1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a printer that converts from our internal representation 11 // of machine-dependent LLVM code to GAS-format ARM assembly language. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARMAsmPrinter.h" 16 #include "ARM.h" 17 #include "ARMConstantPoolValue.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMTargetMachine.h" 20 #include "ARMTargetObjectFile.h" 21 #include "InstPrinter/ARMInstPrinter.h" 22 #include "MCTargetDesc/ARMAddressingModes.h" 23 #include "MCTargetDesc/ARMMCExpr.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/BinaryFormat/COFF.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCAssembler.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCELFStreamer.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCInstBuilder.h" 41 #include "llvm/MC/MCObjectStreamer.h" 42 #include "llvm/MC/MCStreamer.h" 43 #include "llvm/MC/MCSymbol.h" 44 #include "llvm/Support/ARMBuildAttributes.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/TargetParser.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetMachine.h" 51 using namespace llvm; 52 53 #define DEBUG_TYPE "asm-printer" 54 55 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, 56 std::unique_ptr<MCStreamer> Streamer) 57 : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr), 58 InConstantPool(false), OptimizationGoals(-1) {} 59 60 void ARMAsmPrinter::EmitFunctionBodyEnd() { 61 // Make sure to terminate any constant pools that were at the end 62 // of the function. 63 if (!InConstantPool) 64 return; 65 InConstantPool = false; 66 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 67 } 68 69 void ARMAsmPrinter::EmitFunctionEntryLabel() { 70 if (AFI->isThumbFunction()) { 71 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 72 OutStreamer->EmitThumbFunc(CurrentFnSym); 73 } else { 74 OutStreamer->EmitAssemblerFlag(MCAF_Code32); 75 } 76 OutStreamer->EmitLabel(CurrentFnSym); 77 } 78 79 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) { 80 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); 81 assert(Size && "C++ constructor pointer had zero size!"); 82 83 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); 84 assert(GV && "C++ constructor pointer was not a GlobalValue!"); 85 86 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, 87 ARMII::MO_NO_FLAG), 88 (Subtarget->isTargetELF() 89 ? MCSymbolRefExpr::VK_ARM_TARGET1 90 : MCSymbolRefExpr::VK_None), 91 OutContext); 92 93 OutStreamer->EmitValue(E, Size); 94 } 95 96 void ARMAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 97 if (PromotedGlobals.count(GV)) 98 // The global was promoted into a constant pool. It should not be emitted. 99 return; 100 AsmPrinter::EmitGlobalVariable(GV); 101 } 102 103 /// runOnMachineFunction - This uses the EmitInstruction() 104 /// method to print assembly for each instruction. 105 /// 106 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 107 AFI = MF.getInfo<ARMFunctionInfo>(); 108 MCP = MF.getConstantPool(); 109 Subtarget = &MF.getSubtarget<ARMSubtarget>(); 110 111 SetupMachineFunction(MF); 112 const Function &F = MF.getFunction(); 113 const TargetMachine& TM = MF.getTarget(); 114 115 // Collect all globals that had their storage promoted to a constant pool. 116 // Functions are emitted before variables, so this accumulates promoted 117 // globals from all functions in PromotedGlobals. 118 for (auto *GV : AFI->getGlobalsPromotedToConstantPool()) 119 PromotedGlobals.insert(GV); 120 121 // Calculate this function's optimization goal. 122 unsigned OptimizationGoal; 123 if (F.hasFnAttribute(Attribute::OptimizeNone)) 124 // For best debugging illusion, speed and small size sacrificed 125 OptimizationGoal = 6; 126 else if (F.optForMinSize()) 127 // Aggressively for small size, speed and debug illusion sacrificed 128 OptimizationGoal = 4; 129 else if (F.optForSize()) 130 // For small size, but speed and debugging illusion preserved 131 OptimizationGoal = 3; 132 else if (TM.getOptLevel() == CodeGenOpt::Aggressive) 133 // Aggressively for speed, small size and debug illusion sacrificed 134 OptimizationGoal = 2; 135 else if (TM.getOptLevel() > CodeGenOpt::None) 136 // For speed, but small size and good debug illusion preserved 137 OptimizationGoal = 1; 138 else // TM.getOptLevel() == CodeGenOpt::None 139 // For good debugging, but speed and small size preserved 140 OptimizationGoal = 5; 141 142 // Combine a new optimization goal with existing ones. 143 if (OptimizationGoals == -1) // uninitialized goals 144 OptimizationGoals = OptimizationGoal; 145 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals 146 OptimizationGoals = 0; 147 148 if (Subtarget->isTargetCOFF()) { 149 bool Internal = F.hasInternalLinkage(); 150 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC 151 : COFF::IMAGE_SYM_CLASS_EXTERNAL; 152 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 153 154 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); 155 OutStreamer->EmitCOFFSymbolStorageClass(Scl); 156 OutStreamer->EmitCOFFSymbolType(Type); 157 OutStreamer->EndCOFFSymbolDef(); 158 } 159 160 // Emit the rest of the function body. 161 EmitFunctionBody(); 162 163 // Emit the XRay table for this function. 164 emitXRayTable(); 165 166 // If we need V4T thumb mode Register Indirect Jump pads, emit them. 167 // These are created per function, rather than per TU, since it's 168 // relatively easy to exceed the thumb branch range within a TU. 169 if (! ThumbIndirectPads.empty()) { 170 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 171 EmitAlignment(1); 172 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 173 OutStreamer->EmitLabel(TIP.second); 174 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 175 .addReg(TIP.first) 176 // Add predicate operands. 177 .addImm(ARMCC::AL) 178 .addReg(0)); 179 } 180 ThumbIndirectPads.clear(); 181 } 182 183 // We didn't modify anything. 184 return false; 185 } 186 187 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 188 raw_ostream &O) { 189 const MachineOperand &MO = MI->getOperand(OpNum); 190 unsigned TF = MO.getTargetFlags(); 191 192 switch (MO.getType()) { 193 default: llvm_unreachable("<unknown operand type>"); 194 case MachineOperand::MO_Register: { 195 unsigned Reg = MO.getReg(); 196 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 197 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 198 if(ARM::GPRPairRegClass.contains(Reg)) { 199 const MachineFunction &MF = *MI->getParent()->getParent(); 200 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 201 Reg = TRI->getSubReg(Reg, ARM::gsub_0); 202 } 203 O << ARMInstPrinter::getRegisterName(Reg); 204 break; 205 } 206 case MachineOperand::MO_Immediate: { 207 int64_t Imm = MO.getImm(); 208 O << '#'; 209 if (TF == ARMII::MO_LO16) 210 O << ":lower16:"; 211 else if (TF == ARMII::MO_HI16) 212 O << ":upper16:"; 213 O << Imm; 214 break; 215 } 216 case MachineOperand::MO_MachineBasicBlock: 217 MO.getMBB()->getSymbol()->print(O, MAI); 218 return; 219 case MachineOperand::MO_GlobalAddress: { 220 const GlobalValue *GV = MO.getGlobal(); 221 if (TF & ARMII::MO_LO16) 222 O << ":lower16:"; 223 else if (TF & ARMII::MO_HI16) 224 O << ":upper16:"; 225 GetARMGVSymbol(GV, TF)->print(O, MAI); 226 227 printOffset(MO.getOffset(), O); 228 break; 229 } 230 case MachineOperand::MO_ConstantPoolIndex: 231 if (Subtarget->genExecuteOnly()) 232 llvm_unreachable("execute-only should not generate constant pools"); 233 GetCPISymbol(MO.getIndex())->print(O, MAI); 234 break; 235 } 236 } 237 238 MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const { 239 // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as 240 // indexes in MachineConstantPool, which isn't in sync with indexes used here. 241 const DataLayout &DL = getDataLayout(); 242 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 243 "CPI" + Twine(getFunctionNumber()) + "_" + 244 Twine(CPID)); 245 } 246 247 //===--------------------------------------------------------------------===// 248 249 MCSymbol *ARMAsmPrinter:: 250 GetARMJTIPICJumpTableLabel(unsigned uid) const { 251 const DataLayout &DL = getDataLayout(); 252 SmallString<60> Name; 253 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" 254 << getFunctionNumber() << '_' << uid; 255 return OutContext.getOrCreateSymbol(Name); 256 } 257 258 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 259 unsigned AsmVariant, const char *ExtraCode, 260 raw_ostream &O) { 261 // Does this asm operand have a single letter operand modifier? 262 if (ExtraCode && ExtraCode[0]) { 263 if (ExtraCode[1] != 0) return true; // Unknown modifier. 264 265 switch (ExtraCode[0]) { 266 default: 267 // See if this is a generic print operand 268 return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O); 269 case 'a': // Print as a memory address. 270 if (MI->getOperand(OpNum).isReg()) { 271 O << "[" 272 << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()) 273 << "]"; 274 return false; 275 } 276 LLVM_FALLTHROUGH; 277 case 'c': // Don't print "#" before an immediate operand. 278 if (!MI->getOperand(OpNum).isImm()) 279 return true; 280 O << MI->getOperand(OpNum).getImm(); 281 return false; 282 case 'P': // Print a VFP double precision register. 283 case 'q': // Print a NEON quad precision register. 284 printOperand(MI, OpNum, O); 285 return false; 286 case 'y': // Print a VFP single precision register as indexed double. 287 if (MI->getOperand(OpNum).isReg()) { 288 unsigned Reg = MI->getOperand(OpNum).getReg(); 289 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 290 // Find the 'd' register that has this 's' register as a sub-register, 291 // and determine the lane number. 292 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { 293 if (!ARM::DPRRegClass.contains(*SR)) 294 continue; 295 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; 296 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); 297 return false; 298 } 299 } 300 return true; 301 case 'B': // Bitwise inverse of integer or symbol without a preceding #. 302 if (!MI->getOperand(OpNum).isImm()) 303 return true; 304 O << ~(MI->getOperand(OpNum).getImm()); 305 return false; 306 case 'L': // The low 16 bits of an immediate constant. 307 if (!MI->getOperand(OpNum).isImm()) 308 return true; 309 O << (MI->getOperand(OpNum).getImm() & 0xffff); 310 return false; 311 case 'M': { // A register range suitable for LDM/STM. 312 if (!MI->getOperand(OpNum).isReg()) 313 return true; 314 const MachineOperand &MO = MI->getOperand(OpNum); 315 unsigned RegBegin = MO.getReg(); 316 // This takes advantage of the 2 operand-ness of ldm/stm and that we've 317 // already got the operands in registers that are operands to the 318 // inline asm statement. 319 O << "{"; 320 if (ARM::GPRPairRegClass.contains(RegBegin)) { 321 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 322 unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); 323 O << ARMInstPrinter::getRegisterName(Reg0) << ", "; 324 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); 325 } 326 O << ARMInstPrinter::getRegisterName(RegBegin); 327 328 // FIXME: The register allocator not only may not have given us the 329 // registers in sequence, but may not be in ascending registers. This 330 // will require changes in the register allocator that'll need to be 331 // propagated down here if the operands change. 332 unsigned RegOps = OpNum + 1; 333 while (MI->getOperand(RegOps).isReg()) { 334 O << ", " 335 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); 336 RegOps++; 337 } 338 339 O << "}"; 340 341 return false; 342 } 343 case 'R': // The most significant register of a pair. 344 case 'Q': { // The least significant register of a pair. 345 if (OpNum == 0) 346 return true; 347 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 348 if (!FlagsOP.isImm()) 349 return true; 350 unsigned Flags = FlagsOP.getImm(); 351 352 // This operand may not be the one that actually provides the register. If 353 // it's tied to a previous one then we should refer instead to that one 354 // for registers and their classes. 355 unsigned TiedIdx; 356 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { 357 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { 358 unsigned OpFlags = MI->getOperand(OpNum).getImm(); 359 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 360 } 361 Flags = MI->getOperand(OpNum).getImm(); 362 363 // Later code expects OpNum to be pointing at the register rather than 364 // the flags. 365 OpNum += 1; 366 } 367 368 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 369 unsigned RC; 370 bool FirstHalf; 371 const ARMBaseTargetMachine &ATM = 372 static_cast<const ARMBaseTargetMachine &>(TM); 373 374 // 'Q' should correspond to the low order register and 'R' to the high 375 // order register. Whether this corresponds to the upper or lower half 376 // depends on the endianess mode. 377 if (ExtraCode[0] == 'Q') 378 FirstHalf = ATM.isLittleEndian(); 379 else 380 // ExtraCode[0] == 'R'. 381 FirstHalf = !ATM.isLittleEndian(); 382 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 383 if (InlineAsm::hasRegClassConstraint(Flags, RC) && 384 ARM::GPRPairRegClass.hasSubClassEq(TRI->getRegClass(RC))) { 385 if (NumVals != 1) 386 return true; 387 const MachineOperand &MO = MI->getOperand(OpNum); 388 if (!MO.isReg()) 389 return true; 390 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 391 unsigned Reg = TRI->getSubReg(MO.getReg(), FirstHalf ? 392 ARM::gsub_0 : ARM::gsub_1); 393 O << ARMInstPrinter::getRegisterName(Reg); 394 return false; 395 } 396 if (NumVals != 2) 397 return true; 398 unsigned RegOp = FirstHalf ? OpNum : OpNum + 1; 399 if (RegOp >= MI->getNumOperands()) 400 return true; 401 const MachineOperand &MO = MI->getOperand(RegOp); 402 if (!MO.isReg()) 403 return true; 404 unsigned Reg = MO.getReg(); 405 O << ARMInstPrinter::getRegisterName(Reg); 406 return false; 407 } 408 409 case 'e': // The low doubleword register of a NEON quad register. 410 case 'f': { // The high doubleword register of a NEON quad register. 411 if (!MI->getOperand(OpNum).isReg()) 412 return true; 413 unsigned Reg = MI->getOperand(OpNum).getReg(); 414 if (!ARM::QPRRegClass.contains(Reg)) 415 return true; 416 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 417 unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? 418 ARM::dsub_0 : ARM::dsub_1); 419 O << ARMInstPrinter::getRegisterName(SubReg); 420 return false; 421 } 422 423 // This modifier is not yet supported. 424 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. 425 return true; 426 case 'H': { // The highest-numbered register of a pair. 427 const MachineOperand &MO = MI->getOperand(OpNum); 428 if (!MO.isReg()) 429 return true; 430 const MachineFunction &MF = *MI->getParent()->getParent(); 431 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 432 unsigned Reg = MO.getReg(); 433 if(!ARM::GPRPairRegClass.contains(Reg)) 434 return false; 435 Reg = TRI->getSubReg(Reg, ARM::gsub_1); 436 O << ARMInstPrinter::getRegisterName(Reg); 437 return false; 438 } 439 } 440 } 441 442 printOperand(MI, OpNum, O); 443 return false; 444 } 445 446 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 447 unsigned OpNum, unsigned AsmVariant, 448 const char *ExtraCode, 449 raw_ostream &O) { 450 // Does this asm operand have a single letter operand modifier? 451 if (ExtraCode && ExtraCode[0]) { 452 if (ExtraCode[1] != 0) return true; // Unknown modifier. 453 454 switch (ExtraCode[0]) { 455 case 'A': // A memory operand for a VLD1/VST1 instruction. 456 default: return true; // Unknown modifier. 457 case 'm': // The base register of a memory operand. 458 if (!MI->getOperand(OpNum).isReg()) 459 return true; 460 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); 461 return false; 462 } 463 } 464 465 const MachineOperand &MO = MI->getOperand(OpNum); 466 assert(MO.isReg() && "unexpected inline asm memory operand"); 467 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; 468 return false; 469 } 470 471 static bool isThumb(const MCSubtargetInfo& STI) { 472 return STI.getFeatureBits()[ARM::ModeThumb]; 473 } 474 475 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 476 const MCSubtargetInfo *EndInfo) const { 477 // If either end mode is unknown (EndInfo == NULL) or different than 478 // the start mode, then restore the start mode. 479 const bool WasThumb = isThumb(StartInfo); 480 if (!EndInfo || WasThumb != isThumb(*EndInfo)) { 481 OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); 482 } 483 } 484 485 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) { 486 const Triple &TT = TM.getTargetTriple(); 487 // Use unified assembler syntax. 488 OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified); 489 490 // Emit ARM Build Attributes 491 if (TT.isOSBinFormatELF()) 492 emitAttributes(); 493 494 // Use the triple's architecture and subarchitecture to determine 495 // if we're thumb for the purposes of the top level code16 assembler 496 // flag. 497 if (!M.getModuleInlineAsm().empty() && TT.isThumb()) 498 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 499 } 500 501 static void 502 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, 503 MachineModuleInfoImpl::StubValueTy &MCSym) { 504 // L_foo$stub: 505 OutStreamer.EmitLabel(StubLabel); 506 // .indirect_symbol _foo 507 OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); 508 509 if (MCSym.getInt()) 510 // External to current translation unit. 511 OutStreamer.EmitIntValue(0, 4/*size*/); 512 else 513 // Internal to current translation unit. 514 // 515 // When we place the LSDA into the TEXT section, the type info 516 // pointers need to be indirect and pc-rel. We accomplish this by 517 // using NLPs; however, sometimes the types are local to the file. 518 // We need to fill in the value for the NLP in those cases. 519 OutStreamer.EmitValue( 520 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 521 4 /*size*/); 522 } 523 524 525 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) { 526 const Triple &TT = TM.getTargetTriple(); 527 if (TT.isOSBinFormatMachO()) { 528 // All darwin targets use mach-o. 529 const TargetLoweringObjectFileMachO &TLOFMacho = 530 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); 531 MachineModuleInfoMachO &MMIMacho = 532 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 533 534 // Output non-lazy-pointers for external and common global variables. 535 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); 536 537 if (!Stubs.empty()) { 538 // Switch with ".non_lazy_symbol_pointer" directive. 539 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 540 EmitAlignment(2); 541 542 for (auto &Stub : Stubs) 543 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 544 545 Stubs.clear(); 546 OutStreamer->AddBlankLine(); 547 } 548 549 Stubs = MMIMacho.GetThreadLocalGVStubList(); 550 if (!Stubs.empty()) { 551 // Switch with ".non_lazy_symbol_pointer" directive. 552 OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection()); 553 EmitAlignment(2); 554 555 for (auto &Stub : Stubs) 556 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 557 558 Stubs.clear(); 559 OutStreamer->AddBlankLine(); 560 } 561 562 // Funny Darwin hack: This flag tells the linker that no global symbols 563 // contain code that falls through to other global symbols (e.g. the obvious 564 // implementation of multiple entry points). If this doesn't occur, the 565 // linker can safely perform dead code stripping. Since LLVM never 566 // generates code that does this, it is always safe to set. 567 OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols); 568 } 569 570 // The last attribute to be emitted is ABI_optimization_goals 571 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 572 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 573 574 if (OptimizationGoals > 0 && 575 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || 576 Subtarget->isTargetMuslAEABI())) 577 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); 578 OptimizationGoals = -1; 579 580 ATS.finishAttributeSection(); 581 } 582 583 //===----------------------------------------------------------------------===// 584 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile() 585 // FIXME: 586 // The following seem like one-off assembler flags, but they actually need 587 // to appear in the .ARM.attributes section in ELF. 588 // Instead of subclassing the MCELFStreamer, we do the work here. 589 590 // Returns true if all functions have the same function attribute value. 591 // It also returns true when the module has no functions. 592 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr, 593 StringRef Value) { 594 return !any_of(M, [&](const Function &F) { 595 return F.getFnAttribute(Attr).getValueAsString() != Value; 596 }); 597 } 598 599 void ARMAsmPrinter::emitAttributes() { 600 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 601 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 602 603 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); 604 605 ATS.switchVendor("aeabi"); 606 607 // Compute ARM ELF Attributes based on the default subtarget that 608 // we'd have constructed. The existing ARM behavior isn't LTO clean 609 // anyhow. 610 // FIXME: For ifunc related functions we could iterate over and look 611 // for a feature string that doesn't match the default one. 612 const Triple &TT = TM.getTargetTriple(); 613 StringRef CPU = TM.getTargetCPU(); 614 StringRef FS = TM.getTargetFeatureString(); 615 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); 616 if (!FS.empty()) { 617 if (!ArchFS.empty()) 618 ArchFS = (Twine(ArchFS) + "," + FS).str(); 619 else 620 ArchFS = FS; 621 } 622 const ARMBaseTargetMachine &ATM = 623 static_cast<const ARMBaseTargetMachine &>(TM); 624 const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian()); 625 626 // Emit build attributes for the available hardware. 627 ATS.emitTargetAttributes(STI); 628 629 // RW data addressing. 630 if (isPositionIndependent()) { 631 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 632 ARMBuildAttrs::AddressRWPCRel); 633 } else if (STI.isRWPI()) { 634 // RWPI specific attributes. 635 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 636 ARMBuildAttrs::AddressRWSBRel); 637 } 638 639 // RO data addressing. 640 if (isPositionIndependent() || STI.isROPI()) { 641 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, 642 ARMBuildAttrs::AddressROPCRel); 643 } 644 645 // GOT use. 646 if (isPositionIndependent()) { 647 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 648 ARMBuildAttrs::AddressGOT); 649 } else { 650 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 651 ARMBuildAttrs::AddressDirect); 652 } 653 654 // Set FP Denormals. 655 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 656 "denormal-fp-math", 657 "preserve-sign") || 658 TM.Options.FPDenormalMode == FPDenormal::PreserveSign) 659 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 660 ARMBuildAttrs::PreserveFPSign); 661 else if (checkFunctionsAttributeConsistency(*MMI->getModule(), 662 "denormal-fp-math", 663 "positive-zero") || 664 TM.Options.FPDenormalMode == FPDenormal::PositiveZero) 665 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 666 ARMBuildAttrs::PositiveZero); 667 else if (!TM.Options.UnsafeFPMath) 668 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 669 ARMBuildAttrs::IEEEDenormals); 670 else { 671 if (!STI.hasVFP2()) { 672 // When the target doesn't have an FPU (by design or 673 // intention), the assumptions made on the software support 674 // mirror that of the equivalent hardware support *if it 675 // existed*. For v7 and better we indicate that denormals are 676 // flushed preserving sign, and for V6 we indicate that 677 // denormals are flushed to positive zero. 678 if (STI.hasV7Ops()) 679 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 680 ARMBuildAttrs::PreserveFPSign); 681 } else if (STI.hasVFP3()) { 682 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, 683 // the sign bit of the zero matches the sign bit of the input or 684 // result that is being flushed to zero. 685 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 686 ARMBuildAttrs::PreserveFPSign); 687 } 688 // For VFPv2 implementations it is implementation defined as 689 // to whether denormals are flushed to positive zero or to 690 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically 691 // LLVM has chosen to flush this to positive zero (most likely for 692 // GCC compatibility), so that's the chosen value here (the 693 // absence of its emission implies zero). 694 } 695 696 // Set FP exceptions and rounding 697 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 698 "no-trapping-math", "true") || 699 TM.Options.NoTrappingFPMath) 700 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, 701 ARMBuildAttrs::Not_Allowed); 702 else if (!TM.Options.UnsafeFPMath) { 703 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); 704 705 // If the user has permitted this code to choose the IEEE 754 706 // rounding at run-time, emit the rounding attribute. 707 if (TM.Options.HonorSignDependentRoundingFPMathOption) 708 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); 709 } 710 711 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the 712 // equivalent of GCC's -ffinite-math-only flag. 713 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) 714 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 715 ARMBuildAttrs::Allowed); 716 else 717 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 718 ARMBuildAttrs::AllowIEEE754); 719 720 // FIXME: add more flags to ARMBuildAttributes.h 721 // 8-bytes alignment stuff. 722 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); 723 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); 724 725 // Hard float. Use both S and D registers and conform to AAPCS-VFP. 726 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) 727 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); 728 729 // FIXME: To support emitting this build attribute as GCC does, the 730 // -mfp16-format option and associated plumbing must be 731 // supported. For now the __fp16 type is exposed by default, so this 732 // attribute should be emitted with value 1. 733 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, 734 ARMBuildAttrs::FP16FormatIEEE); 735 736 if (MMI) { 737 if (const Module *SourceModule = MMI->getModule()) { 738 // ABI_PCS_wchar_t to indicate wchar_t width 739 // FIXME: There is no way to emit value 0 (wchar_t prohibited). 740 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( 741 SourceModule->getModuleFlag("wchar_size"))) { 742 int WCharWidth = WCharWidthValue->getZExtValue(); 743 assert((WCharWidth == 2 || WCharWidth == 4) && 744 "wchar_t width must be 2 or 4 bytes"); 745 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); 746 } 747 748 // ABI_enum_size to indicate enum width 749 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 750 // (all enums contain a value needing 32 bits to encode). 751 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( 752 SourceModule->getModuleFlag("min_enum_size"))) { 753 int EnumWidth = EnumWidthValue->getZExtValue(); 754 assert((EnumWidth == 1 || EnumWidth == 4) && 755 "Minimum enum width must be 1 or 4 bytes"); 756 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; 757 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); 758 } 759 } 760 } 761 762 // We currently do not support using R9 as the TLS pointer. 763 if (STI.isRWPI()) 764 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 765 ARMBuildAttrs::R9IsSB); 766 else if (STI.isR9Reserved()) 767 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 768 ARMBuildAttrs::R9Reserved); 769 else 770 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 771 ARMBuildAttrs::R9IsGPR); 772 } 773 774 //===----------------------------------------------------------------------===// 775 776 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber, 777 unsigned LabelId, MCContext &Ctx) { 778 779 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 780 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 781 return Label; 782 } 783 784 static MCSymbolRefExpr::VariantKind 785 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { 786 switch (Modifier) { 787 case ARMCP::no_modifier: 788 return MCSymbolRefExpr::VK_None; 789 case ARMCP::TLSGD: 790 return MCSymbolRefExpr::VK_TLSGD; 791 case ARMCP::TPOFF: 792 return MCSymbolRefExpr::VK_TPOFF; 793 case ARMCP::GOTTPOFF: 794 return MCSymbolRefExpr::VK_GOTTPOFF; 795 case ARMCP::SBREL: 796 return MCSymbolRefExpr::VK_ARM_SBREL; 797 case ARMCP::GOT_PREL: 798 return MCSymbolRefExpr::VK_ARM_GOT_PREL; 799 case ARMCP::SECREL: 800 return MCSymbolRefExpr::VK_SECREL; 801 } 802 llvm_unreachable("Invalid ARMCPModifier!"); 803 } 804 805 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, 806 unsigned char TargetFlags) { 807 if (Subtarget->isTargetMachO()) { 808 bool IsIndirect = 809 (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); 810 811 if (!IsIndirect) 812 return getSymbol(GV); 813 814 // FIXME: Remove this when Darwin transition to @GOT like syntax. 815 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 816 MachineModuleInfoMachO &MMIMachO = 817 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 818 MachineModuleInfoImpl::StubValueTy &StubSym = 819 GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym) 820 : MMIMachO.getGVStubEntry(MCSym); 821 822 if (!StubSym.getPointer()) 823 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), 824 !GV->hasInternalLinkage()); 825 return MCSym; 826 } else if (Subtarget->isTargetCOFF()) { 827 assert(Subtarget->isTargetWindows() && 828 "Windows is the only supported COFF target"); 829 830 bool IsIndirect = 831 (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB)); 832 if (!IsIndirect) 833 return getSymbol(GV); 834 835 SmallString<128> Name; 836 if (TargetFlags & ARMII::MO_DLLIMPORT) 837 Name = "__imp_"; 838 else if (TargetFlags & ARMII::MO_COFFSTUB) 839 Name = ".refptr."; 840 getNameWithPrefix(Name, GV); 841 842 MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name); 843 844 if (TargetFlags & ARMII::MO_COFFSTUB) { 845 MachineModuleInfoCOFF &MMICOFF = 846 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 847 MachineModuleInfoImpl::StubValueTy &StubSym = 848 MMICOFF.getGVStubEntry(MCSym); 849 850 if (!StubSym.getPointer()) 851 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true); 852 } 853 854 return MCSym; 855 } else if (Subtarget->isTargetELF()) { 856 return getSymbol(GV); 857 } 858 llvm_unreachable("unexpected target"); 859 } 860 861 void ARMAsmPrinter:: 862 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 863 const DataLayout &DL = getDataLayout(); 864 int Size = DL.getTypeAllocSize(MCPV->getType()); 865 866 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); 867 868 if (ACPV->isPromotedGlobal()) { 869 // This constant pool entry is actually a global whose storage has been 870 // promoted into the constant pool. This global may be referenced still 871 // by debug information, and due to the way AsmPrinter is set up, the debug 872 // info is immutable by the time we decide to promote globals to constant 873 // pools. Because of this, we need to ensure we emit a symbol for the global 874 // with private linkage (the default) so debug info can refer to it. 875 // 876 // However, if this global is promoted into several functions we must ensure 877 // we don't try and emit duplicate symbols! 878 auto *ACPC = cast<ARMConstantPoolConstant>(ACPV); 879 for (const auto *GV : ACPC->promotedGlobals()) { 880 if (!EmittedPromotedGlobalLabels.count(GV)) { 881 MCSymbol *GVSym = getSymbol(GV); 882 OutStreamer->EmitLabel(GVSym); 883 EmittedPromotedGlobalLabels.insert(GV); 884 } 885 } 886 return EmitGlobalConstant(DL, ACPC->getPromotedGlobalInit()); 887 } 888 889 MCSymbol *MCSym; 890 if (ACPV->isLSDA()) { 891 MCSym = getCurExceptionSym(); 892 } else if (ACPV->isBlockAddress()) { 893 const BlockAddress *BA = 894 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); 895 MCSym = GetBlockAddressSymbol(BA); 896 } else if (ACPV->isGlobalValue()) { 897 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 898 899 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so 900 // flag the global as MO_NONLAZY. 901 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; 902 MCSym = GetARMGVSymbol(GV, TF); 903 } else if (ACPV->isMachineBasicBlock()) { 904 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); 905 MCSym = MBB->getSymbol(); 906 } else { 907 assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); 908 auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 909 MCSym = GetExternalSymbolSymbol(Sym); 910 } 911 912 // Create an MCSymbol for the reference. 913 const MCExpr *Expr = 914 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), 915 OutContext); 916 917 if (ACPV->getPCAdjustment()) { 918 MCSymbol *PCLabel = 919 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 920 ACPV->getLabelId(), OutContext); 921 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); 922 PCRelExpr = 923 MCBinaryExpr::createAdd(PCRelExpr, 924 MCConstantExpr::create(ACPV->getPCAdjustment(), 925 OutContext), 926 OutContext); 927 if (ACPV->mustAddCurrentAddress()) { 928 // We want "(<expr> - .)", but MC doesn't have a concept of the '.' 929 // label, so just emit a local label end reference that instead. 930 MCSymbol *DotSym = OutContext.createTempSymbol(); 931 OutStreamer->EmitLabel(DotSym); 932 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); 933 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); 934 } 935 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); 936 } 937 OutStreamer->EmitValue(Expr, Size); 938 } 939 940 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) { 941 const MachineOperand &MO1 = MI->getOperand(1); 942 unsigned JTI = MO1.getIndex(); 943 944 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 945 // ARM mode tables. 946 EmitAlignment(2); 947 948 // Emit a label for the jump table. 949 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 950 OutStreamer->EmitLabel(JTISymbol); 951 952 // Mark the jump table as data-in-code. 953 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 954 955 // Emit each entry of the table. 956 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 957 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 958 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 959 960 for (MachineBasicBlock *MBB : JTBBs) { 961 // Construct an MCExpr for the entry. We want a value of the form: 962 // (BasicBlockAddr - TableBeginAddr) 963 // 964 // For example, a table with entries jumping to basic blocks BB0 and BB1 965 // would look like: 966 // LJTI_0_0: 967 // .word (LBB0 - LJTI_0_0) 968 // .word (LBB1 - LJTI_0_0) 969 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 970 971 if (isPositionIndependent() || Subtarget->isROPI()) 972 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, 973 OutContext), 974 OutContext); 975 // If we're generating a table of Thumb addresses in static relocation 976 // model, we need to add one to keep interworking correctly. 977 else if (AFI->isThumbFunction()) 978 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), 979 OutContext); 980 OutStreamer->EmitValue(Expr, 4); 981 } 982 // Mark the end of jump table data-in-code region. 983 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 984 } 985 986 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) { 987 const MachineOperand &MO1 = MI->getOperand(1); 988 unsigned JTI = MO1.getIndex(); 989 990 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 991 // ARM mode tables. 992 EmitAlignment(2); 993 994 // Emit a label for the jump table. 995 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 996 OutStreamer->EmitLabel(JTISymbol); 997 998 // Emit each entry of the table. 999 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1000 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1001 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1002 1003 for (MachineBasicBlock *MBB : JTBBs) { 1004 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1005 OutContext); 1006 // If this isn't a TBB or TBH, the entries are direct branch instructions. 1007 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) 1008 .addExpr(MBBSymbolExpr) 1009 .addImm(ARMCC::AL) 1010 .addReg(0)); 1011 } 1012 } 1013 1014 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI, 1015 unsigned OffsetWidth) { 1016 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); 1017 const MachineOperand &MO1 = MI->getOperand(1); 1018 unsigned JTI = MO1.getIndex(); 1019 1020 if (Subtarget->isThumb1Only()) 1021 EmitAlignment(2); 1022 1023 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1024 OutStreamer->EmitLabel(JTISymbol); 1025 1026 // Emit each entry of the table. 1027 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1028 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1029 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1030 1031 // Mark the jump table as data-in-code. 1032 OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 1033 : MCDR_DataRegionJT16); 1034 1035 for (auto MBB : JTBBs) { 1036 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1037 OutContext); 1038 // Otherwise it's an offset from the dispatch instruction. Construct an 1039 // MCExpr for the entry. We want a value of the form: 1040 // (BasicBlockAddr - TBBInstAddr + 4) / 2 1041 // 1042 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 1043 // would look like: 1044 // LJTI_0_0: 1045 // .byte (LBB0 - (LCPI0_0 + 4)) / 2 1046 // .byte (LBB1 - (LCPI0_0 + 4)) / 2 1047 // where LCPI0_0 is a label defined just before the TBB instruction using 1048 // this table. 1049 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); 1050 const MCExpr *Expr = MCBinaryExpr::createAdd( 1051 MCSymbolRefExpr::create(TBInstPC, OutContext), 1052 MCConstantExpr::create(4, OutContext), OutContext); 1053 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); 1054 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), 1055 OutContext); 1056 OutStreamer->EmitValue(Expr, OffsetWidth); 1057 } 1058 // Mark the end of jump table data-in-code region. 32-bit offsets use 1059 // actual branch instructions here, so we don't mark those as a data-region 1060 // at all. 1061 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1062 1063 // Make sure the next instruction is 2-byte aligned. 1064 EmitAlignment(1); 1065 } 1066 1067 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { 1068 assert(MI->getFlag(MachineInstr::FrameSetup) && 1069 "Only instruction which are involved into frame setup code are allowed"); 1070 1071 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1072 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1073 const MachineFunction &MF = *MI->getParent()->getParent(); 1074 const TargetRegisterInfo *TargetRegInfo = 1075 MF.getSubtarget().getRegisterInfo(); 1076 const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo(); 1077 const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>(); 1078 1079 unsigned FramePtr = TargetRegInfo->getFrameRegister(MF); 1080 unsigned Opc = MI->getOpcode(); 1081 unsigned SrcReg, DstReg; 1082 1083 if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) { 1084 // Two special cases: 1085 // 1) tPUSH does not have src/dst regs. 1086 // 2) for Thumb1 code we sometimes materialize the constant via constpool 1087 // load. Yes, this is pretty fragile, but for now I don't see better 1088 // way... :( 1089 SrcReg = DstReg = ARM::SP; 1090 } else { 1091 SrcReg = MI->getOperand(1).getReg(); 1092 DstReg = MI->getOperand(0).getReg(); 1093 } 1094 1095 // Try to figure out the unwinding opcode out of src / dst regs. 1096 if (MI->mayStore()) { 1097 // Register saves. 1098 assert(DstReg == ARM::SP && 1099 "Only stack pointer as a destination reg is supported"); 1100 1101 SmallVector<unsigned, 4> RegList; 1102 // Skip src & dst reg, and pred ops. 1103 unsigned StartOp = 2 + 2; 1104 // Use all the operands. 1105 unsigned NumOffset = 0; 1106 // Amount of SP adjustment folded into a push. 1107 unsigned Pad = 0; 1108 1109 switch (Opc) { 1110 default: 1111 MI->print(errs()); 1112 llvm_unreachable("Unsupported opcode for unwinding information"); 1113 case ARM::tPUSH: 1114 // Special case here: no src & dst reg, but two extra imp ops. 1115 StartOp = 2; NumOffset = 2; 1116 LLVM_FALLTHROUGH; 1117 case ARM::STMDB_UPD: 1118 case ARM::t2STMDB_UPD: 1119 case ARM::VSTMDDB_UPD: 1120 assert(SrcReg == ARM::SP && 1121 "Only stack pointer as a source reg is supported"); 1122 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; 1123 i != NumOps; ++i) { 1124 const MachineOperand &MO = MI->getOperand(i); 1125 // Actually, there should never be any impdef stuff here. Skip it 1126 // temporary to workaround PR11902. 1127 if (MO.isImplicit()) 1128 continue; 1129 // Registers, pushed as a part of folding an SP update into the 1130 // push instruction are marked as undef and should not be 1131 // restored when unwinding, because the function can modify the 1132 // corresponding stack slots. 1133 if (MO.isUndef()) { 1134 assert(RegList.empty() && 1135 "Pad registers must come before restored ones"); 1136 unsigned Width = 1137 TargetRegInfo->getRegSizeInBits(MO.getReg(), MachineRegInfo) / 8; 1138 Pad += Width; 1139 continue; 1140 } 1141 RegList.push_back(MO.getReg()); 1142 } 1143 break; 1144 case ARM::STR_PRE_IMM: 1145 case ARM::STR_PRE_REG: 1146 case ARM::t2STR_PRE: 1147 assert(MI->getOperand(2).getReg() == ARM::SP && 1148 "Only stack pointer as a source reg is supported"); 1149 RegList.push_back(SrcReg); 1150 break; 1151 } 1152 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1153 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); 1154 // Account for the SP adjustment, folded into the push. 1155 if (Pad) 1156 ATS.emitPad(Pad); 1157 } 1158 } else { 1159 // Changes of stack / frame pointer. 1160 if (SrcReg == ARM::SP) { 1161 int64_t Offset = 0; 1162 switch (Opc) { 1163 default: 1164 MI->print(errs()); 1165 llvm_unreachable("Unsupported opcode for unwinding information"); 1166 case ARM::MOVr: 1167 case ARM::tMOVr: 1168 Offset = 0; 1169 break; 1170 case ARM::ADDri: 1171 case ARM::t2ADDri: 1172 Offset = -MI->getOperand(2).getImm(); 1173 break; 1174 case ARM::SUBri: 1175 case ARM::t2SUBri: 1176 Offset = MI->getOperand(2).getImm(); 1177 break; 1178 case ARM::tSUBspi: 1179 Offset = MI->getOperand(2).getImm()*4; 1180 break; 1181 case ARM::tADDspi: 1182 case ARM::tADDrSPi: 1183 Offset = -MI->getOperand(2).getImm()*4; 1184 break; 1185 case ARM::tLDRpci: { 1186 // Grab the constpool index and check, whether it corresponds to 1187 // original or cloned constpool entry. 1188 unsigned CPI = MI->getOperand(1).getIndex(); 1189 const MachineConstantPool *MCP = MF.getConstantPool(); 1190 if (CPI >= MCP->getConstants().size()) 1191 CPI = AFI.getOriginalCPIdx(CPI); 1192 assert(CPI != -1U && "Invalid constpool index"); 1193 1194 // Derive the actual offset. 1195 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; 1196 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); 1197 // FIXME: Check for user, it should be "add" instruction! 1198 Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); 1199 break; 1200 } 1201 } 1202 1203 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1204 if (DstReg == FramePtr && FramePtr != ARM::SP) 1205 // Set-up of the frame pointer. Positive values correspond to "add" 1206 // instruction. 1207 ATS.emitSetFP(FramePtr, ARM::SP, -Offset); 1208 else if (DstReg == ARM::SP) { 1209 // Change of SP by an offset. Positive values correspond to "sub" 1210 // instruction. 1211 ATS.emitPad(Offset); 1212 } else { 1213 // Move of SP to a register. Positive values correspond to an "add" 1214 // instruction. 1215 ATS.emitMovSP(DstReg, -Offset); 1216 } 1217 } 1218 } else if (DstReg == ARM::SP) { 1219 MI->print(errs()); 1220 llvm_unreachable("Unsupported opcode for unwinding information"); 1221 } 1222 else { 1223 MI->print(errs()); 1224 llvm_unreachable("Unsupported opcode for unwinding information"); 1225 } 1226 } 1227 } 1228 1229 // Simple pseudo-instructions have their lowering (with expansion to real 1230 // instructions) auto-generated. 1231 #include "ARMGenMCPseudoLowering.inc" 1232 1233 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) { 1234 const DataLayout &DL = getDataLayout(); 1235 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1236 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1237 1238 const MachineFunction &MF = *MI->getParent()->getParent(); 1239 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); 1240 unsigned FramePtr = STI.useR7AsFramePointer() ? ARM::R7 : ARM::R11; 1241 1242 // If we just ended a constant pool, mark it as such. 1243 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { 1244 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1245 InConstantPool = false; 1246 } 1247 1248 // Emit unwinding stuff for frame-related instructions 1249 if (Subtarget->isTargetEHABICompatible() && 1250 MI->getFlag(MachineInstr::FrameSetup)) 1251 EmitUnwindingInstruction(MI); 1252 1253 // Do any auto-generated pseudo lowerings. 1254 if (emitPseudoExpansionLowering(*OutStreamer, MI)) 1255 return; 1256 1257 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 1258 "Pseudo flag setting opcode should be expanded early"); 1259 1260 // Check for manual lowerings. 1261 unsigned Opc = MI->getOpcode(); 1262 switch (Opc) { 1263 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); 1264 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); 1265 case ARM::LEApcrel: 1266 case ARM::tLEApcrel: 1267 case ARM::t2LEApcrel: { 1268 // FIXME: Need to also handle globals and externals 1269 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); 1270 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1271 ARM::t2LEApcrel ? ARM::t2ADR 1272 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR 1273 : ARM::ADR)) 1274 .addReg(MI->getOperand(0).getReg()) 1275 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) 1276 // Add predicate operands. 1277 .addImm(MI->getOperand(2).getImm()) 1278 .addReg(MI->getOperand(3).getReg())); 1279 return; 1280 } 1281 case ARM::LEApcrelJT: 1282 case ARM::tLEApcrelJT: 1283 case ARM::t2LEApcrelJT: { 1284 MCSymbol *JTIPICSymbol = 1285 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); 1286 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1287 ARM::t2LEApcrelJT ? ARM::t2ADR 1288 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR 1289 : ARM::ADR)) 1290 .addReg(MI->getOperand(0).getReg()) 1291 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) 1292 // Add predicate operands. 1293 .addImm(MI->getOperand(2).getImm()) 1294 .addReg(MI->getOperand(3).getReg())); 1295 return; 1296 } 1297 // Darwin call instructions are just normal call instructions with different 1298 // clobber semantics (they clobber R9). 1299 case ARM::BX_CALL: { 1300 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1301 .addReg(ARM::LR) 1302 .addReg(ARM::PC) 1303 // Add predicate operands. 1304 .addImm(ARMCC::AL) 1305 .addReg(0) 1306 // Add 's' bit operand (always reg0 for this) 1307 .addReg(0)); 1308 1309 assert(Subtarget->hasV4TOps()); 1310 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1311 .addReg(MI->getOperand(0).getReg())); 1312 return; 1313 } 1314 case ARM::tBX_CALL: { 1315 if (Subtarget->hasV5TOps()) 1316 llvm_unreachable("Expected BLX to be selected for v5t+"); 1317 1318 // On ARM v4t, when doing a call from thumb mode, we need to ensure 1319 // that the saved lr has its LSB set correctly (the arch doesn't 1320 // have blx). 1321 // So here we generate a bl to a small jump pad that does bx rN. 1322 // The jump pads are emitted after the function body. 1323 1324 unsigned TReg = MI->getOperand(0).getReg(); 1325 MCSymbol *TRegSym = nullptr; 1326 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 1327 if (TIP.first == TReg) { 1328 TRegSym = TIP.second; 1329 break; 1330 } 1331 } 1332 1333 if (!TRegSym) { 1334 TRegSym = OutContext.createTempSymbol(); 1335 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); 1336 } 1337 1338 // Create a link-saving branch to the Reg Indirect Jump Pad. 1339 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) 1340 // Predicate comes first here. 1341 .addImm(ARMCC::AL).addReg(0) 1342 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); 1343 return; 1344 } 1345 case ARM::BMOVPCRX_CALL: { 1346 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1347 .addReg(ARM::LR) 1348 .addReg(ARM::PC) 1349 // Add predicate operands. 1350 .addImm(ARMCC::AL) 1351 .addReg(0) 1352 // Add 's' bit operand (always reg0 for this) 1353 .addReg(0)); 1354 1355 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1356 .addReg(ARM::PC) 1357 .addReg(MI->getOperand(0).getReg()) 1358 // Add predicate operands. 1359 .addImm(ARMCC::AL) 1360 .addReg(0) 1361 // Add 's' bit operand (always reg0 for this) 1362 .addReg(0)); 1363 return; 1364 } 1365 case ARM::BMOVPCB_CALL: { 1366 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1367 .addReg(ARM::LR) 1368 .addReg(ARM::PC) 1369 // Add predicate operands. 1370 .addImm(ARMCC::AL) 1371 .addReg(0) 1372 // Add 's' bit operand (always reg0 for this) 1373 .addReg(0)); 1374 1375 const MachineOperand &Op = MI->getOperand(0); 1376 const GlobalValue *GV = Op.getGlobal(); 1377 const unsigned TF = Op.getTargetFlags(); 1378 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1379 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1380 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) 1381 .addExpr(GVSymExpr) 1382 // Add predicate operands. 1383 .addImm(ARMCC::AL) 1384 .addReg(0)); 1385 return; 1386 } 1387 case ARM::MOVi16_ga_pcrel: 1388 case ARM::t2MOVi16_ga_pcrel: { 1389 MCInst TmpInst; 1390 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); 1391 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1392 1393 unsigned TF = MI->getOperand(1).getTargetFlags(); 1394 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1395 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1396 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1397 1398 MCSymbol *LabelSym = 1399 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1400 MI->getOperand(2).getImm(), OutContext); 1401 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1402 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; 1403 const MCExpr *PCRelExpr = 1404 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, 1405 MCBinaryExpr::createAdd(LabelSymExpr, 1406 MCConstantExpr::create(PCAdj, OutContext), 1407 OutContext), OutContext), OutContext); 1408 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1409 1410 // Add predicate operands. 1411 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1412 TmpInst.addOperand(MCOperand::createReg(0)); 1413 // Add 's' bit operand (always reg0 for this) 1414 TmpInst.addOperand(MCOperand::createReg(0)); 1415 EmitToStreamer(*OutStreamer, TmpInst); 1416 return; 1417 } 1418 case ARM::MOVTi16_ga_pcrel: 1419 case ARM::t2MOVTi16_ga_pcrel: { 1420 MCInst TmpInst; 1421 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel 1422 ? ARM::MOVTi16 : ARM::t2MOVTi16); 1423 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1424 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1425 1426 unsigned TF = MI->getOperand(2).getTargetFlags(); 1427 const GlobalValue *GV = MI->getOperand(2).getGlobal(); 1428 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1429 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1430 1431 MCSymbol *LabelSym = 1432 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1433 MI->getOperand(3).getImm(), OutContext); 1434 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1435 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; 1436 const MCExpr *PCRelExpr = 1437 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, 1438 MCBinaryExpr::createAdd(LabelSymExpr, 1439 MCConstantExpr::create(PCAdj, OutContext), 1440 OutContext), OutContext), OutContext); 1441 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1442 // Add predicate operands. 1443 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1444 TmpInst.addOperand(MCOperand::createReg(0)); 1445 // Add 's' bit operand (always reg0 for this) 1446 TmpInst.addOperand(MCOperand::createReg(0)); 1447 EmitToStreamer(*OutStreamer, TmpInst); 1448 return; 1449 } 1450 case ARM::tPICADD: { 1451 // This is a pseudo op for a label + instruction sequence, which looks like: 1452 // LPC0: 1453 // add r0, pc 1454 // This adds the address of LPC0 to r0. 1455 1456 // Emit the label. 1457 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1458 getFunctionNumber(), 1459 MI->getOperand(2).getImm(), OutContext)); 1460 1461 // Form and emit the add. 1462 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1463 .addReg(MI->getOperand(0).getReg()) 1464 .addReg(MI->getOperand(0).getReg()) 1465 .addReg(ARM::PC) 1466 // Add predicate operands. 1467 .addImm(ARMCC::AL) 1468 .addReg(0)); 1469 return; 1470 } 1471 case ARM::PICADD: { 1472 // This is a pseudo op for a label + instruction sequence, which looks like: 1473 // LPC0: 1474 // add r0, pc, r0 1475 // This adds the address of LPC0 to r0. 1476 1477 // Emit the label. 1478 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1479 getFunctionNumber(), 1480 MI->getOperand(2).getImm(), OutContext)); 1481 1482 // Form and emit the add. 1483 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1484 .addReg(MI->getOperand(0).getReg()) 1485 .addReg(ARM::PC) 1486 .addReg(MI->getOperand(1).getReg()) 1487 // Add predicate operands. 1488 .addImm(MI->getOperand(3).getImm()) 1489 .addReg(MI->getOperand(4).getReg()) 1490 // Add 's' bit operand (always reg0 for this) 1491 .addReg(0)); 1492 return; 1493 } 1494 case ARM::PICSTR: 1495 case ARM::PICSTRB: 1496 case ARM::PICSTRH: 1497 case ARM::PICLDR: 1498 case ARM::PICLDRB: 1499 case ARM::PICLDRH: 1500 case ARM::PICLDRSB: 1501 case ARM::PICLDRSH: { 1502 // This is a pseudo op for a label + instruction sequence, which looks like: 1503 // LPC0: 1504 // OP r0, [pc, r0] 1505 // The LCP0 label is referenced by a constant pool entry in order to get 1506 // a PC-relative address at the ldr instruction. 1507 1508 // Emit the label. 1509 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1510 getFunctionNumber(), 1511 MI->getOperand(2).getImm(), OutContext)); 1512 1513 // Form and emit the load 1514 unsigned Opcode; 1515 switch (MI->getOpcode()) { 1516 default: 1517 llvm_unreachable("Unexpected opcode!"); 1518 case ARM::PICSTR: Opcode = ARM::STRrs; break; 1519 case ARM::PICSTRB: Opcode = ARM::STRBrs; break; 1520 case ARM::PICSTRH: Opcode = ARM::STRH; break; 1521 case ARM::PICLDR: Opcode = ARM::LDRrs; break; 1522 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; 1523 case ARM::PICLDRH: Opcode = ARM::LDRH; break; 1524 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; 1525 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; 1526 } 1527 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) 1528 .addReg(MI->getOperand(0).getReg()) 1529 .addReg(ARM::PC) 1530 .addReg(MI->getOperand(1).getReg()) 1531 .addImm(0) 1532 // Add predicate operands. 1533 .addImm(MI->getOperand(3).getImm()) 1534 .addReg(MI->getOperand(4).getReg())); 1535 1536 return; 1537 } 1538 case ARM::CONSTPOOL_ENTRY: { 1539 if (Subtarget->genExecuteOnly()) 1540 llvm_unreachable("execute-only should not generate constant pools"); 1541 1542 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool 1543 /// in the function. The first operand is the ID# for this instruction, the 1544 /// second is the index into the MachineConstantPool that this is, the third 1545 /// is the size in bytes of this constant pool entry. 1546 /// The required alignment is specified on the basic block holding this MI. 1547 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 1548 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 1549 1550 // If this is the first entry of the pool, mark it. 1551 if (!InConstantPool) { 1552 OutStreamer->EmitDataRegion(MCDR_DataRegion); 1553 InConstantPool = true; 1554 } 1555 1556 OutStreamer->EmitLabel(GetCPISymbol(LabelId)); 1557 1558 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 1559 if (MCPE.isMachineConstantPoolEntry()) 1560 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 1561 else 1562 EmitGlobalConstant(DL, MCPE.Val.ConstVal); 1563 return; 1564 } 1565 case ARM::JUMPTABLE_ADDRS: 1566 EmitJumpTableAddrs(MI); 1567 return; 1568 case ARM::JUMPTABLE_INSTS: 1569 EmitJumpTableInsts(MI); 1570 return; 1571 case ARM::JUMPTABLE_TBB: 1572 case ARM::JUMPTABLE_TBH: 1573 EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); 1574 return; 1575 case ARM::t2BR_JT: { 1576 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1577 .addReg(ARM::PC) 1578 .addReg(MI->getOperand(0).getReg()) 1579 // Add predicate operands. 1580 .addImm(ARMCC::AL) 1581 .addReg(0)); 1582 return; 1583 } 1584 case ARM::t2TBB_JT: 1585 case ARM::t2TBH_JT: { 1586 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; 1587 // Lower and emit the PC label, then the instruction itself. 1588 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1589 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1590 .addReg(MI->getOperand(0).getReg()) 1591 .addReg(MI->getOperand(1).getReg()) 1592 // Add predicate operands. 1593 .addImm(ARMCC::AL) 1594 .addReg(0)); 1595 return; 1596 } 1597 case ARM::tTBB_JT: 1598 case ARM::tTBH_JT: { 1599 1600 bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT; 1601 unsigned Base = MI->getOperand(0).getReg(); 1602 unsigned Idx = MI->getOperand(1).getReg(); 1603 assert(MI->getOperand(1).isKill() && "We need the index register as scratch!"); 1604 1605 // Multiply up idx if necessary. 1606 if (!Is8Bit) 1607 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1608 .addReg(Idx) 1609 .addReg(ARM::CPSR) 1610 .addReg(Idx) 1611 .addImm(1) 1612 // Add predicate operands. 1613 .addImm(ARMCC::AL) 1614 .addReg(0)); 1615 1616 if (Base == ARM::PC) { 1617 // TBB [base, idx] = 1618 // ADDS idx, idx, base 1619 // LDRB idx, [idx, #4] ; or LDRH if TBH 1620 // LSLS idx, #1 1621 // ADDS pc, pc, idx 1622 1623 // When using PC as the base, it's important that there is no padding 1624 // between the last ADDS and the start of the jump table. The jump table 1625 // is 4-byte aligned, so we ensure we're 4 byte aligned here too. 1626 // 1627 // FIXME: Ideally we could vary the LDRB index based on the padding 1628 // between the sequence and jump table, however that relies on MCExprs 1629 // for load indexes which are currently not supported. 1630 OutStreamer->EmitCodeAlignment(4); 1631 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1632 .addReg(Idx) 1633 .addReg(Idx) 1634 .addReg(Base) 1635 // Add predicate operands. 1636 .addImm(ARMCC::AL) 1637 .addReg(0)); 1638 1639 unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi; 1640 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1641 .addReg(Idx) 1642 .addReg(Idx) 1643 .addImm(Is8Bit ? 4 : 2) 1644 // Add predicate operands. 1645 .addImm(ARMCC::AL) 1646 .addReg(0)); 1647 } else { 1648 // TBB [base, idx] = 1649 // LDRB idx, [base, idx] ; or LDRH if TBH 1650 // LSLS idx, #1 1651 // ADDS pc, pc, idx 1652 1653 unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr; 1654 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1655 .addReg(Idx) 1656 .addReg(Base) 1657 .addReg(Idx) 1658 // Add predicate operands. 1659 .addImm(ARMCC::AL) 1660 .addReg(0)); 1661 } 1662 1663 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1664 .addReg(Idx) 1665 .addReg(ARM::CPSR) 1666 .addReg(Idx) 1667 .addImm(1) 1668 // Add predicate operands. 1669 .addImm(ARMCC::AL) 1670 .addReg(0)); 1671 1672 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1673 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1674 .addReg(ARM::PC) 1675 .addReg(ARM::PC) 1676 .addReg(Idx) 1677 // Add predicate operands. 1678 .addImm(ARMCC::AL) 1679 .addReg(0)); 1680 return; 1681 } 1682 case ARM::tBR_JTr: 1683 case ARM::BR_JTr: { 1684 // mov pc, target 1685 MCInst TmpInst; 1686 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? 1687 ARM::MOVr : ARM::tMOVr; 1688 TmpInst.setOpcode(Opc); 1689 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1690 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1691 // Add predicate operands. 1692 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1693 TmpInst.addOperand(MCOperand::createReg(0)); 1694 // Add 's' bit operand (always reg0 for this) 1695 if (Opc == ARM::MOVr) 1696 TmpInst.addOperand(MCOperand::createReg(0)); 1697 EmitToStreamer(*OutStreamer, TmpInst); 1698 return; 1699 } 1700 case ARM::BR_JTm_i12: { 1701 // ldr pc, target 1702 MCInst TmpInst; 1703 TmpInst.setOpcode(ARM::LDRi12); 1704 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1705 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1706 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1707 // Add predicate operands. 1708 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1709 TmpInst.addOperand(MCOperand::createReg(0)); 1710 EmitToStreamer(*OutStreamer, TmpInst); 1711 return; 1712 } 1713 case ARM::BR_JTm_rs: { 1714 // ldr pc, target 1715 MCInst TmpInst; 1716 TmpInst.setOpcode(ARM::LDRrs); 1717 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1718 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1719 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1720 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1721 // Add predicate operands. 1722 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1723 TmpInst.addOperand(MCOperand::createReg(0)); 1724 EmitToStreamer(*OutStreamer, TmpInst); 1725 return; 1726 } 1727 case ARM::BR_JTadd: { 1728 // add pc, target, idx 1729 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1730 .addReg(ARM::PC) 1731 .addReg(MI->getOperand(0).getReg()) 1732 .addReg(MI->getOperand(1).getReg()) 1733 // Add predicate operands. 1734 .addImm(ARMCC::AL) 1735 .addReg(0) 1736 // Add 's' bit operand (always reg0 for this) 1737 .addReg(0)); 1738 return; 1739 } 1740 case ARM::SPACE: 1741 OutStreamer->EmitZeros(MI->getOperand(1).getImm()); 1742 return; 1743 case ARM::TRAP: { 1744 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1745 // FIXME: Remove this special case when they do. 1746 if (!Subtarget->isTargetMachO()) { 1747 uint32_t Val = 0xe7ffdefeUL; 1748 OutStreamer->AddComment("trap"); 1749 ATS.emitInst(Val); 1750 return; 1751 } 1752 break; 1753 } 1754 case ARM::TRAPNaCl: { 1755 uint32_t Val = 0xe7fedef0UL; 1756 OutStreamer->AddComment("trap"); 1757 ATS.emitInst(Val); 1758 return; 1759 } 1760 case ARM::tTRAP: { 1761 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1762 // FIXME: Remove this special case when they do. 1763 if (!Subtarget->isTargetMachO()) { 1764 uint16_t Val = 0xdefe; 1765 OutStreamer->AddComment("trap"); 1766 ATS.emitInst(Val, 'n'); 1767 return; 1768 } 1769 break; 1770 } 1771 case ARM::t2Int_eh_sjlj_setjmp: 1772 case ARM::t2Int_eh_sjlj_setjmp_nofp: 1773 case ARM::tInt_eh_sjlj_setjmp: { 1774 // Two incoming args: GPR:$src, GPR:$val 1775 // mov $val, pc 1776 // adds $val, #7 1777 // str $val, [$src, #4] 1778 // movs r0, #0 1779 // b LSJLJEH 1780 // movs r0, #1 1781 // LSJLJEH: 1782 unsigned SrcReg = MI->getOperand(0).getReg(); 1783 unsigned ValReg = MI->getOperand(1).getReg(); 1784 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true); 1785 OutStreamer->AddComment("eh_setjmp begin"); 1786 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1787 .addReg(ValReg) 1788 .addReg(ARM::PC) 1789 // Predicate. 1790 .addImm(ARMCC::AL) 1791 .addReg(0)); 1792 1793 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) 1794 .addReg(ValReg) 1795 // 's' bit operand 1796 .addReg(ARM::CPSR) 1797 .addReg(ValReg) 1798 .addImm(7) 1799 // Predicate. 1800 .addImm(ARMCC::AL) 1801 .addReg(0)); 1802 1803 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) 1804 .addReg(ValReg) 1805 .addReg(SrcReg) 1806 // The offset immediate is #4. The operand value is scaled by 4 for the 1807 // tSTR instruction. 1808 .addImm(1) 1809 // Predicate. 1810 .addImm(ARMCC::AL) 1811 .addReg(0)); 1812 1813 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1814 .addReg(ARM::R0) 1815 .addReg(ARM::CPSR) 1816 .addImm(0) 1817 // Predicate. 1818 .addImm(ARMCC::AL) 1819 .addReg(0)); 1820 1821 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); 1822 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) 1823 .addExpr(SymbolExpr) 1824 .addImm(ARMCC::AL) 1825 .addReg(0)); 1826 1827 OutStreamer->AddComment("eh_setjmp end"); 1828 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1829 .addReg(ARM::R0) 1830 .addReg(ARM::CPSR) 1831 .addImm(1) 1832 // Predicate. 1833 .addImm(ARMCC::AL) 1834 .addReg(0)); 1835 1836 OutStreamer->EmitLabel(Label); 1837 return; 1838 } 1839 1840 case ARM::Int_eh_sjlj_setjmp_nofp: 1841 case ARM::Int_eh_sjlj_setjmp: { 1842 // Two incoming args: GPR:$src, GPR:$val 1843 // add $val, pc, #8 1844 // str $val, [$src, #+4] 1845 // mov r0, #0 1846 // add pc, pc, #0 1847 // mov r0, #1 1848 unsigned SrcReg = MI->getOperand(0).getReg(); 1849 unsigned ValReg = MI->getOperand(1).getReg(); 1850 1851 OutStreamer->AddComment("eh_setjmp begin"); 1852 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1853 .addReg(ValReg) 1854 .addReg(ARM::PC) 1855 .addImm(8) 1856 // Predicate. 1857 .addImm(ARMCC::AL) 1858 .addReg(0) 1859 // 's' bit operand (always reg0 for this). 1860 .addReg(0)); 1861 1862 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) 1863 .addReg(ValReg) 1864 .addReg(SrcReg) 1865 .addImm(4) 1866 // Predicate. 1867 .addImm(ARMCC::AL) 1868 .addReg(0)); 1869 1870 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1871 .addReg(ARM::R0) 1872 .addImm(0) 1873 // Predicate. 1874 .addImm(ARMCC::AL) 1875 .addReg(0) 1876 // 's' bit operand (always reg0 for this). 1877 .addReg(0)); 1878 1879 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1880 .addReg(ARM::PC) 1881 .addReg(ARM::PC) 1882 .addImm(0) 1883 // Predicate. 1884 .addImm(ARMCC::AL) 1885 .addReg(0) 1886 // 's' bit operand (always reg0 for this). 1887 .addReg(0)); 1888 1889 OutStreamer->AddComment("eh_setjmp end"); 1890 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1891 .addReg(ARM::R0) 1892 .addImm(1) 1893 // Predicate. 1894 .addImm(ARMCC::AL) 1895 .addReg(0) 1896 // 's' bit operand (always reg0 for this). 1897 .addReg(0)); 1898 return; 1899 } 1900 case ARM::Int_eh_sjlj_longjmp: { 1901 // ldr sp, [$src, #8] 1902 // ldr $scratch, [$src, #4] 1903 // ldr r7, [$src] 1904 // bx $scratch 1905 unsigned SrcReg = MI->getOperand(0).getReg(); 1906 unsigned ScratchReg = MI->getOperand(1).getReg(); 1907 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1908 .addReg(ARM::SP) 1909 .addReg(SrcReg) 1910 .addImm(8) 1911 // Predicate. 1912 .addImm(ARMCC::AL) 1913 .addReg(0)); 1914 1915 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1916 .addReg(ScratchReg) 1917 .addReg(SrcReg) 1918 .addImm(4) 1919 // Predicate. 1920 .addImm(ARMCC::AL) 1921 .addReg(0)); 1922 1923 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 1924 // These platforms always use the same frame register 1925 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1926 .addReg(FramePtr) 1927 .addReg(SrcReg) 1928 .addImm(0) 1929 // Predicate. 1930 .addImm(ARMCC::AL) 1931 .addReg(0)); 1932 } else { 1933 // If the calling code might use either R7 or R11 as 1934 // frame pointer register, restore it into both. 1935 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1936 .addReg(ARM::R7) 1937 .addReg(SrcReg) 1938 .addImm(0) 1939 // Predicate. 1940 .addImm(ARMCC::AL) 1941 .addReg(0)); 1942 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1943 .addReg(ARM::R11) 1944 .addReg(SrcReg) 1945 .addImm(0) 1946 // Predicate. 1947 .addImm(ARMCC::AL) 1948 .addReg(0)); 1949 } 1950 1951 assert(Subtarget->hasV4TOps()); 1952 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1953 .addReg(ScratchReg) 1954 // Predicate. 1955 .addImm(ARMCC::AL) 1956 .addReg(0)); 1957 return; 1958 } 1959 case ARM::tInt_eh_sjlj_longjmp: { 1960 // ldr $scratch, [$src, #8] 1961 // mov sp, $scratch 1962 // ldr $scratch, [$src, #4] 1963 // ldr r7, [$src] 1964 // bx $scratch 1965 unsigned SrcReg = MI->getOperand(0).getReg(); 1966 unsigned ScratchReg = MI->getOperand(1).getReg(); 1967 1968 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1969 .addReg(ScratchReg) 1970 .addReg(SrcReg) 1971 // The offset immediate is #8. The operand value is scaled by 4 for the 1972 // tLDR instruction. 1973 .addImm(2) 1974 // Predicate. 1975 .addImm(ARMCC::AL) 1976 .addReg(0)); 1977 1978 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1979 .addReg(ARM::SP) 1980 .addReg(ScratchReg) 1981 // Predicate. 1982 .addImm(ARMCC::AL) 1983 .addReg(0)); 1984 1985 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1986 .addReg(ScratchReg) 1987 .addReg(SrcReg) 1988 .addImm(1) 1989 // Predicate. 1990 .addImm(ARMCC::AL) 1991 .addReg(0)); 1992 1993 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 1994 // These platforms always use the same frame register 1995 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1996 .addReg(FramePtr) 1997 .addReg(SrcReg) 1998 .addImm(0) 1999 // Predicate. 2000 .addImm(ARMCC::AL) 2001 .addReg(0)); 2002 } else { 2003 // If the calling code might use either R7 or R11 as 2004 // frame pointer register, restore it into both. 2005 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2006 .addReg(ARM::R7) 2007 .addReg(SrcReg) 2008 .addImm(0) 2009 // Predicate. 2010 .addImm(ARMCC::AL) 2011 .addReg(0)); 2012 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2013 .addReg(ARM::R11) 2014 .addReg(SrcReg) 2015 .addImm(0) 2016 // Predicate. 2017 .addImm(ARMCC::AL) 2018 .addReg(0)); 2019 } 2020 2021 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 2022 .addReg(ScratchReg) 2023 // Predicate. 2024 .addImm(ARMCC::AL) 2025 .addReg(0)); 2026 return; 2027 } 2028 case ARM::tInt_WIN_eh_sjlj_longjmp: { 2029 // ldr.w r11, [$src, #0] 2030 // ldr.w sp, [$src, #8] 2031 // ldr.w pc, [$src, #4] 2032 2033 unsigned SrcReg = MI->getOperand(0).getReg(); 2034 2035 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2036 .addReg(ARM::R11) 2037 .addReg(SrcReg) 2038 .addImm(0) 2039 // Predicate 2040 .addImm(ARMCC::AL) 2041 .addReg(0)); 2042 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2043 .addReg(ARM::SP) 2044 .addReg(SrcReg) 2045 .addImm(8) 2046 // Predicate 2047 .addImm(ARMCC::AL) 2048 .addReg(0)); 2049 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2050 .addReg(ARM::PC) 2051 .addReg(SrcReg) 2052 .addImm(4) 2053 // Predicate 2054 .addImm(ARMCC::AL) 2055 .addReg(0)); 2056 return; 2057 } 2058 case ARM::PATCHABLE_FUNCTION_ENTER: 2059 LowerPATCHABLE_FUNCTION_ENTER(*MI); 2060 return; 2061 case ARM::PATCHABLE_FUNCTION_EXIT: 2062 LowerPATCHABLE_FUNCTION_EXIT(*MI); 2063 return; 2064 case ARM::PATCHABLE_TAIL_CALL: 2065 LowerPATCHABLE_TAIL_CALL(*MI); 2066 return; 2067 } 2068 2069 MCInst TmpInst; 2070 LowerARMMachineInstrToMCInst(MI, TmpInst, *this); 2071 2072 EmitToStreamer(*OutStreamer, TmpInst); 2073 } 2074 2075 //===----------------------------------------------------------------------===// 2076 // Target Registry Stuff 2077 //===----------------------------------------------------------------------===// 2078 2079 // Force static initialization. 2080 extern "C" void LLVMInitializeARMAsmPrinter() { 2081 RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget()); 2082 RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget()); 2083 RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget()); 2084 RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget()); 2085 } 2086