 1386 continue; 1387 unsigned R = Op.getReg(); 1388 if (!R || !TargetRegisterInfo::isPhysicalRegister(R)) 1389 continue; 1390 uint16_t Flags = NodeAttrs::None; 1391 if (Op.isUndef()) 1392 Flags |= NodeAttrs::Undef; 1393 if (TOI.isFixedReg(In, OpN)) 1394 Flags |= NodeAttrs::Fixed; 1395 NodeAddr<UseNode*> UA = newUse(SA, Op, Flags); 1396 SA.Addr->addMember(UA, *this); 1397 } 1398 } 1399 1400 // Scan all defs in the block node BA and record in PhiM the locations of 1401 // phi nodes corresponding to these defs. 1402 void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM, 1403 NodeAddr<BlockNode*> BA) { 1404 // Check all defs from block BA and record them in each block in BA's 1405 // iterated dominance frontier. This information will later be used to 1406 // create phi nodes. 1407 MachineBasicBlock *BB = BA.Addr->getCode(); 1408 assert(BB); 1409 auto DFLoc = MDF.find(BB); 1410 if (DFLoc == MDF.end() || DFLoc->second.empty()) 1411 return; 1412 1413 // Traverse all instructions in the block and collect the set of all 1414 // defined references. For each reference there will be a phi created 1415 // in the block's iterated dominance frontier. 1416 // This is done to make sure that each defined reference gets only one 1417 // phi node, even if it is defined multiple times. 1418 RegisterSet Defs; 1419 for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) 1420 for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this)) 1421 Defs.insert(RA.Addr->getRegRef(*this)); 1422 1423 // Calculate the iterated dominance frontier of BB. 1424 const MachineDominanceFrontier::DomSetType &DF = DFLoc->second; 1425 SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end()); 1426 for (unsigned i = 0; i < IDF.size(); ++i) { 1427 auto F = MDF.find(IDF[i]); 1428 if (F != MDF.end()) 1429 IDF.insert(F->second.begin(), F->second.end()); 1430 } 1431 1432 // Finally, add the set of defs to each block in the iterated dominance 1433 // frontier. 1434 for (auto DB : IDF) { 1435 NodeAddr<BlockNode*> DBA = findBlock(DB); 1436 PhiM[DBA.Id].insert(Defs.begin(), Defs.end()); 1437 } 1438 } 1439 1440 // Given the locations of phi nodes in the map PhiM, create the phi nodes 1441 // that are located in the block node BA. 1442 void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs, 1443 NodeAddr<BlockNode*> BA) { 1444 // Check if this blocks has any DF defs, i.e. if there are any defs 1445 // that this block is in the iterated dominance frontier of. 1446 auto HasDF = PhiM.find(BA.Id); 1447 if (HasDF == PhiM.end() || HasDF->second.empty()) 1448 return; 1449 1450 // First, remove all R in Refs in such that there exists T in Refs 1451 // such that T covers R. In other words, only leave those refs that 1452 // are not covered by another ref (i.e. maximal with respect to covering). 1453 1454 auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef { 1455 for (RegisterRef I : RRs) 1456 if (I != RR && RegisterAggr::isCoverOf(I, RR, PRI)) 1457 RR = I; 1458 return RR; 1459 }; 1460 1461 RegisterSet MaxDF; 1462 for (RegisterRef I : HasDF->second) 1463 MaxDF.insert(MaxCoverIn(I, HasDF->second)); 1464 1465 std::vector<RegisterRef> MaxRefs; 1466 for (RegisterRef I : MaxDF) 1467 MaxRefs.push_back(MaxCoverIn(I, AllRefs)); 1468 1469 // Now, for each R in MaxRefs, get the alias closure of R. If the closure 1470 // only has R in it, create a phi a def for R. Otherwise, create a phi, 1471 // and add a def for each S in the closure. 1472 1473 // Sort the refs so that the phis will be created in a deterministic order. 1474 llvm::sort(MaxRefs); 1475 // Remove duplicates. 1476 auto NewEnd = std::unique(MaxRefs.begin(), MaxRefs.end()); 1477 MaxRefs.erase(NewEnd, MaxRefs.end()); 1478 1479 auto Aliased = [this,&MaxRefs](RegisterRef RR, 1480 std::vector<unsigned> &Closure) -> bool { 1481 for (unsigned I : Closure) 1482 if (PRI.alias(RR, MaxRefs[I])) 1483 return true; 1484 return false; 1485 }; 1486 1487 // Prepare a list of NodeIds of the block's predecessors. 1488 NodeList Preds; 1489 const MachineBasicBlock *MBB = BA.Addr->getCode(); 1490 for (MachineBasicBlock *PB : MBB->predecessors()) 1491 Preds.push_back(findBlock(PB)); 1492 1493 while (!MaxRefs.empty()) { 1494 // Put the first element in the closure, and then add all subsequent 1495 // elements from MaxRefs to it, if they alias at least one element 1496 // already in the closure. 1497 // ClosureIdx: vector of indices in MaxRefs of members of the closure. 1498 std::vector<unsigned> ClosureIdx = { 0 }; 1499 for (unsigned i = 1; i != MaxRefs.size(); ++i) 1500 if (Aliased(MaxRefs[i], ClosureIdx)) 1501 ClosureIdx.push_back(i); 1502 1503 // Build a phi for the closure. 1504 unsigned CS = ClosureIdx.size(); 1505 NodeAddr<PhiNode*> PA = newPhi(BA); 1506 1507 // Add defs. 1508 for (unsigned X = 0; X != CS; ++X) { 1509 RegisterRef RR = MaxRefs[ClosureIdx[X]]; 1510 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; 1511 NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); 1512 PA.Addr->addMember(DA, *this); 1513 } 1514 // Add phi uses. 1515 for (NodeAddr<BlockNode*> PBA : Preds) { 1516 for (unsigned X = 0; X != CS; ++X) { 1517 RegisterRef RR = MaxRefs[ClosureIdx[X]]; 1518 NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA); 1519 PA.Addr->addMember(PUA, *this); 1520 } 1521 } 1522 1523 // Erase from MaxRefs all elements in the closure. 1524 auto Begin = MaxRefs.begin(); 1525 for (unsigned i = ClosureIdx.size(); i != 0; --i) 1526 MaxRefs.erase(Begin + ClosureIdx[i-1]); 1527 } 1528 } 1529 1530 // Remove any unneeded phi nodes that were created during the build process. 1531 void DataFlowGraph::removeUnusedPhis() { 1532 // This will remove unused phis, i.e. phis where each def does not reach 1533 // any uses or other defs. This will not detect or remove circular phi 1534 // chains that are otherwise dead. Unused/dead phis are created during 1535 // the build process and this function is intended to remove these cases 1536 // that are easily determinable to be unnecessary. 1537 1538 SetVector<NodeId> PhiQ; 1539 for (NodeAddr<BlockNode*> BA : Func.Addr->members(*this)) { 1540 for (auto P : BA.Addr->members_if(IsPhi, *this)) 1541 PhiQ.insert(P.Id); 1542 } 1543 1544 static auto HasUsedDef = [](NodeList &Ms) -> bool { 1545 for (NodeAddr<NodeBase*> M : Ms) { 1546 if (M.Addr->getKind() != NodeAttrs::Def) 1547 continue; 1548 NodeAddr<DefNode*> DA = M; 1549 if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0) 1550 return true; 1551 } 1552 return false; 1553 }; 1554 1555 // Any phi, if it is removed, may affect other phis (make them dead). 1556 // For each removed phi, collect the potentially affected phis and add 1557 // them back to the queue. 1558 while (!PhiQ.empty()) { 1559 auto PA = addr<PhiNode*>(PhiQ[0]); 1560 PhiQ.remove(PA.Id); 1561 NodeList Refs = PA.Addr->members(*this); 1562 if (HasUsedDef(Refs)) 1563 continue; 1564 for (NodeAddr<RefNode*> RA : Refs) { 1565 if (NodeId RD = RA.Addr->getReachingDef()) { 1566 auto RDA = addr<DefNode*>(RD); 1567 NodeAddr<InstrNode*> OA = RDA.Addr->getOwner(*this); 1568 if (IsPhi(OA)) 1569 PhiQ.insert(OA.Id); 1570 } 1571 if (RA.Addr->isDef()) 1572 unlinkDef(RA, true); 1573 else 1574 unlinkUse(RA, true); 1575 } 1576 NodeAddr<BlockNode*> BA = PA.Addr->getOwner(*this); 1577 BA.Addr->removeMember(PA, *this); 1578 } 1579 } 1580 1581 // For a given reference node TA in an instruction node IA, connect the 1582 // reaching def of TA to the appropriate def node. Create any shadow nodes 1583 // as appropriate. 1584 template <typename T> 1585 void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA, 1586 DefStack &DS) { 1587 if (DS.empty()) 1588 return; 1589 RegisterRef RR = TA.Addr->getRegRef(*this); 1590 NodeAddr<T> TAP; 1591 1592 // References from the def stack that have been examined so far. 1593 RegisterAggr Defs(PRI); 1594 1595 for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) { 1596 RegisterRef QR = I->Addr->getRegRef(*this); 1597 1598 // Skip all defs that are aliased to any of the defs that we have already 1599 // seen. If this completes a cover of RR, stop the stack traversal. 1600 bool Alias = Defs.hasAliasOf(QR); 1601 bool Cover = Defs.insert(QR).hasCoverOf(RR); 1602 if (Alias) { 1603 if (Cover) 1604 break; 1605 continue; 1606 } 1607 1608 // The reaching def. 1609 NodeAddr<DefNode*> RDA = *I; 1610 1611 // Pick the reached node. 1612 if (TAP.Id == 0) { 1613 TAP = TA; 1614 } else { 1615 // Mark the existing ref as "shadow" and create a new shadow. 1616 TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow); 1617 TAP = getNextShadow(IA, TAP, true); 1618 } 1619 1620 // Create the link. 1621 TAP.Addr->linkToDef(TAP.Id, RDA); 1622 1623 if (Cover) 1624 break; 1625 } 1626 } 1627 1628 // Create data-flow links for all reference nodes in the statement node SA. 1629 template <typename Predicate> 1630 void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA, 1631 Predicate P) { 1632 #ifndef NDEBUG 1633 RegisterSet Defs; 1634 #endif 1635 1636 // Link all nodes (upwards in the data-flow) with their reaching defs. 1637 for (NodeAddr<RefNode*> RA : SA.Addr->members_if(P, *this)) { 1638 uint16_t Kind = RA.Addr->getKind(); 1639 assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use); 1640 RegisterRef RR = RA.Addr->getRegRef(*this); 1641 #ifndef NDEBUG 1642 // Do not expect multiple defs of the same reference. 1643 assert(Kind != NodeAttrs::Def || !Defs.count(RR)); 1644 Defs.insert(RR); 1645 #endif 1646 1647 auto F = DefM.find(RR.Reg); 1648 if (F == DefM.end()) 1649 continue; 1650 DefStack &DS = F->second; 1651 if (Kind == NodeAttrs::Use) 1652 linkRefUp<UseNode*>(SA, RA, DS); 1653 else if (Kind == NodeAttrs::Def) 1654 linkRefUp<DefNode*>(SA, RA, DS); 1655 else 1656 llvm_unreachable("Unexpected node in instruction"); 1657 } 1658 } 1659 1660 // Create data-flow links for all instructions in the block node BA. This 1661 // will include updating any phi nodes in BA. 1662 void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) { 1663 // Push block delimiters. 1664 markBlock(BA.Id, DefM); 1665 1666 auto IsClobber = [] (NodeAddr<RefNode*> RA) -> bool { 1667 return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering); 1668 }; 1669 auto IsNoClobber = [] (NodeAddr<RefNode*> RA) -> bool { 1670 return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering); 1671 }; 1672 1673 assert(BA.Addr && "block node address is needed to create a data-flow link"); 1674 // For each non-phi instruction in the block, link all the defs and uses 1675 // to their reaching defs. For any member of the block (including phis), 1676 // push the defs on the corresponding stacks. 1677 for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) { 1678 // Ignore phi nodes here. They will be linked part by part from the 1679 // predecessors. 1680 if (IA.Addr->getKind() == NodeAttrs::Stmt) { 1681 linkStmtRefs(DefM, IA, IsUse); 1682 linkStmtRefs(DefM, IA, IsClobber); 1683 } 1684 1685 // Push the definitions on the stack. 1686 pushClobbers(IA, DefM); 1687 1688 if (IA.Addr->getKind() == NodeAttrs::Stmt) 1689 linkStmtRefs(DefM, IA, IsNoClobber); 1690 1691 pushDefs(IA, DefM); 1692 } 1693 1694 // Recursively process all children in the dominator tree. 1695 MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode()); 1696 for (auto I : *N) { 1697 MachineBasicBlock *SB = I->getBlock(); 1698 NodeAddr<BlockNode*> SBA = findBlock(SB); 1699 linkBlockRefs(DefM, SBA); 1700 } 1701 1702 // Link the phi uses from the successor blocks. 1703 auto IsUseForBA = [BA](NodeAddr<NodeBase*> NA) -> bool { 1704 if (NA.Addr->getKind() != NodeAttrs::Use) 1705 return false; 1706 assert(NA.Addr->getFlags() & NodeAttrs::PhiRef); 1707 NodeAddr<PhiUseNode*> PUA = NA; 1708 return PUA.Addr->getPredecessor() == BA.Id; 1709 }; 1710 1711 RegisterSet EHLiveIns = getLandingPadLiveIns(); 1712 MachineBasicBlock *MBB = BA.Addr->getCode(); 1713 1714 for (MachineBasicBlock *SB : MBB->successors()) { 1715 bool IsEHPad = SB->isEHPad(); 1716 NodeAddr<BlockNode*> SBA = findBlock(SB); 1717 for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) { 1718 // Do not link phi uses for landing pad live-ins. 1719 if (IsEHPad) { 1720 // Find what register this phi is for. 1721 NodeAddr<RefNode*> RA = IA.Addr->getFirstMember(*this); 1722 assert(RA.Id != 0); 1723 if (EHLiveIns.count(RA.Addr->getRegRef(*this))) 1724 continue; 1725 } 1726 // Go over each phi use associated with MBB, and link it. 1727 for (auto U : IA.Addr->members_if(IsUseForBA, *this)) { 1728 NodeAddr<PhiUseNode*> PUA = U; 1729 RegisterRef RR = PUA.Addr->getRegRef(*this); 1730 linkRefUp<UseNode*>(IA, PUA, DefM[RR.Reg]); 1731 } 1732 } 1733 } 1734 1735 // Pop all defs from this block from the definition stacks. 1736 releaseBlock(BA.Id, DefM); 1737 } 1738 1739 // Remove the use node UA from any data-flow and structural links. 1740 void DataFlowGraph::unlinkUseDF(NodeAddr<UseNode*> UA) { 1741 NodeId RD = UA.Addr->getReachingDef(); 1742 NodeId Sib = UA.Addr->getSibling(); 1743 1744 if (RD == 0) { 1745 assert(Sib == 0); 1746 return; 1747 } 1748 1749 auto RDA = addr<DefNode*>(RD); 1750 auto TA = addr<UseNode*>(RDA.Addr->getReachedUse()); 1751 if (TA.Id == UA.Id) { 1752 RDA.Addr->setReachedUse(Sib); 1753 return; 1754 } 1755 1756 while (TA.Id != 0) { 1757 NodeId S = TA.Addr->getSibling(); 1758 if (S == UA.Id) { 1759 TA.Addr->setSibling(UA.Addr->getSibling()); 1760 return; 1761 } 1762 TA = addr<UseNode*>(S); 1763 } 1764 } 1765 1766 // Remove the def node DA from any data-flow and structural links. 1767 void DataFlowGraph::unlinkDefDF(NodeAddr<DefNode*> DA) { 1768 // 1769 // RD 1770 // | reached 1771 // | def 1772 // : 1773 // . 1774 // +----+ 1775 // ... -- | DA | -- ... -- 0 : sibling chain of DA 1776 // +----+ 1777 // | | reached 1778 // | : def 1779 // | . 1780 // | ... : Siblings (defs) 1781 // | 1782 // : reached 1783 // . use 1784 // ... : sibling chain of reached uses 1785 1786 NodeId RD = DA.Addr->getReachingDef(); 1787 1788 // Visit all siblings of the reached def and reset their reaching defs. 1789 // Also, defs reached by DA are now "promoted" to being reached by RD, 1790 // so all of them will need to be spliced into the sibling chain where 1791 // DA belongs. 1792 auto getAllNodes = [this] (NodeId N) -> NodeList { 1793 NodeList Res; 1794 while (N) { 1795 auto RA = addr<RefNode*>(N); 1796 // Keep the nodes in the exact sibling order. 1797 Res.push_back(RA); 1798 N = RA.Addr->getSibling(); 1799 } 1800 return Res; 1801 }; 1802 NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef()); 1803 NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse()); 1804 1805 if (RD == 0) { 1806 for (NodeAddr<RefNode*> I : ReachedDefs) 1807 I.Addr->setSibling(0); 1808 for (NodeAddr<RefNode*> I : ReachedUses) 1809 I.Addr->setSibling(0); 1810 } 1811 for (NodeAddr<DefNode*> I : ReachedDefs) 1812 I.Addr->setReachingDef(RD); 1813 for (NodeAddr<UseNode*> I : ReachedUses) 1814 I.Addr->setReachingDef(RD); 1815 1816 NodeId Sib = DA.Addr->getSibling(); 1817 if (RD == 0) { 1818 assert(Sib == 0); 1819 return; 1820 } 1821 1822 // Update the reaching def node and remove DA from the sibling list. 1823 auto RDA = addr<DefNode*>(RD); 1824 auto TA = addr<DefNode*>(RDA.Addr->getReachedDef()); 1825 if (TA.Id == DA.Id) { 1826 // If DA is the first reached def, just update the RD's reached def 1827 // to the DA's sibling. 1828 RDA.Addr->setReachedDef(Sib); 1829 } else { 1830 // Otherwise, traverse the sibling list of the reached defs and remove 1831 // DA from it. 1832 while (TA.Id != 0) { 1833 NodeId S = TA.Addr->getSibling(); 1834 if (S == DA.Id) { 1835 TA.Addr->setSibling(Sib); 1836 break; 1837 } 1838 TA = addr<DefNode*>(S); 1839 } 1840 } 1841 1842 // Splice the DA's reached defs into the RDA's reached def chain. 1843 if (!ReachedDefs.empty()) { 1844 auto Last = NodeAddr<DefNode*>(ReachedDefs.back()); 1845 Last.Addr->setSibling(RDA.Addr->getReachedDef()); 1846 RDA.Addr->setReachedDef(ReachedDefs.front().Id); 1847 } 1848 // Splice the DA's reached uses into the RDA's reached use chain. 1849 if (!ReachedUses.empty()) { 1850 auto Last = NodeAddr<UseNode*>(ReachedUses.back()); 1851 Last.Addr->setSibling(RDA.Addr->getReachedUse()); 1852 RDA.Addr->setReachedUse(ReachedUses.front().Id); 1853 } 1854 } 1855