1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define AMDGPU_LOG2E_F 1.44269504088896340735992468100189214f 17 #define AMDGPU_LN2_F 0.693147180559945309417232121458176568f 18 #define AMDGPU_LN10_F 2.30258509299404568401799145468436421f 19 20 #include "AMDGPUISelLowering.h" 21 #include "AMDGPU.h" 22 #include "AMDGPUCallLowering.h" 23 #include "AMDGPUFrameLowering.h" 24 #include "AMDGPUIntrinsicInfo.h" 25 #include "AMDGPURegisterInfo.h" 26 #include "AMDGPUSubtarget.h" 27 #include "AMDGPUTargetMachine.h" 28 #include "Utils/AMDGPUBaseInfo.h" 29 #include "R600MachineFunctionInfo.h" 30 #include "SIInstrInfo.h" 31 #include "SIMachineFunctionInfo.h" 32 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/CallingConvLower.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/SelectionDAG.h" 38 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/Support/KnownBits.h" 42 using namespace llvm; 43 44 static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT, 45 CCValAssign::LocInfo LocInfo, 46 ISD::ArgFlagsTy ArgFlags, CCState &State, 47 const TargetRegisterClass *RC, 48 unsigned NumRegs) { 49 ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs); 50 unsigned RegResult = State.AllocateReg(RegList); 51 if (RegResult == AMDGPU::NoRegister) 52 return false; 53 54 State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo)); 55 return true; 56 } 57 58 static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 59 CCValAssign::LocInfo LocInfo, 60 ISD::ArgFlagsTy ArgFlags, CCState &State) { 61 switch (LocVT.SimpleTy) { 62 case MVT::i64: 63 case MVT::f64: 64 case MVT::v2i32: 65 case MVT::v2f32: 66 case MVT::v4i16: 67 case MVT::v4f16: { 68 // Up to SGPR0-SGPR39 69 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 70 &AMDGPU::SGPR_64RegClass, 20); 71 } 72 default: 73 return false; 74 } 75 } 76 77 // Allocate up to VGPR31. 78 // 79 // TODO: Since there are no VGPR alignent requirements would it be better to 80 // split into individual scalar registers? 81 static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, 82 CCValAssign::LocInfo LocInfo, 83 ISD::ArgFlagsTy ArgFlags, CCState &State) { 84 switch (LocVT.SimpleTy) { 85 case MVT::i64: 86 case MVT::f64: 87 case MVT::v2i32: 88 case MVT::v2f32: 89 case MVT::v4i16: 90 case MVT::v4f16: { 91 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 92 &AMDGPU::VReg_64RegClass, 31); 93 } 94 case MVT::v4i32: 95 case MVT::v4f32: 96 case MVT::v2i64: 97 case MVT::v2f64: { 98 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 99 &AMDGPU::VReg_128RegClass, 29); 100 } 101 case MVT::v8i32: 102 case MVT::v8f32: { 103 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 104 &AMDGPU::VReg_256RegClass, 25); 105 106 } 107 case MVT::v16i32: 108 case MVT::v16f32: { 109 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, 110 &AMDGPU::VReg_512RegClass, 17); 111 112 } 113 default: 114 return false; 115 } 116 } 117 118 #include "AMDGPUGenCallingConv.inc" 119 120 // Find a larger type to do a load / store of a vector with. 121 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 122 unsigned StoreSize = VT.getStoreSizeInBits(); 123 if (StoreSize <= 32) 124 return EVT::getIntegerVT(Ctx, StoreSize); 125 126 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 127 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 128 } 129 130 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 131 EVT VT = Op.getValueType(); 132 KnownBits Known = DAG.computeKnownBits(Op); 133 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 134 } 135 136 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 137 EVT VT = Op.getValueType(); 138 139 // In order for this to be a signed 24-bit value, bit 23, must 140 // be a sign bit. 141 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 142 } 143 144 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 145 const AMDGPUSubtarget &STI) 146 : TargetLowering(TM), Subtarget(&STI) { 147 // Lower floating point store/load to integer store/load to reduce the number 148 // of patterns in tablegen. 149 setOperationAction(ISD::LOAD, MVT::f32, Promote); 150 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 151 152 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 153 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 154 155 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 156 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 157 158 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 159 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 160 161 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 162 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 163 164 setOperationAction(ISD::LOAD, MVT::i64, Promote); 165 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 166 167 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 168 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 169 170 setOperationAction(ISD::LOAD, MVT::f64, Promote); 171 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 172 173 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 174 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 175 176 // There are no 64-bit extloads. These should be done as a 32-bit extload and 177 // an extension to 64-bit. 178 for (MVT VT : MVT::integer_valuetypes()) { 179 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 180 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 181 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 182 } 183 184 for (MVT VT : MVT::integer_valuetypes()) { 185 if (VT == MVT::i64) 186 continue; 187 188 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 189 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 190 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 191 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 192 193 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 194 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 195 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 196 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 197 198 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 199 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 200 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 201 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 202 } 203 204 for (MVT VT : MVT::integer_vector_valuetypes()) { 205 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 206 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 207 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 208 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 209 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 210 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 211 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 212 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 213 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 214 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 215 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 216 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 217 } 218 219 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 220 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 221 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 222 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 223 224 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 225 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 226 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 227 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 228 229 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 230 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 231 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 232 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 233 234 setOperationAction(ISD::STORE, MVT::f32, Promote); 235 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 236 237 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 238 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 239 240 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 241 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 242 243 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 244 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 245 246 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 247 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 248 249 setOperationAction(ISD::STORE, MVT::i64, Promote); 250 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 251 252 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 253 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 254 255 setOperationAction(ISD::STORE, MVT::f64, Promote); 256 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 257 258 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 259 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 260 261 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 262 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 263 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 264 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 265 266 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 267 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 268 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 269 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 270 271 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 272 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 273 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 274 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 275 276 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 277 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 278 279 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 280 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 281 282 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 283 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 284 285 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 286 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 287 288 289 setOperationAction(ISD::Constant, MVT::i32, Legal); 290 setOperationAction(ISD::Constant, MVT::i64, Legal); 291 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 292 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 293 294 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 295 setOperationAction(ISD::BRIND, MVT::Other, Expand); 296 297 // This is totally unsupported, just custom lower to produce an error. 298 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 299 300 // Library functions. These default to Expand, but we have instructions 301 // for them. 302 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 303 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 304 setOperationAction(ISD::FPOW, MVT::f32, Legal); 305 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 306 setOperationAction(ISD::FABS, MVT::f32, Legal); 307 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 308 setOperationAction(ISD::FRINT, MVT::f32, Legal); 309 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 310 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 311 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 312 313 setOperationAction(ISD::FROUND, MVT::f32, Custom); 314 setOperationAction(ISD::FROUND, MVT::f64, Custom); 315 316 setOperationAction(ISD::FLOG, MVT::f32, Custom); 317 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 318 setOperationAction(ISD::FEXP, MVT::f32, Custom); 319 320 321 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 322 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 323 324 setOperationAction(ISD::FREM, MVT::f32, Custom); 325 setOperationAction(ISD::FREM, MVT::f64, Custom); 326 327 // Expand to fneg + fadd. 328 setOperationAction(ISD::FSUB, MVT::f64, Expand); 329 330 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 331 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 332 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 333 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 334 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 335 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 336 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 337 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 338 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 339 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 340 341 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 342 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 343 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 344 345 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 346 for (MVT VT : ScalarIntVTs) { 347 // These should use [SU]DIVREM, so set them to expand 348 setOperationAction(ISD::SDIV, VT, Expand); 349 setOperationAction(ISD::UDIV, VT, Expand); 350 setOperationAction(ISD::SREM, VT, Expand); 351 setOperationAction(ISD::UREM, VT, Expand); 352 353 // GPU does not have divrem function for signed or unsigned. 354 setOperationAction(ISD::SDIVREM, VT, Custom); 355 setOperationAction(ISD::UDIVREM, VT, Custom); 356 357 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 358 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 359 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 360 361 setOperationAction(ISD::BSWAP, VT, Expand); 362 setOperationAction(ISD::CTTZ, VT, Expand); 363 setOperationAction(ISD::CTLZ, VT, Expand); 364 365 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 366 setOperationAction(ISD::ADDC, VT, Legal); 367 setOperationAction(ISD::SUBC, VT, Legal); 368 setOperationAction(ISD::ADDE, VT, Legal); 369 setOperationAction(ISD::SUBE, VT, Legal); 370 } 371 372 // The hardware supports 32-bit ROTR, but not ROTL. 373 setOperationAction(ISD::ROTL, MVT::i32, Expand); 374 setOperationAction(ISD::ROTL, MVT::i64, Expand); 375 setOperationAction(ISD::ROTR, MVT::i64, Expand); 376 377 setOperationAction(ISD::MUL, MVT::i64, Expand); 378 setOperationAction(ISD::MULHU, MVT::i64, Expand); 379 setOperationAction(ISD::MULHS, MVT::i64, Expand); 380 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 381 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 382 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 383 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 384 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 385 386 setOperationAction(ISD::SMIN, MVT::i32, Legal); 387 setOperationAction(ISD::UMIN, MVT::i32, Legal); 388 setOperationAction(ISD::SMAX, MVT::i32, Legal); 389 setOperationAction(ISD::UMAX, MVT::i32, Legal); 390 391 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 392 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 393 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 394 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 395 396 static const MVT::SimpleValueType VectorIntTypes[] = { 397 MVT::v2i32, MVT::v4i32 398 }; 399 400 for (MVT VT : VectorIntTypes) { 401 // Expand the following operations for the current type by default. 402 setOperationAction(ISD::ADD, VT, Expand); 403 setOperationAction(ISD::AND, VT, Expand); 404 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 405 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 406 setOperationAction(ISD::MUL, VT, Expand); 407 setOperationAction(ISD::MULHU, VT, Expand); 408 setOperationAction(ISD::MULHS, VT, Expand); 409 setOperationAction(ISD::OR, VT, Expand); 410 setOperationAction(ISD::SHL, VT, Expand); 411 setOperationAction(ISD::SRA, VT, Expand); 412 setOperationAction(ISD::SRL, VT, Expand); 413 setOperationAction(ISD::ROTL, VT, Expand); 414 setOperationAction(ISD::ROTR, VT, Expand); 415 setOperationAction(ISD::SUB, VT, Expand); 416 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 417 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 418 setOperationAction(ISD::SDIV, VT, Expand); 419 setOperationAction(ISD::UDIV, VT, Expand); 420 setOperationAction(ISD::SREM, VT, Expand); 421 setOperationAction(ISD::UREM, VT, Expand); 422 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 423 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 424 setOperationAction(ISD::SDIVREM, VT, Custom); 425 setOperationAction(ISD::UDIVREM, VT, Expand); 426 setOperationAction(ISD::SELECT, VT, Expand); 427 setOperationAction(ISD::VSELECT, VT, Expand); 428 setOperationAction(ISD::SELECT_CC, VT, Expand); 429 setOperationAction(ISD::XOR, VT, Expand); 430 setOperationAction(ISD::BSWAP, VT, Expand); 431 setOperationAction(ISD::CTPOP, VT, Expand); 432 setOperationAction(ISD::CTTZ, VT, Expand); 433 setOperationAction(ISD::CTLZ, VT, Expand); 434 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 435 setOperationAction(ISD::SETCC, VT, Expand); 436 } 437 438 static const MVT::SimpleValueType FloatVectorTypes[] = { 439 MVT::v2f32, MVT::v4f32 440 }; 441 442 for (MVT VT : FloatVectorTypes) { 443 setOperationAction(ISD::FABS, VT, Expand); 444 setOperationAction(ISD::FMINNUM, VT, Expand); 445 setOperationAction(ISD::FMAXNUM, VT, Expand); 446 setOperationAction(ISD::FADD, VT, Expand); 447 setOperationAction(ISD::FCEIL, VT, Expand); 448 setOperationAction(ISD::FCOS, VT, Expand); 449 setOperationAction(ISD::FDIV, VT, Expand); 450 setOperationAction(ISD::FEXP2, VT, Expand); 451 setOperationAction(ISD::FEXP, VT, Expand); 452 setOperationAction(ISD::FLOG2, VT, Expand); 453 setOperationAction(ISD::FREM, VT, Expand); 454 setOperationAction(ISD::FLOG, VT, Expand); 455 setOperationAction(ISD::FLOG10, VT, Expand); 456 setOperationAction(ISD::FPOW, VT, Expand); 457 setOperationAction(ISD::FFLOOR, VT, Expand); 458 setOperationAction(ISD::FTRUNC, VT, Expand); 459 setOperationAction(ISD::FMUL, VT, Expand); 460 setOperationAction(ISD::FMA, VT, Expand); 461 setOperationAction(ISD::FRINT, VT, Expand); 462 setOperationAction(ISD::FNEARBYINT, VT, Expand); 463 setOperationAction(ISD::FSQRT, VT, Expand); 464 setOperationAction(ISD::FSIN, VT, Expand); 465 setOperationAction(ISD::FSUB, VT, Expand); 466 setOperationAction(ISD::FNEG, VT, Expand); 467 setOperationAction(ISD::VSELECT, VT, Expand); 468 setOperationAction(ISD::SELECT_CC, VT, Expand); 469 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 470 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 471 setOperationAction(ISD::SETCC, VT, Expand); 472 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 473 } 474 475 // This causes using an unrolled select operation rather than expansion with 476 // bit operations. This is in general better, but the alternative using BFI 477 // instructions may be better if the select sources are SGPRs. 478 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 479 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 480 481 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 482 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 483 484 // There are no libcalls of any kind. 485 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 486 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 487 488 setBooleanContents(ZeroOrNegativeOneBooleanContent); 489 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 490 491 setSchedulingPreference(Sched::RegPressure); 492 setJumpIsExpensive(true); 493 494 // FIXME: This is only partially true. If we have to do vector compares, any 495 // SGPR pair can be a condition register. If we have a uniform condition, we 496 // are better off doing SALU operations, where there is only one SCC. For now, 497 // we don't have a way of knowing during instruction selection if a condition 498 // will be uniform and we always use vector compares. Assume we are using 499 // vector compares until that is fixed. 500 setHasMultipleConditionRegisters(true); 501 502 PredictableSelectIsExpensive = false; 503 504 // We want to find all load dependencies for long chains of stores to enable 505 // merging into very wide vectors. The problem is with vectors with > 4 506 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 507 // vectors are a legal type, even though we have to split the loads 508 // usually. When we can more precisely specify load legality per address 509 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 510 // smarter so that they can figure out what to do in 2 iterations without all 511 // N > 4 stores on the same chain. 512 GatherAllAliasesMaxDepth = 16; 513 514 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 515 // about these during lowering. 516 MaxStoresPerMemcpy = 0xffffffff; 517 MaxStoresPerMemmove = 0xffffffff; 518 MaxStoresPerMemset = 0xffffffff; 519 520 setTargetDAGCombine(ISD::BITCAST); 521 setTargetDAGCombine(ISD::SHL); 522 setTargetDAGCombine(ISD::SRA); 523 setTargetDAGCombine(ISD::SRL); 524 setTargetDAGCombine(ISD::TRUNCATE); 525 setTargetDAGCombine(ISD::MUL); 526 setTargetDAGCombine(ISD::MULHU); 527 setTargetDAGCombine(ISD::MULHS); 528 setTargetDAGCombine(ISD::SELECT); 529 setTargetDAGCombine(ISD::SELECT_CC); 530 setTargetDAGCombine(ISD::STORE); 531 setTargetDAGCombine(ISD::FADD); 532 setTargetDAGCombine(ISD::FSUB); 533 setTargetDAGCombine(ISD::FNEG); 534 setTargetDAGCombine(ISD::FABS); 535 setTargetDAGCombine(ISD::AssertZext); 536 setTargetDAGCombine(ISD::AssertSext); 537 } 538 539 //===----------------------------------------------------------------------===// 540 // Target Information 541 //===----------------------------------------------------------------------===// 542 543 LLVM_READNONE 544 static bool fnegFoldsIntoOp(unsigned Opc) { 545 switch (Opc) { 546 case ISD::FADD: 547 case ISD::FSUB: 548 case ISD::FMUL: 549 case ISD::FMA: 550 case ISD::FMAD: 551 case ISD::FMINNUM: 552 case ISD::FMAXNUM: 553 case ISD::FMINNUM_IEEE: 554 case ISD::FMAXNUM_IEEE: 555 case ISD::FSIN: 556 case ISD::FTRUNC: 557 case ISD::FRINT: 558 case ISD::FNEARBYINT: 559 case ISD::FCANONICALIZE: 560 case AMDGPUISD::RCP: 561 case AMDGPUISD::RCP_LEGACY: 562 case AMDGPUISD::RCP_IFLAG: 563 case AMDGPUISD::SIN_HW: 564 case AMDGPUISD::FMUL_LEGACY: 565 case AMDGPUISD::FMIN_LEGACY: 566 case AMDGPUISD::FMAX_LEGACY: 567 case AMDGPUISD::FMED3: 568 return true; 569 default: 570 return false; 571 } 572 } 573 574 /// \p returns true if the operation will definitely need to use a 64-bit 575 /// encoding, and thus will use a VOP3 encoding regardless of the source 576 /// modifiers. 577 LLVM_READONLY 578 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 579 return N->getNumOperands() > 2 || VT == MVT::f64; 580 } 581 582 // Most FP instructions support source modifiers, but this could be refined 583 // slightly. 584 LLVM_READONLY 585 static bool hasSourceMods(const SDNode *N) { 586 if (isa<MemSDNode>(N)) 587 return false; 588 589 switch (N->getOpcode()) { 590 case ISD::CopyToReg: 591 case ISD::SELECT: 592 case ISD::FDIV: 593 case ISD::FREM: 594 case ISD::INLINEASM: 595 case AMDGPUISD::INTERP_P1: 596 case AMDGPUISD::INTERP_P2: 597 case AMDGPUISD::DIV_SCALE: 598 599 // TODO: Should really be looking at the users of the bitcast. These are 600 // problematic because bitcasts are used to legalize all stores to integer 601 // types. 602 case ISD::BITCAST: 603 return false; 604 default: 605 return true; 606 } 607 } 608 609 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 610 unsigned CostThreshold) { 611 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 612 // it is truly free to use a source modifier in all cases. If there are 613 // multiple users but for each one will necessitate using VOP3, there will be 614 // a code size increase. Try to avoid increasing code size unless we know it 615 // will save on the instruction count. 616 unsigned NumMayIncreaseSize = 0; 617 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 618 619 // XXX - Should this limit number of uses to check? 620 for (const SDNode *U : N->uses()) { 621 if (!hasSourceMods(U)) 622 return false; 623 624 if (!opMustUseVOP3Encoding(U, VT)) { 625 if (++NumMayIncreaseSize > CostThreshold) 626 return false; 627 } 628 } 629 630 return true; 631 } 632 633 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 634 return MVT::i32; 635 } 636 637 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 638 return true; 639 } 640 641 // The backend supports 32 and 64 bit floating point immediates. 642 // FIXME: Why are we reporting vectors of FP immediates as legal? 643 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 644 EVT ScalarVT = VT.getScalarType(); 645 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 646 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 647 } 648 649 // We don't want to shrink f64 / f32 constants. 650 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 651 EVT ScalarVT = VT.getScalarType(); 652 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 653 } 654 655 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 656 ISD::LoadExtType ExtTy, 657 EVT NewVT) const { 658 // TODO: This may be worth removing. Check regression tests for diffs. 659 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 660 return false; 661 662 unsigned NewSize = NewVT.getStoreSizeInBits(); 663 664 // If we are reducing to a 32-bit load, this is always better. 665 if (NewSize == 32) 666 return true; 667 668 EVT OldVT = N->getValueType(0); 669 unsigned OldSize = OldVT.getStoreSizeInBits(); 670 671 MemSDNode *MN = cast<MemSDNode>(N); 672 unsigned AS = MN->getAddressSpace(); 673 // Do not shrink an aligned scalar load to sub-dword. 674 // Scalar engine cannot do sub-dword loads. 675 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 676 (AS == AMDGPUAS::CONSTANT_ADDRESS || 677 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 678 (isa<LoadSDNode>(N) && 679 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 680 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 681 return false; 682 683 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 684 // extloads, so doing one requires using a buffer_load. In cases where we 685 // still couldn't use a scalar load, using the wider load shouldn't really 686 // hurt anything. 687 688 // If the old size already had to be an extload, there's no harm in continuing 689 // to reduce the width. 690 return (OldSize < 32); 691 } 692 693 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 694 EVT CastTy) const { 695 696 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 697 698 if (LoadTy.getScalarType() == MVT::i32) 699 return false; 700 701 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 702 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 703 704 return (LScalarSize < CastScalarSize) || 705 (CastScalarSize >= 32); 706 } 707 708 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 709 // profitable with the expansion for 64-bit since it's generally good to 710 // speculate things. 711 // FIXME: These should really have the size as a parameter. 712 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 713 return true; 714 } 715 716 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 717 return true; 718 } 719 720 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const { 721 switch (N->getOpcode()) { 722 default: 723 return false; 724 case ISD::EntryToken: 725 case ISD::TokenFactor: 726 return true; 727 case ISD::INTRINSIC_WO_CHAIN: 728 { 729 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 730 switch (IntrID) { 731 default: 732 return false; 733 case Intrinsic::amdgcn_readfirstlane: 734 case Intrinsic::amdgcn_readlane: 735 return true; 736 } 737 } 738 break; 739 case ISD::LOAD: 740 { 741 const LoadSDNode * L = dyn_cast<LoadSDNode>(N); 742 if (L->getMemOperand()->getAddrSpace() 743 == AMDGPUAS::CONSTANT_ADDRESS_32BIT) 744 return true; 745 return false; 746 } 747 break; 748 } 749 } 750 751 //===---------------------------------------------------------------------===// 752 // Target Properties 753 //===---------------------------------------------------------------------===// 754 755 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 756 assert(VT.isFloatingPoint()); 757 758 // Packed operations do not have a fabs modifier. 759 return VT == MVT::f32 || VT == MVT::f64 || 760 (Subtarget->has16BitInsts() && VT == MVT::f16); 761 } 762 763 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 764 assert(VT.isFloatingPoint()); 765 return VT == MVT::f32 || VT == MVT::f64 || 766 (Subtarget->has16BitInsts() && VT == MVT::f16) || 767 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 768 } 769 770 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 771 unsigned NumElem, 772 unsigned AS) const { 773 return true; 774 } 775 776 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 777 // There are few operations which truly have vector input operands. Any vector 778 // operation is going to involve operations on each component, and a 779 // build_vector will be a copy per element, so it always makes sense to use a 780 // build_vector input in place of the extracted element to avoid a copy into a 781 // super register. 782 // 783 // We should probably only do this if all users are extracts only, but this 784 // should be the common case. 785 return true; 786 } 787 788 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 789 // Truncate is just accessing a subregister. 790 791 unsigned SrcSize = Source.getSizeInBits(); 792 unsigned DestSize = Dest.getSizeInBits(); 793 794 return DestSize < SrcSize && DestSize % 32 == 0 ; 795 } 796 797 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 798 // Truncate is just accessing a subregister. 799 800 unsigned SrcSize = Source->getScalarSizeInBits(); 801 unsigned DestSize = Dest->getScalarSizeInBits(); 802 803 if (DestSize== 16 && Subtarget->has16BitInsts()) 804 return SrcSize >= 32; 805 806 return DestSize < SrcSize && DestSize % 32 == 0; 807 } 808 809 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 810 unsigned SrcSize = Src->getScalarSizeInBits(); 811 unsigned DestSize = Dest->getScalarSizeInBits(); 812 813 if (SrcSize == 16 && Subtarget->has16BitInsts()) 814 return DestSize >= 32; 815 816 return SrcSize == 32 && DestSize == 64; 817 } 818 819 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 820 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 821 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 822 // this will enable reducing 64-bit operations the 32-bit, which is always 823 // good. 824 825 if (Src == MVT::i16) 826 return Dest == MVT::i32 ||Dest == MVT::i64 ; 827 828 return Src == MVT::i32 && Dest == MVT::i64; 829 } 830 831 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 832 return isZExtFree(Val.getValueType(), VT2); 833 } 834 835 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 836 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 837 // limited number of native 64-bit operations. Shrinking an operation to fit 838 // in a single 32-bit register should always be helpful. As currently used, 839 // this is much less general than the name suggests, and is only used in 840 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 841 // not profitable, and may actually be harmful. 842 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 843 } 844 845 //===---------------------------------------------------------------------===// 846 // TargetLowering Callbacks 847 //===---------------------------------------------------------------------===// 848 849 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 850 bool IsVarArg) { 851 switch (CC) { 852 case CallingConv::AMDGPU_KERNEL: 853 case CallingConv::SPIR_KERNEL: 854 llvm_unreachable("kernels should not be handled here"); 855 case CallingConv::AMDGPU_VS: 856 case CallingConv::AMDGPU_GS: 857 case CallingConv::AMDGPU_PS: 858 case CallingConv::AMDGPU_CS: 859 case CallingConv::AMDGPU_HS: 860 case CallingConv::AMDGPU_ES: 861 case CallingConv::AMDGPU_LS: 862 return CC_AMDGPU; 863 case CallingConv::C: 864 case CallingConv::Fast: 865 case CallingConv::Cold: 866 return CC_AMDGPU_Func; 867 default: 868 report_fatal_error("Unsupported calling convention."); 869 } 870 } 871 872 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 873 bool IsVarArg) { 874 switch (CC) { 875 case CallingConv::AMDGPU_KERNEL: 876 case CallingConv::SPIR_KERNEL: 877 llvm_unreachable("kernels should not be handled here"); 878 case CallingConv::AMDGPU_VS: 879 case CallingConv::AMDGPU_GS: 880 case CallingConv::AMDGPU_PS: 881 case CallingConv::AMDGPU_CS: 882 case CallingConv::AMDGPU_HS: 883 case CallingConv::AMDGPU_ES: 884 case CallingConv::AMDGPU_LS: 885 return RetCC_SI_Shader; 886 case CallingConv::C: 887 case CallingConv::Fast: 888 case CallingConv::Cold: 889 return RetCC_AMDGPU_Func; 890 default: 891 report_fatal_error("Unsupported calling convention."); 892 } 893 } 894 895 /// The SelectionDAGBuilder will automatically promote function arguments 896 /// with illegal types. However, this does not work for the AMDGPU targets 897 /// since the function arguments are stored in memory as these illegal types. 898 /// In order to handle this properly we need to get the original types sizes 899 /// from the LLVM IR Function and fixup the ISD:InputArg values before 900 /// passing them to AnalyzeFormalArguments() 901 902 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 903 /// input values across multiple registers. Each item in the Ins array 904 /// represents a single value that will be stored in registers. Ins[x].VT is 905 /// the value type of the value that will be stored in the register, so 906 /// whatever SDNode we lower the argument to needs to be this type. 907 /// 908 /// In order to correctly lower the arguments we need to know the size of each 909 /// argument. Since Ins[x].VT gives us the size of the register that will 910 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 911 /// for the orignal function argument so that we can deduce the correct memory 912 /// type to use for Ins[x]. In most cases the correct memory type will be 913 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 914 /// we have a kernel argument of type v8i8, this argument will be split into 915 /// 8 parts and each part will be represented by its own item in the Ins array. 916 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 917 /// the argument before it was split. From this, we deduce that the memory type 918 /// for each individual part is i8. We pass the memory type as LocVT to the 919 /// calling convention analysis function and the register type (Ins[x].VT) as 920 /// the ValVT. 921 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 922 CCState &State, 923 const SmallVectorImpl<ISD::InputArg> &Ins) const { 924 const MachineFunction &MF = State.getMachineFunction(); 925 const Function &Fn = MF.getFunction(); 926 LLVMContext &Ctx = Fn.getParent()->getContext(); 927 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 928 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 929 CallingConv::ID CC = Fn.getCallingConv(); 930 931 unsigned MaxAlign = 1; 932 uint64_t ExplicitArgOffset = 0; 933 const DataLayout &DL = Fn.getParent()->getDataLayout(); 934 935 unsigned InIndex = 0; 936 937 for (const Argument &Arg : Fn.args()) { 938 Type *BaseArgTy = Arg.getType(); 939 unsigned Align = DL.getABITypeAlignment(BaseArgTy); 940 MaxAlign = std::max(Align, MaxAlign); 941 unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy); 942 943 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset; 944 ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize; 945 946 // We're basically throwing away everything passed into us and starting over 947 // to get accurate in-memory offsets. The "PartOffset" is completely useless 948 // to us as computed in Ins. 949 // 950 // We also need to figure out what type legalization is trying to do to get 951 // the correct memory offsets. 952 953 SmallVector<EVT, 16> ValueVTs; 954 SmallVector<uint64_t, 16> Offsets; 955 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 956 957 for (unsigned Value = 0, NumValues = ValueVTs.size(); 958 Value != NumValues; ++Value) { 959 uint64_t BasePartOffset = Offsets[Value]; 960 961 EVT ArgVT = ValueVTs[Value]; 962 EVT MemVT = ArgVT; 963 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 964 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 965 966 if (NumRegs == 1) { 967 // This argument is not split, so the IR type is the memory type. 968 if (ArgVT.isExtended()) { 969 // We have an extended type, like i24, so we should just use the 970 // register type. 971 MemVT = RegisterVT; 972 } else { 973 MemVT = ArgVT; 974 } 975 } else if (ArgVT.isVector() && RegisterVT.isVector() && 976 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 977 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 978 // We have a vector value which has been split into a vector with 979 // the same scalar type, but fewer elements. This should handle 980 // all the floating-point vector types. 981 MemVT = RegisterVT; 982 } else if (ArgVT.isVector() && 983 ArgVT.getVectorNumElements() == NumRegs) { 984 // This arg has been split so that each element is stored in a separate 985 // register. 986 MemVT = ArgVT.getScalarType(); 987 } else if (ArgVT.isExtended()) { 988 // We have an extended type, like i65. 989 MemVT = RegisterVT; 990 } else { 991 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 992 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 993 if (RegisterVT.isInteger()) { 994 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 995 } else if (RegisterVT.isVector()) { 996 assert(!RegisterVT.getScalarType().isFloatingPoint()); 997 unsigned NumElements = RegisterVT.getVectorNumElements(); 998 assert(MemoryBits % NumElements == 0); 999 // This vector type has been split into another vector type with 1000 // a different elements size. 1001 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 1002 MemoryBits / NumElements); 1003 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 1004 } else { 1005 llvm_unreachable("cannot deduce memory type."); 1006 } 1007 } 1008 1009 // Convert one element vectors to scalar. 1010 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 1011 MemVT = MemVT.getScalarType(); 1012 1013 if (MemVT.isExtended()) { 1014 // This should really only happen if we have vec3 arguments 1015 assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3); 1016 MemVT = MemVT.getPow2VectorType(State.getContext()); 1017 } 1018 1019 unsigned PartOffset = 0; 1020 for (unsigned i = 0; i != NumRegs; ++i) { 1021 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1022 BasePartOffset + PartOffset, 1023 MemVT.getSimpleVT(), 1024 CCValAssign::Full)); 1025 PartOffset += MemVT.getStoreSize(); 1026 } 1027 } 1028 } 1029 } 1030 1031 SDValue AMDGPUTargetLowering::LowerReturn( 1032 SDValue Chain, CallingConv::ID CallConv, 1033 bool isVarArg, 1034 const SmallVectorImpl<ISD::OutputArg> &Outs, 1035 const SmallVectorImpl<SDValue> &OutVals, 1036 const SDLoc &DL, SelectionDAG &DAG) const { 1037 // FIXME: Fails for r600 tests 1038 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1039 // "wave terminate should not have return values"); 1040 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1041 } 1042 1043 //===---------------------------------------------------------------------===// 1044 // Target specific lowering 1045 //===---------------------------------------------------------------------===// 1046 1047 /// Selects the correct CCAssignFn for a given CallingConvention value. 1048 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1049 bool IsVarArg) { 1050 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1051 } 1052 1053 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1054 bool IsVarArg) { 1055 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1056 } 1057 1058 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1059 SelectionDAG &DAG, 1060 MachineFrameInfo &MFI, 1061 int ClobberedFI) const { 1062 SmallVector<SDValue, 8> ArgChains; 1063 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1064 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1065 1066 // Include the original chain at the beginning of the list. When this is 1067 // used by target LowerCall hooks, this helps legalize find the 1068 // CALLSEQ_BEGIN node. 1069 ArgChains.push_back(Chain); 1070 1071 // Add a chain value for each stack argument corresponding 1072 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1073 UE = DAG.getEntryNode().getNode()->use_end(); 1074 U != UE; ++U) { 1075 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1076 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1077 if (FI->getIndex() < 0) { 1078 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1079 int64_t InLastByte = InFirstByte; 1080 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1081 1082 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1083 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1084 ArgChains.push_back(SDValue(L, 1)); 1085 } 1086 } 1087 } 1088 } 1089 1090 // Build a tokenfactor for all the chains. 1091 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1092 } 1093 1094 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1095 SmallVectorImpl<SDValue> &InVals, 1096 StringRef Reason) const { 1097 SDValue Callee = CLI.Callee; 1098 SelectionDAG &DAG = CLI.DAG; 1099 1100 const Function &Fn = DAG.getMachineFunction().getFunction(); 1101 1102 StringRef FuncName("<unknown>"); 1103 1104 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1105 FuncName = G->getSymbol(); 1106 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1107 FuncName = G->getGlobal()->getName(); 1108 1109 DiagnosticInfoUnsupported NoCalls( 1110 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1111 DAG.getContext()->diagnose(NoCalls); 1112 1113 if (!CLI.IsTailCall) { 1114 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1115 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1116 } 1117 1118 return DAG.getEntryNode(); 1119 } 1120 1121 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1122 SmallVectorImpl<SDValue> &InVals) const { 1123 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1124 } 1125 1126 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1127 SelectionDAG &DAG) const { 1128 const Function &Fn = DAG.getMachineFunction().getFunction(); 1129 1130 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1131 SDLoc(Op).getDebugLoc()); 1132 DAG.getContext()->diagnose(NoDynamicAlloca); 1133 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1134 return DAG.getMergeValues(Ops, SDLoc()); 1135 } 1136 1137 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1138 SelectionDAG &DAG) const { 1139 switch (Op.getOpcode()) { 1140 default: 1141 Op->print(errs(), &DAG); 1142 llvm_unreachable("Custom lowering code for this" 1143 "instruction is not implemented yet!"); 1144 break; 1145 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1146 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1147 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1148 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1149 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1150 case ISD::FREM: return LowerFREM(Op, DAG); 1151 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1152 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1153 case ISD::FRINT: return LowerFRINT(Op, DAG); 1154 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1155 case ISD::FROUND: return LowerFROUND(Op, DAG); 1156 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1157 case ISD::FLOG: 1158 return LowerFLOG(Op, DAG, 1 / AMDGPU_LOG2E_F); 1159 case ISD::FLOG10: 1160 return LowerFLOG(Op, DAG, AMDGPU_LN2_F / AMDGPU_LN10_F); 1161 case ISD::FEXP: 1162 return lowerFEXP(Op, DAG); 1163 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1164 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1165 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1166 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1167 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1168 case ISD::CTTZ: 1169 case ISD::CTTZ_ZERO_UNDEF: 1170 case ISD::CTLZ: 1171 case ISD::CTLZ_ZERO_UNDEF: 1172 return LowerCTLZ_CTTZ(Op, DAG); 1173 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1174 } 1175 return Op; 1176 } 1177 1178 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1179 SmallVectorImpl<SDValue> &Results, 1180 SelectionDAG &DAG) const { 1181 switch (N->getOpcode()) { 1182 case ISD::SIGN_EXTEND_INREG: 1183 // Different parts of legalization seem to interpret which type of 1184 // sign_extend_inreg is the one to check for custom lowering. The extended 1185 // from type is what really matters, but some places check for custom 1186 // lowering of the result type. This results in trying to use 1187 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1188 // nothing here and let the illegal result integer be handled normally. 1189 return; 1190 default: 1191 return; 1192 } 1193 } 1194 1195 static bool hasDefinedInitializer(const GlobalValue *GV) { 1196 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1197 if (!GVar || !GVar->hasInitializer()) 1198 return false; 1199 1200 return !isa<UndefValue>(GVar->getInitializer()); 1201 } 1202 1203 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1204 SDValue Op, 1205 SelectionDAG &DAG) const { 1206 1207 const DataLayout &DL = DAG.getDataLayout(); 1208 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1209 const GlobalValue *GV = G->getGlobal(); 1210 1211 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1212 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1213 if (!MFI->isEntryFunction()) { 1214 const Function &Fn = DAG.getMachineFunction().getFunction(); 1215 DiagnosticInfoUnsupported BadLDSDecl( 1216 Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc()); 1217 DAG.getContext()->diagnose(BadLDSDecl); 1218 } 1219 1220 // XXX: What does the value of G->getOffset() mean? 1221 assert(G->getOffset() == 0 && 1222 "Do not know what to do with an non-zero offset"); 1223 1224 // TODO: We could emit code to handle the initialization somewhere. 1225 if (!hasDefinedInitializer(GV)) { 1226 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1227 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1228 } 1229 } 1230 1231 const Function &Fn = DAG.getMachineFunction().getFunction(); 1232 DiagnosticInfoUnsupported BadInit( 1233 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1234 DAG.getContext()->diagnose(BadInit); 1235 return SDValue(); 1236 } 1237 1238 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1239 SelectionDAG &DAG) const { 1240 SmallVector<SDValue, 8> Args; 1241 1242 EVT VT = Op.getValueType(); 1243 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1244 SDLoc SL(Op); 1245 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1246 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1247 1248 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1249 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1250 } 1251 1252 for (const SDUse &U : Op->ops()) 1253 DAG.ExtractVectorElements(U.get(), Args); 1254 1255 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1256 } 1257 1258 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1259 SelectionDAG &DAG) const { 1260 1261 SmallVector<SDValue, 8> Args; 1262 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1263 EVT VT = Op.getValueType(); 1264 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1265 VT.getVectorNumElements()); 1266 1267 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1268 } 1269 1270 /// Generate Min/Max node 1271 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1272 SDValue LHS, SDValue RHS, 1273 SDValue True, SDValue False, 1274 SDValue CC, 1275 DAGCombinerInfo &DCI) const { 1276 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1277 return SDValue(); 1278 1279 SelectionDAG &DAG = DCI.DAG; 1280 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1281 switch (CCOpcode) { 1282 case ISD::SETOEQ: 1283 case ISD::SETONE: 1284 case ISD::SETUNE: 1285 case ISD::SETNE: 1286 case ISD::SETUEQ: 1287 case ISD::SETEQ: 1288 case ISD::SETFALSE: 1289 case ISD::SETFALSE2: 1290 case ISD::SETTRUE: 1291 case ISD::SETTRUE2: 1292 case ISD::SETUO: 1293 case ISD::SETO: 1294 break; 1295 case ISD::SETULE: 1296 case ISD::SETULT: { 1297 if (LHS == True) 1298 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1299 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1300 } 1301 case ISD::SETOLE: 1302 case ISD::SETOLT: 1303 case ISD::SETLE: 1304 case ISD::SETLT: { 1305 // Ordered. Assume ordered for undefined. 1306 1307 // Only do this after legalization to avoid interfering with other combines 1308 // which might occur. 1309 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1310 !DCI.isCalledByLegalizer()) 1311 return SDValue(); 1312 1313 // We need to permute the operands to get the correct NaN behavior. The 1314 // selected operand is the second one based on the failing compare with NaN, 1315 // so permute it based on the compare type the hardware uses. 1316 if (LHS == True) 1317 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1318 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1319 } 1320 case ISD::SETUGE: 1321 case ISD::SETUGT: { 1322 if (LHS == True) 1323 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1324 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1325 } 1326 case ISD::SETGT: 1327 case ISD::SETGE: 1328 case ISD::SETOGE: 1329 case ISD::SETOGT: { 1330 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1331 !DCI.isCalledByLegalizer()) 1332 return SDValue(); 1333 1334 if (LHS == True) 1335 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1336 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1337 } 1338 case ISD::SETCC_INVALID: 1339 llvm_unreachable("Invalid setcc condcode!"); 1340 } 1341 return SDValue(); 1342 } 1343 1344 std::pair<SDValue, SDValue> 1345 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1346 SDLoc SL(Op); 1347 1348 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1349 1350 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1351 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1352 1353 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1354 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1355 1356 return std::make_pair(Lo, Hi); 1357 } 1358 1359 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1360 SDLoc SL(Op); 1361 1362 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1363 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1364 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1365 } 1366 1367 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1368 SDLoc SL(Op); 1369 1370 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1371 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1372 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1373 } 1374 1375 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1376 SelectionDAG &DAG) const { 1377 LoadSDNode *Load = cast<LoadSDNode>(Op); 1378 EVT VT = Op.getValueType(); 1379 1380 1381 // If this is a 2 element vector, we really want to scalarize and not create 1382 // weird 1 element vectors. 1383 if (VT.getVectorNumElements() == 2) 1384 return scalarizeVectorLoad(Load, DAG); 1385 1386 SDValue BasePtr = Load->getBasePtr(); 1387 EVT MemVT = Load->getMemoryVT(); 1388 SDLoc SL(Op); 1389 1390 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1391 1392 EVT LoVT, HiVT; 1393 EVT LoMemVT, HiMemVT; 1394 SDValue Lo, Hi; 1395 1396 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1397 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1398 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1399 1400 unsigned Size = LoMemVT.getStoreSize(); 1401 unsigned BaseAlign = Load->getAlignment(); 1402 unsigned HiAlign = MinAlign(BaseAlign, Size); 1403 1404 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1405 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1406 BaseAlign, Load->getMemOperand()->getFlags()); 1407 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size); 1408 SDValue HiLoad = 1409 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1410 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1411 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1412 1413 SDValue Ops[] = { 1414 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1415 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1416 LoLoad.getValue(1), HiLoad.getValue(1)) 1417 }; 1418 1419 return DAG.getMergeValues(Ops, SL); 1420 } 1421 1422 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1423 SelectionDAG &DAG) const { 1424 StoreSDNode *Store = cast<StoreSDNode>(Op); 1425 SDValue Val = Store->getValue(); 1426 EVT VT = Val.getValueType(); 1427 1428 // If this is a 2 element vector, we really want to scalarize and not create 1429 // weird 1 element vectors. 1430 if (VT.getVectorNumElements() == 2) 1431 return scalarizeVectorStore(Store, DAG); 1432 1433 EVT MemVT = Store->getMemoryVT(); 1434 SDValue Chain = Store->getChain(); 1435 SDValue BasePtr = Store->getBasePtr(); 1436 SDLoc SL(Op); 1437 1438 EVT LoVT, HiVT; 1439 EVT LoMemVT, HiMemVT; 1440 SDValue Lo, Hi; 1441 1442 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1443 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1444 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1445 1446 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1447 1448 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1449 unsigned BaseAlign = Store->getAlignment(); 1450 unsigned Size = LoMemVT.getStoreSize(); 1451 unsigned HiAlign = MinAlign(BaseAlign, Size); 1452 1453 SDValue LoStore = 1454 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1455 Store->getMemOperand()->getFlags()); 1456 SDValue HiStore = 1457 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1458 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1459 1460 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1461 } 1462 1463 // This is a shortcut for integer division because we have fast i32<->f32 1464 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1465 // float is enough to accurately represent up to a 24-bit signed integer. 1466 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1467 bool Sign) const { 1468 SDLoc DL(Op); 1469 EVT VT = Op.getValueType(); 1470 SDValue LHS = Op.getOperand(0); 1471 SDValue RHS = Op.getOperand(1); 1472 MVT IntVT = MVT::i32; 1473 MVT FltVT = MVT::f32; 1474 1475 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1476 if (LHSSignBits < 9) 1477 return SDValue(); 1478 1479 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1480 if (RHSSignBits < 9) 1481 return SDValue(); 1482 1483 unsigned BitSize = VT.getSizeInBits(); 1484 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1485 unsigned DivBits = BitSize - SignBits; 1486 if (Sign) 1487 ++DivBits; 1488 1489 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1490 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1491 1492 SDValue jq = DAG.getConstant(1, DL, IntVT); 1493 1494 if (Sign) { 1495 // char|short jq = ia ^ ib; 1496 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1497 1498 // jq = jq >> (bitsize - 2) 1499 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1500 DAG.getConstant(BitSize - 2, DL, VT)); 1501 1502 // jq = jq | 0x1 1503 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1504 } 1505 1506 // int ia = (int)LHS; 1507 SDValue ia = LHS; 1508 1509 // int ib, (int)RHS; 1510 SDValue ib = RHS; 1511 1512 // float fa = (float)ia; 1513 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1514 1515 // float fb = (float)ib; 1516 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1517 1518 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1519 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1520 1521 // fq = trunc(fq); 1522 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1523 1524 // float fqneg = -fq; 1525 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1526 1527 // float fr = mad(fqneg, fb, fa); 1528 unsigned OpCode = Subtarget->hasFP32Denormals() ? 1529 (unsigned)AMDGPUISD::FMAD_FTZ : 1530 (unsigned)ISD::FMAD; 1531 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1532 1533 // int iq = (int)fq; 1534 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1535 1536 // fr = fabs(fr); 1537 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1538 1539 // fb = fabs(fb); 1540 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1541 1542 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1543 1544 // int cv = fr >= fb; 1545 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1546 1547 // jq = (cv ? jq : 0); 1548 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1549 1550 // dst = iq + jq; 1551 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1552 1553 // Rem needs compensation, it's easier to recompute it 1554 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1555 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1556 1557 // Truncate to number of bits this divide really is. 1558 if (Sign) { 1559 SDValue InRegSize 1560 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1561 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1562 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1563 } else { 1564 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1565 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1566 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1567 } 1568 1569 return DAG.getMergeValues({ Div, Rem }, DL); 1570 } 1571 1572 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1573 SelectionDAG &DAG, 1574 SmallVectorImpl<SDValue> &Results) const { 1575 SDLoc DL(Op); 1576 EVT VT = Op.getValueType(); 1577 1578 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1579 1580 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1581 1582 SDValue One = DAG.getConstant(1, DL, HalfVT); 1583 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1584 1585 //HiLo split 1586 SDValue LHS = Op.getOperand(0); 1587 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1588 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1589 1590 SDValue RHS = Op.getOperand(1); 1591 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1592 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1593 1594 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1595 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1596 1597 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1598 LHS_Lo, RHS_Lo); 1599 1600 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1601 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1602 1603 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1604 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1605 return; 1606 } 1607 1608 if (isTypeLegal(MVT::i64)) { 1609 // Compute denominator reciprocal. 1610 unsigned FMAD = Subtarget->hasFP32Denormals() ? 1611 (unsigned)AMDGPUISD::FMAD_FTZ : 1612 (unsigned)ISD::FMAD; 1613 1614 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1615 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1616 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1617 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1618 Cvt_Lo); 1619 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1620 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1621 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1622 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1623 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1624 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1625 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1626 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1627 Mul1); 1628 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1629 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1630 SDValue Rcp64 = DAG.getBitcast(VT, 1631 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1632 1633 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1634 SDValue One64 = DAG.getConstant(1, DL, VT); 1635 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1636 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1637 1638 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1639 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1640 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1641 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1642 Zero); 1643 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1644 One); 1645 1646 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1647 Mulhi1_Lo, Zero1); 1648 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1649 Mulhi1_Hi, Add1_Lo.getValue(1)); 1650 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1651 SDValue Add1 = DAG.getBitcast(VT, 1652 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1653 1654 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1655 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1656 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1657 Zero); 1658 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1659 One); 1660 1661 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1662 Mulhi2_Lo, Zero1); 1663 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1664 Mulhi2_Hi, Add1_Lo.getValue(1)); 1665 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1666 Zero, Add2_Lo.getValue(1)); 1667 SDValue Add2 = DAG.getBitcast(VT, 1668 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1669 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1670 1671 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1672 1673 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1674 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1675 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1676 Mul3_Lo, Zero1); 1677 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1678 Mul3_Hi, Sub1_Lo.getValue(1)); 1679 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1680 SDValue Sub1 = DAG.getBitcast(VT, 1681 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1682 1683 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1684 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1685 ISD::SETUGE); 1686 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1687 ISD::SETUGE); 1688 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1689 1690 // TODO: Here and below portions of the code can be enclosed into if/endif. 1691 // Currently control flow is unconditional and we have 4 selects after 1692 // potential endif to substitute PHIs. 1693 1694 // if C3 != 0 ... 1695 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1696 RHS_Lo, Zero1); 1697 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1698 RHS_Hi, Sub1_Lo.getValue(1)); 1699 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1700 Zero, Sub2_Lo.getValue(1)); 1701 SDValue Sub2 = DAG.getBitcast(VT, 1702 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1703 1704 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1705 1706 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1707 ISD::SETUGE); 1708 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1709 ISD::SETUGE); 1710 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1711 1712 // if (C6 != 0) 1713 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1714 1715 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1716 RHS_Lo, Zero1); 1717 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1718 RHS_Hi, Sub2_Lo.getValue(1)); 1719 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1720 Zero, Sub3_Lo.getValue(1)); 1721 SDValue Sub3 = DAG.getBitcast(VT, 1722 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1723 1724 // endif C6 1725 // endif C3 1726 1727 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1728 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1729 1730 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1731 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1732 1733 Results.push_back(Div); 1734 Results.push_back(Rem); 1735 1736 return; 1737 } 1738 1739 // r600 expandion. 1740 // Get Speculative values 1741 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1742 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1743 1744 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1745 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1746 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1747 1748 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1749 SDValue DIV_Lo = Zero; 1750 1751 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1752 1753 for (unsigned i = 0; i < halfBitWidth; ++i) { 1754 const unsigned bitPos = halfBitWidth - i - 1; 1755 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1756 // Get value of high bit 1757 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1758 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1759 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1760 1761 // Shift 1762 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1763 // Add LHS high bit 1764 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1765 1766 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1767 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1768 1769 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1770 1771 // Update REM 1772 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1773 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1774 } 1775 1776 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1777 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1778 Results.push_back(DIV); 1779 Results.push_back(REM); 1780 } 1781 1782 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1783 SelectionDAG &DAG) const { 1784 SDLoc DL(Op); 1785 EVT VT = Op.getValueType(); 1786 1787 if (VT == MVT::i64) { 1788 SmallVector<SDValue, 2> Results; 1789 LowerUDIVREM64(Op, DAG, Results); 1790 return DAG.getMergeValues(Results, DL); 1791 } 1792 1793 if (VT == MVT::i32) { 1794 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1795 return Res; 1796 } 1797 1798 SDValue Num = Op.getOperand(0); 1799 SDValue Den = Op.getOperand(1); 1800 1801 // RCP = URECIP(Den) = 2^32 / Den + e 1802 // e is rounding error. 1803 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1804 1805 // RCP_LO = mul(RCP, Den) */ 1806 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1807 1808 // RCP_HI = mulhu (RCP, Den) */ 1809 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1810 1811 // NEG_RCP_LO = -RCP_LO 1812 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1813 RCP_LO); 1814 1815 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1816 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1817 NEG_RCP_LO, RCP_LO, 1818 ISD::SETEQ); 1819 // Calculate the rounding error from the URECIP instruction 1820 // E = mulhu(ABS_RCP_LO, RCP) 1821 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1822 1823 // RCP_A_E = RCP + E 1824 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1825 1826 // RCP_S_E = RCP - E 1827 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1828 1829 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1830 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1831 RCP_A_E, RCP_S_E, 1832 ISD::SETEQ); 1833 // Quotient = mulhu(Tmp0, Num) 1834 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1835 1836 // Num_S_Remainder = Quotient * Den 1837 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1838 1839 // Remainder = Num - Num_S_Remainder 1840 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1841 1842 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1843 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1844 DAG.getConstant(-1, DL, VT), 1845 DAG.getConstant(0, DL, VT), 1846 ISD::SETUGE); 1847 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1848 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1849 Num_S_Remainder, 1850 DAG.getConstant(-1, DL, VT), 1851 DAG.getConstant(0, DL, VT), 1852 ISD::SETUGE); 1853 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1854 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1855 Remainder_GE_Zero); 1856 1857 // Calculate Division result: 1858 1859 // Quotient_A_One = Quotient + 1 1860 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1861 DAG.getConstant(1, DL, VT)); 1862 1863 // Quotient_S_One = Quotient - 1 1864 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1865 DAG.getConstant(1, DL, VT)); 1866 1867 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1868 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1869 Quotient, Quotient_A_One, ISD::SETEQ); 1870 1871 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1872 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1873 Quotient_S_One, Div, ISD::SETEQ); 1874 1875 // Calculate Rem result: 1876 1877 // Remainder_S_Den = Remainder - Den 1878 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1879 1880 // Remainder_A_Den = Remainder + Den 1881 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1882 1883 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1884 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1885 Remainder, Remainder_S_Den, ISD::SETEQ); 1886 1887 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1888 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1889 Remainder_A_Den, Rem, ISD::SETEQ); 1890 SDValue Ops[2] = { 1891 Div, 1892 Rem 1893 }; 1894 return DAG.getMergeValues(Ops, DL); 1895 } 1896 1897 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1898 SelectionDAG &DAG) const { 1899 SDLoc DL(Op); 1900 EVT VT = Op.getValueType(); 1901 1902 SDValue LHS = Op.getOperand(0); 1903 SDValue RHS = Op.getOperand(1); 1904 1905 SDValue Zero = DAG.getConstant(0, DL, VT); 1906 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1907 1908 if (VT == MVT::i32) { 1909 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1910 return Res; 1911 } 1912 1913 if (VT == MVT::i64 && 1914 DAG.ComputeNumSignBits(LHS) > 32 && 1915 DAG.ComputeNumSignBits(RHS) > 32) { 1916 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1917 1918 //HiLo split 1919 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1920 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1921 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1922 LHS_Lo, RHS_Lo); 1923 SDValue Res[2] = { 1924 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1925 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1926 }; 1927 return DAG.getMergeValues(Res, DL); 1928 } 1929 1930 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1931 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1932 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1933 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1934 1935 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1936 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1937 1938 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1939 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1940 1941 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1942 SDValue Rem = Div.getValue(1); 1943 1944 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1945 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1946 1947 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1948 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1949 1950 SDValue Res[2] = { 1951 Div, 1952 Rem 1953 }; 1954 return DAG.getMergeValues(Res, DL); 1955 } 1956 1957 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1958 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1959 SDLoc SL(Op); 1960 EVT VT = Op.getValueType(); 1961 SDValue X = Op.getOperand(0); 1962 SDValue Y = Op.getOperand(1); 1963 1964 // TODO: Should this propagate fast-math-flags? 1965 1966 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1967 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1968 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1969 1970 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1971 } 1972 1973 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1974 SDLoc SL(Op); 1975 SDValue Src = Op.getOperand(0); 1976 1977 // result = trunc(src) 1978 // if (src > 0.0 && src != result) 1979 // result += 1.0 1980 1981 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1982 1983 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1984 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1985 1986 EVT SetCCVT = 1987 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1988 1989 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1990 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1991 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1992 1993 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1994 // TODO: Should this propagate fast-math-flags? 1995 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1996 } 1997 1998 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 1999 SelectionDAG &DAG) { 2000 const unsigned FractBits = 52; 2001 const unsigned ExpBits = 11; 2002 2003 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2004 Hi, 2005 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2006 DAG.getConstant(ExpBits, SL, MVT::i32)); 2007 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2008 DAG.getConstant(1023, SL, MVT::i32)); 2009 2010 return Exp; 2011 } 2012 2013 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2014 SDLoc SL(Op); 2015 SDValue Src = Op.getOperand(0); 2016 2017 assert(Op.getValueType() == MVT::f64); 2018 2019 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2020 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2021 2022 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2023 2024 // Extract the upper half, since this is where we will find the sign and 2025 // exponent. 2026 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2027 2028 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2029 2030 const unsigned FractBits = 52; 2031 2032 // Extract the sign bit. 2033 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2034 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2035 2036 // Extend back to 64-bits. 2037 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2038 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2039 2040 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2041 const SDValue FractMask 2042 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2043 2044 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2045 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2046 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2047 2048 EVT SetCCVT = 2049 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2050 2051 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2052 2053 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2054 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2055 2056 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2057 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2058 2059 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2060 } 2061 2062 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2063 SDLoc SL(Op); 2064 SDValue Src = Op.getOperand(0); 2065 2066 assert(Op.getValueType() == MVT::f64); 2067 2068 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2069 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2070 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2071 2072 // TODO: Should this propagate fast-math-flags? 2073 2074 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2075 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2076 2077 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2078 2079 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2080 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2081 2082 EVT SetCCVT = 2083 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2084 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2085 2086 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2087 } 2088 2089 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2090 // FNEARBYINT and FRINT are the same, except in their handling of FP 2091 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2092 // rint, so just treat them as equivalent. 2093 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2094 } 2095 2096 // XXX - May require not supporting f32 denormals? 2097 2098 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2099 // compare and vselect end up producing worse code than scalarizing the whole 2100 // operation. 2101 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const { 2102 SDLoc SL(Op); 2103 SDValue X = Op.getOperand(0); 2104 EVT VT = Op.getValueType(); 2105 2106 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2107 2108 // TODO: Should this propagate fast-math-flags? 2109 2110 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2111 2112 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2113 2114 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2115 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2116 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2117 2118 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2119 2120 EVT SetCCVT = 2121 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2122 2123 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2124 2125 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2126 2127 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2128 } 2129 2130 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2131 SDLoc SL(Op); 2132 SDValue X = Op.getOperand(0); 2133 2134 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2135 2136 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2137 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2138 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2139 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2140 EVT SetCCVT = 2141 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2142 2143 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2144 2145 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2146 2147 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2148 2149 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2150 MVT::i64); 2151 2152 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2153 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2154 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2155 MVT::i64), 2156 Exp); 2157 2158 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2159 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2160 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2161 ISD::SETNE); 2162 2163 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2164 D, DAG.getConstant(0, SL, MVT::i64)); 2165 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2166 2167 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2168 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2169 2170 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2171 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2172 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2173 2174 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2175 ExpEqNegOne, 2176 DAG.getConstantFP(1.0, SL, MVT::f64), 2177 DAG.getConstantFP(0.0, SL, MVT::f64)); 2178 2179 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2180 2181 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2182 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2183 2184 return K; 2185 } 2186 2187 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2188 EVT VT = Op.getValueType(); 2189 2190 if (VT == MVT::f32 || VT == MVT::f16) 2191 return LowerFROUND32_16(Op, DAG); 2192 2193 if (VT == MVT::f64) 2194 return LowerFROUND64(Op, DAG); 2195 2196 llvm_unreachable("unhandled type"); 2197 } 2198 2199 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2200 SDLoc SL(Op); 2201 SDValue Src = Op.getOperand(0); 2202 2203 // result = trunc(src); 2204 // if (src < 0.0 && src != result) 2205 // result += -1.0. 2206 2207 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2208 2209 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2210 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2211 2212 EVT SetCCVT = 2213 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2214 2215 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2216 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2217 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2218 2219 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2220 // TODO: Should this propagate fast-math-flags? 2221 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2222 } 2223 2224 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2225 double Log2BaseInverted) const { 2226 EVT VT = Op.getValueType(); 2227 2228 SDLoc SL(Op); 2229 SDValue Operand = Op.getOperand(0); 2230 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2231 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2232 2233 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2234 } 2235 2236 // Return M_LOG2E of appropriate type 2237 static SDValue getLog2EVal(SelectionDAG &DAG, const SDLoc &SL, EVT VT) { 2238 switch (VT.getScalarType().getSimpleVT().SimpleTy) { 2239 case MVT::f32: 2240 return DAG.getConstantFP(1.44269504088896340735992468100189214f, SL, VT); 2241 case MVT::f16: 2242 return DAG.getConstantFP( 2243 APFloat(APFloat::IEEEhalf(), "1.44269504088896340735992468100189214"), 2244 SL, VT); 2245 case MVT::f64: 2246 return DAG.getConstantFP( 2247 APFloat(APFloat::IEEEdouble(), "0x1.71547652b82fep+0"), SL, VT); 2248 default: 2249 llvm_unreachable("unsupported fp type"); 2250 } 2251 } 2252 2253 // exp2(M_LOG2E_F * f); 2254 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2255 EVT VT = Op.getValueType(); 2256 SDLoc SL(Op); 2257 SDValue Src = Op.getOperand(0); 2258 2259 const SDValue K = getLog2EVal(DAG, SL, VT); 2260 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2261 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2262 } 2263 2264 static bool isCtlzOpc(unsigned Opc) { 2265 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2266 } 2267 2268 static bool isCttzOpc(unsigned Opc) { 2269 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2270 } 2271 2272 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2273 SDLoc SL(Op); 2274 SDValue Src = Op.getOperand(0); 2275 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2276 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2277 2278 unsigned ISDOpc, NewOpc; 2279 if (isCtlzOpc(Op.getOpcode())) { 2280 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2281 NewOpc = AMDGPUISD::FFBH_U32; 2282 } else if (isCttzOpc(Op.getOpcode())) { 2283 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2284 NewOpc = AMDGPUISD::FFBL_B32; 2285 } else 2286 llvm_unreachable("Unexpected OPCode!!!"); 2287 2288 2289 if (ZeroUndef && Src.getValueType() == MVT::i32) 2290 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2291 2292 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2293 2294 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2295 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2296 2297 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2298 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2299 2300 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2301 *DAG.getContext(), MVT::i32); 2302 2303 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2304 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2305 2306 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2307 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2308 2309 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2310 SDValue Add, NewOpr; 2311 if (isCtlzOpc(Op.getOpcode())) { 2312 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2313 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2314 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2315 } else { 2316 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2317 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2318 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2319 } 2320 2321 if (!ZeroUndef) { 2322 // Test if the full 64-bit input is zero. 2323 2324 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2325 // which we probably don't want. 2326 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2327 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2328 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2329 2330 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2331 // with the same cycles, otherwise it is slower. 2332 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2333 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2334 2335 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2336 2337 // The instruction returns -1 for 0 input, but the defined intrinsic 2338 // behavior is to return the number of bits. 2339 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2340 SrcIsZero, Bits32, NewOpr); 2341 } 2342 2343 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2344 } 2345 2346 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2347 bool Signed) const { 2348 // Unsigned 2349 // cul2f(ulong u) 2350 //{ 2351 // uint lz = clz(u); 2352 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2353 // u = (u << lz) & 0x7fffffffffffffffUL; 2354 // ulong t = u & 0xffffffffffUL; 2355 // uint v = (e << 23) | (uint)(u >> 40); 2356 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2357 // return as_float(v + r); 2358 //} 2359 // Signed 2360 // cl2f(long l) 2361 //{ 2362 // long s = l >> 63; 2363 // float r = cul2f((l + s) ^ s); 2364 // return s ? -r : r; 2365 //} 2366 2367 SDLoc SL(Op); 2368 SDValue Src = Op.getOperand(0); 2369 SDValue L = Src; 2370 2371 SDValue S; 2372 if (Signed) { 2373 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2374 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2375 2376 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2377 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2378 } 2379 2380 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2381 *DAG.getContext(), MVT::f32); 2382 2383 2384 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2385 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2386 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2387 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2388 2389 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2390 SDValue E = DAG.getSelect(SL, MVT::i32, 2391 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2392 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2393 ZeroI32); 2394 2395 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2396 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2397 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2398 2399 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2400 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2401 2402 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2403 U, DAG.getConstant(40, SL, MVT::i64)); 2404 2405 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2406 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2407 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2408 2409 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2410 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2411 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2412 2413 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2414 2415 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2416 2417 SDValue R = DAG.getSelect(SL, MVT::i32, 2418 RCmp, 2419 One, 2420 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2421 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2422 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2423 2424 if (!Signed) 2425 return R; 2426 2427 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2428 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2429 } 2430 2431 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2432 bool Signed) const { 2433 SDLoc SL(Op); 2434 SDValue Src = Op.getOperand(0); 2435 2436 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2437 2438 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2439 DAG.getConstant(0, SL, MVT::i32)); 2440 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2441 DAG.getConstant(1, SL, MVT::i32)); 2442 2443 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2444 SL, MVT::f64, Hi); 2445 2446 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2447 2448 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2449 DAG.getConstant(32, SL, MVT::i32)); 2450 // TODO: Should this propagate fast-math-flags? 2451 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2452 } 2453 2454 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2455 SelectionDAG &DAG) const { 2456 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2457 "operation should be legal"); 2458 2459 // TODO: Factor out code common with LowerSINT_TO_FP. 2460 2461 EVT DestVT = Op.getValueType(); 2462 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2463 SDLoc DL(Op); 2464 SDValue Src = Op.getOperand(0); 2465 2466 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2467 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2468 SDValue FPRound = 2469 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2470 2471 return FPRound; 2472 } 2473 2474 if (DestVT == MVT::f32) 2475 return LowerINT_TO_FP32(Op, DAG, false); 2476 2477 assert(DestVT == MVT::f64); 2478 return LowerINT_TO_FP64(Op, DAG, false); 2479 } 2480 2481 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2482 SelectionDAG &DAG) const { 2483 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2484 "operation should be legal"); 2485 2486 // TODO: Factor out code common with LowerUINT_TO_FP. 2487 2488 EVT DestVT = Op.getValueType(); 2489 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2490 SDLoc DL(Op); 2491 SDValue Src = Op.getOperand(0); 2492 2493 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2494 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2495 SDValue FPRound = 2496 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2497 2498 return FPRound; 2499 } 2500 2501 if (DestVT == MVT::f32) 2502 return LowerINT_TO_FP32(Op, DAG, true); 2503 2504 assert(DestVT == MVT::f64); 2505 return LowerINT_TO_FP64(Op, DAG, true); 2506 } 2507 2508 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2509 bool Signed) const { 2510 SDLoc SL(Op); 2511 2512 SDValue Src = Op.getOperand(0); 2513 2514 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2515 2516 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2517 MVT::f64); 2518 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2519 MVT::f64); 2520 // TODO: Should this propagate fast-math-flags? 2521 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2522 2523 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2524 2525 2526 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2527 2528 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2529 MVT::i32, FloorMul); 2530 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2531 2532 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2533 2534 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2535 } 2536 2537 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2538 SDLoc DL(Op); 2539 SDValue N0 = Op.getOperand(0); 2540 2541 // Convert to target node to get known bits 2542 if (N0.getValueType() == MVT::f32) 2543 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2544 2545 if (getTargetMachine().Options.UnsafeFPMath) { 2546 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2547 return SDValue(); 2548 } 2549 2550 assert(N0.getSimpleValueType() == MVT::f64); 2551 2552 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2553 const unsigned ExpMask = 0x7ff; 2554 const unsigned ExpBiasf64 = 1023; 2555 const unsigned ExpBiasf16 = 15; 2556 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2557 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2558 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2559 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2560 DAG.getConstant(32, DL, MVT::i64)); 2561 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2562 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2563 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2564 DAG.getConstant(20, DL, MVT::i64)); 2565 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2566 DAG.getConstant(ExpMask, DL, MVT::i32)); 2567 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2568 // add the f16 bias (15) to get the biased exponent for the f16 format. 2569 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2570 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2571 2572 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2573 DAG.getConstant(8, DL, MVT::i32)); 2574 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2575 DAG.getConstant(0xffe, DL, MVT::i32)); 2576 2577 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2578 DAG.getConstant(0x1ff, DL, MVT::i32)); 2579 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2580 2581 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2582 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2583 2584 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2585 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2586 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2587 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2588 2589 // N = M | (E << 12); 2590 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2591 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2592 DAG.getConstant(12, DL, MVT::i32))); 2593 2594 // B = clamp(1-E, 0, 13); 2595 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2596 One, E); 2597 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2598 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2599 DAG.getConstant(13, DL, MVT::i32)); 2600 2601 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2602 DAG.getConstant(0x1000, DL, MVT::i32)); 2603 2604 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2605 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2606 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2607 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2608 2609 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2610 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2611 DAG.getConstant(0x7, DL, MVT::i32)); 2612 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2613 DAG.getConstant(2, DL, MVT::i32)); 2614 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2615 One, Zero, ISD::SETEQ); 2616 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2617 One, Zero, ISD::SETGT); 2618 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2619 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2620 2621 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2622 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2623 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2624 I, V, ISD::SETEQ); 2625 2626 // Extract the sign bit. 2627 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2628 DAG.getConstant(16, DL, MVT::i32)); 2629 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2630 DAG.getConstant(0x8000, DL, MVT::i32)); 2631 2632 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2633 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2634 } 2635 2636 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2637 SelectionDAG &DAG) const { 2638 SDValue Src = Op.getOperand(0); 2639 2640 // TODO: Factor out code common with LowerFP_TO_UINT. 2641 2642 EVT SrcVT = Src.getValueType(); 2643 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2644 SDLoc DL(Op); 2645 2646 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2647 SDValue FpToInt32 = 2648 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2649 2650 return FpToInt32; 2651 } 2652 2653 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2654 return LowerFP64_TO_INT(Op, DAG, true); 2655 2656 return SDValue(); 2657 } 2658 2659 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2660 SelectionDAG &DAG) const { 2661 SDValue Src = Op.getOperand(0); 2662 2663 // TODO: Factor out code common with LowerFP_TO_SINT. 2664 2665 EVT SrcVT = Src.getValueType(); 2666 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2667 SDLoc DL(Op); 2668 2669 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2670 SDValue FpToInt32 = 2671 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2672 2673 return FpToInt32; 2674 } 2675 2676 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2677 return LowerFP64_TO_INT(Op, DAG, false); 2678 2679 return SDValue(); 2680 } 2681 2682 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2683 SelectionDAG &DAG) const { 2684 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2685 MVT VT = Op.getSimpleValueType(); 2686 MVT ScalarVT = VT.getScalarType(); 2687 2688 assert(VT.isVector()); 2689 2690 SDValue Src = Op.getOperand(0); 2691 SDLoc DL(Op); 2692 2693 // TODO: Don't scalarize on Evergreen? 2694 unsigned NElts = VT.getVectorNumElements(); 2695 SmallVector<SDValue, 8> Args; 2696 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2697 2698 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2699 for (unsigned I = 0; I < NElts; ++I) 2700 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2701 2702 return DAG.getBuildVector(VT, DL, Args); 2703 } 2704 2705 //===----------------------------------------------------------------------===// 2706 // Custom DAG optimizations 2707 //===----------------------------------------------------------------------===// 2708 2709 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2710 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2711 } 2712 2713 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2714 EVT VT = Op.getValueType(); 2715 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2716 // as unsigned 24-bit values. 2717 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2718 } 2719 2720 static SDValue simplifyI24(SDNode *Node24, 2721 TargetLowering::DAGCombinerInfo &DCI) { 2722 SelectionDAG &DAG = DCI.DAG; 2723 SDValue LHS = Node24->getOperand(0); 2724 SDValue RHS = Node24->getOperand(1); 2725 2726 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2727 2728 // First try to simplify using GetDemandedBits which allows the operands to 2729 // have other uses, but will only perform simplifications that involve 2730 // bypassing some nodes for this user. 2731 SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded); 2732 SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded); 2733 if (DemandedLHS || DemandedRHS) 2734 return DAG.getNode(Node24->getOpcode(), SDLoc(Node24), Node24->getVTList(), 2735 DemandedLHS ? DemandedLHS : LHS, 2736 DemandedRHS ? DemandedRHS : RHS); 2737 2738 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2739 // operands if this node is the only user. 2740 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2741 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2742 return SDValue(Node24, 0); 2743 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2744 return SDValue(Node24, 0); 2745 2746 return SDValue(); 2747 } 2748 2749 template <typename IntTy> 2750 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2751 uint32_t Width, const SDLoc &DL) { 2752 if (Width + Offset < 32) { 2753 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2754 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2755 return DAG.getConstant(Result, DL, MVT::i32); 2756 } 2757 2758 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2759 } 2760 2761 static bool hasVolatileUser(SDNode *Val) { 2762 for (SDNode *U : Val->uses()) { 2763 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2764 if (M->isVolatile()) 2765 return true; 2766 } 2767 } 2768 2769 return false; 2770 } 2771 2772 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2773 // i32 vectors are the canonical memory type. 2774 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2775 return false; 2776 2777 if (!VT.isByteSized()) 2778 return false; 2779 2780 unsigned Size = VT.getStoreSize(); 2781 2782 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2783 return false; 2784 2785 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2786 return false; 2787 2788 return true; 2789 } 2790 2791 // Replace load of an illegal type with a store of a bitcast to a friendlier 2792 // type. 2793 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2794 DAGCombinerInfo &DCI) const { 2795 if (!DCI.isBeforeLegalize()) 2796 return SDValue(); 2797 2798 LoadSDNode *LN = cast<LoadSDNode>(N); 2799 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2800 return SDValue(); 2801 2802 SDLoc SL(N); 2803 SelectionDAG &DAG = DCI.DAG; 2804 EVT VT = LN->getMemoryVT(); 2805 2806 unsigned Size = VT.getStoreSize(); 2807 unsigned Align = LN->getAlignment(); 2808 if (Align < Size && isTypeLegal(VT)) { 2809 bool IsFast; 2810 unsigned AS = LN->getAddressSpace(); 2811 2812 // Expand unaligned loads earlier than legalization. Due to visitation order 2813 // problems during legalization, the emitted instructions to pack and unpack 2814 // the bytes again are not eliminated in the case of an unaligned copy. 2815 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2816 if (VT.isVector()) 2817 return scalarizeVectorLoad(LN, DAG); 2818 2819 SDValue Ops[2]; 2820 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2821 return DAG.getMergeValues(Ops, SDLoc(N)); 2822 } 2823 2824 if (!IsFast) 2825 return SDValue(); 2826 } 2827 2828 if (!shouldCombineMemoryType(VT)) 2829 return SDValue(); 2830 2831 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2832 2833 SDValue NewLoad 2834 = DAG.getLoad(NewVT, SL, LN->getChain(), 2835 LN->getBasePtr(), LN->getMemOperand()); 2836 2837 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2838 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2839 return SDValue(N, 0); 2840 } 2841 2842 // Replace store of an illegal type with a store of a bitcast to a friendlier 2843 // type. 2844 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2845 DAGCombinerInfo &DCI) const { 2846 if (!DCI.isBeforeLegalize()) 2847 return SDValue(); 2848 2849 StoreSDNode *SN = cast<StoreSDNode>(N); 2850 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2851 return SDValue(); 2852 2853 EVT VT = SN->getMemoryVT(); 2854 unsigned Size = VT.getStoreSize(); 2855 2856 SDLoc SL(N); 2857 SelectionDAG &DAG = DCI.DAG; 2858 unsigned Align = SN->getAlignment(); 2859 if (Align < Size && isTypeLegal(VT)) { 2860 bool IsFast; 2861 unsigned AS = SN->getAddressSpace(); 2862 2863 // Expand unaligned stores earlier than legalization. Due to visitation 2864 // order problems during legalization, the emitted instructions to pack and 2865 // unpack the bytes again are not eliminated in the case of an unaligned 2866 // copy. 2867 if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { 2868 if (VT.isVector()) 2869 return scalarizeVectorStore(SN, DAG); 2870 2871 return expandUnalignedStore(SN, DAG); 2872 } 2873 2874 if (!IsFast) 2875 return SDValue(); 2876 } 2877 2878 if (!shouldCombineMemoryType(VT)) 2879 return SDValue(); 2880 2881 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2882 SDValue Val = SN->getValue(); 2883 2884 //DCI.AddToWorklist(Val.getNode()); 2885 2886 bool OtherUses = !Val.hasOneUse(); 2887 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2888 if (OtherUses) { 2889 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2890 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2891 } 2892 2893 return DAG.getStore(SN->getChain(), SL, CastVal, 2894 SN->getBasePtr(), SN->getMemOperand()); 2895 } 2896 2897 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 2898 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 2899 // issues. 2900 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 2901 DAGCombinerInfo &DCI) const { 2902 SelectionDAG &DAG = DCI.DAG; 2903 SDValue N0 = N->getOperand(0); 2904 2905 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 2906 // (vt2 (truncate (assertzext vt0:x, vt1))) 2907 if (N0.getOpcode() == ISD::TRUNCATE) { 2908 SDValue N1 = N->getOperand(1); 2909 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 2910 SDLoc SL(N); 2911 2912 SDValue Src = N0.getOperand(0); 2913 EVT SrcVT = Src.getValueType(); 2914 if (SrcVT.bitsGE(ExtVT)) { 2915 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 2916 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 2917 } 2918 } 2919 2920 return SDValue(); 2921 } 2922 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 2923 /// binary operation \p Opc to it with the corresponding constant operands. 2924 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 2925 DAGCombinerInfo &DCI, const SDLoc &SL, 2926 unsigned Opc, SDValue LHS, 2927 uint32_t ValLo, uint32_t ValHi) const { 2928 SelectionDAG &DAG = DCI.DAG; 2929 SDValue Lo, Hi; 2930 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 2931 2932 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 2933 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 2934 2935 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 2936 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 2937 2938 // Re-visit the ands. It's possible we eliminated one of them and it could 2939 // simplify the vector. 2940 DCI.AddToWorklist(Lo.getNode()); 2941 DCI.AddToWorklist(Hi.getNode()); 2942 2943 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 2944 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 2945 } 2946 2947 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2948 DAGCombinerInfo &DCI) const { 2949 EVT VT = N->getValueType(0); 2950 2951 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2952 if (!RHS) 2953 return SDValue(); 2954 2955 SDValue LHS = N->getOperand(0); 2956 unsigned RHSVal = RHS->getZExtValue(); 2957 if (!RHSVal) 2958 return LHS; 2959 2960 SDLoc SL(N); 2961 SelectionDAG &DAG = DCI.DAG; 2962 2963 switch (LHS->getOpcode()) { 2964 default: 2965 break; 2966 case ISD::ZERO_EXTEND: 2967 case ISD::SIGN_EXTEND: 2968 case ISD::ANY_EXTEND: { 2969 SDValue X = LHS->getOperand(0); 2970 2971 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 2972 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 2973 // Prefer build_vector as the canonical form if packed types are legal. 2974 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 2975 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 2976 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 2977 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 2978 } 2979 2980 // shl (ext x) => zext (shl x), if shift does not overflow int 2981 if (VT != MVT::i64) 2982 break; 2983 KnownBits Known = DAG.computeKnownBits(X); 2984 unsigned LZ = Known.countMinLeadingZeros(); 2985 if (LZ < RHSVal) 2986 break; 2987 EVT XVT = X.getValueType(); 2988 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 2989 return DAG.getZExtOrTrunc(Shl, SL, VT); 2990 } 2991 } 2992 2993 if (VT != MVT::i64) 2994 return SDValue(); 2995 2996 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 2997 2998 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 2999 // common case, splitting this into a move and a 32-bit shift is faster and 3000 // the same code size. 3001 if (RHSVal < 32) 3002 return SDValue(); 3003 3004 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3005 3006 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3007 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3008 3009 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3010 3011 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3012 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3013 } 3014 3015 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3016 DAGCombinerInfo &DCI) const { 3017 if (N->getValueType(0) != MVT::i64) 3018 return SDValue(); 3019 3020 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3021 if (!RHS) 3022 return SDValue(); 3023 3024 SelectionDAG &DAG = DCI.DAG; 3025 SDLoc SL(N); 3026 unsigned RHSVal = RHS->getZExtValue(); 3027 3028 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3029 if (RHSVal == 32) { 3030 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3031 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3032 DAG.getConstant(31, SL, MVT::i32)); 3033 3034 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3035 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3036 } 3037 3038 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3039 if (RHSVal == 63) { 3040 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3041 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3042 DAG.getConstant(31, SL, MVT::i32)); 3043 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3044 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3045 } 3046 3047 return SDValue(); 3048 } 3049 3050 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3051 DAGCombinerInfo &DCI) const { 3052 if (N->getValueType(0) != MVT::i64) 3053 return SDValue(); 3054 3055 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3056 if (!RHS) 3057 return SDValue(); 3058 3059 unsigned ShiftAmt = RHS->getZExtValue(); 3060 if (ShiftAmt < 32) 3061 return SDValue(); 3062 3063 // srl i64:x, C for C >= 32 3064 // => 3065 // build_pair (srl hi_32(x), C - 32), 0 3066 3067 SelectionDAG &DAG = DCI.DAG; 3068 SDLoc SL(N); 3069 3070 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3071 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3072 3073 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); 3074 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, 3075 VecOp, One); 3076 3077 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3078 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3079 3080 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3081 3082 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3083 } 3084 3085 SDValue AMDGPUTargetLowering::performTruncateCombine( 3086 SDNode *N, DAGCombinerInfo &DCI) const { 3087 SDLoc SL(N); 3088 SelectionDAG &DAG = DCI.DAG; 3089 EVT VT = N->getValueType(0); 3090 SDValue Src = N->getOperand(0); 3091 3092 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3093 if (Src.getOpcode() == ISD::BITCAST) { 3094 SDValue Vec = Src.getOperand(0); 3095 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3096 SDValue Elt0 = Vec.getOperand(0); 3097 EVT EltVT = Elt0.getValueType(); 3098 if (VT.getSizeInBits() <= EltVT.getSizeInBits()) { 3099 if (EltVT.isFloatingPoint()) { 3100 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3101 EltVT.changeTypeToInteger(), Elt0); 3102 } 3103 3104 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3105 } 3106 } 3107 } 3108 3109 // Equivalent of above for accessing the high element of a vector as an 3110 // integer operation. 3111 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3112 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3113 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3114 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3115 SDValue BV = stripBitcast(Src.getOperand(0)); 3116 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3117 BV.getValueType().getVectorNumElements() == 2) { 3118 SDValue SrcElt = BV.getOperand(1); 3119 EVT SrcEltVT = SrcElt.getValueType(); 3120 if (SrcEltVT.isFloatingPoint()) { 3121 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3122 SrcEltVT.changeTypeToInteger(), SrcElt); 3123 } 3124 3125 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3126 } 3127 } 3128 } 3129 } 3130 3131 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3132 // 3133 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3134 // i16 (trunc (srl (i32 (trunc x), K))) 3135 if (VT.getScalarSizeInBits() < 32) { 3136 EVT SrcVT = Src.getValueType(); 3137 if (SrcVT.getScalarSizeInBits() > 32 && 3138 (Src.getOpcode() == ISD::SRL || 3139 Src.getOpcode() == ISD::SRA || 3140 Src.getOpcode() == ISD::SHL)) { 3141 SDValue Amt = Src.getOperand(1); 3142 KnownBits Known = DAG.computeKnownBits(Amt); 3143 unsigned Size = VT.getScalarSizeInBits(); 3144 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3145 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3146 EVT MidVT = VT.isVector() ? 3147 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3148 VT.getVectorNumElements()) : MVT::i32; 3149 3150 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3151 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3152 Src.getOperand(0)); 3153 DCI.AddToWorklist(Trunc.getNode()); 3154 3155 if (Amt.getValueType() != NewShiftVT) { 3156 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3157 DCI.AddToWorklist(Amt.getNode()); 3158 } 3159 3160 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3161 Trunc, Amt); 3162 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3163 } 3164 } 3165 } 3166 3167 return SDValue(); 3168 } 3169 3170 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3171 // instructions. If we only match on the legalized i64 mul expansion, 3172 // SimplifyDemandedBits will be unable to remove them because there will be 3173 // multiple uses due to the separate mul + mulh[su]. 3174 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3175 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3176 if (Size <= 32) { 3177 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3178 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3179 } 3180 3181 // Because we want to eliminate extension instructions before the 3182 // operation, we need to create a single user here (i.e. not the separate 3183 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 3184 3185 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 3186 3187 SDValue Mul = DAG.getNode(MulOpc, SL, 3188 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 3189 3190 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 3191 Mul.getValue(0), Mul.getValue(1)); 3192 } 3193 3194 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3195 DAGCombinerInfo &DCI) const { 3196 EVT VT = N->getValueType(0); 3197 3198 unsigned Size = VT.getSizeInBits(); 3199 if (VT.isVector() || Size > 64) 3200 return SDValue(); 3201 3202 // There are i16 integer mul/mad. 3203 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3204 return SDValue(); 3205 3206 SelectionDAG &DAG = DCI.DAG; 3207 SDLoc DL(N); 3208 3209 SDValue N0 = N->getOperand(0); 3210 SDValue N1 = N->getOperand(1); 3211 3212 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3213 // in the source into any_extends if the result of the mul is truncated. Since 3214 // we can assume the high bits are whatever we want, use the underlying value 3215 // to avoid the unknown high bits from interfering. 3216 if (N0.getOpcode() == ISD::ANY_EXTEND) 3217 N0 = N0.getOperand(0); 3218 3219 if (N1.getOpcode() == ISD::ANY_EXTEND) 3220 N1 = N1.getOperand(0); 3221 3222 SDValue Mul; 3223 3224 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3225 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3226 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3227 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3228 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3229 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3230 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3231 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3232 } else { 3233 return SDValue(); 3234 } 3235 3236 // We need to use sext even for MUL_U24, because MUL_U24 is used 3237 // for signed multiply of 8 and 16-bit types. 3238 return DAG.getSExtOrTrunc(Mul, DL, VT); 3239 } 3240 3241 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3242 DAGCombinerInfo &DCI) const { 3243 EVT VT = N->getValueType(0); 3244 3245 if (!Subtarget->hasMulI24() || VT.isVector()) 3246 return SDValue(); 3247 3248 SelectionDAG &DAG = DCI.DAG; 3249 SDLoc DL(N); 3250 3251 SDValue N0 = N->getOperand(0); 3252 SDValue N1 = N->getOperand(1); 3253 3254 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3255 return SDValue(); 3256 3257 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3258 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3259 3260 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3261 DCI.AddToWorklist(Mulhi.getNode()); 3262 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3263 } 3264 3265 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3266 DAGCombinerInfo &DCI) const { 3267 EVT VT = N->getValueType(0); 3268 3269 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3270 return SDValue(); 3271 3272 SelectionDAG &DAG = DCI.DAG; 3273 SDLoc DL(N); 3274 3275 SDValue N0 = N->getOperand(0); 3276 SDValue N1 = N->getOperand(1); 3277 3278 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3279 return SDValue(); 3280 3281 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3282 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3283 3284 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3285 DCI.AddToWorklist(Mulhi.getNode()); 3286 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3287 } 3288 3289 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 3290 SDNode *N, DAGCombinerInfo &DCI) const { 3291 SelectionDAG &DAG = DCI.DAG; 3292 3293 // Simplify demanded bits before splitting into multiple users. 3294 if (SDValue V = simplifyI24(N, DCI)) 3295 return V; 3296 3297 SDValue N0 = N->getOperand(0); 3298 SDValue N1 = N->getOperand(1); 3299 3300 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 3301 3302 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3303 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3304 3305 SDLoc SL(N); 3306 3307 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3308 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3309 return DAG.getMergeValues({ MulLo, MulHi }, SL); 3310 } 3311 3312 static bool isNegativeOne(SDValue Val) { 3313 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3314 return C->isAllOnesValue(); 3315 return false; 3316 } 3317 3318 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3319 SDValue Op, 3320 const SDLoc &DL, 3321 unsigned Opc) const { 3322 EVT VT = Op.getValueType(); 3323 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3324 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3325 LegalVT != MVT::i16)) 3326 return SDValue(); 3327 3328 if (VT != MVT::i32) 3329 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3330 3331 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3332 if (VT != MVT::i32) 3333 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3334 3335 return FFBX; 3336 } 3337 3338 // The native instructions return -1 on 0 input. Optimize out a select that 3339 // produces -1 on 0. 3340 // 3341 // TODO: If zero is not undef, we could also do this if the output is compared 3342 // against the bitwidth. 3343 // 3344 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3345 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3346 SDValue LHS, SDValue RHS, 3347 DAGCombinerInfo &DCI) const { 3348 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3349 if (!CmpRhs || !CmpRhs->isNullValue()) 3350 return SDValue(); 3351 3352 SelectionDAG &DAG = DCI.DAG; 3353 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3354 SDValue CmpLHS = Cond.getOperand(0); 3355 3356 unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : 3357 AMDGPUISD::FFBH_U32; 3358 3359 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3360 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3361 if (CCOpcode == ISD::SETEQ && 3362 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3363 RHS.getOperand(0) == CmpLHS && 3364 isNegativeOne(LHS)) { 3365 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3366 } 3367 3368 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3369 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3370 if (CCOpcode == ISD::SETNE && 3371 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3372 LHS.getOperand(0) == CmpLHS && 3373 isNegativeOne(RHS)) { 3374 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3375 } 3376 3377 return SDValue(); 3378 } 3379 3380 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3381 unsigned Op, 3382 const SDLoc &SL, 3383 SDValue Cond, 3384 SDValue N1, 3385 SDValue N2) { 3386 SelectionDAG &DAG = DCI.DAG; 3387 EVT VT = N1.getValueType(); 3388 3389 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3390 N1.getOperand(0), N2.getOperand(0)); 3391 DCI.AddToWorklist(NewSelect.getNode()); 3392 return DAG.getNode(Op, SL, VT, NewSelect); 3393 } 3394 3395 // Pull a free FP operation out of a select so it may fold into uses. 3396 // 3397 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3398 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3399 // 3400 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3401 // select c, (fabs x), +k -> fabs (select c, x, k) 3402 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3403 SDValue N) { 3404 SelectionDAG &DAG = DCI.DAG; 3405 SDValue Cond = N.getOperand(0); 3406 SDValue LHS = N.getOperand(1); 3407 SDValue RHS = N.getOperand(2); 3408 3409 EVT VT = N.getValueType(); 3410 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3411 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3412 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3413 SDLoc(N), Cond, LHS, RHS); 3414 } 3415 3416 bool Inv = false; 3417 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3418 std::swap(LHS, RHS); 3419 Inv = true; 3420 } 3421 3422 // TODO: Support vector constants. 3423 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3424 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3425 SDLoc SL(N); 3426 // If one side is an fneg/fabs and the other is a constant, we can push the 3427 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3428 SDValue NewLHS = LHS.getOperand(0); 3429 SDValue NewRHS = RHS; 3430 3431 // Careful: if the neg can be folded up, don't try to pull it back down. 3432 bool ShouldFoldNeg = true; 3433 3434 if (NewLHS.hasOneUse()) { 3435 unsigned Opc = NewLHS.getOpcode(); 3436 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3437 ShouldFoldNeg = false; 3438 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3439 ShouldFoldNeg = false; 3440 } 3441 3442 if (ShouldFoldNeg) { 3443 if (LHS.getOpcode() == ISD::FNEG) 3444 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3445 else if (CRHS->isNegative()) 3446 return SDValue(); 3447 3448 if (Inv) 3449 std::swap(NewLHS, NewRHS); 3450 3451 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3452 Cond, NewLHS, NewRHS); 3453 DCI.AddToWorklist(NewSelect.getNode()); 3454 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3455 } 3456 } 3457 3458 return SDValue(); 3459 } 3460 3461 3462 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3463 DAGCombinerInfo &DCI) const { 3464 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3465 return Folded; 3466 3467 SDValue Cond = N->getOperand(0); 3468 if (Cond.getOpcode() != ISD::SETCC) 3469 return SDValue(); 3470 3471 EVT VT = N->getValueType(0); 3472 SDValue LHS = Cond.getOperand(0); 3473 SDValue RHS = Cond.getOperand(1); 3474 SDValue CC = Cond.getOperand(2); 3475 3476 SDValue True = N->getOperand(1); 3477 SDValue False = N->getOperand(2); 3478 3479 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3480 SelectionDAG &DAG = DCI.DAG; 3481 if ((DAG.isConstantValueOfAnyType(True) || 3482 DAG.isConstantValueOfAnyType(True)) && 3483 (!DAG.isConstantValueOfAnyType(False) && 3484 !DAG.isConstantValueOfAnyType(False))) { 3485 // Swap cmp + select pair to move constant to false input. 3486 // This will allow using VOPC cndmasks more often. 3487 // select (setcc x, y), k, x -> select (setcc y, x) x, x 3488 3489 SDLoc SL(N); 3490 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 3491 LHS.getValueType().isInteger()); 3492 3493 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3494 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3495 } 3496 3497 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3498 SDValue MinMax 3499 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3500 // Revisit this node so we can catch min3/max3/med3 patterns. 3501 //DCI.AddToWorklist(MinMax.getNode()); 3502 return MinMax; 3503 } 3504 } 3505 3506 // There's no reason to not do this if the condition has other uses. 3507 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3508 } 3509 3510 static bool isInv2Pi(const APFloat &APF) { 3511 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3512 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3513 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3514 3515 return APF.bitwiseIsEqual(KF16) || 3516 APF.bitwiseIsEqual(KF32) || 3517 APF.bitwiseIsEqual(KF64); 3518 } 3519 3520 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3521 // additional cost to negate them. 3522 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3523 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3524 if (C->isZero() && !C->isNegative()) 3525 return true; 3526 3527 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3528 return true; 3529 } 3530 3531 return false; 3532 } 3533 3534 static unsigned inverseMinMax(unsigned Opc) { 3535 switch (Opc) { 3536 case ISD::FMAXNUM: 3537 return ISD::FMINNUM; 3538 case ISD::FMINNUM: 3539 return ISD::FMAXNUM; 3540 case ISD::FMAXNUM_IEEE: 3541 return ISD::FMINNUM_IEEE; 3542 case ISD::FMINNUM_IEEE: 3543 return ISD::FMAXNUM_IEEE; 3544 case AMDGPUISD::FMAX_LEGACY: 3545 return AMDGPUISD::FMIN_LEGACY; 3546 case AMDGPUISD::FMIN_LEGACY: 3547 return AMDGPUISD::FMAX_LEGACY; 3548 default: 3549 llvm_unreachable("invalid min/max opcode"); 3550 } 3551 } 3552 3553 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3554 DAGCombinerInfo &DCI) const { 3555 SelectionDAG &DAG = DCI.DAG; 3556 SDValue N0 = N->getOperand(0); 3557 EVT VT = N->getValueType(0); 3558 3559 unsigned Opc = N0.getOpcode(); 3560 3561 // If the input has multiple uses and we can either fold the negate down, or 3562 // the other uses cannot, give up. This both prevents unprofitable 3563 // transformations and infinite loops: we won't repeatedly try to fold around 3564 // a negate that has no 'good' form. 3565 if (N0.hasOneUse()) { 3566 // This may be able to fold into the source, but at a code size cost. Don't 3567 // fold if the fold into the user is free. 3568 if (allUsesHaveSourceMods(N, 0)) 3569 return SDValue(); 3570 } else { 3571 if (fnegFoldsIntoOp(Opc) && 3572 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3573 return SDValue(); 3574 } 3575 3576 SDLoc SL(N); 3577 switch (Opc) { 3578 case ISD::FADD: { 3579 if (!mayIgnoreSignedZero(N0)) 3580 return SDValue(); 3581 3582 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3583 SDValue LHS = N0.getOperand(0); 3584 SDValue RHS = N0.getOperand(1); 3585 3586 if (LHS.getOpcode() != ISD::FNEG) 3587 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3588 else 3589 LHS = LHS.getOperand(0); 3590 3591 if (RHS.getOpcode() != ISD::FNEG) 3592 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3593 else 3594 RHS = RHS.getOperand(0); 3595 3596 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3597 if (!N0.hasOneUse()) 3598 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3599 return Res; 3600 } 3601 case ISD::FMUL: 3602 case AMDGPUISD::FMUL_LEGACY: { 3603 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3604 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3605 SDValue LHS = N0.getOperand(0); 3606 SDValue RHS = N0.getOperand(1); 3607 3608 if (LHS.getOpcode() == ISD::FNEG) 3609 LHS = LHS.getOperand(0); 3610 else if (RHS.getOpcode() == ISD::FNEG) 3611 RHS = RHS.getOperand(0); 3612 else 3613 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3614 3615 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3616 if (!N0.hasOneUse()) 3617 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3618 return Res; 3619 } 3620 case ISD::FMA: 3621 case ISD::FMAD: { 3622 if (!mayIgnoreSignedZero(N0)) 3623 return SDValue(); 3624 3625 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3626 SDValue LHS = N0.getOperand(0); 3627 SDValue MHS = N0.getOperand(1); 3628 SDValue RHS = N0.getOperand(2); 3629 3630 if (LHS.getOpcode() == ISD::FNEG) 3631 LHS = LHS.getOperand(0); 3632 else if (MHS.getOpcode() == ISD::FNEG) 3633 MHS = MHS.getOperand(0); 3634 else 3635 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3636 3637 if (RHS.getOpcode() != ISD::FNEG) 3638 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3639 else 3640 RHS = RHS.getOperand(0); 3641 3642 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3643 if (!N0.hasOneUse()) 3644 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3645 return Res; 3646 } 3647 case ISD::FMAXNUM: 3648 case ISD::FMINNUM: 3649 case ISD::FMAXNUM_IEEE: 3650 case ISD::FMINNUM_IEEE: 3651 case AMDGPUISD::FMAX_LEGACY: 3652 case AMDGPUISD::FMIN_LEGACY: { 3653 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3654 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3655 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3656 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3657 3658 SDValue LHS = N0.getOperand(0); 3659 SDValue RHS = N0.getOperand(1); 3660 3661 // 0 doesn't have a negated inline immediate. 3662 // TODO: This constant check should be generalized to other operations. 3663 if (isConstantCostlierToNegate(RHS)) 3664 return SDValue(); 3665 3666 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3667 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3668 unsigned Opposite = inverseMinMax(Opc); 3669 3670 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3671 if (!N0.hasOneUse()) 3672 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3673 return Res; 3674 } 3675 case AMDGPUISD::FMED3: { 3676 SDValue Ops[3]; 3677 for (unsigned I = 0; I < 3; ++I) 3678 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3679 3680 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3681 if (!N0.hasOneUse()) 3682 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3683 return Res; 3684 } 3685 case ISD::FP_EXTEND: 3686 case ISD::FTRUNC: 3687 case ISD::FRINT: 3688 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3689 case ISD::FSIN: 3690 case ISD::FCANONICALIZE: 3691 case AMDGPUISD::RCP: 3692 case AMDGPUISD::RCP_LEGACY: 3693 case AMDGPUISD::RCP_IFLAG: 3694 case AMDGPUISD::SIN_HW: { 3695 SDValue CvtSrc = N0.getOperand(0); 3696 if (CvtSrc.getOpcode() == ISD::FNEG) { 3697 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3698 // (fneg (rcp (fneg x))) -> (rcp x) 3699 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3700 } 3701 3702 if (!N0.hasOneUse()) 3703 return SDValue(); 3704 3705 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3706 // (fneg (rcp x)) -> (rcp (fneg x)) 3707 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3708 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3709 } 3710 case ISD::FP_ROUND: { 3711 SDValue CvtSrc = N0.getOperand(0); 3712 3713 if (CvtSrc.getOpcode() == ISD::FNEG) { 3714 // (fneg (fp_round (fneg x))) -> (fp_round x) 3715 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3716 CvtSrc.getOperand(0), N0.getOperand(1)); 3717 } 3718 3719 if (!N0.hasOneUse()) 3720 return SDValue(); 3721 3722 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3723 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3724 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3725 } 3726 case ISD::FP16_TO_FP: { 3727 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3728 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3729 // Put the fneg back as a legal source operation that can be matched later. 3730 SDLoc SL(N); 3731 3732 SDValue Src = N0.getOperand(0); 3733 EVT SrcVT = Src.getValueType(); 3734 3735 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3736 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3737 DAG.getConstant(0x8000, SL, SrcVT)); 3738 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3739 } 3740 default: 3741 return SDValue(); 3742 } 3743 } 3744 3745 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3746 DAGCombinerInfo &DCI) const { 3747 SelectionDAG &DAG = DCI.DAG; 3748 SDValue N0 = N->getOperand(0); 3749 3750 if (!N0.hasOneUse()) 3751 return SDValue(); 3752 3753 switch (N0.getOpcode()) { 3754 case ISD::FP16_TO_FP: { 3755 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3756 SDLoc SL(N); 3757 SDValue Src = N0.getOperand(0); 3758 EVT SrcVT = Src.getValueType(); 3759 3760 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3761 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3762 DAG.getConstant(0x7fff, SL, SrcVT)); 3763 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3764 } 3765 default: 3766 return SDValue(); 3767 } 3768 } 3769 3770 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 3771 DAGCombinerInfo &DCI) const { 3772 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 3773 if (!CFP) 3774 return SDValue(); 3775 3776 // XXX - Should this flush denormals? 3777 const APFloat &Val = CFP->getValueAPF(); 3778 APFloat One(Val.getSemantics(), "1.0"); 3779 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3780 } 3781 3782 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3783 DAGCombinerInfo &DCI) const { 3784 SelectionDAG &DAG = DCI.DAG; 3785 SDLoc DL(N); 3786 3787 switch(N->getOpcode()) { 3788 default: 3789 break; 3790 case ISD::BITCAST: { 3791 EVT DestVT = N->getValueType(0); 3792 3793 // Push casts through vector builds. This helps avoid emitting a large 3794 // number of copies when materializing floating point vector constants. 3795 // 3796 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3797 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3798 if (DestVT.isVector()) { 3799 SDValue Src = N->getOperand(0); 3800 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3801 EVT SrcVT = Src.getValueType(); 3802 unsigned NElts = DestVT.getVectorNumElements(); 3803 3804 if (SrcVT.getVectorNumElements() == NElts) { 3805 EVT DestEltVT = DestVT.getVectorElementType(); 3806 3807 SmallVector<SDValue, 8> CastedElts; 3808 SDLoc SL(N); 3809 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3810 SDValue Elt = Src.getOperand(I); 3811 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3812 } 3813 3814 return DAG.getBuildVector(DestVT, SL, CastedElts); 3815 } 3816 } 3817 } 3818 3819 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3820 break; 3821 3822 // Fold bitcasts of constants. 3823 // 3824 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3825 // TODO: Generalize and move to DAGCombiner 3826 SDValue Src = N->getOperand(0); 3827 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3828 if (Src.getValueType() == MVT::i64) { 3829 SDLoc SL(N); 3830 uint64_t CVal = C->getZExtValue(); 3831 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3832 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3833 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3834 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 3835 } 3836 } 3837 3838 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3839 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3840 SDLoc SL(N); 3841 uint64_t CVal = Val.getZExtValue(); 3842 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3843 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3844 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3845 3846 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3847 } 3848 3849 break; 3850 } 3851 case ISD::SHL: { 3852 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3853 break; 3854 3855 return performShlCombine(N, DCI); 3856 } 3857 case ISD::SRL: { 3858 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3859 break; 3860 3861 return performSrlCombine(N, DCI); 3862 } 3863 case ISD::SRA: { 3864 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3865 break; 3866 3867 return performSraCombine(N, DCI); 3868 } 3869 case ISD::TRUNCATE: 3870 return performTruncateCombine(N, DCI); 3871 case ISD::MUL: 3872 return performMulCombine(N, DCI); 3873 case ISD::MULHS: 3874 return performMulhsCombine(N, DCI); 3875 case ISD::MULHU: 3876 return performMulhuCombine(N, DCI); 3877 case AMDGPUISD::MUL_I24: 3878 case AMDGPUISD::MUL_U24: 3879 case AMDGPUISD::MULHI_I24: 3880 case AMDGPUISD::MULHI_U24: { 3881 if (SDValue V = simplifyI24(N, DCI)) 3882 return V; 3883 return SDValue(); 3884 } 3885 case AMDGPUISD::MUL_LOHI_I24: 3886 case AMDGPUISD::MUL_LOHI_U24: 3887 return performMulLoHi24Combine(N, DCI); 3888 case ISD::SELECT: 3889 return performSelectCombine(N, DCI); 3890 case ISD::FNEG: 3891 return performFNegCombine(N, DCI); 3892 case ISD::FABS: 3893 return performFAbsCombine(N, DCI); 3894 case AMDGPUISD::BFE_I32: 3895 case AMDGPUISD::BFE_U32: { 3896 assert(!N->getValueType(0).isVector() && 3897 "Vector handling of BFE not implemented"); 3898 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 3899 if (!Width) 3900 break; 3901 3902 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 3903 if (WidthVal == 0) 3904 return DAG.getConstant(0, DL, MVT::i32); 3905 3906 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3907 if (!Offset) 3908 break; 3909 3910 SDValue BitsFrom = N->getOperand(0); 3911 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 3912 3913 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 3914 3915 if (OffsetVal == 0) { 3916 // This is already sign / zero extended, so try to fold away extra BFEs. 3917 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 3918 3919 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 3920 if (OpSignBits >= SignBits) 3921 return BitsFrom; 3922 3923 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 3924 if (Signed) { 3925 // This is a sign_extend_inreg. Replace it to take advantage of existing 3926 // DAG Combines. If not eliminated, we will match back to BFE during 3927 // selection. 3928 3929 // TODO: The sext_inreg of extended types ends, although we can could 3930 // handle them in a single BFE. 3931 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 3932 DAG.getValueType(SmallVT)); 3933 } 3934 3935 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 3936 } 3937 3938 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 3939 if (Signed) { 3940 return constantFoldBFE<int32_t>(DAG, 3941 CVal->getSExtValue(), 3942 OffsetVal, 3943 WidthVal, 3944 DL); 3945 } 3946 3947 return constantFoldBFE<uint32_t>(DAG, 3948 CVal->getZExtValue(), 3949 OffsetVal, 3950 WidthVal, 3951 DL); 3952 } 3953 3954 if ((OffsetVal + WidthVal) >= 32 && 3955 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 3956 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 3957 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 3958 BitsFrom, ShiftVal); 3959 } 3960 3961 if (BitsFrom.hasOneUse()) { 3962 APInt Demanded = APInt::getBitsSet(32, 3963 OffsetVal, 3964 OffsetVal + WidthVal); 3965 3966 KnownBits Known; 3967 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 3968 !DCI.isBeforeLegalizeOps()); 3969 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3970 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 3971 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 3972 DCI.CommitTargetLoweringOpt(TLO); 3973 } 3974 } 3975 3976 break; 3977 } 3978 case ISD::LOAD: 3979 return performLoadCombine(N, DCI); 3980 case ISD::STORE: 3981 return performStoreCombine(N, DCI); 3982 case AMDGPUISD::RCP: 3983 case AMDGPUISD::RCP_IFLAG: 3984 return performRcpCombine(N, DCI); 3985 case ISD::AssertZext: 3986 case ISD::AssertSext: 3987 return performAssertSZExtCombine(N, DCI); 3988 } 3989 return SDValue(); 3990 } 3991 3992 //===----------------------------------------------------------------------===// 3993 // Helper functions 3994 //===----------------------------------------------------------------------===// 3995 3996 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 3997 const TargetRegisterClass *RC, 3998 unsigned Reg, EVT VT, 3999 const SDLoc &SL, 4000 bool RawReg) const { 4001 MachineFunction &MF = DAG.getMachineFunction(); 4002 MachineRegisterInfo &MRI = MF.getRegInfo(); 4003 unsigned VReg; 4004 4005 if (!MRI.isLiveIn(Reg)) { 4006 VReg = MRI.createVirtualRegister(RC); 4007 MRI.addLiveIn(Reg, VReg); 4008 } else { 4009 VReg = MRI.getLiveInVirtReg(Reg); 4010 } 4011 4012 if (RawReg) 4013 return DAG.getRegister(VReg, VT); 4014 4015 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4016 } 4017 4018 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4019 EVT VT, 4020 const SDLoc &SL, 4021 int64_t Offset) const { 4022 MachineFunction &MF = DAG.getMachineFunction(); 4023 MachineFrameInfo &MFI = MF.getFrameInfo(); 4024 4025 int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true); 4026 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4027 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4028 4029 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, 4030 MachineMemOperand::MODereferenceable | 4031 MachineMemOperand::MOInvariant); 4032 } 4033 4034 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4035 const SDLoc &SL, 4036 SDValue Chain, 4037 SDValue ArgVal, 4038 int64_t Offset) const { 4039 MachineFunction &MF = DAG.getMachineFunction(); 4040 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4041 4042 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4043 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, 4044 MachineMemOperand::MODereferenceable); 4045 return Store; 4046 } 4047 4048 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4049 const TargetRegisterClass *RC, 4050 EVT VT, const SDLoc &SL, 4051 const ArgDescriptor &Arg) const { 4052 assert(Arg && "Attempting to load missing argument"); 4053 4054 if (Arg.isRegister()) 4055 return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL); 4056 return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4057 } 4058 4059 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4060 const MachineFunction &MF, const ImplicitParameter Param) const { 4061 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4062 const AMDGPUSubtarget &ST = 4063 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4064 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4065 unsigned Alignment = ST.getAlignmentForImplicitArgPtr(); 4066 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4067 ExplicitArgOffset; 4068 switch (Param) { 4069 case GRID_DIM: 4070 return ArgOffset; 4071 case GRID_OFFSET: 4072 return ArgOffset + 4; 4073 } 4074 llvm_unreachable("unexpected implicit parameter type"); 4075 } 4076 4077 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4078 4079 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4080 switch ((AMDGPUISD::NodeType)Opcode) { 4081 case AMDGPUISD::FIRST_NUMBER: break; 4082 // AMDIL DAG nodes 4083 NODE_NAME_CASE(UMUL); 4084 NODE_NAME_CASE(BRANCH_COND); 4085 4086 // AMDGPU DAG nodes 4087 NODE_NAME_CASE(IF) 4088 NODE_NAME_CASE(ELSE) 4089 NODE_NAME_CASE(LOOP) 4090 NODE_NAME_CASE(CALL) 4091 NODE_NAME_CASE(TC_RETURN) 4092 NODE_NAME_CASE(TRAP) 4093 NODE_NAME_CASE(RET_FLAG) 4094 NODE_NAME_CASE(RETURN_TO_EPILOG) 4095 NODE_NAME_CASE(ENDPGM) 4096 NODE_NAME_CASE(DWORDADDR) 4097 NODE_NAME_CASE(FRACT) 4098 NODE_NAME_CASE(SETCC) 4099 NODE_NAME_CASE(SETREG) 4100 NODE_NAME_CASE(FMA_W_CHAIN) 4101 NODE_NAME_CASE(FMUL_W_CHAIN) 4102 NODE_NAME_CASE(CLAMP) 4103 NODE_NAME_CASE(COS_HW) 4104 NODE_NAME_CASE(SIN_HW) 4105 NODE_NAME_CASE(FMAX_LEGACY) 4106 NODE_NAME_CASE(FMIN_LEGACY) 4107 NODE_NAME_CASE(FMAX3) 4108 NODE_NAME_CASE(SMAX3) 4109 NODE_NAME_CASE(UMAX3) 4110 NODE_NAME_CASE(FMIN3) 4111 NODE_NAME_CASE(SMIN3) 4112 NODE_NAME_CASE(UMIN3) 4113 NODE_NAME_CASE(FMED3) 4114 NODE_NAME_CASE(SMED3) 4115 NODE_NAME_CASE(UMED3) 4116 NODE_NAME_CASE(FDOT2) 4117 NODE_NAME_CASE(URECIP) 4118 NODE_NAME_CASE(DIV_SCALE) 4119 NODE_NAME_CASE(DIV_FMAS) 4120 NODE_NAME_CASE(DIV_FIXUP) 4121 NODE_NAME_CASE(FMAD_FTZ) 4122 NODE_NAME_CASE(TRIG_PREOP) 4123 NODE_NAME_CASE(RCP) 4124 NODE_NAME_CASE(RSQ) 4125 NODE_NAME_CASE(RCP_LEGACY) 4126 NODE_NAME_CASE(RSQ_LEGACY) 4127 NODE_NAME_CASE(RCP_IFLAG) 4128 NODE_NAME_CASE(FMUL_LEGACY) 4129 NODE_NAME_CASE(RSQ_CLAMP) 4130 NODE_NAME_CASE(LDEXP) 4131 NODE_NAME_CASE(FP_CLASS) 4132 NODE_NAME_CASE(DOT4) 4133 NODE_NAME_CASE(CARRY) 4134 NODE_NAME_CASE(BORROW) 4135 NODE_NAME_CASE(BFE_U32) 4136 NODE_NAME_CASE(BFE_I32) 4137 NODE_NAME_CASE(BFI) 4138 NODE_NAME_CASE(BFM) 4139 NODE_NAME_CASE(FFBH_U32) 4140 NODE_NAME_CASE(FFBH_I32) 4141 NODE_NAME_CASE(FFBL_B32) 4142 NODE_NAME_CASE(MUL_U24) 4143 NODE_NAME_CASE(MUL_I24) 4144 NODE_NAME_CASE(MULHI_U24) 4145 NODE_NAME_CASE(MULHI_I24) 4146 NODE_NAME_CASE(MUL_LOHI_U24) 4147 NODE_NAME_CASE(MUL_LOHI_I24) 4148 NODE_NAME_CASE(MAD_U24) 4149 NODE_NAME_CASE(MAD_I24) 4150 NODE_NAME_CASE(MAD_I64_I32) 4151 NODE_NAME_CASE(MAD_U64_U32) 4152 NODE_NAME_CASE(PERM) 4153 NODE_NAME_CASE(TEXTURE_FETCH) 4154 NODE_NAME_CASE(EXPORT) 4155 NODE_NAME_CASE(EXPORT_DONE) 4156 NODE_NAME_CASE(R600_EXPORT) 4157 NODE_NAME_CASE(CONST_ADDRESS) 4158 NODE_NAME_CASE(REGISTER_LOAD) 4159 NODE_NAME_CASE(REGISTER_STORE) 4160 NODE_NAME_CASE(SAMPLE) 4161 NODE_NAME_CASE(SAMPLEB) 4162 NODE_NAME_CASE(SAMPLED) 4163 NODE_NAME_CASE(SAMPLEL) 4164 NODE_NAME_CASE(CVT_F32_UBYTE0) 4165 NODE_NAME_CASE(CVT_F32_UBYTE1) 4166 NODE_NAME_CASE(CVT_F32_UBYTE2) 4167 NODE_NAME_CASE(CVT_F32_UBYTE3) 4168 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4169 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4170 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4171 NODE_NAME_CASE(CVT_PK_I16_I32) 4172 NODE_NAME_CASE(CVT_PK_U16_U32) 4173 NODE_NAME_CASE(FP_TO_FP16) 4174 NODE_NAME_CASE(FP16_ZEXT) 4175 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4176 NODE_NAME_CASE(CONST_DATA_PTR) 4177 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4178 NODE_NAME_CASE(KILL) 4179 NODE_NAME_CASE(DUMMY_CHAIN) 4180 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4181 NODE_NAME_CASE(INIT_EXEC) 4182 NODE_NAME_CASE(INIT_EXEC_FROM_INPUT) 4183 NODE_NAME_CASE(SENDMSG) 4184 NODE_NAME_CASE(SENDMSGHALT) 4185 NODE_NAME_CASE(INTERP_MOV) 4186 NODE_NAME_CASE(INTERP_P1) 4187 NODE_NAME_CASE(INTERP_P2) 4188 NODE_NAME_CASE(STORE_MSKOR) 4189 NODE_NAME_CASE(LOAD_CONSTANT) 4190 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4191 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_X3) 4192 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4193 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4194 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4195 NODE_NAME_CASE(DS_ORDERED_COUNT) 4196 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4197 NODE_NAME_CASE(ATOMIC_INC) 4198 NODE_NAME_CASE(ATOMIC_DEC) 4199 NODE_NAME_CASE(ATOMIC_LOAD_FADD) 4200 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4201 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4202 NODE_NAME_CASE(BUFFER_LOAD) 4203 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4204 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4205 NODE_NAME_CASE(SBUFFER_LOAD) 4206 NODE_NAME_CASE(BUFFER_STORE) 4207 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4208 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4209 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4210 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4211 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4212 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4213 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4214 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4215 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4216 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4217 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4218 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4219 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4220 4221 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4222 } 4223 return nullptr; 4224 } 4225 4226 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4227 SelectionDAG &DAG, int Enabled, 4228 int &RefinementSteps, 4229 bool &UseOneConstNR, 4230 bool Reciprocal) const { 4231 EVT VT = Operand.getValueType(); 4232 4233 if (VT == MVT::f32) { 4234 RefinementSteps = 0; 4235 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4236 } 4237 4238 // TODO: There is also f64 rsq instruction, but the documentation is less 4239 // clear on its precision. 4240 4241 return SDValue(); 4242 } 4243 4244 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4245 SelectionDAG &DAG, int Enabled, 4246 int &RefinementSteps) const { 4247 EVT VT = Operand.getValueType(); 4248 4249 if (VT == MVT::f32) { 4250 // Reciprocal, < 1 ulp error. 4251 // 4252 // This reciprocal approximation converges to < 0.5 ulp error with one 4253 // newton rhapson performed with two fused multiple adds (FMAs). 4254 4255 RefinementSteps = 0; 4256 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4257 } 4258 4259 // TODO: There is also f64 rcp instruction, but the documentation is less 4260 // clear on its precision. 4261 4262 return SDValue(); 4263 } 4264 4265 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4266 const SDValue Op, KnownBits &Known, 4267 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4268 4269 Known.resetAll(); // Don't know anything. 4270 4271 unsigned Opc = Op.getOpcode(); 4272 4273 switch (Opc) { 4274 default: 4275 break; 4276 case AMDGPUISD::CARRY: 4277 case AMDGPUISD::BORROW: { 4278 Known.Zero = APInt::getHighBitsSet(32, 31); 4279 break; 4280 } 4281 4282 case AMDGPUISD::BFE_I32: 4283 case AMDGPUISD::BFE_U32: { 4284 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4285 if (!CWidth) 4286 return; 4287 4288 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4289 4290 if (Opc == AMDGPUISD::BFE_U32) 4291 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4292 4293 break; 4294 } 4295 case AMDGPUISD::FP_TO_FP16: 4296 case AMDGPUISD::FP16_ZEXT: { 4297 unsigned BitWidth = Known.getBitWidth(); 4298 4299 // High bits are zero. 4300 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4301 break; 4302 } 4303 case AMDGPUISD::MUL_U24: 4304 case AMDGPUISD::MUL_I24: { 4305 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4306 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4307 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4308 RHSKnown.countMinTrailingZeros(); 4309 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4310 4311 // Truncate to 24 bits. 4312 LHSKnown = LHSKnown.trunc(24); 4313 RHSKnown = RHSKnown.trunc(24); 4314 4315 bool Negative = false; 4316 if (Opc == AMDGPUISD::MUL_I24) { 4317 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4318 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4319 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4320 if (MaxValBits >= 32) 4321 break; 4322 bool LHSNegative = LHSKnown.isNegative(); 4323 bool LHSPositive = LHSKnown.isNonNegative(); 4324 bool RHSNegative = RHSKnown.isNegative(); 4325 bool RHSPositive = RHSKnown.isNonNegative(); 4326 if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive)) 4327 break; 4328 Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative); 4329 if (Negative) 4330 Known.One.setHighBits(32 - MaxValBits); 4331 else 4332 Known.Zero.setHighBits(32 - MaxValBits); 4333 } else { 4334 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4335 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4336 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4337 if (MaxValBits >= 32) 4338 break; 4339 Known.Zero.setHighBits(32 - MaxValBits); 4340 } 4341 break; 4342 } 4343 case AMDGPUISD::PERM: { 4344 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4345 if (!CMask) 4346 return; 4347 4348 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4349 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4350 unsigned Sel = CMask->getZExtValue(); 4351 4352 for (unsigned I = 0; I < 32; I += 8) { 4353 unsigned SelBits = Sel & 0xff; 4354 if (SelBits < 4) { 4355 SelBits *= 8; 4356 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4357 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4358 } else if (SelBits < 7) { 4359 SelBits = (SelBits & 3) * 8; 4360 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4361 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4362 } else if (SelBits == 0x0c) { 4363 Known.Zero |= 0xff << I; 4364 } else if (SelBits > 0x0c) { 4365 Known.One |= 0xff << I; 4366 } 4367 Sel >>= 8; 4368 } 4369 break; 4370 } 4371 case ISD::INTRINSIC_WO_CHAIN: { 4372 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4373 switch (IID) { 4374 case Intrinsic::amdgcn_mbcnt_lo: 4375 case Intrinsic::amdgcn_mbcnt_hi: { 4376 const GCNSubtarget &ST = 4377 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4378 // These return at most the wavefront size - 1. 4379 unsigned Size = Op.getValueType().getSizeInBits(); 4380 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4381 break; 4382 } 4383 default: 4384 break; 4385 } 4386 } 4387 } 4388 } 4389 4390 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4391 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4392 unsigned Depth) const { 4393 switch (Op.getOpcode()) { 4394 case AMDGPUISD::BFE_I32: { 4395 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4396 if (!Width) 4397 return 1; 4398 4399 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4400 if (!isNullConstant(Op.getOperand(1))) 4401 return SignBits; 4402 4403 // TODO: Could probably figure something out with non-0 offsets. 4404 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4405 return std::max(SignBits, Op0SignBits); 4406 } 4407 4408 case AMDGPUISD::BFE_U32: { 4409 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4410 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4411 } 4412 4413 case AMDGPUISD::CARRY: 4414 case AMDGPUISD::BORROW: 4415 return 31; 4416 case AMDGPUISD::FP_TO_FP16: 4417 case AMDGPUISD::FP16_ZEXT: 4418 return 16; 4419 default: 4420 return 1; 4421 } 4422 } 4423 4424 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4425 const SelectionDAG &DAG, 4426 bool SNaN, 4427 unsigned Depth) const { 4428 unsigned Opcode = Op.getOpcode(); 4429 switch (Opcode) { 4430 case AMDGPUISD::FMIN_LEGACY: 4431 case AMDGPUISD::FMAX_LEGACY: { 4432 if (SNaN) 4433 return true; 4434 4435 // TODO: Can check no nans on one of the operands for each one, but which 4436 // one? 4437 return false; 4438 } 4439 case AMDGPUISD::FMUL_LEGACY: 4440 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4441 if (SNaN) 4442 return true; 4443 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4444 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4445 } 4446 case AMDGPUISD::FMED3: 4447 case AMDGPUISD::FMIN3: 4448 case AMDGPUISD::FMAX3: 4449 case AMDGPUISD::FMAD_FTZ: { 4450 if (SNaN) 4451 return true; 4452 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4453 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4454 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4455 } 4456 case AMDGPUISD::CVT_F32_UBYTE0: 4457 case AMDGPUISD::CVT_F32_UBYTE1: 4458 case AMDGPUISD::CVT_F32_UBYTE2: 4459 case AMDGPUISD::CVT_F32_UBYTE3: 4460 return true; 4461 4462 case AMDGPUISD::RCP: 4463 case AMDGPUISD::RSQ: 4464 case AMDGPUISD::RCP_LEGACY: 4465 case AMDGPUISD::RSQ_LEGACY: 4466 case AMDGPUISD::RSQ_CLAMP: { 4467 if (SNaN) 4468 return true; 4469 4470 // TODO: Need is known positive check. 4471 return false; 4472 } 4473 case AMDGPUISD::LDEXP: 4474 case AMDGPUISD::FRACT: { 4475 if (SNaN) 4476 return true; 4477 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4478 } 4479 case AMDGPUISD::DIV_SCALE: 4480 case AMDGPUISD::DIV_FMAS: 4481 case AMDGPUISD::DIV_FIXUP: 4482 case AMDGPUISD::TRIG_PREOP: 4483 // TODO: Refine on operands. 4484 return SNaN; 4485 case AMDGPUISD::SIN_HW: 4486 case AMDGPUISD::COS_HW: { 4487 // TODO: Need check for infinity 4488 return SNaN; 4489 } 4490 case ISD::INTRINSIC_WO_CHAIN: { 4491 unsigned IntrinsicID 4492 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4493 // TODO: Handle more intrinsics 4494 switch (IntrinsicID) { 4495 case Intrinsic::amdgcn_cubeid: 4496 return true; 4497 4498 case Intrinsic::amdgcn_frexp_mant: { 4499 if (SNaN) 4500 return true; 4501 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4502 } 4503 case Intrinsic::amdgcn_cvt_pkrtz: { 4504 if (SNaN) 4505 return true; 4506 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4507 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4508 } 4509 case Intrinsic::amdgcn_fdot2: 4510 // TODO: Refine on operand 4511 return SNaN; 4512 default: 4513 return false; 4514 } 4515 } 4516 default: 4517 return false; 4518 } 4519 } 4520 4521 TargetLowering::AtomicExpansionKind 4522 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4523 if (RMW->getOperation() == AtomicRMWInst::Nand) 4524 return AtomicExpansionKind::CmpXChg; 4525 return AtomicExpansionKind::None; 4526 } 4527