1 //===-- AArch64TargetMachine.cpp - Define TargetMachine for AArch64 -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "AArch64TargetMachine.h" 14 #include "AArch64.h" 15 #include "AArch64MacroFusion.h" 16 #include "AArch64Subtarget.h" 17 #include "AArch64TargetObjectFile.h" 18 #include "AArch64TargetTransformInfo.h" 19 #include "MCTargetDesc/AArch64MCTargetDesc.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 24 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 25 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 26 #include "llvm/CodeGen/GlobalISel/Localizer.h" 27 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 28 #include "llvm/CodeGen/MachineScheduler.h" 29 #include "llvm/CodeGen/Passes.h" 30 #include "llvm/CodeGen/TargetPassConfig.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/MC/MCAsmInfo.h" 34 #include "llvm/MC/MCTargetOptions.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/CodeGen.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/TargetRegistry.h" 39 #include "llvm/Target/TargetLoweringObjectFile.h" 40 #include "llvm/Target/TargetOptions.h" 41 #include "llvm/Transforms/Scalar.h" 42 #include <memory> 43 #include <string> 44 45 using namespace llvm; 46 47 static cl::opt<bool> EnableCCMP("aarch64-enable-ccmp", 48 cl::desc("Enable the CCMP formation pass"), 49 cl::init(true), cl::Hidden); 50 51 static cl::opt<bool> 52 EnableCondBrTuning("aarch64-enable-cond-br-tune", 53 cl::desc("Enable the conditional branch tuning pass"), 54 cl::init(true), cl::Hidden); 55 56 static cl::opt<bool> EnableMCR("aarch64-enable-mcr", 57 cl::desc("Enable the machine combiner pass"), 58 cl::init(true), cl::Hidden); 59 60 static cl::opt<bool> EnableStPairSuppress("aarch64-enable-stp-suppress", 61 cl::desc("Suppress STP for AArch64"), 62 cl::init(true), cl::Hidden); 63 64 static cl::opt<bool> EnableAdvSIMDScalar( 65 "aarch64-enable-simd-scalar", 66 cl::desc("Enable use of AdvSIMD scalar integer instructions"), 67 cl::init(false), cl::Hidden); 68 69 static cl::opt<bool> 70 EnablePromoteConstant("aarch64-enable-promote-const", 71 cl::desc("Enable the promote constant pass"), 72 cl::init(true), cl::Hidden); 73 74 static cl::opt<bool> EnableCollectLOH( 75 "aarch64-enable-collect-loh", 76 cl::desc("Enable the pass that emits the linker optimization hints (LOH)"), 77 cl::init(true), cl::Hidden); 78 79 static cl::opt<bool> 80 EnableDeadRegisterElimination("aarch64-enable-dead-defs", cl::Hidden, 81 cl::desc("Enable the pass that removes dead" 82 " definitons and replaces stores to" 83 " them with stores to the zero" 84 " register"), 85 cl::init(true)); 86 87 static cl::opt<bool> EnableRedundantCopyElimination( 88 "aarch64-enable-copyelim", 89 cl::desc("Enable the redundant copy elimination pass"), cl::init(true), 90 cl::Hidden); 91 92 static cl::opt<bool> EnableLoadStoreOpt("aarch64-enable-ldst-opt", 93 cl::desc("Enable the load/store pair" 94 " optimization pass"), 95 cl::init(true), cl::Hidden); 96 97 static cl::opt<bool> EnableAtomicTidy( 98 "aarch64-enable-atomic-cfg-tidy", cl::Hidden, 99 cl::desc("Run SimplifyCFG after expanding atomic operations" 100 " to make use of cmpxchg flow-based information"), 101 cl::init(true)); 102 103 static cl::opt<bool> 104 EnableEarlyIfConversion("aarch64-enable-early-ifcvt", cl::Hidden, 105 cl::desc("Run early if-conversion"), 106 cl::init(true)); 107 108 static cl::opt<bool> 109 EnableCondOpt("aarch64-enable-condopt", 110 cl::desc("Enable the condition optimizer pass"), 111 cl::init(true), cl::Hidden); 112 113 static cl::opt<bool> 114 EnableA53Fix835769("aarch64-fix-cortex-a53-835769", cl::Hidden, 115 cl::desc("Work around Cortex-A53 erratum 835769"), 116 cl::init(false)); 117 118 static cl::opt<bool> 119 EnableGEPOpt("aarch64-enable-gep-opt", cl::Hidden, 120 cl::desc("Enable optimizations on complex GEPs"), 121 cl::init(false)); 122 123 static cl::opt<bool> 124 BranchRelaxation("aarch64-enable-branch-relax", cl::Hidden, cl::init(true), 125 cl::desc("Relax out of range conditional branches")); 126 127 static cl::opt<bool> EnableCompressJumpTables( 128 "aarch64-enable-compress-jump-tables", cl::Hidden, cl::init(true), 129 cl::desc("Use smallest entry possible for jump tables")); 130 131 // FIXME: Unify control over GlobalMerge. 132 static cl::opt<cl::boolOrDefault> 133 EnableGlobalMerge("aarch64-enable-global-merge", cl::Hidden, 134 cl::desc("Enable the global merge pass")); 135 136 static cl::opt<bool> 137 EnableLoopDataPrefetch("aarch64-enable-loop-data-prefetch", cl::Hidden, 138 cl::desc("Enable the loop data prefetch pass"), 139 cl::init(true)); 140 141 static cl::opt<int> EnableGlobalISelAtO( 142 "aarch64-enable-global-isel-at-O", cl::Hidden, 143 cl::desc("Enable GlobalISel at or below an opt level (-1 to disable)"), 144 cl::init(0)); 145 146 static cl::opt<bool> EnableFalkorHWPFFix("aarch64-enable-falkor-hwpf-fix", 147 cl::init(true), cl::Hidden); 148 149 static cl::opt<bool> 150 EnableBranchTargets("aarch64-enable-branch-targets", cl::Hidden, 151 cl::desc("Enable the AAcrh64 branch target pass"), 152 cl::init(true)); 153 154 extern "C" void LLVMInitializeAArch64Target() { 155 // Register the target. 156 RegisterTargetMachine<AArch64leTargetMachine> X(getTheAArch64leTarget()); 157 RegisterTargetMachine<AArch64beTargetMachine> Y(getTheAArch64beTarget()); 158 RegisterTargetMachine<AArch64leTargetMachine> Z(getTheARM64Target()); 159 auto PR = PassRegistry::getPassRegistry(); 160 initializeGlobalISel(*PR); 161 initializeAArch64A53Fix835769Pass(*PR); 162 initializeAArch64A57FPLoadBalancingPass(*PR); 163 initializeAArch64AdvSIMDScalarPass(*PR); 164 initializeAArch64BranchTargetsPass(*PR); 165 initializeAArch64CollectLOHPass(*PR); 166 initializeAArch64CompressJumpTablesPass(*PR); 167 initializeAArch64ConditionalComparesPass(*PR); 168 initializeAArch64ConditionOptimizerPass(*PR); 169 initializeAArch64DeadRegisterDefinitionsPass(*PR); 170 initializeAArch64ExpandPseudoPass(*PR); 171 initializeAArch64LoadStoreOptPass(*PR); 172 initializeAArch64SIMDInstrOptPass(*PR); 173 initializeAArch64PreLegalizerCombinerPass(*PR); 174 initializeAArch64PromoteConstantPass(*PR); 175 initializeAArch64RedundantCopyEliminationPass(*PR); 176 initializeAArch64StorePairSuppressPass(*PR); 177 initializeFalkorHWPFFixPass(*PR); 178 initializeFalkorMarkStridedAccessesLegacyPass(*PR); 179 initializeLDTLSCleanupPass(*PR); 180 initializeAArch64SpeculationHardeningPass(*PR); 181 } 182 183 //===----------------------------------------------------------------------===// 184 // AArch64 Lowering public interface. 185 //===----------------------------------------------------------------------===// 186 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 187 if (TT.isOSBinFormatMachO()) 188 return llvm::make_unique<AArch64_MachoTargetObjectFile>(); 189 if (TT.isOSBinFormatCOFF()) 190 return llvm::make_unique<AArch64_COFFTargetObjectFile>(); 191 192 return llvm::make_unique<AArch64_ELFTargetObjectFile>(); 193 } 194 195 // Helper function to build a DataLayout string 196 static std::string computeDataLayout(const Triple &TT, 197 const MCTargetOptions &Options, 198 bool LittleEndian) { 199 if (Options.getABIName() == "ilp32") 200 return "e-m:e-p:32:32-i8:8-i16:16-i64:64-S128"; 201 if (TT.isOSBinFormatMachO()) 202 return "e-m:o-i64:64-i128:128-n32:64-S128"; 203 if (TT.isOSBinFormatCOFF()) 204 return "e-m:w-p:64:64-i32:32-i64:64-i128:128-n32:64-S128"; 205 if (LittleEndian) 206 return "e-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"; 207 return "E-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"; 208 } 209 210 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 211 Optional<Reloc::Model> RM) { 212 // AArch64 Darwin and Windows are always PIC. 213 if (TT.isOSDarwin() || TT.isOSWindows()) 214 return Reloc::PIC_; 215 // On ELF platforms the default static relocation model has a smart enough 216 // linker to cope with referencing external symbols defined in a shared 217 // library. Hence DynamicNoPIC doesn't need to be promoted to PIC. 218 if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC) 219 return Reloc::Static; 220 return *RM; 221 } 222 223 static CodeModel::Model 224 getEffectiveAArch64CodeModel(const Triple &TT, Optional<CodeModel::Model> CM, 225 bool JIT) { 226 if (CM) { 227 if (*CM != CodeModel::Small && *CM != CodeModel::Tiny && 228 *CM != CodeModel::Large) { 229 if (!TT.isOSFuchsia()) 230 report_fatal_error( 231 "Only small, tiny and large code models are allowed on AArch64"); 232 else if (*CM != CodeModel::Kernel) 233 report_fatal_error("Only small, tiny, kernel, and large code models " 234 "are allowed on AArch64"); 235 } else if (*CM == CodeModel::Tiny && !TT.isOSBinFormatELF()) 236 report_fatal_error("tiny code model is only supported on ELF"); 237 return *CM; 238 } 239 // The default MCJIT memory managers make no guarantees about where they can 240 // find an executable page; JITed code needs to be able to refer to globals 241 // no matter how far away they are. 242 if (JIT) 243 return CodeModel::Large; 244 return CodeModel::Small; 245 } 246 247 /// Create an AArch64 architecture model. 248 /// 249 AArch64TargetMachine::AArch64TargetMachine(const Target &T, const Triple &TT, 250 StringRef CPU, StringRef FS, 251 const TargetOptions &Options, 252 Optional<Reloc::Model> RM, 253 Optional<CodeModel::Model> CM, 254 CodeGenOpt::Level OL, bool JIT, 255 bool LittleEndian) 256 : LLVMTargetMachine(T, 257 computeDataLayout(TT, Options.MCOptions, LittleEndian), 258 TT, CPU, FS, Options, getEffectiveRelocModel(TT, RM), 259 getEffectiveAArch64CodeModel(TT, CM, JIT), OL), 260 TLOF(createTLOF(getTargetTriple())), isLittle(LittleEndian) { 261 initAsmInfo(); 262 263 if (TT.isOSBinFormatMachO()) { 264 this->Options.TrapUnreachable = true; 265 this->Options.NoTrapAfterNoreturn = true; 266 } 267 268 if (getMCAsmInfo()->usesWindowsCFI()) { 269 // Unwinding can get confused if the last instruction in an 270 // exception-handling region (function, funclet, try block, etc.) 271 // is a call. 272 // 273 // FIXME: We could elide the trap if the next instruction would be in 274 // the same region anyway. 275 this->Options.TrapUnreachable = true; 276 } 277 278 // Enable GlobalISel at or below EnableGlobalISelAt0. 279 if (getOptLevel() <= EnableGlobalISelAtO) { 280 setGlobalISel(true); 281 setGlobalISelAbort(GlobalISelAbortMode::Disable); 282 } 283 284 // AArch64 supports the MachineOutliner. 285 setMachineOutliner(true); 286 287 // AArch64 supports default outlining behaviour. 288 setSupportsDefaultOutlining(true); 289 } 290 291 AArch64TargetMachine::~AArch64TargetMachine() = default; 292 293 const AArch64Subtarget * 294 AArch64TargetMachine::getSubtargetImpl(const Function &F) const { 295 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 296 Attribute FSAttr = F.getFnAttribute("target-features"); 297 298 std::string CPU = !CPUAttr.hasAttribute(Attribute::None) 299 ? CPUAttr.getValueAsString().str() 300 : TargetCPU; 301 std::string FS = !FSAttr.hasAttribute(Attribute::None) 302 ? FSAttr.getValueAsString().str() 303 : TargetFS; 304 305 auto &I = SubtargetMap[CPU + FS]; 306 if (!I) { 307 // This needs to be done before we create a new subtarget since any 308 // creation will depend on the TM and the code generation flags on the 309 // function that reside in TargetOptions. 310 resetTargetOptions(F); 311 I = llvm::make_unique<AArch64Subtarget>(TargetTriple, CPU, FS, *this, 312 isLittle); 313 } 314 return I.get(); 315 } 316 317 void AArch64leTargetMachine::anchor() { } 318 319 AArch64leTargetMachine::AArch64leTargetMachine( 320 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 321 const TargetOptions &Options, Optional<Reloc::Model> RM, 322 Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 323 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, true) {} 324 325 void AArch64beTargetMachine::anchor() { } 326 327 AArch64beTargetMachine::AArch64beTargetMachine( 328 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 329 const TargetOptions &Options, Optional<Reloc::Model> RM, 330 Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 331 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {} 332 333 namespace { 334 335 /// AArch64 Code Generator Pass Configuration Options. 336 class AArch64PassConfig : public TargetPassConfig { 337 public: 338 AArch64PassConfig(AArch64TargetMachine &TM, PassManagerBase &PM) 339 : TargetPassConfig(TM, PM) { 340 if (TM.getOptLevel() != CodeGenOpt::None) 341 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 342 } 343 344 AArch64TargetMachine &getAArch64TargetMachine() const { 345 return getTM<AArch64TargetMachine>(); 346 } 347 348 ScheduleDAGInstrs * 349 createMachineScheduler(MachineSchedContext *C) const override { 350 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 351 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 352 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 353 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 354 if (ST.hasFusion()) 355 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 356 return DAG; 357 } 358 359 ScheduleDAGInstrs * 360 createPostMachineScheduler(MachineSchedContext *C) const override { 361 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 362 if (ST.hasFusion()) { 363 // Run the Macro Fusion after RA again since literals are expanded from 364 // pseudos then (v. addPreSched2()). 365 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 366 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 367 return DAG; 368 } 369 370 return nullptr; 371 } 372 373 void addIRPasses() override; 374 bool addPreISel() override; 375 bool addInstSelector() override; 376 bool addIRTranslator() override; 377 void addPreLegalizeMachineIR() override; 378 bool addLegalizeMachineIR() override; 379 bool addRegBankSelect() override; 380 void addPreGlobalInstructionSelect() override; 381 bool addGlobalInstructionSelect() override; 382 bool addILPOpts() override; 383 void addPreRegAlloc() override; 384 void addPostRegAlloc() override; 385 void addPreSched2() override; 386 void addPreEmitPass() override; 387 }; 388 389 } // end anonymous namespace 390 391 TargetTransformInfo 392 AArch64TargetMachine::getTargetTransformInfo(const Function &F) { 393 return TargetTransformInfo(AArch64TTIImpl(this, F)); 394 } 395 396 TargetPassConfig *AArch64TargetMachine::createPassConfig(PassManagerBase &PM) { 397 return new AArch64PassConfig(*this, PM); 398 } 399 400 void AArch64PassConfig::addIRPasses() { 401 // Always expand atomic operations, we don't deal with atomicrmw or cmpxchg 402 // ourselves. 403 addPass(createAtomicExpandPass()); 404 405 // Cmpxchg instructions are often used with a subsequent comparison to 406 // determine whether it succeeded. We can exploit existing control-flow in 407 // ldrex/strex loops to simplify this, but it needs tidying up. 408 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy) 409 addPass(createCFGSimplificationPass(1, true, true, false, true)); 410 411 // Run LoopDataPrefetch 412 // 413 // Run this before LSR to remove the multiplies involved in computing the 414 // pointer values N iterations ahead. 415 if (TM->getOptLevel() != CodeGenOpt::None) { 416 if (EnableLoopDataPrefetch) 417 addPass(createLoopDataPrefetchPass()); 418 if (EnableFalkorHWPFFix) 419 addPass(createFalkorMarkStridedAccessesPass()); 420 } 421 422 TargetPassConfig::addIRPasses(); 423 424 // Match interleaved memory accesses to ldN/stN intrinsics. 425 if (TM->getOptLevel() != CodeGenOpt::None) { 426 addPass(createInterleavedLoadCombinePass()); 427 addPass(createInterleavedAccessPass()); 428 } 429 430 if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) { 431 // Call SeparateConstOffsetFromGEP pass to extract constants within indices 432 // and lower a GEP with multiple indices to either arithmetic operations or 433 // multiple GEPs with single index. 434 addPass(createSeparateConstOffsetFromGEPPass(true)); 435 // Call EarlyCSE pass to find and remove subexpressions in the lowered 436 // result. 437 addPass(createEarlyCSEPass()); 438 // Do loop invariant code motion in case part of the lowered result is 439 // invariant. 440 addPass(createLICMPass()); 441 } 442 } 443 444 // Pass Pipeline Configuration 445 bool AArch64PassConfig::addPreISel() { 446 // Run promote constant before global merge, so that the promoted constants 447 // get a chance to be merged 448 if (TM->getOptLevel() != CodeGenOpt::None && EnablePromoteConstant) 449 addPass(createAArch64PromoteConstantPass()); 450 // FIXME: On AArch64, this depends on the type. 451 // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes(). 452 // and the offset has to be a multiple of the related size in bytes. 453 if ((TM->getOptLevel() != CodeGenOpt::None && 454 EnableGlobalMerge == cl::BOU_UNSET) || 455 EnableGlobalMerge == cl::BOU_TRUE) { 456 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) && 457 (EnableGlobalMerge == cl::BOU_UNSET); 458 addPass(createGlobalMergePass(TM, 4095, OnlyOptimizeForSize)); 459 } 460 461 return false; 462 } 463 464 bool AArch64PassConfig::addInstSelector() { 465 addPass(createAArch64ISelDag(getAArch64TargetMachine(), getOptLevel())); 466 467 // For ELF, cleanup any local-dynamic TLS accesses (i.e. combine as many 468 // references to _TLS_MODULE_BASE_ as possible. 469 if (TM->getTargetTriple().isOSBinFormatELF() && 470 getOptLevel() != CodeGenOpt::None) 471 addPass(createAArch64CleanupLocalDynamicTLSPass()); 472 473 return false; 474 } 475 476 bool AArch64PassConfig::addIRTranslator() { 477 addPass(new IRTranslator()); 478 return false; 479 } 480 481 void AArch64PassConfig::addPreLegalizeMachineIR() { 482 addPass(createAArch64PreLegalizeCombiner()); 483 } 484 485 bool AArch64PassConfig::addLegalizeMachineIR() { 486 addPass(new Legalizer()); 487 return false; 488 } 489 490 bool AArch64PassConfig::addRegBankSelect() { 491 addPass(new RegBankSelect()); 492 return false; 493 } 494 495 void AArch64PassConfig::addPreGlobalInstructionSelect() { 496 // Workaround the deficiency of the fast register allocator. 497 if (TM->getOptLevel() == CodeGenOpt::None) 498 addPass(new Localizer()); 499 } 500 501 bool AArch64PassConfig::addGlobalInstructionSelect() { 502 addPass(new InstructionSelect()); 503 return false; 504 } 505 506 bool AArch64PassConfig::addILPOpts() { 507 if (EnableCondOpt) 508 addPass(createAArch64ConditionOptimizerPass()); 509 if (EnableCCMP) 510 addPass(createAArch64ConditionalCompares()); 511 if (EnableMCR) 512 addPass(&MachineCombinerID); 513 if (EnableCondBrTuning) 514 addPass(createAArch64CondBrTuning()); 515 if (EnableEarlyIfConversion) 516 addPass(&EarlyIfConverterID); 517 if (EnableStPairSuppress) 518 addPass(createAArch64StorePairSuppressPass()); 519 addPass(createAArch64SIMDInstrOptPass()); 520 return true; 521 } 522 523 void AArch64PassConfig::addPreRegAlloc() { 524 // Change dead register definitions to refer to the zero register. 525 if (TM->getOptLevel() != CodeGenOpt::None && EnableDeadRegisterElimination) 526 addPass(createAArch64DeadRegisterDefinitions()); 527 528 // Use AdvSIMD scalar instructions whenever profitable. 529 if (TM->getOptLevel() != CodeGenOpt::None && EnableAdvSIMDScalar) { 530 addPass(createAArch64AdvSIMDScalar()); 531 // The AdvSIMD pass may produce copies that can be rewritten to 532 // be register coaleascer friendly. 533 addPass(&PeepholeOptimizerID); 534 } 535 } 536 537 void AArch64PassConfig::addPostRegAlloc() { 538 // Remove redundant copy instructions. 539 if (TM->getOptLevel() != CodeGenOpt::None && EnableRedundantCopyElimination) 540 addPass(createAArch64RedundantCopyEliminationPass()); 541 542 if (TM->getOptLevel() != CodeGenOpt::None && usingDefaultRegAlloc()) 543 // Improve performance for some FP/SIMD code for A57. 544 addPass(createAArch64A57FPLoadBalancing()); 545 } 546 547 void AArch64PassConfig::addPreSched2() { 548 // Expand some pseudo instructions to allow proper scheduling. 549 addPass(createAArch64ExpandPseudoPass()); 550 // Use load/store pair instructions when possible. 551 if (TM->getOptLevel() != CodeGenOpt::None) { 552 if (EnableLoadStoreOpt) 553 addPass(createAArch64LoadStoreOptimizationPass()); 554 } 555 556 // The AArch64SpeculationHardeningPass destroys dominator tree and natural 557 // loop info, which is needed for the FalkorHWPFFixPass and also later on. 558 // Therefore, run the AArch64SpeculationHardeningPass before the 559 // FalkorHWPFFixPass to avoid recomputing dominator tree and natural loop 560 // info. 561 addPass(createAArch64SpeculationHardeningPass()); 562 563 if (TM->getOptLevel() != CodeGenOpt::None) { 564 if (EnableFalkorHWPFFix) 565 addPass(createFalkorHWPFFixPass()); 566 } 567 } 568 569 void AArch64PassConfig::addPreEmitPass() { 570 // Machine Block Placement might have created new opportunities when run 571 // at O3, where the Tail Duplication Threshold is set to 4 instructions. 572 // Run the load/store optimizer once more. 573 if (TM->getOptLevel() >= CodeGenOpt::Aggressive && EnableLoadStoreOpt) 574 addPass(createAArch64LoadStoreOptimizationPass()); 575 576 if (EnableA53Fix835769) 577 addPass(createAArch64A53Fix835769()); 578 // Relax conditional branch instructions if they're otherwise out of 579 // range of their destination. 580 if (BranchRelaxation) 581 addPass(&BranchRelaxationPassID); 582 583 if (EnableBranchTargets) 584 addPass(createAArch64BranchTargetsPass()); 585 586 if (TM->getOptLevel() != CodeGenOpt::None && EnableCompressJumpTables) 587 addPass(createAArch64CompressJumpTablesPass()); 588 589 if (TM->getOptLevel() != CodeGenOpt::None && EnableCollectLOH && 590 TM->getTargetTriple().isOSBinFormatMachO()) 591 addPass(createAArch64CollectLOHPass()); 592 } 593