1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief The AMDGPU target machine contains all of the hardware specific 12 /// information needed to emit code for R600 and SI GPUs. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUTargetMachine.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUAliasAnalysis.h" 19 #include "AMDGPUCallLowering.h" 20 #include "AMDGPUInstructionSelector.h" 21 #include "AMDGPULegalizerInfo.h" 22 #include "AMDGPUMacroFusion.h" 23 #include "AMDGPUTargetObjectFile.h" 24 #include "AMDGPUTargetTransformInfo.h" 25 #include "GCNIterativeScheduler.h" 26 #include "GCNSchedStrategy.h" 27 #include "R600MachineScheduler.h" 28 #include "SIMachineScheduler.h" 29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 31 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/CodeGen/TargetPassConfig.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/LegacyPassManager.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/TargetRegistry.h" 42 #include "llvm/Target/TargetLoweringObjectFile.h" 43 #include "llvm/Transforms/IPO.h" 44 #include "llvm/Transforms/IPO/AlwaysInliner.h" 45 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/GVN.h" 48 #include "llvm/Transforms/Vectorize.h" 49 #include <memory> 50 51 using namespace llvm; 52 53 static cl::opt<bool> EnableR600StructurizeCFG( 54 "r600-ir-structurize", 55 cl::desc("Use StructurizeCFG IR pass"), 56 cl::init(true)); 57 58 static cl::opt<bool> EnableSROA( 59 "amdgpu-sroa", 60 cl::desc("Run SROA after promote alloca pass"), 61 cl::ReallyHidden, 62 cl::init(true)); 63 64 static cl::opt<bool> 65 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 66 cl::desc("Run early if-conversion"), 67 cl::init(false)); 68 69 static cl::opt<bool> EnableR600IfConvert( 70 "r600-if-convert", 71 cl::desc("Use if conversion pass"), 72 cl::ReallyHidden, 73 cl::init(true)); 74 75 // Option to disable vectorizer for tests. 76 static cl::opt<bool> EnableLoadStoreVectorizer( 77 "amdgpu-load-store-vectorizer", 78 cl::desc("Enable load store vectorizer"), 79 cl::init(true), 80 cl::Hidden); 81 82 // Option to to control global loads scalarization 83 static cl::opt<bool> ScalarizeGlobal( 84 "amdgpu-scalarize-global-loads", 85 cl::desc("Enable global load scalarization"), 86 cl::init(true), 87 cl::Hidden); 88 89 // Option to run internalize pass. 90 static cl::opt<bool> InternalizeSymbols( 91 "amdgpu-internalize-symbols", 92 cl::desc("Enable elimination of non-kernel functions and unused globals"), 93 cl::init(false), 94 cl::Hidden); 95 96 // Option to inline all early. 97 static cl::opt<bool> EarlyInlineAll( 98 "amdgpu-early-inline-all", 99 cl::desc("Inline all functions early"), 100 cl::init(false), 101 cl::Hidden); 102 103 static cl::opt<bool> EnableSDWAPeephole( 104 "amdgpu-sdwa-peephole", 105 cl::desc("Enable SDWA peepholer"), 106 cl::init(true)); 107 108 // Enable address space based alias analysis 109 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 110 cl::desc("Enable AMDGPU Alias Analysis"), 111 cl::init(true)); 112 113 // Option to enable new waitcnt insertion pass. 114 static cl::opt<bool> EnableSIInsertWaitcntsPass( 115 "enable-si-insert-waitcnts", 116 cl::desc("Use new waitcnt insertion pass"), 117 cl::init(true)); 118 119 // Option to run late CFG structurizer 120 static cl::opt<bool> LateCFGStructurize( 121 "amdgpu-late-structurize", 122 cl::desc("Enable late CFG structurization"), 123 cl::init(false), 124 cl::Hidden); 125 126 extern "C" void LLVMInitializeAMDGPUTarget() { 127 // Register the target 128 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 129 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 130 131 PassRegistry *PR = PassRegistry::getPassRegistry(); 132 initializeSILowerI1CopiesPass(*PR); 133 initializeSIFixSGPRCopiesPass(*PR); 134 initializeSIFixVGPRCopiesPass(*PR); 135 initializeSIFoldOperandsPass(*PR); 136 initializeSIPeepholeSDWAPass(*PR); 137 initializeSIShrinkInstructionsPass(*PR); 138 initializeSIFixControlFlowLiveIntervalsPass(*PR); 139 initializeSILoadStoreOptimizerPass(*PR); 140 initializeAMDGPUAlwaysInlinePass(*PR); 141 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 142 initializeAMDGPUAnnotateUniformValuesPass(*PR); 143 initializeAMDGPULowerIntrinsicsPass(*PR); 144 initializeAMDGPUPromoteAllocaPass(*PR); 145 initializeAMDGPUCodeGenPreparePass(*PR); 146 initializeAMDGPUUnifyMetadataPass(*PR); 147 initializeSIAnnotateControlFlowPass(*PR); 148 initializeSIInsertWaitsPass(*PR); 149 initializeSIInsertWaitcntsPass(*PR); 150 initializeSIWholeQuadModePass(*PR); 151 initializeSILowerControlFlowPass(*PR); 152 initializeSIInsertSkipsPass(*PR); 153 initializeSIDebuggerInsertNopsPass(*PR); 154 initializeSIOptimizeExecMaskingPass(*PR); 155 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 156 initializeAMDGPUAAWrapperPassPass(*PR); 157 } 158 159 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 160 return llvm::make_unique<AMDGPUTargetObjectFile>(); 161 } 162 163 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 164 return new ScheduleDAGMILive(C, llvm::make_unique<R600SchedStrategy>()); 165 } 166 167 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 168 return new SIScheduleDAGMI(C); 169 } 170 171 static ScheduleDAGInstrs * 172 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 173 ScheduleDAGMILive *DAG = 174 new GCNScheduleDAGMILive(C, make_unique<GCNMaxOccupancySchedStrategy>(C)); 175 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 176 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 177 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 178 return DAG; 179 } 180 181 static ScheduleDAGInstrs * 182 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 183 auto DAG = new GCNIterativeScheduler(C, 184 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 185 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 186 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 187 return DAG; 188 } 189 190 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 191 return new GCNIterativeScheduler(C, 192 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 193 } 194 195 static MachineSchedRegistry 196 R600SchedRegistry("r600", "Run R600's custom scheduler", 197 createR600MachineScheduler); 198 199 static MachineSchedRegistry 200 SISchedRegistry("si", "Run SI's custom scheduler", 201 createSIMachineScheduler); 202 203 static MachineSchedRegistry 204 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 205 "Run GCN scheduler to maximize occupancy", 206 createGCNMaxOccupancyMachineScheduler); 207 208 static MachineSchedRegistry 209 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 210 "Run GCN scheduler to maximize occupancy (experimental)", 211 createIterativeGCNMaxOccupancyMachineScheduler); 212 213 static MachineSchedRegistry 214 GCNMinRegSchedRegistry("gcn-minreg", 215 "Run GCN iterative scheduler for minimal register usage (experimental)", 216 createMinRegScheduler); 217 218 static StringRef computeDataLayout(const Triple &TT) { 219 if (TT.getArch() == Triple::r600) { 220 // 32-bit pointers. 221 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 222 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64"; 223 } 224 225 // 32-bit private, local, and region pointers. 64-bit global, constant and 226 // flat. 227 if (TT.getEnvironmentName() == "amdgiz" || 228 TT.getEnvironmentName() == "amdgizcl") 229 return "e-p:64:64-p1:64:64-p2:64:64-p3:32:32-p4:32:32-p5:32:32" 230 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 231 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-A5"; 232 return "e-p:32:32-p1:64:64-p2:64:64-p3:32:32-p4:64:64-p5:32:32" 233 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 234 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64"; 235 } 236 237 LLVM_READNONE 238 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 239 if (!GPU.empty()) 240 return GPU; 241 242 // HSA only supports CI+, so change the default GPU to a CI for HSA. 243 if (TT.getArch() == Triple::amdgcn) 244 return (TT.getOS() == Triple::AMDHSA) ? "kaveri" : "tahiti"; 245 246 return "r600"; 247 } 248 249 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 250 // The AMDGPU toolchain only supports generating shared objects, so we 251 // must always use PIC. 252 return Reloc::PIC_; 253 } 254 255 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 256 StringRef CPU, StringRef FS, 257 TargetOptions Options, 258 Optional<Reloc::Model> RM, 259 CodeModel::Model CM, 260 CodeGenOpt::Level OptLevel) 261 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 262 FS, Options, getEffectiveRelocModel(RM), CM, OptLevel), 263 TLOF(createTLOF(getTargetTriple())) { 264 AS = AMDGPU::getAMDGPUAS(TT); 265 initAsmInfo(); 266 } 267 268 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 269 270 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 271 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 272 return GPUAttr.hasAttribute(Attribute::None) ? 273 getTargetCPU() : GPUAttr.getValueAsString(); 274 } 275 276 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 277 Attribute FSAttr = F.getFnAttribute("target-features"); 278 279 return FSAttr.hasAttribute(Attribute::None) ? 280 getTargetFeatureString() : 281 FSAttr.getValueAsString(); 282 } 283 284 static ImmutablePass *createAMDGPUExternalAAWrapperPass() { 285 return createExternalAAWrapperPass([](Pass &P, Function &, AAResults &AAR) { 286 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 287 AAR.addAAResult(WrapperPass->getResult()); 288 }); 289 } 290 291 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 292 Builder.DivergentTarget = true; 293 294 bool Internalize = InternalizeSymbols && 295 (getOptLevel() > CodeGenOpt::None) && 296 (getTargetTriple().getArch() == Triple::amdgcn); 297 bool EarlyInline = EarlyInlineAll && 298 (getOptLevel() > CodeGenOpt::None); 299 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && getOptLevel() > CodeGenOpt::None; 300 301 Builder.addExtension( 302 PassManagerBuilder::EP_ModuleOptimizerEarly, 303 [Internalize, EarlyInline, AMDGPUAA](const PassManagerBuilder &, 304 legacy::PassManagerBase &PM) { 305 if (AMDGPUAA) { 306 PM.add(createAMDGPUAAWrapperPass()); 307 PM.add(createAMDGPUExternalAAWrapperPass()); 308 } 309 PM.add(createAMDGPUUnifyMetadataPass()); 310 if (Internalize) { 311 PM.add(createInternalizePass([=](const GlobalValue &GV) -> bool { 312 if (const Function *F = dyn_cast<Function>(&GV)) { 313 if (F->isDeclaration()) 314 return true; 315 switch (F->getCallingConv()) { 316 default: 317 return false; 318 case CallingConv::AMDGPU_VS: 319 case CallingConv::AMDGPU_HS: 320 case CallingConv::AMDGPU_GS: 321 case CallingConv::AMDGPU_PS: 322 case CallingConv::AMDGPU_CS: 323 case CallingConv::AMDGPU_KERNEL: 324 case CallingConv::SPIR_KERNEL: 325 return true; 326 } 327 } 328 return !GV.use_empty(); 329 })); 330 PM.add(createGlobalDCEPass()); 331 } 332 if (EarlyInline) 333 PM.add(createAMDGPUAlwaysInlinePass(false)); 334 }); 335 336 Builder.addExtension( 337 PassManagerBuilder::EP_EarlyAsPossible, 338 [AMDGPUAA](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 339 if (AMDGPUAA) { 340 PM.add(createAMDGPUAAWrapperPass()); 341 PM.add(createAMDGPUExternalAAWrapperPass()); 342 } 343 }); 344 345 Builder.addExtension( 346 PassManagerBuilder::EP_CGSCCOptimizerLate, 347 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 348 // Add infer address spaces pass to the opt pipeline after inlining 349 // but before SROA to increase SROA opportunities. 350 PM.add(createInferAddressSpacesPass()); 351 }); 352 } 353 354 //===----------------------------------------------------------------------===// 355 // R600 Target Machine (R600 -> Cayman) 356 //===----------------------------------------------------------------------===// 357 358 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 359 StringRef CPU, StringRef FS, 360 TargetOptions Options, 361 Optional<Reloc::Model> RM, 362 CodeModel::Model CM, CodeGenOpt::Level OL) 363 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 364 setRequiresStructuredCFG(true); 365 } 366 367 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 368 const Function &F) const { 369 StringRef GPU = getGPUName(F); 370 StringRef FS = getFeatureString(F); 371 372 SmallString<128> SubtargetKey(GPU); 373 SubtargetKey.append(FS); 374 375 auto &I = SubtargetMap[SubtargetKey]; 376 if (!I) { 377 // This needs to be done before we create a new subtarget since any 378 // creation will depend on the TM and the code generation flags on the 379 // function that reside in TargetOptions. 380 resetTargetOptions(F); 381 I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 382 } 383 384 return I.get(); 385 } 386 387 //===----------------------------------------------------------------------===// 388 // GCN Target Machine (SI+) 389 //===----------------------------------------------------------------------===// 390 391 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 392 StringRef CPU, StringRef FS, 393 TargetOptions Options, 394 Optional<Reloc::Model> RM, 395 CodeModel::Model CM, CodeGenOpt::Level OL) 396 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 397 398 const SISubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 399 StringRef GPU = getGPUName(F); 400 StringRef FS = getFeatureString(F); 401 402 SmallString<128> SubtargetKey(GPU); 403 SubtargetKey.append(FS); 404 405 auto &I = SubtargetMap[SubtargetKey]; 406 if (!I) { 407 // This needs to be done before we create a new subtarget since any 408 // creation will depend on the TM and the code generation flags on the 409 // function that reside in TargetOptions. 410 resetTargetOptions(F); 411 I = llvm::make_unique<SISubtarget>(TargetTriple, GPU, FS, *this); 412 } 413 414 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 415 416 return I.get(); 417 } 418 419 //===----------------------------------------------------------------------===// 420 // AMDGPU Pass Setup 421 //===----------------------------------------------------------------------===// 422 423 namespace { 424 425 class AMDGPUPassConfig : public TargetPassConfig { 426 public: 427 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 428 : TargetPassConfig(TM, PM) { 429 // Exceptions and StackMaps are not supported, so these passes will never do 430 // anything. 431 disablePass(&StackMapLivenessID); 432 disablePass(&FuncletLayoutID); 433 } 434 435 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 436 return getTM<AMDGPUTargetMachine>(); 437 } 438 439 ScheduleDAGInstrs * 440 createMachineScheduler(MachineSchedContext *C) const override { 441 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 442 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 443 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 444 return DAG; 445 } 446 447 void addEarlyCSEOrGVNPass(); 448 void addStraightLineScalarOptimizationPasses(); 449 void addIRPasses() override; 450 void addCodeGenPrepare() override; 451 bool addPreISel() override; 452 bool addInstSelector() override; 453 bool addGCPasses() override; 454 }; 455 456 class R600PassConfig final : public AMDGPUPassConfig { 457 public: 458 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 459 : AMDGPUPassConfig(TM, PM) {} 460 461 ScheduleDAGInstrs *createMachineScheduler( 462 MachineSchedContext *C) const override { 463 return createR600MachineScheduler(C); 464 } 465 466 bool addPreISel() override; 467 void addPreRegAlloc() override; 468 void addPreSched2() override; 469 void addPreEmitPass() override; 470 }; 471 472 class GCNPassConfig final : public AMDGPUPassConfig { 473 public: 474 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 475 : AMDGPUPassConfig(TM, PM) {} 476 477 GCNTargetMachine &getGCNTargetMachine() const { 478 return getTM<GCNTargetMachine>(); 479 } 480 481 ScheduleDAGInstrs * 482 createMachineScheduler(MachineSchedContext *C) const override; 483 484 bool addPreISel() override; 485 void addMachineSSAOptimization() override; 486 bool addILPOpts() override; 487 bool addInstSelector() override; 488 #ifdef LLVM_BUILD_GLOBAL_ISEL 489 bool addIRTranslator() override; 490 bool addLegalizeMachineIR() override; 491 bool addRegBankSelect() override; 492 bool addGlobalInstructionSelect() override; 493 #endif 494 void addFastRegAlloc(FunctionPass *RegAllocPass) override; 495 void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override; 496 void addPreRegAlloc() override; 497 void addPostRegAlloc() override; 498 void addPreSched2() override; 499 void addPreEmitPass() override; 500 }; 501 502 } // end anonymous namespace 503 504 TargetIRAnalysis AMDGPUTargetMachine::getTargetIRAnalysis() { 505 return TargetIRAnalysis([this](const Function &F) { 506 return TargetTransformInfo(AMDGPUTTIImpl(this, F)); 507 }); 508 } 509 510 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 511 if (getOptLevel() == CodeGenOpt::Aggressive) 512 addPass(createGVNPass()); 513 else 514 addPass(createEarlyCSEPass()); 515 } 516 517 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 518 addPass(createSeparateConstOffsetFromGEPPass()); 519 addPass(createSpeculativeExecutionPass()); 520 // ReassociateGEPs exposes more opportunites for SLSR. See 521 // the example in reassociate-geps-and-slsr.ll. 522 addPass(createStraightLineStrengthReducePass()); 523 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 524 // EarlyCSE can reuse. 525 addEarlyCSEOrGVNPass(); 526 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 527 addPass(createNaryReassociatePass()); 528 // NaryReassociate on GEPs creates redundant common expressions, so run 529 // EarlyCSE after it. 530 addPass(createEarlyCSEPass()); 531 } 532 533 void AMDGPUPassConfig::addIRPasses() { 534 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 535 536 // There is no reason to run these. 537 disablePass(&StackMapLivenessID); 538 disablePass(&FuncletLayoutID); 539 disablePass(&PatchableFunctionID); 540 541 addPass(createAMDGPULowerIntrinsicsPass()); 542 543 // Function calls are not supported, so make sure we inline everything. 544 addPass(createAMDGPUAlwaysInlinePass()); 545 addPass(createAlwaysInlinerLegacyPass()); 546 // We need to add the barrier noop pass, otherwise adding the function 547 // inlining pass will cause all of the PassConfigs passes to be run 548 // one function at a time, which means if we have a nodule with two 549 // functions, then we will generate code for the first function 550 // without ever running any passes on the second. 551 addPass(createBarrierNoopPass()); 552 553 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 554 // TODO: May want to move later or split into an early and late one. 555 556 addPass(createAMDGPUCodeGenPreparePass()); 557 } 558 559 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 560 addPass(createAMDGPUOpenCLImageTypeLoweringPass()); 561 562 if (TM.getOptLevel() > CodeGenOpt::None) { 563 addPass(createInferAddressSpacesPass()); 564 addPass(createAMDGPUPromoteAlloca()); 565 566 if (EnableSROA) 567 addPass(createSROAPass()); 568 569 addStraightLineScalarOptimizationPasses(); 570 571 if (EnableAMDGPUAliasAnalysis) { 572 addPass(createAMDGPUAAWrapperPass()); 573 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 574 AAResults &AAR) { 575 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 576 AAR.addAAResult(WrapperPass->getResult()); 577 })); 578 } 579 } 580 581 TargetPassConfig::addIRPasses(); 582 583 // EarlyCSE is not always strong enough to clean up what LSR produces. For 584 // example, GVN can combine 585 // 586 // %0 = add %a, %b 587 // %1 = add %b, %a 588 // 589 // and 590 // 591 // %0 = shl nsw %a, 2 592 // %1 = shl %a, 2 593 // 594 // but EarlyCSE can do neither of them. 595 if (getOptLevel() != CodeGenOpt::None) 596 addEarlyCSEOrGVNPass(); 597 } 598 599 void AMDGPUPassConfig::addCodeGenPrepare() { 600 TargetPassConfig::addCodeGenPrepare(); 601 602 if (EnableLoadStoreVectorizer) 603 addPass(createLoadStoreVectorizerPass()); 604 } 605 606 bool AMDGPUPassConfig::addPreISel() { 607 addPass(createFlattenCFGPass()); 608 return false; 609 } 610 611 bool AMDGPUPassConfig::addInstSelector() { 612 addPass(createAMDGPUISelDag(getAMDGPUTargetMachine(), getOptLevel())); 613 return false; 614 } 615 616 bool AMDGPUPassConfig::addGCPasses() { 617 // Do nothing. GC is not supported. 618 return false; 619 } 620 621 //===----------------------------------------------------------------------===// 622 // R600 Pass Setup 623 //===----------------------------------------------------------------------===// 624 625 bool R600PassConfig::addPreISel() { 626 AMDGPUPassConfig::addPreISel(); 627 628 if (EnableR600StructurizeCFG) 629 addPass(createStructurizeCFGPass()); 630 return false; 631 } 632 633 void R600PassConfig::addPreRegAlloc() { 634 addPass(createR600VectorRegMerger()); 635 } 636 637 void R600PassConfig::addPreSched2() { 638 addPass(createR600EmitClauseMarkers(), false); 639 if (EnableR600IfConvert) 640 addPass(&IfConverterID, false); 641 addPass(createR600ClauseMergePass(), false); 642 } 643 644 void R600PassConfig::addPreEmitPass() { 645 addPass(createAMDGPUCFGStructurizerPass(), false); 646 addPass(createR600ExpandSpecialInstrsPass(), false); 647 addPass(&FinalizeMachineBundlesID, false); 648 addPass(createR600Packetizer(), false); 649 addPass(createR600ControlFlowFinalizer(), false); 650 } 651 652 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 653 return new R600PassConfig(*this, PM); 654 } 655 656 //===----------------------------------------------------------------------===// 657 // GCN Pass Setup 658 //===----------------------------------------------------------------------===// 659 660 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 661 MachineSchedContext *C) const { 662 const SISubtarget &ST = C->MF->getSubtarget<SISubtarget>(); 663 if (ST.enableSIScheduler()) 664 return createSIMachineScheduler(C); 665 return createGCNMaxOccupancyMachineScheduler(C); 666 } 667 668 bool GCNPassConfig::addPreISel() { 669 AMDGPUPassConfig::addPreISel(); 670 671 // FIXME: We need to run a pass to propagate the attributes when calls are 672 // supported. 673 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 674 675 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 676 // regions formed by them. 677 addPass(&AMDGPUUnifyDivergentExitNodesID); 678 if (!LateCFGStructurize) { 679 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 680 } 681 addPass(createSinkingPass()); 682 addPass(createAMDGPUAnnotateUniformValues()); 683 if (!LateCFGStructurize) { 684 addPass(createSIAnnotateControlFlowPass()); 685 } 686 687 return false; 688 } 689 690 void GCNPassConfig::addMachineSSAOptimization() { 691 TargetPassConfig::addMachineSSAOptimization(); 692 693 // We want to fold operands after PeepholeOptimizer has run (or as part of 694 // it), because it will eliminate extra copies making it easier to fold the 695 // real source operand. We want to eliminate dead instructions after, so that 696 // we see fewer uses of the copies. We then need to clean up the dead 697 // instructions leftover after the operands are folded as well. 698 // 699 // XXX - Can we get away without running DeadMachineInstructionElim again? 700 addPass(&SIFoldOperandsID); 701 addPass(&DeadMachineInstructionElimID); 702 addPass(&SILoadStoreOptimizerID); 703 if (EnableSDWAPeephole) { 704 addPass(&SIPeepholeSDWAID); 705 addPass(&MachineLICMID); 706 addPass(&MachineCSEID); 707 addPass(&SIFoldOperandsID); 708 addPass(&DeadMachineInstructionElimID); 709 } 710 addPass(createSIShrinkInstructionsPass()); 711 } 712 713 bool GCNPassConfig::addILPOpts() { 714 if (EnableEarlyIfConversion) 715 addPass(&EarlyIfConverterID); 716 717 TargetPassConfig::addILPOpts(); 718 return false; 719 } 720 721 bool GCNPassConfig::addInstSelector() { 722 AMDGPUPassConfig::addInstSelector(); 723 addPass(createSILowerI1CopiesPass()); 724 addPass(&SIFixSGPRCopiesID); 725 return false; 726 } 727 728 #ifdef LLVM_BUILD_GLOBAL_ISEL 729 bool GCNPassConfig::addIRTranslator() { 730 addPass(new IRTranslator()); 731 return false; 732 } 733 734 bool GCNPassConfig::addLegalizeMachineIR() { 735 addPass(new Legalizer()); 736 return false; 737 } 738 739 bool GCNPassConfig::addRegBankSelect() { 740 addPass(new RegBankSelect()); 741 return false; 742 } 743 744 bool GCNPassConfig::addGlobalInstructionSelect() { 745 addPass(new InstructionSelect()); 746 return false; 747 } 748 749 #endif 750 751 void GCNPassConfig::addPreRegAlloc() { 752 if (LateCFGStructurize) { 753 addPass(createAMDGPUMachineCFGStructurizerPass()); 754 } 755 addPass(createSIWholeQuadModePass()); 756 } 757 758 void GCNPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) { 759 // FIXME: We have to disable the verifier here because of PHIElimination + 760 // TwoAddressInstructions disabling it. 761 762 // This must be run immediately after phi elimination and before 763 // TwoAddressInstructions, otherwise the processing of the tied operand of 764 // SI_ELSE will introduce a copy of the tied operand source after the else. 765 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 766 767 TargetPassConfig::addFastRegAlloc(RegAllocPass); 768 } 769 770 void GCNPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) { 771 // This needs to be run directly before register allocation because earlier 772 // passes might recompute live intervals. 773 insertPass(&MachineSchedulerID, &SIFixControlFlowLiveIntervalsID); 774 775 // This must be run immediately after phi elimination and before 776 // TwoAddressInstructions, otherwise the processing of the tied operand of 777 // SI_ELSE will introduce a copy of the tied operand source after the else. 778 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 779 780 TargetPassConfig::addOptimizedRegAlloc(RegAllocPass); 781 } 782 783 void GCNPassConfig::addPostRegAlloc() { 784 addPass(&SIFixVGPRCopiesID); 785 addPass(&SIOptimizeExecMaskingID); 786 TargetPassConfig::addPostRegAlloc(); 787 } 788 789 void GCNPassConfig::addPreSched2() { 790 } 791 792 void GCNPassConfig::addPreEmitPass() { 793 // The hazard recognizer that runs as part of the post-ra scheduler does not 794 // guarantee to be able handle all hazards correctly. This is because if there 795 // are multiple scheduling regions in a basic block, the regions are scheduled 796 // bottom up, so when we begin to schedule a region we don't know what 797 // instructions were emitted directly before it. 798 // 799 // Here we add a stand-alone hazard recognizer pass which can handle all 800 // cases. 801 addPass(&PostRAHazardRecognizerID); 802 803 if (EnableSIInsertWaitcntsPass) 804 addPass(createSIInsertWaitcntsPass()); 805 else 806 addPass(createSIInsertWaitsPass()); 807 addPass(createSIShrinkInstructionsPass()); 808 addPass(&SIInsertSkipsPassID); 809 addPass(createSIDebuggerInsertNopsPass()); 810 addPass(&BranchRelaxationPassID); 811 } 812 813 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 814 return new GCNPassConfig(*this, PM); 815 } 816 817