1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// Insert wait instructions for memory reads and writes. 12 /// 13 /// Memory reads and writes are issued asynchronously, so we need to insert 14 /// S_WAITCNT instructions when we want to access any of their results or 15 /// overwrite any register that's used asynchronously. 16 /// 17 /// TODO: This pass currently keeps one timeline per hardware counter. A more 18 /// finely-grained approach that keeps one timeline per event type could 19 /// sometimes get away with generating weaker s_waitcnt instructions. For 20 /// example, when both SMEM and LDS are in flight and we need to wait for 21 /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient, 22 /// but the pass will currently generate a conservative lgkmcnt(0) because 23 /// multiple event types are in flight. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "AMDGPU.h" 28 #include "AMDGPUSubtarget.h" 29 #include "SIDefines.h" 30 #include "SIInstrInfo.h" 31 #include "SIMachineFunctionInfo.h" 32 #include "SIRegisterInfo.h" 33 #include "Utils/AMDGPUBaseInfo.h" 34 #include "llvm/ADT/DenseMap.h" 35 #include "llvm/ADT/DenseSet.h" 36 #include "llvm/ADT/PostOrderIterator.h" 37 #include "llvm/ADT/STLExtras.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineMemOperand.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/IR/DebugLoc.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/DebugCounter.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <cstdint> 56 #include <cstring> 57 #include <memory> 58 #include <utility> 59 #include <vector> 60 61 using namespace llvm; 62 63 #define DEBUG_TYPE "si-insert-waitcnts" 64 65 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp", 66 "Force emit s_waitcnt expcnt(0) instrs"); 67 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm", 68 "Force emit s_waitcnt lgkmcnt(0) instrs"); 69 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm", 70 "Force emit s_waitcnt vmcnt(0) instrs"); 71 72 static cl::opt<unsigned> ForceEmitZeroFlag( 73 "amdgpu-waitcnt-forcezero", 74 cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"), 75 cl::init(0), cl::Hidden); 76 77 namespace { 78 79 template <typename EnumT> 80 class enum_iterator 81 : public iterator_facade_base<enum_iterator<EnumT>, 82 std::forward_iterator_tag, const EnumT> { 83 EnumT Value; 84 public: 85 enum_iterator() = default; 86 enum_iterator(EnumT Value) : Value(Value) {} 87 88 enum_iterator &operator++() { 89 Value = static_cast<EnumT>(Value + 1); 90 return *this; 91 } 92 93 bool operator==(const enum_iterator &RHS) const { return Value == RHS.Value; } 94 95 EnumT operator*() const { return Value; } 96 }; 97 98 // Class of object that encapsulates latest instruction counter score 99 // associated with the operand. Used for determining whether 100 // s_waitcnt instruction needs to be emited. 101 102 #define CNT_MASK(t) (1u << (t)) 103 104 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, NUM_INST_CNTS }; 105 106 iterator_range<enum_iterator<InstCounterType>> inst_counter_types() { 107 return make_range(enum_iterator<InstCounterType>(VM_CNT), 108 enum_iterator<InstCounterType>(NUM_INST_CNTS)); 109 } 110 111 using RegInterval = std::pair<signed, signed>; 112 113 struct { 114 uint32_t VmcntMax; 115 uint32_t ExpcntMax; 116 uint32_t LgkmcntMax; 117 int32_t NumVGPRsMax; 118 int32_t NumSGPRsMax; 119 } HardwareLimits; 120 121 struct { 122 unsigned VGPR0; 123 unsigned VGPRL; 124 unsigned SGPR0; 125 unsigned SGPRL; 126 } RegisterEncoding; 127 128 enum WaitEventType { 129 VMEM_ACCESS, // vector-memory read & write 130 LDS_ACCESS, // lds read & write 131 GDS_ACCESS, // gds read & write 132 SQ_MESSAGE, // send message 133 SMEM_ACCESS, // scalar-memory read & write 134 EXP_GPR_LOCK, // export holding on its data src 135 GDS_GPR_LOCK, // GDS holding on its data and addr src 136 EXP_POS_ACCESS, // write to export position 137 EXP_PARAM_ACCESS, // write to export parameter 138 VMW_GPR_LOCK, // vector-memory write holding on its data src 139 NUM_WAIT_EVENTS, 140 }; 141 142 static const uint32_t WaitEventMaskForInst[NUM_INST_CNTS] = { 143 (1 << VMEM_ACCESS), 144 (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) | 145 (1 << SQ_MESSAGE), 146 (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) | 147 (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS), 148 }; 149 150 // The mapping is: 151 // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs 152 // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots 153 // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs 154 // We reserve a fixed number of VGPR slots in the scoring tables for 155 // special tokens like SCMEM_LDS (needed for buffer load to LDS). 156 enum RegisterMapping { 157 SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets. 158 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. 159 NUM_EXTRA_VGPRS = 1, // A reserved slot for DS. 160 EXTRA_VGPR_LDS = 0, // This is a placeholder the Shader algorithm uses. 161 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. 162 }; 163 164 void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) { 165 switch (T) { 166 case VM_CNT: 167 Wait.VmCnt = std::min(Wait.VmCnt, Count); 168 break; 169 case EXP_CNT: 170 Wait.ExpCnt = std::min(Wait.ExpCnt, Count); 171 break; 172 case LGKM_CNT: 173 Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count); 174 break; 175 default: 176 llvm_unreachable("bad InstCounterType"); 177 } 178 } 179 180 // This objects maintains the current score brackets of each wait counter, and 181 // a per-register scoreboard for each wait counter. 182 // 183 // We also maintain the latest score for every event type that can change the 184 // waitcnt in order to know if there are multiple types of events within 185 // the brackets. When multiple types of event happen in the bracket, 186 // wait count may get decreased out of order, therefore we need to put in 187 // "s_waitcnt 0" before use. 188 class WaitcntBrackets { 189 public: 190 WaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) { 191 for (auto T : inst_counter_types()) 192 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 193 } 194 195 static uint32_t getWaitCountMax(InstCounterType T) { 196 switch (T) { 197 case VM_CNT: 198 return HardwareLimits.VmcntMax; 199 case LGKM_CNT: 200 return HardwareLimits.LgkmcntMax; 201 case EXP_CNT: 202 return HardwareLimits.ExpcntMax; 203 default: 204 break; 205 } 206 return 0; 207 } 208 209 uint32_t getScoreLB(InstCounterType T) const { 210 assert(T < NUM_INST_CNTS); 211 if (T >= NUM_INST_CNTS) 212 return 0; 213 return ScoreLBs[T]; 214 } 215 216 uint32_t getScoreUB(InstCounterType T) const { 217 assert(T < NUM_INST_CNTS); 218 if (T >= NUM_INST_CNTS) 219 return 0; 220 return ScoreUBs[T]; 221 } 222 223 // Mapping from event to counter. 224 InstCounterType eventCounter(WaitEventType E) { 225 if (E == VMEM_ACCESS) 226 return VM_CNT; 227 if (WaitEventMaskForInst[LGKM_CNT] & (1 << E)) 228 return LGKM_CNT; 229 assert(WaitEventMaskForInst[EXP_CNT] & (1 << E)); 230 return EXP_CNT; 231 } 232 233 uint32_t getRegScore(int GprNo, InstCounterType T) { 234 if (GprNo < NUM_ALL_VGPRS) { 235 return VgprScores[T][GprNo]; 236 } 237 assert(T == LGKM_CNT); 238 return SgprScores[GprNo - NUM_ALL_VGPRS]; 239 } 240 241 void clear() { 242 memset(ScoreLBs, 0, sizeof(ScoreLBs)); 243 memset(ScoreUBs, 0, sizeof(ScoreUBs)); 244 PendingEvents = 0; 245 memset(MixedPendingEvents, 0, sizeof(MixedPendingEvents)); 246 for (auto T : inst_counter_types()) 247 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 248 memset(SgprScores, 0, sizeof(SgprScores)); 249 } 250 251 bool merge(const WaitcntBrackets &Other); 252 253 RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, 254 const MachineRegisterInfo *MRI, 255 const SIRegisterInfo *TRI, unsigned OpNo, 256 bool Def) const; 257 258 int32_t getMaxVGPR() const { return VgprUB; } 259 int32_t getMaxSGPR() const { return SgprUB; } 260 261 bool counterOutOfOrder(InstCounterType T) const; 262 bool simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const; 263 bool simplifyWaitcnt(InstCounterType T, unsigned &Count) const; 264 void determineWait(InstCounterType T, uint32_t ScoreToWait, 265 AMDGPU::Waitcnt &Wait) const; 266 void applyWaitcnt(const AMDGPU::Waitcnt &Wait); 267 void applyWaitcnt(InstCounterType T, unsigned Count); 268 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, 269 const MachineRegisterInfo *MRI, WaitEventType E, 270 MachineInstr &MI); 271 272 bool hasPending() const { return PendingEvents != 0; } 273 bool hasPendingEvent(WaitEventType E) const { 274 return PendingEvents & (1 << E); 275 } 276 277 bool hasPendingFlat() const { 278 return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] && 279 LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) || 280 (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] && 281 LastFlat[VM_CNT] <= ScoreUBs[VM_CNT])); 282 } 283 284 void setPendingFlat() { 285 LastFlat[VM_CNT] = ScoreUBs[VM_CNT]; 286 LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT]; 287 } 288 289 void print(raw_ostream &); 290 void dump() { print(dbgs()); } 291 292 private: 293 struct MergeInfo { 294 uint32_t OldLB; 295 uint32_t OtherLB; 296 uint32_t MyShift; 297 uint32_t OtherShift; 298 }; 299 static bool mergeScore(const MergeInfo &M, uint32_t &Score, 300 uint32_t OtherScore); 301 302 void setScoreLB(InstCounterType T, uint32_t Val) { 303 assert(T < NUM_INST_CNTS); 304 if (T >= NUM_INST_CNTS) 305 return; 306 ScoreLBs[T] = Val; 307 } 308 309 void setScoreUB(InstCounterType T, uint32_t Val) { 310 assert(T < NUM_INST_CNTS); 311 if (T >= NUM_INST_CNTS) 312 return; 313 ScoreUBs[T] = Val; 314 if (T == EXP_CNT) { 315 uint32_t UB = ScoreUBs[T] - getWaitCountMax(EXP_CNT); 316 if (ScoreLBs[T] < UB && UB < ScoreUBs[T]) 317 ScoreLBs[T] = UB; 318 } 319 } 320 321 void setRegScore(int GprNo, InstCounterType T, uint32_t Val) { 322 if (GprNo < NUM_ALL_VGPRS) { 323 if (GprNo > VgprUB) { 324 VgprUB = GprNo; 325 } 326 VgprScores[T][GprNo] = Val; 327 } else { 328 assert(T == LGKM_CNT); 329 if (GprNo - NUM_ALL_VGPRS > SgprUB) { 330 SgprUB = GprNo - NUM_ALL_VGPRS; 331 } 332 SgprScores[GprNo - NUM_ALL_VGPRS] = Val; 333 } 334 } 335 336 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, 337 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, 338 unsigned OpNo, uint32_t Val); 339 340 const GCNSubtarget *ST = nullptr; 341 uint32_t ScoreLBs[NUM_INST_CNTS] = {0}; 342 uint32_t ScoreUBs[NUM_INST_CNTS] = {0}; 343 uint32_t PendingEvents = 0; 344 bool MixedPendingEvents[NUM_INST_CNTS] = {false}; 345 // Remember the last flat memory operation. 346 uint32_t LastFlat[NUM_INST_CNTS] = {0}; 347 // wait_cnt scores for every vgpr. 348 // Keep track of the VgprUB and SgprUB to make merge at join efficient. 349 int32_t VgprUB = 0; 350 int32_t SgprUB = 0; 351 uint32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS]; 352 // Wait cnt scores for every sgpr, only lgkmcnt is relevant. 353 uint32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0}; 354 }; 355 356 class SIInsertWaitcnts : public MachineFunctionPass { 357 private: 358 const GCNSubtarget *ST = nullptr; 359 const SIInstrInfo *TII = nullptr; 360 const SIRegisterInfo *TRI = nullptr; 361 const MachineRegisterInfo *MRI = nullptr; 362 AMDGPU::IsaVersion IV; 363 364 DenseSet<MachineInstr *> TrackedWaitcntSet; 365 DenseSet<MachineInstr *> VCCZBugHandledSet; 366 367 struct BlockInfo { 368 MachineBasicBlock *MBB; 369 std::unique_ptr<WaitcntBrackets> Incoming; 370 bool Dirty = true; 371 372 explicit BlockInfo(MachineBasicBlock *MBB) : MBB(MBB) {} 373 }; 374 375 std::vector<BlockInfo> BlockInfos; // by reverse post-order traversal index 376 DenseMap<MachineBasicBlock *, unsigned> RpotIdxMap; 377 378 // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0 379 // because of amdgpu-waitcnt-forcezero flag 380 bool ForceEmitZeroWaitcnts; 381 bool ForceEmitWaitcnt[NUM_INST_CNTS]; 382 383 public: 384 static char ID; 385 386 SIInsertWaitcnts() : MachineFunctionPass(ID) { 387 (void)ForceExpCounter; 388 (void)ForceLgkmCounter; 389 (void)ForceVMCounter; 390 } 391 392 bool runOnMachineFunction(MachineFunction &MF) override; 393 394 StringRef getPassName() const override { 395 return "SI insert wait instructions"; 396 } 397 398 void getAnalysisUsage(AnalysisUsage &AU) const override { 399 AU.setPreservesCFG(); 400 MachineFunctionPass::getAnalysisUsage(AU); 401 } 402 403 bool isForceEmitWaitcnt() const { 404 for (auto T : inst_counter_types()) 405 if (ForceEmitWaitcnt[T]) 406 return true; 407 return false; 408 } 409 410 void setForceEmitWaitcnt() { 411 // For non-debug builds, ForceEmitWaitcnt has been initialized to false; 412 // For debug builds, get the debug counter info and adjust if need be 413 #ifndef NDEBUG 414 if (DebugCounter::isCounterSet(ForceExpCounter) && 415 DebugCounter::shouldExecute(ForceExpCounter)) { 416 ForceEmitWaitcnt[EXP_CNT] = true; 417 } else { 418 ForceEmitWaitcnt[EXP_CNT] = false; 419 } 420 421 if (DebugCounter::isCounterSet(ForceLgkmCounter) && 422 DebugCounter::shouldExecute(ForceLgkmCounter)) { 423 ForceEmitWaitcnt[LGKM_CNT] = true; 424 } else { 425 ForceEmitWaitcnt[LGKM_CNT] = false; 426 } 427 428 if (DebugCounter::isCounterSet(ForceVMCounter) && 429 DebugCounter::shouldExecute(ForceVMCounter)) { 430 ForceEmitWaitcnt[VM_CNT] = true; 431 } else { 432 ForceEmitWaitcnt[VM_CNT] = false; 433 } 434 #endif // NDEBUG 435 } 436 437 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; 438 bool generateWaitcntInstBefore(MachineInstr &MI, 439 WaitcntBrackets &ScoreBrackets, 440 MachineInstr *OldWaitcntInstr); 441 void updateEventWaitcntAfter(MachineInstr &Inst, 442 WaitcntBrackets *ScoreBrackets); 443 bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block, 444 WaitcntBrackets &ScoreBrackets); 445 }; 446 447 } // end anonymous namespace 448 449 RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI, 450 const SIInstrInfo *TII, 451 const MachineRegisterInfo *MRI, 452 const SIRegisterInfo *TRI, 453 unsigned OpNo, bool Def) const { 454 const MachineOperand &Op = MI->getOperand(OpNo); 455 if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) || 456 (Def && !Op.isDef())) 457 return {-1, -1}; 458 459 // A use via a PW operand does not need a waitcnt. 460 // A partial write is not a WAW. 461 assert(!Op.getSubReg() || !Op.isUndef()); 462 463 RegInterval Result; 464 const MachineRegisterInfo &MRIA = *MRI; 465 466 unsigned Reg = TRI->getEncodingValue(Op.getReg()); 467 468 if (TRI->isVGPR(MRIA, Op.getReg())) { 469 assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL); 470 Result.first = Reg - RegisterEncoding.VGPR0; 471 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); 472 } else if (TRI->isSGPRReg(MRIA, Op.getReg())) { 473 assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); 474 Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS; 475 assert(Result.first >= NUM_ALL_VGPRS && 476 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); 477 } 478 // TODO: Handle TTMP 479 // else if (TRI->isTTMP(MRIA, Reg.getReg())) ... 480 else 481 return {-1, -1}; 482 483 const MachineInstr &MIA = *MI; 484 const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo); 485 unsigned Size = TRI->getRegSizeInBits(*RC); 486 Result.second = Result.first + (Size / 32); 487 488 return Result; 489 } 490 491 void WaitcntBrackets::setExpScore(const MachineInstr *MI, 492 const SIInstrInfo *TII, 493 const SIRegisterInfo *TRI, 494 const MachineRegisterInfo *MRI, unsigned OpNo, 495 uint32_t Val) { 496 RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false); 497 LLVM_DEBUG({ 498 const MachineOperand &Opnd = MI->getOperand(OpNo); 499 assert(TRI->isVGPR(*MRI, Opnd.getReg())); 500 }); 501 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 502 setRegScore(RegNo, EXP_CNT, Val); 503 } 504 } 505 506 void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII, 507 const SIRegisterInfo *TRI, 508 const MachineRegisterInfo *MRI, 509 WaitEventType E, MachineInstr &Inst) { 510 const MachineRegisterInfo &MRIA = *MRI; 511 InstCounterType T = eventCounter(E); 512 uint32_t CurrScore = getScoreUB(T) + 1; 513 if (CurrScore == 0) 514 report_fatal_error("InsertWaitcnt score wraparound"); 515 // PendingEvents and ScoreUB need to be update regardless if this event 516 // changes the score of a register or not. 517 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. 518 if (!hasPendingEvent(E)) { 519 if (PendingEvents & WaitEventMaskForInst[T]) 520 MixedPendingEvents[T] = true; 521 PendingEvents |= 1 << E; 522 } 523 setScoreUB(T, CurrScore); 524 525 if (T == EXP_CNT) { 526 // Put score on the source vgprs. If this is a store, just use those 527 // specific register(s). 528 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { 529 // All GDS operations must protect their address register (same as 530 // export.) 531 if (Inst.getOpcode() != AMDGPU::DS_APPEND && 532 Inst.getOpcode() != AMDGPU::DS_CONSUME) { 533 setExpScore( 534 &Inst, TII, TRI, MRI, 535 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr), 536 CurrScore); 537 } 538 if (Inst.mayStore()) { 539 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 540 AMDGPU::OpName::data0) != -1) { 541 setExpScore( 542 &Inst, TII, TRI, MRI, 543 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), 544 CurrScore); 545 } 546 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 547 AMDGPU::OpName::data1) != -1) { 548 setExpScore(&Inst, TII, TRI, MRI, 549 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 550 AMDGPU::OpName::data1), 551 CurrScore); 552 } 553 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 && 554 Inst.getOpcode() != AMDGPU::DS_GWS_INIT && 555 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V && 556 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR && 557 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P && 558 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER && 559 Inst.getOpcode() != AMDGPU::DS_APPEND && 560 Inst.getOpcode() != AMDGPU::DS_CONSUME && 561 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { 562 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 563 const MachineOperand &Op = Inst.getOperand(I); 564 if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) { 565 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 566 } 567 } 568 } 569 } else if (TII->isFLAT(Inst)) { 570 if (Inst.mayStore()) { 571 setExpScore( 572 &Inst, TII, TRI, MRI, 573 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 574 CurrScore); 575 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 576 setExpScore( 577 &Inst, TII, TRI, MRI, 578 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 579 CurrScore); 580 } 581 } else if (TII->isMIMG(Inst)) { 582 if (Inst.mayStore()) { 583 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 584 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 585 setExpScore( 586 &Inst, TII, TRI, MRI, 587 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 588 CurrScore); 589 } 590 } else if (TII->isMTBUF(Inst)) { 591 if (Inst.mayStore()) { 592 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 593 } 594 } else if (TII->isMUBUF(Inst)) { 595 if (Inst.mayStore()) { 596 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 597 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 598 setExpScore( 599 &Inst, TII, TRI, MRI, 600 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 601 CurrScore); 602 } 603 } else { 604 if (TII->isEXP(Inst)) { 605 // For export the destination registers are really temps that 606 // can be used as the actual source after export patching, so 607 // we need to treat them like sources and set the EXP_CNT 608 // score. 609 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 610 MachineOperand &DefMO = Inst.getOperand(I); 611 if (DefMO.isReg() && DefMO.isDef() && 612 TRI->isVGPR(MRIA, DefMO.getReg())) { 613 setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT, 614 CurrScore); 615 } 616 } 617 } 618 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 619 MachineOperand &MO = Inst.getOperand(I); 620 if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) { 621 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 622 } 623 } 624 } 625 #if 0 // TODO: check if this is handled by MUBUF code above. 626 } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || 627 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || 628 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { 629 MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); 630 unsigned OpNo;//TODO: find the OpNo for this operand; 631 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false); 632 for (signed RegNo = Interval.first; RegNo < Interval.second; 633 ++RegNo) { 634 setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); 635 } 636 #endif 637 } else { 638 // Match the score to the destination registers. 639 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 640 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true); 641 if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS) 642 continue; 643 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 644 setRegScore(RegNo, T, CurrScore); 645 } 646 } 647 if (TII->isDS(Inst) && Inst.mayStore()) { 648 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); 649 } 650 } 651 } 652 653 void WaitcntBrackets::print(raw_ostream &OS) { 654 OS << '\n'; 655 for (auto T : inst_counter_types()) { 656 uint32_t LB = getScoreLB(T); 657 uint32_t UB = getScoreUB(T); 658 659 switch (T) { 660 case VM_CNT: 661 OS << " VM_CNT(" << UB - LB << "): "; 662 break; 663 case LGKM_CNT: 664 OS << " LGKM_CNT(" << UB - LB << "): "; 665 break; 666 case EXP_CNT: 667 OS << " EXP_CNT(" << UB - LB << "): "; 668 break; 669 default: 670 OS << " UNKNOWN(" << UB - LB << "): "; 671 break; 672 } 673 674 if (LB < UB) { 675 // Print vgpr scores. 676 for (int J = 0; J <= getMaxVGPR(); J++) { 677 uint32_t RegScore = getRegScore(J, T); 678 if (RegScore <= LB) 679 continue; 680 uint32_t RelScore = RegScore - LB - 1; 681 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { 682 OS << RelScore << ":v" << J << " "; 683 } else { 684 OS << RelScore << ":ds "; 685 } 686 } 687 // Also need to print sgpr scores for lgkm_cnt. 688 if (T == LGKM_CNT) { 689 for (int J = 0; J <= getMaxSGPR(); J++) { 690 uint32_t RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 691 if (RegScore <= LB) 692 continue; 693 uint32_t RelScore = RegScore - LB - 1; 694 OS << RelScore << ":s" << J << " "; 695 } 696 } 697 } 698 OS << '\n'; 699 } 700 OS << '\n'; 701 } 702 703 /// Simplify the waitcnt, in the sense of removing redundant counts, and return 704 /// whether a waitcnt instruction is needed at all. 705 bool WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const { 706 return simplifyWaitcnt(VM_CNT, Wait.VmCnt) | 707 simplifyWaitcnt(EXP_CNT, Wait.ExpCnt) | 708 simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt); 709 } 710 711 bool WaitcntBrackets::simplifyWaitcnt(InstCounterType T, 712 unsigned &Count) const { 713 const uint32_t LB = getScoreLB(T); 714 const uint32_t UB = getScoreUB(T); 715 if (Count < UB && UB - Count > LB) 716 return true; 717 718 Count = ~0u; 719 return false; 720 } 721 722 void WaitcntBrackets::determineWait(InstCounterType T, uint32_t ScoreToWait, 723 AMDGPU::Waitcnt &Wait) const { 724 // If the score of src_operand falls within the bracket, we need an 725 // s_waitcnt instruction. 726 const uint32_t LB = getScoreLB(T); 727 const uint32_t UB = getScoreUB(T); 728 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { 729 if ((T == VM_CNT || T == LGKM_CNT) && 730 hasPendingFlat() && 731 !ST->hasFlatLgkmVMemCountInOrder()) { 732 // If there is a pending FLAT operation, and this is a VMem or LGKM 733 // waitcnt and the target can report early completion, then we need 734 // to force a waitcnt 0. 735 addWait(Wait, T, 0); 736 } else if (counterOutOfOrder(T)) { 737 // Counter can get decremented out-of-order when there 738 // are multiple types event in the bracket. Also emit an s_wait counter 739 // with a conservative value of 0 for the counter. 740 addWait(Wait, T, 0); 741 } else { 742 addWait(Wait, T, UB - ScoreToWait); 743 } 744 } 745 } 746 747 void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) { 748 applyWaitcnt(VM_CNT, Wait.VmCnt); 749 applyWaitcnt(EXP_CNT, Wait.ExpCnt); 750 applyWaitcnt(LGKM_CNT, Wait.LgkmCnt); 751 } 752 753 void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) { 754 const uint32_t UB = getScoreUB(T); 755 if (Count >= UB) 756 return; 757 if (Count != 0) { 758 if (counterOutOfOrder(T)) 759 return; 760 setScoreLB(T, std::max(getScoreLB(T), UB - Count)); 761 } else { 762 setScoreLB(T, UB); 763 MixedPendingEvents[T] = false; 764 PendingEvents &= ~WaitEventMaskForInst[T]; 765 } 766 } 767 768 // Where there are multiple types of event in the bracket of a counter, 769 // the decrement may go out of order. 770 bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const { 771 // Scalar memory read always can go out of order. 772 if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS)) 773 return true; 774 return MixedPendingEvents[T]; 775 } 776 777 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 778 false) 779 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 780 false) 781 782 char SIInsertWaitcnts::ID = 0; 783 784 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; 785 786 FunctionPass *llvm::createSIInsertWaitcntsPass() { 787 return new SIInsertWaitcnts(); 788 } 789 790 static bool readsVCCZ(const MachineInstr &MI) { 791 unsigned Opc = MI.getOpcode(); 792 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && 793 !MI.getOperand(1).isUndef(); 794 } 795 796 /// Generate s_waitcnt instruction to be placed before cur_Inst. 797 /// Instructions of a given type are returned in order, 798 /// but instructions of different types can complete out of order. 799 /// We rely on this in-order completion 800 /// and simply assign a score to the memory access instructions. 801 /// We keep track of the active "score bracket" to determine 802 /// if an access of a memory read requires an s_waitcnt 803 /// and if so what the value of each counter is. 804 /// The "score bracket" is bound by the lower bound and upper bound 805 /// scores (*_score_LB and *_score_ub respectively). 806 bool SIInsertWaitcnts::generateWaitcntInstBefore( 807 MachineInstr &MI, WaitcntBrackets &ScoreBrackets, 808 MachineInstr *OldWaitcntInstr) { 809 setForceEmitWaitcnt(); 810 bool IsForceEmitWaitcnt = isForceEmitWaitcnt(); 811 812 if (MI.isDebugInstr()) 813 return false; 814 815 AMDGPU::Waitcnt Wait; 816 817 // See if this instruction has a forced S_WAITCNT VM. 818 // TODO: Handle other cases of NeedsWaitcntVmBefore() 819 if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || 820 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || 821 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL) { 822 Wait.VmCnt = 0; 823 } 824 825 // All waits must be resolved at call return. 826 // NOTE: this could be improved with knowledge of all call sites or 827 // with knowledge of the called routines. 828 if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || 829 MI.getOpcode() == AMDGPU::S_SETPC_B64_return) { 830 Wait = AMDGPU::Waitcnt::allZero(); 831 } 832 // Resolve vm waits before gs-done. 833 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || 834 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && 835 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) == 836 AMDGPU::SendMsg::ID_GS_DONE)) { 837 Wait.VmCnt = 0; 838 } 839 #if 0 // TODO: the following blocks of logic when we have fence. 840 else if (MI.getOpcode() == SC_FENCE) { 841 const unsigned int group_size = 842 context->shader_info->GetMaxThreadGroupSize(); 843 // group_size == 0 means thread group size is unknown at compile time 844 const bool group_is_multi_wave = 845 (group_size == 0 || group_size > target_info->GetWaveFrontSize()); 846 const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); 847 848 for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { 849 SCRegType src_type = Inst->GetSrcType(i); 850 switch (src_type) { 851 case SCMEM_LDS: 852 if (group_is_multi_wave || 853 context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { 854 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 855 ScoreBrackets->getScoreUB(LGKM_CNT)); 856 // LDS may have to wait for VM_CNT after buffer load to LDS 857 if (target_info->HasBufferLoadToLDS()) { 858 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 859 ScoreBrackets->getScoreUB(VM_CNT)); 860 } 861 } 862 break; 863 864 case SCMEM_GDS: 865 if (group_is_multi_wave || fence_is_global) { 866 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 867 ScoreBrackets->getScoreUB(EXP_CNT)); 868 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 869 ScoreBrackets->getScoreUB(LGKM_CNT)); 870 } 871 break; 872 873 case SCMEM_UAV: 874 case SCMEM_TFBUF: 875 case SCMEM_RING: 876 case SCMEM_SCATTER: 877 if (group_is_multi_wave || fence_is_global) { 878 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 879 ScoreBrackets->getScoreUB(EXP_CNT)); 880 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 881 ScoreBrackets->getScoreUB(VM_CNT)); 882 } 883 break; 884 885 case SCMEM_SCRATCH: 886 default: 887 break; 888 } 889 } 890 } 891 #endif 892 893 // Export & GDS instructions do not read the EXEC mask until after the export 894 // is granted (which can occur well after the instruction is issued). 895 // The shader program must flush all EXP operations on the export-count 896 // before overwriting the EXEC mask. 897 else { 898 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { 899 // Export and GDS are tracked individually, either may trigger a waitcnt 900 // for EXEC. 901 if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) || 902 ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) || 903 ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) || 904 ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) { 905 Wait.ExpCnt = 0; 906 } 907 } 908 909 #if 0 // TODO: the following code to handle CALL. 910 // The argument passing for CALLs should suffice for VM_CNT and LGKM_CNT. 911 // However, there is a problem with EXP_CNT, because the call cannot 912 // easily tell if a register is used in the function, and if it did, then 913 // the referring instruction would have to have an S_WAITCNT, which is 914 // dependent on all call sites. So Instead, force S_WAITCNT for EXP_CNTs 915 // before the call. 916 if (MI.getOpcode() == SC_CALL) { 917 if (ScoreBrackets->getScoreUB(EXP_CNT) > 918 ScoreBrackets->getScoreLB(EXP_CNT)) { 919 ScoreBrackets->setScoreLB(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); 920 EmitWaitcnt |= CNT_MASK(EXP_CNT); 921 } 922 } 923 #endif 924 925 // FIXME: Should not be relying on memoperands. 926 // Look at the source operands of every instruction to see if 927 // any of them results from a previous memory operation that affects 928 // its current usage. If so, an s_waitcnt instruction needs to be 929 // emitted. 930 // If the source operand was defined by a load, add the s_waitcnt 931 // instruction. 932 for (const MachineMemOperand *Memop : MI.memoperands()) { 933 unsigned AS = Memop->getAddrSpace(); 934 if (AS != AMDGPUAS::LOCAL_ADDRESS) 935 continue; 936 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 937 // VM_CNT is only relevant to vgpr or LDS. 938 ScoreBrackets.determineWait( 939 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 940 } 941 942 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 943 const MachineOperand &Op = MI.getOperand(I); 944 const MachineRegisterInfo &MRIA = *MRI; 945 RegInterval Interval = 946 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, false); 947 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 948 if (TRI->isVGPR(MRIA, Op.getReg())) { 949 // VM_CNT is only relevant to vgpr or LDS. 950 ScoreBrackets.determineWait( 951 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 952 } 953 ScoreBrackets.determineWait( 954 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 955 } 956 } 957 // End of for loop that looks at all source operands to decide vm_wait_cnt 958 // and lgk_wait_cnt. 959 960 // Two cases are handled for destination operands: 961 // 1) If the destination operand was defined by a load, add the s_waitcnt 962 // instruction to guarantee the right WAW order. 963 // 2) If a destination operand that was used by a recent export/store ins, 964 // add s_waitcnt on exp_cnt to guarantee the WAR order. 965 if (MI.mayStore()) { 966 // FIXME: Should not be relying on memoperands. 967 for (const MachineMemOperand *Memop : MI.memoperands()) { 968 unsigned AS = Memop->getAddrSpace(); 969 if (AS != AMDGPUAS::LOCAL_ADDRESS) 970 continue; 971 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 972 ScoreBrackets.determineWait( 973 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 974 ScoreBrackets.determineWait( 975 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); 976 } 977 } 978 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 979 MachineOperand &Def = MI.getOperand(I); 980 const MachineRegisterInfo &MRIA = *MRI; 981 RegInterval Interval = 982 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, true); 983 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 984 if (TRI->isVGPR(MRIA, Def.getReg())) { 985 ScoreBrackets.determineWait( 986 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 987 ScoreBrackets.determineWait( 988 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); 989 } 990 ScoreBrackets.determineWait( 991 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 992 } 993 } // End of for loop that looks at all dest operands. 994 } 995 996 // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0 997 // occurs before the instruction. Doing it here prevents any additional 998 // S_WAITCNTs from being emitted if the instruction was marked as 999 // requiring a WAITCNT beforehand. 1000 if (MI.getOpcode() == AMDGPU::S_BARRIER && 1001 !ST->hasAutoWaitcntBeforeBarrier()) { 1002 Wait = AMDGPU::Waitcnt::allZero(); 1003 } 1004 1005 // TODO: Remove this work-around, enable the assert for Bug 457939 1006 // after fixing the scheduler. Also, the Shader Compiler code is 1007 // independent of target. 1008 if (readsVCCZ(MI) && ST->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) { 1009 if (ScoreBrackets.getScoreLB(LGKM_CNT) < 1010 ScoreBrackets.getScoreUB(LGKM_CNT) && 1011 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1012 Wait.LgkmCnt = 0; 1013 } 1014 } 1015 1016 // Early-out if no wait is indicated. 1017 if (!ScoreBrackets.simplifyWaitcnt(Wait) && !IsForceEmitWaitcnt) { 1018 bool Modified = false; 1019 if (OldWaitcntInstr) { 1020 if (TrackedWaitcntSet.count(OldWaitcntInstr)) { 1021 TrackedWaitcntSet.erase(OldWaitcntInstr); 1022 OldWaitcntInstr->eraseFromParent(); 1023 Modified = true; 1024 } else { 1025 int64_t Imm = OldWaitcntInstr->getOperand(0).getImm(); 1026 ScoreBrackets.applyWaitcnt(AMDGPU::decodeWaitcnt(IV, Imm)); 1027 } 1028 Modified = true; 1029 } 1030 return Modified; 1031 } 1032 1033 if (ForceEmitZeroWaitcnts) 1034 Wait = AMDGPU::Waitcnt::allZero(); 1035 1036 if (ForceEmitWaitcnt[VM_CNT]) 1037 Wait.VmCnt = 0; 1038 if (ForceEmitWaitcnt[EXP_CNT]) 1039 Wait.ExpCnt = 0; 1040 if (ForceEmitWaitcnt[LGKM_CNT]) 1041 Wait.LgkmCnt = 0; 1042 1043 ScoreBrackets.applyWaitcnt(Wait); 1044 1045 AMDGPU::Waitcnt OldWait; 1046 if (OldWaitcntInstr) { 1047 OldWait = 1048 AMDGPU::decodeWaitcnt(IV, OldWaitcntInstr->getOperand(0).getImm()); 1049 } 1050 if (OldWait.dominates(Wait)) 1051 return false; 1052 1053 if (OldWaitcntInstr && !TrackedWaitcntSet.count(OldWaitcntInstr)) 1054 Wait = Wait.combined(OldWait); 1055 1056 unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait); 1057 if (OldWaitcntInstr) { 1058 OldWaitcntInstr->getOperand(0).setImm(Enc); 1059 1060 LLVM_DEBUG(dbgs() << "updateWaitcntInBlock\n" 1061 << "Old Instr: " << MI << '\n' 1062 << "New Instr: " << *OldWaitcntInstr << '\n'); 1063 } else { 1064 auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(), 1065 MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1066 .addImm(Enc); 1067 TrackedWaitcntSet.insert(SWaitInst); 1068 1069 LLVM_DEBUG(dbgs() << "insertWaitcntInBlock\n" 1070 << "Old Instr: " << MI << '\n' 1071 << "New Instr: " << *SWaitInst << '\n'); 1072 } 1073 1074 return true; 1075 } 1076 1077 // This is a flat memory operation. Check to see if it has memory 1078 // tokens for both LDS and Memory, and if so mark it as a flat. 1079 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { 1080 if (MI.memoperands_empty()) 1081 return true; 1082 1083 for (const MachineMemOperand *Memop : MI.memoperands()) { 1084 unsigned AS = Memop->getAddrSpace(); 1085 if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) 1086 return true; 1087 } 1088 1089 return false; 1090 } 1091 1092 void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst, 1093 WaitcntBrackets *ScoreBrackets) { 1094 // Now look at the instruction opcode. If it is a memory access 1095 // instruction, update the upper-bound of the appropriate counter's 1096 // bracket and the destination operand scores. 1097 // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere. 1098 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { 1099 if (TII->isAlwaysGDS(Inst.getOpcode()) || 1100 TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { 1101 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); 1102 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); 1103 } else { 1104 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1105 } 1106 } else if (TII->isFLAT(Inst)) { 1107 assert(Inst.mayLoad() || Inst.mayStore()); 1108 1109 if (TII->usesVM_CNT(Inst)) 1110 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1111 1112 if (TII->usesLGKM_CNT(Inst)) { 1113 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1114 1115 // This is a flat memory operation, so note it - it will require 1116 // that both the VM and LGKM be flushed to zero if it is pending when 1117 // a VM or LGKM dependency occurs. 1118 if (mayAccessLDSThroughFlat(Inst)) 1119 ScoreBrackets->setPendingFlat(); 1120 } 1121 } else if (SIInstrInfo::isVMEM(Inst) && 1122 // TODO: get a better carve out. 1123 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 && 1124 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC && 1125 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL) { 1126 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1127 if (ST->vmemWriteNeedsExpWaitcnt() && 1128 (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) { 1129 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); 1130 } 1131 } else if (TII->isSMRD(Inst)) { 1132 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1133 } else { 1134 switch (Inst.getOpcode()) { 1135 case AMDGPU::S_SENDMSG: 1136 case AMDGPU::S_SENDMSGHALT: 1137 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); 1138 break; 1139 case AMDGPU::EXP: 1140 case AMDGPU::EXP_DONE: { 1141 int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); 1142 if (Imm >= 32 && Imm <= 63) 1143 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); 1144 else if (Imm >= 12 && Imm <= 15) 1145 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); 1146 else 1147 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); 1148 break; 1149 } 1150 case AMDGPU::S_MEMTIME: 1151 case AMDGPU::S_MEMREALTIME: 1152 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1153 break; 1154 default: 1155 break; 1156 } 1157 } 1158 } 1159 1160 bool WaitcntBrackets::mergeScore(const MergeInfo &M, uint32_t &Score, 1161 uint32_t OtherScore) { 1162 uint32_t MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift; 1163 uint32_t OtherShifted = 1164 OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift; 1165 Score = std::max(MyShifted, OtherShifted); 1166 return OtherShifted > MyShifted; 1167 } 1168 1169 /// Merge the pending events and associater score brackets of \p Other into 1170 /// this brackets status. 1171 /// 1172 /// Returns whether the merge resulted in a change that requires tighter waits 1173 /// (i.e. the merged brackets strictly dominate the original brackets). 1174 bool WaitcntBrackets::merge(const WaitcntBrackets &Other) { 1175 bool StrictDom = false; 1176 1177 for (auto T : inst_counter_types()) { 1178 // Merge event flags for this counter 1179 const bool OldOutOfOrder = counterOutOfOrder(T); 1180 const uint32_t OldEvents = PendingEvents & WaitEventMaskForInst[T]; 1181 const uint32_t OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T]; 1182 if (OtherEvents & ~OldEvents) 1183 StrictDom = true; 1184 if (Other.MixedPendingEvents[T] || 1185 (OldEvents && OtherEvents && OldEvents != OtherEvents)) 1186 MixedPendingEvents[T] = true; 1187 PendingEvents |= OtherEvents; 1188 1189 // Merge scores for this counter 1190 const uint32_t MyPending = ScoreUBs[T] - ScoreLBs[T]; 1191 const uint32_t OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T]; 1192 MergeInfo M; 1193 M.OldLB = ScoreLBs[T]; 1194 M.OtherLB = Other.ScoreLBs[T]; 1195 M.MyShift = OtherPending > MyPending ? OtherPending - MyPending : 0; 1196 M.OtherShift = ScoreUBs[T] - Other.ScoreUBs[T] + M.MyShift; 1197 1198 const uint32_t NewUB = ScoreUBs[T] + M.MyShift; 1199 if (NewUB < ScoreUBs[T]) 1200 report_fatal_error("waitcnt score overflow"); 1201 ScoreUBs[T] = NewUB; 1202 ScoreLBs[T] = std::min(M.OldLB + M.MyShift, M.OtherLB + M.OtherShift); 1203 1204 StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]); 1205 1206 bool RegStrictDom = false; 1207 for (int J = 0, E = std::max(getMaxVGPR(), Other.getMaxVGPR()) + 1; J != E; 1208 J++) { 1209 RegStrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]); 1210 } 1211 1212 if (T == LGKM_CNT) { 1213 for (int J = 0, E = std::max(getMaxSGPR(), Other.getMaxSGPR()) + 1; 1214 J != E; J++) { 1215 RegStrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]); 1216 } 1217 } 1218 1219 if (RegStrictDom && !OldOutOfOrder) 1220 StrictDom = true; 1221 } 1222 1223 VgprUB = std::max(getMaxVGPR(), Other.getMaxVGPR()); 1224 SgprUB = std::max(getMaxSGPR(), Other.getMaxSGPR()); 1225 1226 return StrictDom; 1227 } 1228 1229 // Generate s_waitcnt instructions where needed. 1230 bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, 1231 MachineBasicBlock &Block, 1232 WaitcntBrackets &ScoreBrackets) { 1233 bool Modified = false; 1234 1235 LLVM_DEBUG({ 1236 dbgs() << "*** Block" << Block.getNumber() << " ***"; 1237 ScoreBrackets.dump(); 1238 }); 1239 1240 // Walk over the instructions. 1241 MachineInstr *OldWaitcntInstr = nullptr; 1242 1243 for (MachineBasicBlock::iterator Iter = Block.begin(), E = Block.end(); 1244 Iter != E;) { 1245 MachineInstr &Inst = *Iter; 1246 1247 // Remove any previously existing waitcnts. 1248 if (Inst.getOpcode() == AMDGPU::S_WAITCNT) { 1249 if (OldWaitcntInstr) { 1250 if (TrackedWaitcntSet.count(OldWaitcntInstr)) { 1251 TrackedWaitcntSet.erase(OldWaitcntInstr); 1252 OldWaitcntInstr->eraseFromParent(); 1253 OldWaitcntInstr = nullptr; 1254 } else if (!TrackedWaitcntSet.count(&Inst)) { 1255 // Two successive s_waitcnt's, both of which are pre-existing and 1256 // are therefore preserved. 1257 int64_t Imm = OldWaitcntInstr->getOperand(0).getImm(); 1258 ScoreBrackets.applyWaitcnt(AMDGPU::decodeWaitcnt(IV, Imm)); 1259 } else { 1260 ++Iter; 1261 Inst.eraseFromParent(); 1262 Modified = true; 1263 continue; 1264 } 1265 } 1266 1267 OldWaitcntInstr = &Inst; 1268 ++Iter; 1269 continue; 1270 } 1271 1272 bool VCCZBugWorkAround = false; 1273 if (readsVCCZ(Inst) && 1274 (!VCCZBugHandledSet.count(&Inst))) { 1275 if (ScoreBrackets.getScoreLB(LGKM_CNT) < 1276 ScoreBrackets.getScoreUB(LGKM_CNT) && 1277 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1278 if (ST->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 1279 VCCZBugWorkAround = true; 1280 } 1281 } 1282 1283 // Generate an s_waitcnt instruction to be placed before 1284 // cur_Inst, if needed. 1285 Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr); 1286 OldWaitcntInstr = nullptr; 1287 1288 updateEventWaitcntAfter(Inst, &ScoreBrackets); 1289 1290 #if 0 // TODO: implement resource type check controlled by options with ub = LB. 1291 // If this instruction generates a S_SETVSKIP because it is an 1292 // indexed resource, and we are on Tahiti, then it will also force 1293 // an S_WAITCNT vmcnt(0) 1294 if (RequireCheckResourceType(Inst, context)) { 1295 // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. 1296 ScoreBrackets->setScoreLB(VM_CNT, 1297 ScoreBrackets->getScoreUB(VM_CNT)); 1298 } 1299 #endif 1300 1301 LLVM_DEBUG({ 1302 Inst.print(dbgs()); 1303 ScoreBrackets.dump(); 1304 }); 1305 1306 // Check to see if this is a GWS instruction. If so, and if this is CI or 1307 // VI, then the generated code sequence will include an S_WAITCNT 0. 1308 // TODO: Are these the only GWS instructions? 1309 if (Inst.getOpcode() == AMDGPU::DS_GWS_INIT || 1310 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_V || 1311 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_BR || 1312 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_P || 1313 Inst.getOpcode() == AMDGPU::DS_GWS_BARRIER) { 1314 // TODO: && context->target_info->GwsRequiresMemViolTest() ) { 1315 ScoreBrackets.applyWaitcnt(AMDGPU::Waitcnt::allZero()); 1316 } 1317 1318 // TODO: Remove this work-around after fixing the scheduler and enable the 1319 // assert above. 1320 if (VCCZBugWorkAround) { 1321 // Restore the vccz bit. Any time a value is written to vcc, the vcc 1322 // bit is updated, so we can restore the bit by reading the value of 1323 // vcc and then writing it back to the register. 1324 BuildMI(Block, Inst, Inst.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), 1325 AMDGPU::VCC) 1326 .addReg(AMDGPU::VCC); 1327 VCCZBugHandledSet.insert(&Inst); 1328 Modified = true; 1329 } 1330 1331 ++Iter; 1332 } 1333 1334 return Modified; 1335 } 1336 1337 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { 1338 ST = &MF.getSubtarget<GCNSubtarget>(); 1339 TII = ST->getInstrInfo(); 1340 TRI = &TII->getRegisterInfo(); 1341 MRI = &MF.getRegInfo(); 1342 IV = AMDGPU::getIsaVersion(ST->getCPU()); 1343 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1344 1345 ForceEmitZeroWaitcnts = ForceEmitZeroFlag; 1346 for (auto T : inst_counter_types()) 1347 ForceEmitWaitcnt[T] = false; 1348 1349 HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV); 1350 HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); 1351 HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV); 1352 1353 HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs(); 1354 HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs(); 1355 assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS); 1356 assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS); 1357 1358 RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0); 1359 RegisterEncoding.VGPRL = 1360 RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1; 1361 RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0); 1362 RegisterEncoding.SGPRL = 1363 RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1; 1364 1365 TrackedWaitcntSet.clear(); 1366 VCCZBugHandledSet.clear(); 1367 RpotIdxMap.clear(); 1368 BlockInfos.clear(); 1369 1370 // Keep iterating over the blocks in reverse post order, inserting and 1371 // updating s_waitcnt where needed, until a fix point is reached. 1372 for (MachineBasicBlock *MBB : 1373 ReversePostOrderTraversal<MachineFunction *>(&MF)) { 1374 RpotIdxMap[MBB] = BlockInfos.size(); 1375 BlockInfos.emplace_back(MBB); 1376 } 1377 1378 std::unique_ptr<WaitcntBrackets> Brackets; 1379 bool Modified = false; 1380 bool Repeat; 1381 do { 1382 Repeat = false; 1383 1384 for (BlockInfo &BI : BlockInfos) { 1385 if (!BI.Dirty) 1386 continue; 1387 1388 unsigned Idx = std::distance(&*BlockInfos.begin(), &BI); 1389 1390 if (BI.Incoming) { 1391 if (!Brackets) 1392 Brackets = llvm::make_unique<WaitcntBrackets>(*BI.Incoming); 1393 else 1394 *Brackets = *BI.Incoming; 1395 } else { 1396 if (!Brackets) 1397 Brackets = llvm::make_unique<WaitcntBrackets>(ST); 1398 else 1399 Brackets->clear(); 1400 } 1401 1402 Modified |= insertWaitcntInBlock(MF, *BI.MBB, *Brackets); 1403 BI.Dirty = false; 1404 1405 if (Brackets->hasPending()) { 1406 BlockInfo *MoveBracketsToSucc = nullptr; 1407 for (MachineBasicBlock *Succ : BI.MBB->successors()) { 1408 unsigned SuccIdx = RpotIdxMap[Succ]; 1409 BlockInfo &SuccBI = BlockInfos[SuccIdx]; 1410 if (!SuccBI.Incoming) { 1411 SuccBI.Dirty = true; 1412 if (SuccIdx <= Idx) 1413 Repeat = true; 1414 if (!MoveBracketsToSucc) { 1415 MoveBracketsToSucc = &SuccBI; 1416 } else { 1417 SuccBI.Incoming = llvm::make_unique<WaitcntBrackets>(*Brackets); 1418 } 1419 } else if (SuccBI.Incoming->merge(*Brackets)) { 1420 SuccBI.Dirty = true; 1421 if (SuccIdx <= Idx) 1422 Repeat = true; 1423 } 1424 } 1425 if (MoveBracketsToSucc) 1426 MoveBracketsToSucc->Incoming = std::move(Brackets); 1427 } 1428 } 1429 } while (Repeat); 1430 1431 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; 1432 1433 bool HaveScalarStores = false; 1434 1435 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; 1436 ++BI) { 1437 MachineBasicBlock &MBB = *BI; 1438 1439 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; 1440 ++I) { 1441 if (!HaveScalarStores && TII->isScalarStore(*I)) 1442 HaveScalarStores = true; 1443 1444 if (I->getOpcode() == AMDGPU::S_ENDPGM || 1445 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) 1446 EndPgmBlocks.push_back(&MBB); 1447 } 1448 } 1449 1450 if (HaveScalarStores) { 1451 // If scalar writes are used, the cache must be flushed or else the next 1452 // wave to reuse the same scratch memory can be clobbered. 1453 // 1454 // Insert s_dcache_wb at wave termination points if there were any scalar 1455 // stores, and only if the cache hasn't already been flushed. This could be 1456 // improved by looking across blocks for flushes in postdominating blocks 1457 // from the stores but an explicitly requested flush is probably very rare. 1458 for (MachineBasicBlock *MBB : EndPgmBlocks) { 1459 bool SeenDCacheWB = false; 1460 1461 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; 1462 ++I) { 1463 if (I->getOpcode() == AMDGPU::S_DCACHE_WB) 1464 SeenDCacheWB = true; 1465 else if (TII->isScalarStore(*I)) 1466 SeenDCacheWB = false; 1467 1468 // FIXME: It would be better to insert this before a waitcnt if any. 1469 if ((I->getOpcode() == AMDGPU::S_ENDPGM || 1470 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && 1471 !SeenDCacheWB) { 1472 Modified = true; 1473 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); 1474 } 1475 } 1476 } 1477 } 1478 1479 if (!MFI->isEntryFunction()) { 1480 // Wait for any outstanding memory operations that the input registers may 1481 // depend on. We can't track them and it's better to the wait after the 1482 // costly call sequence. 1483 1484 // TODO: Could insert earlier and schedule more liberally with operations 1485 // that only use caller preserved registers. 1486 MachineBasicBlock &EntryBB = MF.front(); 1487 BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1488 .addImm(0); 1489 1490 Modified = true; 1491 } 1492 1493 return Modified; 1494 } 1495