1 //===----- ARMCodeGenPrepare.cpp ------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This pass inserts intrinsics to handle small types that would otherwise be
12 /// promoted during legalization. Here we can manually promote types or insert
13 /// intrinsics which can handle narrow types that aren't supported by the
14 /// register classes.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "ARM.h"
19 #include "ARMSubtarget.h"
20 #include "ARMTargetMachine.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/IR/Verifier.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/CommandLine.h"
39 
40 #define DEBUG_TYPE "arm-codegenprepare"
41 
42 using namespace llvm;
43 
44 static cl::opt<bool>
45 DisableCGP("arm-disable-cgp", cl::Hidden, cl::init(true),
46            cl::desc("Disable ARM specific CodeGenPrepare pass"));
47 
48 static cl::opt<bool>
49 EnableDSP("arm-enable-scalar-dsp", cl::Hidden, cl::init(false),
50           cl::desc("Use DSP instructions for scalar operations"));
51 
52 static cl::opt<bool>
53 EnableDSPWithImms("arm-enable-scalar-dsp-imms", cl::Hidden, cl::init(false),
54                    cl::desc("Use DSP instructions for scalar operations\
55                             with immediate operands"));
56 
57 // The goal of this pass is to enable more efficient code generation for
58 // operations on narrow types (i.e. types with < 32-bits) and this is a
59 // motivating IR code example:
60 //
61 //   define hidden i32 @cmp(i8 zeroext) {
62 //     %2 = add i8 %0, -49
63 //     %3 = icmp ult i8 %2, 3
64 //     ..
65 //   }
66 //
67 // The issue here is that i8 is type-legalized to i32 because i8 is not a
68 // legal type. Thus, arithmetic is done in integer-precision, but then the
69 // byte value is masked out as follows:
70 //
71 //   t19: i32 = add t4, Constant:i32<-49>
72 //     t24: i32 = and t19, Constant:i32<255>
73 //
74 // Consequently, we generate code like this:
75 //
76 //   subs  r0, #49
77 //   uxtb  r1, r0
78 //   cmp r1, #3
79 //
80 // This shows that masking out the byte value results in generation of
81 // the UXTB instruction. This is not optimal as r0 already contains the byte
82 // value we need, and so instead we can just generate:
83 //
84 //   sub.w r1, r0, #49
85 //   cmp r1, #3
86 //
87 // We achieve this by type promoting the IR to i32 like so for this example:
88 //
89 //   define i32 @cmp(i8 zeroext %c) {
90 //     %0 = zext i8 %c to i32
91 //     %c.off = add i32 %0, -49
92 //     %1 = icmp ult i32 %c.off, 3
93 //     ..
94 //   }
95 //
96 // For this to be valid and legal, we need to prove that the i32 add is
97 // producing the same value as the i8 addition, and that e.g. no overflow
98 // happens.
99 //
100 // A brief sketch of the algorithm and some terminology.
101 // We pattern match interesting IR patterns:
102 // - which have "sources": instructions producing narrow values (i8, i16), and
103 // - they have "sinks": instructions consuming these narrow values.
104 //
105 // We collect all instruction connecting sources and sinks in a worklist, so
106 // that we can mutate these instruction and perform type promotion when it is
107 // legal to do so.
108 
109 namespace {
110 class IRPromoter {
111   SmallPtrSet<Value*, 8> NewInsts;
112   SmallPtrSet<Instruction*, 4> InstsToRemove;
113   DenseMap<Value*, SmallVector<Type*, 4>> TruncTysMap;
114   SmallPtrSet<Value*, 8> Promoted;
115   Module *M = nullptr;
116   LLVMContext &Ctx;
117   IntegerType *ExtTy = nullptr;
118   IntegerType *OrigTy = nullptr;
119   SmallPtrSetImpl<Value*> *Visited;
120   SmallPtrSetImpl<Value*> *Sources;
121   SmallPtrSetImpl<Instruction*> *Sinks;
122   SmallPtrSetImpl<Instruction*> *SafeToPromote;
123 
124   void ReplaceAllUsersOfWith(Value *From, Value *To);
125   void PrepareConstants(void);
126   void ExtendSources(void);
127   void ConvertTruncs(void);
128   void PromoteTree(void);
129   void TruncateSinks(void);
130   void Cleanup(void);
131 
132 public:
133   IRPromoter(Module *M) : M(M), Ctx(M->getContext()),
134                           ExtTy(Type::getInt32Ty(Ctx)) { }
135 
136 
137   void Mutate(Type *OrigTy,
138               SmallPtrSetImpl<Value*> &Visited,
139               SmallPtrSetImpl<Value*> &Sources,
140               SmallPtrSetImpl<Instruction*> &Sinks,
141               SmallPtrSetImpl<Instruction*> &SafeToPromote);
142 };
143 
144 class ARMCodeGenPrepare : public FunctionPass {
145   const ARMSubtarget *ST = nullptr;
146   IRPromoter *Promoter = nullptr;
147   std::set<Value*> AllVisited;
148   SmallPtrSet<Instruction*, 8> SafeToPromote;
149 
150   bool isSafeOverflow(Instruction *I);
151   bool isSupportedValue(Value *V);
152   bool isLegalToPromote(Value *V);
153   bool TryToPromote(Value *V);
154 
155 public:
156   static char ID;
157   static unsigned TypeSize;
158   Type *OrigTy = nullptr;
159 
160   ARMCodeGenPrepare() : FunctionPass(ID) {}
161 
162   void getAnalysisUsage(AnalysisUsage &AU) const override {
163     AU.addRequired<TargetPassConfig>();
164   }
165 
166   StringRef getPassName() const override { return "ARM IR optimizations"; }
167 
168   bool doInitialization(Module &M) override;
169   bool runOnFunction(Function &F) override;
170   bool doFinalization(Module &M) override;
171 };
172 
173 }
174 
175 static bool generateSignBits(Value *V) {
176   if (!isa<Instruction>(V))
177     return false;
178 
179   unsigned Opc = cast<Instruction>(V)->getOpcode();
180   return Opc == Instruction::AShr || Opc == Instruction::SDiv ||
181          Opc == Instruction::SRem;
182 }
183 
184 static bool EqualTypeSize(Value *V) {
185   return V->getType()->getScalarSizeInBits() == ARMCodeGenPrepare::TypeSize;
186 }
187 
188 static bool LessOrEqualTypeSize(Value *V) {
189   return V->getType()->getScalarSizeInBits() <= ARMCodeGenPrepare::TypeSize;
190 }
191 
192 static bool GreaterThanTypeSize(Value *V) {
193   return V->getType()->getScalarSizeInBits() > ARMCodeGenPrepare::TypeSize;
194 }
195 
196 static bool LessThanTypeSize(Value *V) {
197   return V->getType()->getScalarSizeInBits() < ARMCodeGenPrepare::TypeSize;
198 }
199 
200 /// Some instructions can use 8- and 16-bit operands, and we don't need to
201 /// promote anything larger. We disallow booleans to make life easier when
202 /// dealing with icmps but allow any other integer that is <= 16 bits. Void
203 /// types are accepted so we can handle switches.
204 static bool isSupportedType(Value *V) {
205   Type *Ty = V->getType();
206 
207   // Allow voids and pointers, these won't be promoted.
208   if (Ty->isVoidTy() || Ty->isPointerTy())
209     return true;
210 
211   if (auto *Ld = dyn_cast<LoadInst>(V))
212     Ty = cast<PointerType>(Ld->getPointerOperandType())->getElementType();
213 
214   if (!isa<IntegerType>(Ty) ||
215       cast<IntegerType>(V->getType())->getBitWidth() == 1)
216     return false;
217 
218   return LessOrEqualTypeSize(V);
219 }
220 
221 /// Return true if the given value is a source in the use-def chain, producing
222 /// a narrow 'TypeSize' value. These values will be zext to start the promotion
223 /// of the tree to i32. We guarantee that these won't populate the upper bits
224 /// of the register. ZExt on the loads will be free, and the same for call
225 /// return values because we only accept ones that guarantee a zeroext ret val.
226 /// Many arguments will have the zeroext attribute too, so those would be free
227 /// too.
228 static bool isSource(Value *V) {
229   if (!isa<IntegerType>(V->getType()))
230     return false;
231 
232   // TODO Allow zext to be sources.
233   if (isa<Argument>(V))
234     return true;
235   else if (isa<LoadInst>(V))
236     return true;
237   else if (isa<BitCastInst>(V))
238     return true;
239   else if (auto *Call = dyn_cast<CallInst>(V))
240     return Call->hasRetAttr(Attribute::AttrKind::ZExt);
241   else if (auto *Trunc = dyn_cast<TruncInst>(V))
242     return EqualTypeSize(Trunc);
243   return false;
244 }
245 
246 /// Return true if V will require any promoted values to be truncated for the
247 /// the IR to remain valid. We can't mutate the value type of these
248 /// instructions.
249 static bool isSink(Value *V) {
250   // TODO The truncate also isn't actually necessary because we would already
251   // proved that the data value is kept within the range of the original data
252   // type.
253 
254   // Sinks are:
255   // - points where the value in the register is being observed, such as an
256   //   icmp, switch or store.
257   // - points where value types have to match, such as calls and returns.
258   // - zext are included to ease the transformation and are generally removed
259   //   later on.
260   if (auto *Store = dyn_cast<StoreInst>(V))
261     return LessOrEqualTypeSize(Store->getValueOperand());
262   if (auto *Return = dyn_cast<ReturnInst>(V))
263     return LessOrEqualTypeSize(Return->getReturnValue());
264   if (auto *ZExt = dyn_cast<ZExtInst>(V))
265     return GreaterThanTypeSize(ZExt);
266   if (auto *Switch = dyn_cast<SwitchInst>(V))
267     return LessThanTypeSize(Switch->getCondition());
268   if (auto *ICmp = dyn_cast<ICmpInst>(V))
269     return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0));
270 
271   return isa<CallInst>(V);
272 }
273 
274 /// Return whether the instruction can be promoted within any modifications to
275 /// its operands or result.
276 bool ARMCodeGenPrepare::isSafeOverflow(Instruction *I) {
277   // FIXME Do we need NSW too?
278   if (isa<OverflowingBinaryOperator>(I) && I->hasNoUnsignedWrap())
279     return true;
280 
281   // We can support a, potentially, overflowing instruction (I) if:
282   // - It is only used by an unsigned icmp.
283   // - The icmp uses a constant.
284   // - The overflowing value (I) is decreasing, i.e would underflow - wrapping
285   //   around zero to become a larger number than before.
286   // - The underflowing instruction (I) also uses a constant.
287   //
288   // We can then use the two constants to calculate whether the result would
289   // wrap in respect to itself in the original bitwidth. If it doesn't wrap,
290   // just underflows the range, the icmp would give the same result whether the
291   // result has been truncated or not. We calculate this by:
292   // - Zero extending both constants, if needed, to 32-bits.
293   // - Take the absolute value of I's constant, adding this to the icmp const.
294   // - Check that this value is not out of range for small type. If it is, it
295   //   means that it has underflowed enough to wrap around the icmp constant.
296   //
297   // For example:
298   //
299   // %sub = sub i8 %a, 2
300   // %cmp = icmp ule i8 %sub, 254
301   //
302   // If %a = 0, %sub = -2 == FE == 254
303   // But if this is evalulated as a i32
304   // %sub = -2 == FF FF FF FE == 4294967294
305   // So the unsigned compares (i8 and i32) would not yield the same result.
306   //
307   // Another way to look at it is:
308   // %a - 2 <= 254
309   // %a + 2 <= 254 + 2
310   // %a <= 256
311   // And we can't represent 256 in the i8 format, so we don't support it.
312   //
313   // Whereas:
314   //
315   // %sub i8 %a, 1
316   // %cmp = icmp ule i8 %sub, 254
317   //
318   // If %a = 0, %sub = -1 == FF == 255
319   // As i32:
320   // %sub = -1 == FF FF FF FF == 4294967295
321   //
322   // In this case, the unsigned compare results would be the same and this
323   // would also be true for ult, uge and ugt:
324   // - (255 < 254) == (0xFFFFFFFF < 254) == false
325   // - (255 <= 254) == (0xFFFFFFFF <= 254) == false
326   // - (255 > 254) == (0xFFFFFFFF > 254) == true
327   // - (255 >= 254) == (0xFFFFFFFF >= 254) == true
328   //
329   // To demonstrate why we can't handle increasing values:
330   //
331   // %add = add i8 %a, 2
332   // %cmp = icmp ult i8 %add, 127
333   //
334   // If %a = 254, %add = 256 == (i8 1)
335   // As i32:
336   // %add = 256
337   //
338   // (1 < 127) != (256 < 127)
339 
340   unsigned Opc = I->getOpcode();
341   if (Opc != Instruction::Add && Opc != Instruction::Sub)
342     return false;
343 
344   if (!I->hasOneUse() ||
345       !isa<ICmpInst>(*I->user_begin()) ||
346       !isa<ConstantInt>(I->getOperand(1)))
347     return false;
348 
349   ConstantInt *OverflowConst = cast<ConstantInt>(I->getOperand(1));
350   bool NegImm = OverflowConst->isNegative();
351   bool IsDecreasing = ((Opc == Instruction::Sub) && !NegImm) ||
352                        ((Opc == Instruction::Add) && NegImm);
353   if (!IsDecreasing)
354     return false;
355 
356   // Don't support an icmp that deals with sign bits.
357   auto *CI = cast<ICmpInst>(*I->user_begin());
358   if (CI->isSigned() || CI->isEquality())
359     return false;
360 
361   ConstantInt *ICmpConst = nullptr;
362   if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0)))
363     ICmpConst = Const;
364   else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1)))
365     ICmpConst = Const;
366   else
367     return false;
368 
369   // Now check that the result can't wrap on itself.
370   APInt Total = ICmpConst->getValue().getBitWidth() < 32 ?
371     ICmpConst->getValue().zext(32) : ICmpConst->getValue();
372 
373   Total += OverflowConst->getValue().getBitWidth() < 32 ?
374     OverflowConst->getValue().abs().zext(32) : OverflowConst->getValue().abs();
375 
376   APInt Max = APInt::getAllOnesValue(ARMCodeGenPrepare::TypeSize);
377 
378   if (Total.getBitWidth() > Max.getBitWidth()) {
379     if (Total.ugt(Max.zext(Total.getBitWidth())))
380       return false;
381   } else if (Max.getBitWidth() > Total.getBitWidth()) {
382     if (Total.zext(Max.getBitWidth()).ugt(Max))
383       return false;
384   } else if (Total.ugt(Max))
385     return false;
386 
387   LLVM_DEBUG(dbgs() << "ARM CGP: Allowing safe overflow for " << *I << "\n");
388   return true;
389 }
390 
391 static bool shouldPromote(Value *V) {
392   if (!isa<IntegerType>(V->getType()) || isSink(V))
393     return false;
394 
395   if (isSource(V))
396     return true;
397 
398   auto *I = dyn_cast<Instruction>(V);
399   if (!I)
400     return false;
401 
402   if (isa<ICmpInst>(I))
403     return false;
404 
405   return true;
406 }
407 
408 /// Return whether we can safely mutate V's type to ExtTy without having to be
409 /// concerned with zero extending or truncation.
410 static bool isPromotedResultSafe(Value *V) {
411   if (!isa<Instruction>(V))
412     return true;
413 
414   if (generateSignBits(V))
415     return false;
416 
417   return !isa<OverflowingBinaryOperator>(V);
418 }
419 
420 /// Return the intrinsic for the instruction that can perform the same
421 /// operation but on a narrow type. This is using the parallel dsp intrinsics
422 /// on scalar values.
423 static Intrinsic::ID getNarrowIntrinsic(Instruction *I) {
424   // Whether we use the signed or unsigned versions of these intrinsics
425   // doesn't matter because we're not using the GE bits that they set in
426   // the APSR.
427   switch(I->getOpcode()) {
428   default:
429     break;
430   case Instruction::Add:
431     return ARMCodeGenPrepare::TypeSize == 16 ? Intrinsic::arm_uadd16 :
432       Intrinsic::arm_uadd8;
433   case Instruction::Sub:
434     return ARMCodeGenPrepare::TypeSize == 16 ? Intrinsic::arm_usub16 :
435       Intrinsic::arm_usub8;
436   }
437   llvm_unreachable("unhandled opcode for narrow intrinsic");
438 }
439 
440 void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) {
441   SmallVector<Instruction*, 4> Users;
442   Instruction *InstTo = dyn_cast<Instruction>(To);
443   bool ReplacedAll = true;
444 
445   LLVM_DEBUG(dbgs() << "ARM CGP: Replacing " << *From << " with " << *To
446              << "\n");
447 
448   for (Use &U : From->uses()) {
449     auto *User = cast<Instruction>(U.getUser());
450     if (InstTo && User->isIdenticalTo(InstTo)) {
451       ReplacedAll = false;
452       continue;
453     }
454     Users.push_back(User);
455   }
456 
457   for (auto *U : Users)
458     U->replaceUsesOfWith(From, To);
459 
460   if (ReplacedAll)
461     if (auto *I = dyn_cast<Instruction>(From))
462       InstsToRemove.insert(I);
463 }
464 
465 void IRPromoter::PrepareConstants() {
466   IRBuilder<> Builder{Ctx};
467   // First step is to prepare the instructions for mutation. Most constants
468   // just need to be zero extended into their new type, but complications arise
469   // because:
470   // - For nuw binary operators, negative immediates would need sign extending;
471   //   however, instead we'll change them to positive and zext them. We can do
472   //   this because:
473   //   > The operators that can wrap are: add, sub, mul and shl.
474   //   > shl interprets its second operand as unsigned and if the first operand
475   //     is an immediate, it will need zext to be nuw.
476   //   > I'm assuming mul has to interpret immediates as unsigned for nuw.
477   //   > Which leaves the nuw add and sub to be handled; as with shl, if an
478   //     immediate is used as operand 0, it will need zext to be nuw.
479   // - We also allow add and sub to safely overflow in certain circumstances
480   //   and only when the value (operand 0) is being decreased.
481   //
482   // For adds and subs, that are either nuw or safely wrap and use a negative
483   // immediate as operand 1, we create an equivalent instruction using a
484   // positive immediate. That positive immediate can then be zext along with
485   // all the other immediates later.
486   for (auto *V : *Visited) {
487     if (!isa<Instruction>(V))
488       continue;
489 
490     auto *I = cast<Instruction>(V);
491     if (SafeToPromote->count(I)) {
492 
493       if (!isa<OverflowingBinaryOperator>(I))
494         continue;
495 
496       if (auto *Const = dyn_cast<ConstantInt>(I->getOperand(1))) {
497         if (!Const->isNegative())
498           break;
499 
500         unsigned Opc = I->getOpcode();
501         if (Opc != Instruction::Add && Opc != Instruction::Sub)
502           continue;
503 
504         LLVM_DEBUG(dbgs() << "ARM CGP: Adjusting " << *I << "\n");
505         auto *NewConst = ConstantInt::get(Ctx, Const->getValue().abs());
506         Builder.SetInsertPoint(I);
507         Value *NewVal = Opc == Instruction::Sub ?
508           Builder.CreateAdd(I->getOperand(0), NewConst) :
509           Builder.CreateSub(I->getOperand(0), NewConst);
510         LLVM_DEBUG(dbgs() << "ARM CGP: New equivalent: " << *NewVal << "\n");
511 
512         if (auto *NewInst = dyn_cast<Instruction>(NewVal)) {
513           NewInst->copyIRFlags(I);
514           NewInsts.insert(NewInst);
515         }
516         InstsToRemove.insert(I);
517         I->replaceAllUsesWith(NewVal);
518       }
519     }
520   }
521   for (auto *I : NewInsts)
522     Visited->insert(I);
523 }
524 
525 void IRPromoter::ExtendSources() {
526   IRBuilder<> Builder{Ctx};
527 
528   auto InsertZExt = [&](Value *V, Instruction *InsertPt) {
529     assert(V->getType() != ExtTy && "zext already extends to i32");
530     LLVM_DEBUG(dbgs() << "ARM CGP: Inserting ZExt for " << *V << "\n");
531     Builder.SetInsertPoint(InsertPt);
532     if (auto *I = dyn_cast<Instruction>(V))
533       Builder.SetCurrentDebugLocation(I->getDebugLoc());
534 
535     Value *ZExt = Builder.CreateZExt(V, ExtTy);
536     if (auto *I = dyn_cast<Instruction>(ZExt)) {
537       if (isa<Argument>(V))
538         I->moveBefore(InsertPt);
539       else
540         I->moveAfter(InsertPt);
541       NewInsts.insert(I);
542     }
543 
544     ReplaceAllUsersOfWith(V, ZExt);
545   };
546 
547   // Now, insert extending instructions between the sources and their users.
548   LLVM_DEBUG(dbgs() << "ARM CGP: Promoting sources:\n");
549   for (auto V : *Sources) {
550     LLVM_DEBUG(dbgs() << " - " << *V << "\n");
551     if (auto *I = dyn_cast<Instruction>(V))
552       InsertZExt(I, I);
553     else if (auto *Arg = dyn_cast<Argument>(V)) {
554       BasicBlock &BB = Arg->getParent()->front();
555       InsertZExt(Arg, &*BB.getFirstInsertionPt());
556     } else {
557       llvm_unreachable("unhandled source that needs extending");
558     }
559     Promoted.insert(V);
560   }
561 }
562 
563 void IRPromoter::PromoteTree() {
564   LLVM_DEBUG(dbgs() << "ARM CGP: Mutating the tree..\n");
565 
566   IRBuilder<> Builder{Ctx};
567 
568   // Mutate the types of the instructions within the tree. Here we handle
569   // constant operands.
570   for (auto *V : *Visited) {
571     if (Sources->count(V))
572       continue;
573 
574     auto *I = cast<Instruction>(V);
575     if (Sinks->count(I))
576       continue;
577 
578     for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
579       Value *Op = I->getOperand(i);
580       if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType()))
581         continue;
582 
583       if (auto *Const = dyn_cast<ConstantInt>(Op)) {
584         Constant *NewConst = ConstantExpr::getZExt(Const, ExtTy);
585         I->setOperand(i, NewConst);
586       } else if (isa<UndefValue>(Op))
587         I->setOperand(i, UndefValue::get(ExtTy));
588     }
589 
590     if (shouldPromote(I)) {
591       I->mutateType(ExtTy);
592       Promoted.insert(I);
593     }
594   }
595 
596   // Finally, any instructions that should be promoted but haven't yet been,
597   // need to be handled using intrinsics.
598   for (auto *V : *Visited) {
599     auto *I = dyn_cast<Instruction>(V);
600     if (!I)
601       continue;
602 
603     if (Sources->count(I) || Sinks->count(I))
604       continue;
605 
606     if (!shouldPromote(I) || SafeToPromote->count(I) || NewInsts.count(I))
607       continue;
608 
609     assert(EnableDSP && "DSP intrinisc insertion not enabled!");
610 
611     // Replace unsafe instructions with appropriate intrinsic calls.
612     LLVM_DEBUG(dbgs() << "ARM CGP: Inserting DSP intrinsic for "
613                << *I << "\n");
614     Function *DSPInst =
615       Intrinsic::getDeclaration(M, getNarrowIntrinsic(I));
616     Builder.SetInsertPoint(I);
617     Builder.SetCurrentDebugLocation(I->getDebugLoc());
618     Value *Args[] = { I->getOperand(0), I->getOperand(1) };
619     CallInst *Call = Builder.CreateCall(DSPInst, Args);
620     NewInsts.insert(Call);
621     ReplaceAllUsersOfWith(I, Call);
622   }
623 }
624 
625 void IRPromoter::TruncateSinks() {
626   LLVM_DEBUG(dbgs() << "ARM CGP: Fixing up the sinks:\n");
627 
628   IRBuilder<> Builder{Ctx};
629 
630   auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction* {
631     if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType()))
632       return nullptr;
633 
634     if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources->count(V))
635       return nullptr;
636 
637     LLVM_DEBUG(dbgs() << "ARM CGP: Creating " << *TruncTy << " Trunc for "
638                << *V << "\n");
639     Builder.SetInsertPoint(cast<Instruction>(V));
640     auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy));
641     if (Trunc)
642       NewInsts.insert(Trunc);
643     return Trunc;
644   };
645 
646   // Fix up any stores or returns that use the results of the promoted
647   // chain.
648   for (auto I : *Sinks) {
649     LLVM_DEBUG(dbgs() << "ARM CGP: For Sink: " << *I << "\n");
650 
651     // Handle calls separately as we need to iterate over arg operands.
652     if (auto *Call = dyn_cast<CallInst>(I)) {
653       for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
654         Value *Arg = Call->getArgOperand(i);
655         Type *Ty = TruncTysMap[Call][i];
656         if (Instruction *Trunc = InsertTrunc(Arg, Ty)) {
657           Trunc->moveBefore(Call);
658           Call->setArgOperand(i, Trunc);
659         }
660       }
661       continue;
662     }
663 
664     // Special case switches because we need to truncate the condition.
665     if (auto *Switch = dyn_cast<SwitchInst>(I)) {
666       Type *Ty = TruncTysMap[Switch][0];
667       if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) {
668         Trunc->moveBefore(Switch);
669         Switch->setCondition(Trunc);
670       }
671       continue;
672     }
673 
674     // Now handle the others.
675     for (unsigned i = 0; i < I->getNumOperands(); ++i) {
676       Type *Ty = TruncTysMap[I][i];
677       if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) {
678         Trunc->moveBefore(I);
679         I->setOperand(i, Trunc);
680       }
681     }
682   }
683 }
684 
685 void IRPromoter::Cleanup() {
686   // Some zexts will now have become redundant, along with their trunc
687   // operands, so remove them
688   for (auto V : *Visited) {
689     if (!isa<CastInst>(V))
690       continue;
691 
692     auto ZExt = cast<CastInst>(V);
693     if (ZExt->getDestTy() != ExtTy)
694       continue;
695 
696     Value *Src = ZExt->getOperand(0);
697     if (ZExt->getSrcTy() == ZExt->getDestTy()) {
698       LLVM_DEBUG(dbgs() << "ARM CGP: Removing unnecessary cast: " << *ZExt
699                  << "\n");
700       ReplaceAllUsersOfWith(ZExt, Src);
701       continue;
702     }
703 
704     // For any truncs that we insert to handle zexts, we can replace the
705     // result of the zext with the input to the trunc.
706     if (NewInsts.count(Src) && isa<ZExtInst>(V) && isa<TruncInst>(Src)) {
707       auto *Trunc = cast<TruncInst>(Src);
708       assert(Trunc->getOperand(0)->getType() == ExtTy &&
709              "expected inserted trunc to be operating on i32");
710       ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0));
711     }
712   }
713 
714   for (auto *I : InstsToRemove) {
715     LLVM_DEBUG(dbgs() << "ARM CGP: Removing " << *I << "\n");
716     I->dropAllReferences();
717     I->eraseFromParent();
718   }
719 
720   InstsToRemove.clear();
721   NewInsts.clear();
722   TruncTysMap.clear();
723   Promoted.clear();
724 }
725 
726 void IRPromoter::ConvertTruncs() {
727   IRBuilder<> Builder{Ctx};
728 
729   for (auto *V : *Visited) {
730     if (!isa<TruncInst>(V) || Sources->count(V))
731       continue;
732 
733     auto *Trunc = cast<TruncInst>(V);
734     assert(LessThanTypeSize(Trunc) && "expected narrow trunc");
735 
736     Builder.SetInsertPoint(Trunc);
737     unsigned NumBits =
738       cast<IntegerType>(Trunc->getType())->getScalarSizeInBits();
739     ConstantInt *Mask = ConstantInt::get(Ctx, APInt::getMaxValue(NumBits));
740     Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask);
741 
742     if (auto *I = dyn_cast<Instruction>(Masked))
743       NewInsts.insert(I);
744 
745     ReplaceAllUsersOfWith(Trunc, Masked);
746   }
747 }
748 
749 void IRPromoter::Mutate(Type *OrigTy,
750                         SmallPtrSetImpl<Value*> &Visited,
751                         SmallPtrSetImpl<Value*> &Sources,
752                         SmallPtrSetImpl<Instruction*> &Sinks,
753                         SmallPtrSetImpl<Instruction*> &SafeToPromote) {
754   LLVM_DEBUG(dbgs() << "ARM CGP: Promoting use-def chains to from "
755              << ARMCodeGenPrepare::TypeSize << " to 32-bits\n");
756 
757   assert(isa<IntegerType>(OrigTy) && "expected integer type");
758   this->OrigTy = cast<IntegerType>(OrigTy);
759   assert(OrigTy->getPrimitiveSizeInBits() < ExtTy->getPrimitiveSizeInBits() &&
760          "original type not smaller than extended type");
761 
762   this->Visited = &Visited;
763   this->Sources = &Sources;
764   this->Sinks = &Sinks;
765   this->SafeToPromote = &SafeToPromote;
766 
767   // Cache original types of the values that will likely need truncating
768   for (auto *I : Sinks) {
769     if (auto *Call = dyn_cast<CallInst>(I)) {
770       for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
771         Value *Arg = Call->getArgOperand(i);
772         TruncTysMap[Call].push_back(Arg->getType());
773       }
774     } else if (auto *Switch = dyn_cast<SwitchInst>(I))
775       TruncTysMap[I].push_back(Switch->getCondition()->getType());
776     else {
777       for (unsigned i = 0; i < I->getNumOperands(); ++i)
778         TruncTysMap[I].push_back(I->getOperand(i)->getType());
779     }
780   }
781 
782   // Convert adds and subs using negative immediates to equivalent instructions
783   // that use positive constants.
784   PrepareConstants();
785 
786   // Insert zext instructions between sources and their users.
787   ExtendSources();
788 
789   // Convert any truncs, that aren't sources, into AND masks.
790   ConvertTruncs();
791 
792   // Promote visited instructions, mutating their types in place. Also insert
793   // DSP intrinsics, if enabled, for adds and subs which would be unsafe to
794   // promote.
795   PromoteTree();
796 
797   // Insert trunc instructions for use by calls, stores etc...
798   TruncateSinks();
799 
800   // Finally, remove unecessary zexts and truncs, delete old instructions and
801   // clear the data structures.
802   Cleanup();
803 
804   LLVM_DEBUG(dbgs() << "ARM CGP: Mutation complete\n");
805 }
806 
807 /// We accept most instructions, as well as Arguments and ConstantInsts. We
808 /// Disallow casts other than zext and truncs and only allow calls if their
809 /// return value is zeroext. We don't allow opcodes that can introduce sign
810 /// bits.
811 bool ARMCodeGenPrepare::isSupportedValue(Value *V) {
812   if (auto *I = dyn_cast<ICmpInst>(V)) {
813     // Now that we allow small types than TypeSize, only allow icmp of
814     // TypeSize because they will require a trunc to be legalised.
815     // TODO: Allow icmp of smaller types, and calculate at the end
816     // whether the transform would be beneficial.
817     if (isa<PointerType>(I->getOperand(0)->getType()))
818       return true;
819     return EqualTypeSize(I->getOperand(0));
820   }
821 
822   // Memory instructions
823   if (isa<StoreInst>(V) || isa<GetElementPtrInst>(V))
824     return true;
825 
826   // Branches and targets.
827   if( isa<BranchInst>(V) || isa<SwitchInst>(V) || isa<BasicBlock>(V))
828     return true;
829 
830   // Non-instruction values that we can handle.
831   if ((isa<Constant>(V) && !isa<ConstantExpr>(V)) || isa<Argument>(V))
832     return isSupportedType(V);
833 
834   if (isa<PHINode>(V) || isa<SelectInst>(V) || isa<ReturnInst>(V) ||
835       isa<LoadInst>(V))
836     return isSupportedType(V);
837 
838   if (isa<SExtInst>(V))
839     return false;
840 
841   if (auto *Cast = dyn_cast<CastInst>(V))
842     return isSupportedType(Cast) || isSupportedType(Cast->getOperand(0));
843 
844   // Special cases for calls as we need to check for zeroext
845   // TODO We should accept calls even if they don't have zeroext, as they can
846   // still be sinks.
847   if (auto *Call = dyn_cast<CallInst>(V))
848     return isSupportedType(Call) &&
849            Call->hasRetAttr(Attribute::AttrKind::ZExt);
850 
851   if (!isa<BinaryOperator>(V))
852     return false;
853 
854   if (!isSupportedType(V))
855     return false;
856 
857   if (generateSignBits(V)) {
858     LLVM_DEBUG(dbgs() << "ARM CGP: No, instruction can generate sign bits.\n");
859     return false;
860   }
861   return true;
862 }
863 
864 /// Check that the type of V would be promoted and that the original type is
865 /// smaller than the targeted promoted type. Check that we're not trying to
866 /// promote something larger than our base 'TypeSize' type.
867 bool ARMCodeGenPrepare::isLegalToPromote(Value *V) {
868 
869   auto *I = dyn_cast<Instruction>(V);
870   if (!I)
871     return true;
872 
873   if (SafeToPromote.count(I))
874    return true;
875 
876   if (isPromotedResultSafe(V) || isSafeOverflow(I)) {
877     SafeToPromote.insert(I);
878     return true;
879   }
880 
881   if (I->getOpcode() != Instruction::Add && I->getOpcode() != Instruction::Sub)
882     return false;
883 
884   // If promotion is not safe, can we use a DSP instruction to natively
885   // handle the narrow type?
886   if (!ST->hasDSP() || !EnableDSP || !isSupportedType(I))
887     return false;
888 
889   if (ST->isThumb() && !ST->hasThumb2())
890     return false;
891 
892   // TODO
893   // Would it be profitable? For Thumb code, these parallel DSP instructions
894   // are only Thumb-2, so we wouldn't be able to dual issue on Cortex-M33. For
895   // Cortex-A, specifically Cortex-A72, the latency is double and throughput is
896   // halved. They also do not take immediates as operands.
897   for (auto &Op : I->operands()) {
898     if (isa<Constant>(Op)) {
899       if (!EnableDSPWithImms)
900         return false;
901     }
902   }
903   LLVM_DEBUG(dbgs() << "ARM CGP: Will use an intrinsic for: " << *I << "\n");
904   return true;
905 }
906 
907 bool ARMCodeGenPrepare::TryToPromote(Value *V) {
908   OrigTy = V->getType();
909   TypeSize = OrigTy->getPrimitiveSizeInBits();
910   if (TypeSize > 16 || TypeSize < 8)
911     return false;
912 
913   SafeToPromote.clear();
914 
915   if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V))
916     return false;
917 
918   LLVM_DEBUG(dbgs() << "ARM CGP: TryToPromote: " << *V << ", TypeSize = "
919              << TypeSize << "\n");
920 
921   SetVector<Value*> WorkList;
922   SmallPtrSet<Value*, 8> Sources;
923   SmallPtrSet<Instruction*, 4> Sinks;
924   SmallPtrSet<Value*, 16> CurrentVisited;
925   WorkList.insert(V);
926 
927   // Return true if V was added to the worklist as a supported instruction,
928   // if it was already visited, or if we don't need to explore it (e.g.
929   // pointer values and GEPs), and false otherwise.
930   auto AddLegalInst = [&](Value *V) {
931     if (CurrentVisited.count(V))
932       return true;
933 
934     // Ignore GEPs because they don't need promoting and the constant indices
935     // will prevent the transformation.
936     if (isa<GetElementPtrInst>(V))
937       return true;
938 
939     if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) {
940       LLVM_DEBUG(dbgs() << "ARM CGP: Can't handle: " << *V << "\n");
941       return false;
942     }
943 
944     WorkList.insert(V);
945     return true;
946   };
947 
948   // Iterate through, and add to, a tree of operands and users in the use-def.
949   while (!WorkList.empty()) {
950     Value *V = WorkList.back();
951     WorkList.pop_back();
952     if (CurrentVisited.count(V))
953       continue;
954 
955     // Ignore non-instructions, other than arguments.
956     if (!isa<Instruction>(V) && !isSource(V))
957       continue;
958 
959     // If we've already visited this value from somewhere, bail now because
960     // the tree has already been explored.
961     // TODO: This could limit the transform, ie if we try to promote something
962     // from an i8 and fail first, before trying an i16.
963     if (AllVisited.count(V))
964       return false;
965 
966     CurrentVisited.insert(V);
967     AllVisited.insert(V);
968 
969     // Calls can be both sources and sinks.
970     if (isSink(V))
971       Sinks.insert(cast<Instruction>(V));
972 
973     if (isSource(V))
974       Sources.insert(V);
975 
976     if (!isSink(V) && !isSource(V)) {
977       if (auto *I = dyn_cast<Instruction>(V)) {
978         // Visit operands of any instruction visited.
979         for (auto &U : I->operands()) {
980           if (!AddLegalInst(U))
981             return false;
982         }
983       }
984     }
985 
986     // Don't visit users of a node which isn't going to be mutated unless its a
987     // source.
988     if (isSource(V) || shouldPromote(V)) {
989       for (Use &U : V->uses()) {
990         if (!AddLegalInst(U.getUser()))
991           return false;
992       }
993     }
994   }
995 
996   LLVM_DEBUG(dbgs() << "ARM CGP: Visited nodes:\n";
997              for (auto *I : CurrentVisited)
998                I->dump();
999              );
1000   unsigned ToPromote = 0;
1001   for (auto *V : CurrentVisited) {
1002     if (Sources.count(V))
1003       continue;
1004     if (Sinks.count(cast<Instruction>(V)))
1005       continue;
1006     ++ToPromote;
1007   }
1008 
1009   if (ToPromote < 2)
1010     return false;
1011 
1012   Promoter->Mutate(OrigTy, CurrentVisited, Sources, Sinks, SafeToPromote);
1013   return true;
1014 }
1015 
1016 bool ARMCodeGenPrepare::doInitialization(Module &M) {
1017   Promoter = new IRPromoter(&M);
1018   return false;
1019 }
1020 
1021 bool ARMCodeGenPrepare::runOnFunction(Function &F) {
1022   if (skipFunction(F) || DisableCGP)
1023     return false;
1024 
1025   auto *TPC = &getAnalysis<TargetPassConfig>();
1026   if (!TPC)
1027     return false;
1028 
1029   const TargetMachine &TM = TPC->getTM<TargetMachine>();
1030   ST = &TM.getSubtarget<ARMSubtarget>(F);
1031   bool MadeChange = false;
1032   LLVM_DEBUG(dbgs() << "ARM CGP: Running on " << F.getName() << "\n");
1033 
1034   // Search up from icmps to try to promote their operands.
1035   for (BasicBlock &BB : F) {
1036     auto &Insts = BB.getInstList();
1037     for (auto &I : Insts) {
1038       if (AllVisited.count(&I))
1039         continue;
1040 
1041       if (isa<ICmpInst>(I)) {
1042         auto &CI = cast<ICmpInst>(I);
1043 
1044         // Skip signed or pointer compares
1045         if (CI.isSigned() || !isa<IntegerType>(CI.getOperand(0)->getType()))
1046           continue;
1047 
1048         LLVM_DEBUG(dbgs() << "ARM CGP: Searching from: " << CI << "\n");
1049 
1050         for (auto &Op : CI.operands()) {
1051           if (auto *I = dyn_cast<Instruction>(Op))
1052             MadeChange |= TryToPromote(I);
1053         }
1054       }
1055     }
1056     LLVM_DEBUG(if (verifyFunction(F, &dbgs())) {
1057                 dbgs() << F;
1058                 report_fatal_error("Broken function after type promotion");
1059                });
1060   }
1061   if (MadeChange)
1062     LLVM_DEBUG(dbgs() << "After ARMCodeGenPrepare: " << F << "\n");
1063 
1064   return MadeChange;
1065 }
1066 
1067 bool ARMCodeGenPrepare::doFinalization(Module &M) {
1068   delete Promoter;
1069   return false;
1070 }
1071 
1072 INITIALIZE_PASS_BEGIN(ARMCodeGenPrepare, DEBUG_TYPE,
1073                       "ARM IR optimizations", false, false)
1074 INITIALIZE_PASS_END(ARMCodeGenPrepare, DEBUG_TYPE, "ARM IR optimizations",
1075                     false, false)
1076 
1077 char ARMCodeGenPrepare::ID = 0;
1078 unsigned ARMCodeGenPrepare::TypeSize = 0;
1079 
1080 FunctionPass *llvm::createARMCodeGenPreparePass() {
1081   return new ARMCodeGenPrepare();
1082 }
1083