1 //===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ARMTargetMachine.h" 14 #include "ARM.h" 15 #include "ARMMacroFusion.h" 16 #include "ARMSubtarget.h" 17 #include "ARMTargetObjectFile.h" 18 #include "ARMTargetTransformInfo.h" 19 #include "MCTargetDesc/ARMMCTargetDesc.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/CodeGen/ExecutionDomainFix.h" 26 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 27 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 28 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 29 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" 30 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 31 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 33 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineScheduler.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/CodeGen.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/TargetParser.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Target/TargetLoweringObjectFile.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/Transforms/Scalar.h" 50 #include <cassert> 51 #include <memory> 52 #include <string> 53 54 using namespace llvm; 55 56 static cl::opt<bool> 57 DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden, 58 cl::desc("Inhibit optimization of S->D register accesses on A15"), 59 cl::init(false)); 60 61 static cl::opt<bool> 62 EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden, 63 cl::desc("Run SimplifyCFG after expanding atomic operations" 64 " to make use of cmpxchg flow-based information"), 65 cl::init(true)); 66 67 static cl::opt<bool> 68 EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden, 69 cl::desc("Enable ARM load/store optimization pass"), 70 cl::init(true)); 71 72 // FIXME: Unify control over GlobalMerge. 73 static cl::opt<cl::boolOrDefault> 74 EnableGlobalMerge("arm-global-merge", cl::Hidden, 75 cl::desc("Enable the global merge pass")); 76 77 namespace llvm { 78 void initializeARMExecutionDomainFixPass(PassRegistry&); 79 } 80 81 extern "C" void LLVMInitializeARMTarget() { 82 // Register the target. 83 RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget()); 84 RegisterTargetMachine<ARMLETargetMachine> A(getTheThumbLETarget()); 85 RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget()); 86 RegisterTargetMachine<ARMBETargetMachine> B(getTheThumbBETarget()); 87 88 PassRegistry &Registry = *PassRegistry::getPassRegistry(); 89 initializeGlobalISel(Registry); 90 initializeARMLoadStoreOptPass(Registry); 91 initializeARMPreAllocLoadStoreOptPass(Registry); 92 initializeARMParallelDSPPass(Registry); 93 initializeARMCodeGenPreparePass(Registry); 94 initializeARMConstantIslandsPass(Registry); 95 initializeARMExecutionDomainFixPass(Registry); 96 initializeARMExpandPseudoPass(Registry); 97 initializeThumb2SizeReducePass(Registry); 98 } 99 100 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 101 if (TT.isOSBinFormatMachO()) 102 return llvm::make_unique<TargetLoweringObjectFileMachO>(); 103 if (TT.isOSWindows()) 104 return llvm::make_unique<TargetLoweringObjectFileCOFF>(); 105 return llvm::make_unique<ARMElfTargetObjectFile>(); 106 } 107 108 static ARMBaseTargetMachine::ARMABI 109 computeTargetABI(const Triple &TT, StringRef CPU, 110 const TargetOptions &Options) { 111 StringRef ABIName = Options.MCOptions.getABIName(); 112 113 if (ABIName.empty()) 114 ABIName = ARM::computeDefaultTargetABI(TT, CPU); 115 116 if (ABIName == "aapcs16") 117 return ARMBaseTargetMachine::ARM_ABI_AAPCS16; 118 else if (ABIName.startswith("aapcs")) 119 return ARMBaseTargetMachine::ARM_ABI_AAPCS; 120 else if (ABIName.startswith("apcs")) 121 return ARMBaseTargetMachine::ARM_ABI_APCS; 122 123 llvm_unreachable("Unhandled/unknown ABI Name!"); 124 return ARMBaseTargetMachine::ARM_ABI_UNKNOWN; 125 } 126 127 static std::string computeDataLayout(const Triple &TT, StringRef CPU, 128 const TargetOptions &Options, 129 bool isLittle) { 130 auto ABI = computeTargetABI(TT, CPU, Options); 131 std::string Ret; 132 133 if (isLittle) 134 // Little endian. 135 Ret += "e"; 136 else 137 // Big endian. 138 Ret += "E"; 139 140 Ret += DataLayout::getManglingComponent(TT); 141 142 // Pointers are 32 bits and aligned to 32 bits. 143 Ret += "-p:32:32"; 144 145 // ABIs other than APCS have 64 bit integers with natural alignment. 146 if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS) 147 Ret += "-i64:64"; 148 149 // We have 64 bits floats. The APCS ABI requires them to be aligned to 32 150 // bits, others to 64 bits. We always try to align to 64 bits. 151 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS) 152 Ret += "-f64:32:64"; 153 154 // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others 155 // to 64. We always ty to give them natural alignment. 156 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS) 157 Ret += "-v64:32:64-v128:32:128"; 158 else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16) 159 Ret += "-v128:64:128"; 160 161 // Try to align aggregates to 32 bits (the default is 64 bits, which has no 162 // particular hardware support on 32-bit ARM). 163 Ret += "-a:0:32"; 164 165 // Integer registers are 32 bits. 166 Ret += "-n32"; 167 168 // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit 169 // aligned everywhere else. 170 if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16) 171 Ret += "-S128"; 172 else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS) 173 Ret += "-S64"; 174 else 175 Ret += "-S32"; 176 177 return Ret; 178 } 179 180 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 181 Optional<Reloc::Model> RM) { 182 if (!RM.hasValue()) 183 // Default relocation model on Darwin is PIC. 184 return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static; 185 186 if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI) 187 assert(TT.isOSBinFormatELF() && 188 "ROPI/RWPI currently only supported for ELF"); 189 190 // DynamicNoPIC is only used on darwin. 191 if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin()) 192 return Reloc::Static; 193 194 return *RM; 195 } 196 197 /// Create an ARM architecture model. 198 /// 199 ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT, 200 StringRef CPU, StringRef FS, 201 const TargetOptions &Options, 202 Optional<Reloc::Model> RM, 203 Optional<CodeModel::Model> CM, 204 CodeGenOpt::Level OL, bool isLittle) 205 : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT, 206 CPU, FS, Options, getEffectiveRelocModel(TT, RM), 207 getEffectiveCodeModel(CM, CodeModel::Small), OL), 208 TargetABI(computeTargetABI(TT, CPU, Options)), 209 TLOF(createTLOF(getTargetTriple())), isLittle(isLittle) { 210 211 // Default to triple-appropriate float ABI 212 if (Options.FloatABIType == FloatABI::Default) { 213 if (isTargetHardFloat()) 214 this->Options.FloatABIType = FloatABI::Hard; 215 else 216 this->Options.FloatABIType = FloatABI::Soft; 217 } 218 219 // Default to triple-appropriate EABI 220 if (Options.EABIVersion == EABI::Default || 221 Options.EABIVersion == EABI::Unknown) { 222 // musl is compatible with glibc with regard to EABI version 223 if ((TargetTriple.getEnvironment() == Triple::GNUEABI || 224 TargetTriple.getEnvironment() == Triple::GNUEABIHF || 225 TargetTriple.getEnvironment() == Triple::MuslEABI || 226 TargetTriple.getEnvironment() == Triple::MuslEABIHF) && 227 !(TargetTriple.isOSWindows() || TargetTriple.isOSDarwin())) 228 this->Options.EABIVersion = EABI::GNU; 229 else 230 this->Options.EABIVersion = EABI::EABI5; 231 } 232 233 if (TT.isOSBinFormatMachO()) { 234 this->Options.TrapUnreachable = true; 235 this->Options.NoTrapAfterNoreturn = true; 236 } 237 238 initAsmInfo(); 239 } 240 241 ARMBaseTargetMachine::~ARMBaseTargetMachine() = default; 242 243 const ARMSubtarget * 244 ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const { 245 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 246 Attribute FSAttr = F.getFnAttribute("target-features"); 247 248 std::string CPU = !CPUAttr.hasAttribute(Attribute::None) 249 ? CPUAttr.getValueAsString().str() 250 : TargetCPU; 251 std::string FS = !FSAttr.hasAttribute(Attribute::None) 252 ? FSAttr.getValueAsString().str() 253 : TargetFS; 254 255 // FIXME: This is related to the code below to reset the target options, 256 // we need to know whether or not the soft float flag is set on the 257 // function before we can generate a subtarget. We also need to use 258 // it as a key for the subtarget since that can be the only difference 259 // between two functions. 260 bool SoftFloat = 261 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 262 // If the soft float attribute is set on the function turn on the soft float 263 // subtarget feature. 264 if (SoftFloat) 265 FS += FS.empty() ? "+soft-float" : ",+soft-float"; 266 267 auto &I = SubtargetMap[CPU + FS]; 268 if (!I) { 269 // This needs to be done before we create a new subtarget since any 270 // creation will depend on the TM and the code generation flags on the 271 // function that reside in TargetOptions. 272 resetTargetOptions(F); 273 I = llvm::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle); 274 275 if (!I->isThumb() && !I->hasARMOps()) 276 F.getContext().emitError("Function '" + F.getName() + "' uses ARM " 277 "instructions, but the target does not support ARM mode execution."); 278 } 279 280 return I.get(); 281 } 282 283 TargetTransformInfo 284 ARMBaseTargetMachine::getTargetTransformInfo(const Function &F) { 285 return TargetTransformInfo(ARMTTIImpl(this, F)); 286 } 287 288 ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT, 289 StringRef CPU, StringRef FS, 290 const TargetOptions &Options, 291 Optional<Reloc::Model> RM, 292 Optional<CodeModel::Model> CM, 293 CodeGenOpt::Level OL, bool JIT) 294 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {} 295 296 ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT, 297 StringRef CPU, StringRef FS, 298 const TargetOptions &Options, 299 Optional<Reloc::Model> RM, 300 Optional<CodeModel::Model> CM, 301 CodeGenOpt::Level OL, bool JIT) 302 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {} 303 304 namespace { 305 306 /// ARM Code Generator Pass Configuration Options. 307 class ARMPassConfig : public TargetPassConfig { 308 public: 309 ARMPassConfig(ARMBaseTargetMachine &TM, PassManagerBase &PM) 310 : TargetPassConfig(TM, PM) { 311 if (TM.getOptLevel() != CodeGenOpt::None) { 312 ARMGenSubtargetInfo STI(TM.getTargetTriple(), TM.getTargetCPU(), 313 TM.getTargetFeatureString()); 314 if (STI.hasFeature(ARM::FeatureUseMISched)) 315 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 316 } 317 } 318 319 ARMBaseTargetMachine &getARMTargetMachine() const { 320 return getTM<ARMBaseTargetMachine>(); 321 } 322 323 ScheduleDAGInstrs * 324 createMachineScheduler(MachineSchedContext *C) const override { 325 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 326 // add DAG Mutations here. 327 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>(); 328 if (ST.hasFusion()) 329 DAG->addMutation(createARMMacroFusionDAGMutation()); 330 return DAG; 331 } 332 333 ScheduleDAGInstrs * 334 createPostMachineScheduler(MachineSchedContext *C) const override { 335 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 336 // add DAG Mutations here. 337 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>(); 338 if (ST.hasFusion()) 339 DAG->addMutation(createARMMacroFusionDAGMutation()); 340 return DAG; 341 } 342 343 void addIRPasses() override; 344 void addCodeGenPrepare() override; 345 bool addPreISel() override; 346 bool addInstSelector() override; 347 bool addIRTranslator() override; 348 bool addLegalizeMachineIR() override; 349 bool addRegBankSelect() override; 350 bool addGlobalInstructionSelect() override; 351 void addPreRegAlloc() override; 352 void addPreSched2() override; 353 void addPreEmitPass() override; 354 }; 355 356 class ARMExecutionDomainFix : public ExecutionDomainFix { 357 public: 358 static char ID; 359 ARMExecutionDomainFix() : ExecutionDomainFix(ID, ARM::DPRRegClass) {} 360 StringRef getPassName() const override { 361 return "ARM Execution Domain Fix"; 362 } 363 }; 364 char ARMExecutionDomainFix::ID; 365 366 } // end anonymous namespace 367 368 INITIALIZE_PASS_BEGIN(ARMExecutionDomainFix, "arm-execution-domain-fix", 369 "ARM Execution Domain Fix", false, false) 370 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 371 INITIALIZE_PASS_END(ARMExecutionDomainFix, "arm-execution-domain-fix", 372 "ARM Execution Domain Fix", false, false) 373 374 TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) { 375 return new ARMPassConfig(*this, PM); 376 } 377 378 void ARMPassConfig::addIRPasses() { 379 if (TM->Options.ThreadModel == ThreadModel::Single) 380 addPass(createLowerAtomicPass()); 381 else 382 addPass(createAtomicExpandPass()); 383 384 // Cmpxchg instructions are often used with a subsequent comparison to 385 // determine whether it succeeded. We can exploit existing control-flow in 386 // ldrex/strex loops to simplify this, but it needs tidying up. 387 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy) 388 addPass(createCFGSimplificationPass( 389 1, false, false, true, true, [this](const Function &F) { 390 const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F); 391 return ST.hasAnyDataBarrier() && !ST.isThumb1Only(); 392 })); 393 394 TargetPassConfig::addIRPasses(); 395 396 // Match interleaved memory accesses to ldN/stN intrinsics. 397 if (TM->getOptLevel() != CodeGenOpt::None) 398 addPass(createInterleavedAccessPass()); 399 } 400 401 void ARMPassConfig::addCodeGenPrepare() { 402 if (getOptLevel() != CodeGenOpt::None) 403 addPass(createARMCodeGenPreparePass()); 404 TargetPassConfig::addCodeGenPrepare(); 405 } 406 407 bool ARMPassConfig::addPreISel() { 408 if (getOptLevel() != CodeGenOpt::None) 409 addPass(createARMParallelDSPPass()); 410 411 if ((TM->getOptLevel() != CodeGenOpt::None && 412 EnableGlobalMerge == cl::BOU_UNSET) || 413 EnableGlobalMerge == cl::BOU_TRUE) { 414 // FIXME: This is using the thumb1 only constant value for 415 // maximal global offset for merging globals. We may want 416 // to look into using the old value for non-thumb1 code of 417 // 4095 based on the TargetMachine, but this starts to become 418 // tricky when doing code gen per function. 419 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) && 420 (EnableGlobalMerge == cl::BOU_UNSET); 421 // Merging of extern globals is enabled by default on non-Mach-O as we 422 // expect it to be generally either beneficial or harmless. On Mach-O it 423 // is disabled as we emit the .subsections_via_symbols directive which 424 // means that merging extern globals is not safe. 425 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO(); 426 addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize, 427 MergeExternalByDefault)); 428 } 429 430 return false; 431 } 432 433 bool ARMPassConfig::addInstSelector() { 434 addPass(createARMISelDag(getARMTargetMachine(), getOptLevel())); 435 return false; 436 } 437 438 bool ARMPassConfig::addIRTranslator() { 439 addPass(new IRTranslator()); 440 return false; 441 } 442 443 bool ARMPassConfig::addLegalizeMachineIR() { 444 addPass(new Legalizer()); 445 return false; 446 } 447 448 bool ARMPassConfig::addRegBankSelect() { 449 addPass(new RegBankSelect()); 450 return false; 451 } 452 453 bool ARMPassConfig::addGlobalInstructionSelect() { 454 addPass(new InstructionSelect()); 455 return false; 456 } 457 458 void ARMPassConfig::addPreRegAlloc() { 459 if (getOptLevel() != CodeGenOpt::None) { 460 addPass(createMLxExpansionPass()); 461 462 if (EnableARMLoadStoreOpt) 463 addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true)); 464 465 if (!DisableA15SDOptimization) 466 addPass(createA15SDOptimizerPass()); 467 } 468 } 469 470 void ARMPassConfig::addPreSched2() { 471 if (getOptLevel() != CodeGenOpt::None) { 472 if (EnableARMLoadStoreOpt) 473 addPass(createARMLoadStoreOptimizationPass()); 474 475 addPass(new ARMExecutionDomainFix()); 476 addPass(createBreakFalseDeps()); 477 } 478 479 // Expand some pseudo instructions into multiple instructions to allow 480 // proper scheduling. 481 addPass(createARMExpandPseudoPass()); 482 483 if (getOptLevel() != CodeGenOpt::None) { 484 // in v8, IfConversion depends on Thumb instruction widths 485 addPass(createThumb2SizeReductionPass([this](const Function &F) { 486 return this->TM->getSubtarget<ARMSubtarget>(F).restrictIT(); 487 })); 488 489 addPass(createIfConverter([](const MachineFunction &MF) { 490 return !MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 491 })); 492 } 493 addPass(createThumb2ITBlockPass()); 494 } 495 496 void ARMPassConfig::addPreEmitPass() { 497 addPass(createThumb2SizeReductionPass()); 498 499 // Constant island pass work on unbundled instructions. 500 addPass(createUnpackMachineBundles([](const MachineFunction &MF) { 501 return MF.getSubtarget<ARMSubtarget>().isThumb2(); 502 })); 503 504 // Don't optimize barriers at -O0. 505 if (getOptLevel() != CodeGenOpt::None) 506 addPass(createARMOptimizeBarriersPass()); 507 508 addPass(createARMConstantIslandPass()); 509 } 510