1 //===- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass that performs load / store related peephole 11 // optimizations. This pass should be run after register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AArch64InstrInfo.h" 16 #include "AArch64Subtarget.h" 17 #include "MCTargetDesc/AArch64AddressingModes.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/TargetRegisterInfo.h" 31 #include "llvm/IR/DebugLoc.h" 32 #include "llvm/MC/MCRegisterInfo.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <cassert> 39 #include <cstdint> 40 #include <iterator> 41 #include <limits> 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "aarch64-ldst-opt" 46 47 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated"); 48 STATISTIC(NumPostFolded, "Number of post-index updates folded"); 49 STATISTIC(NumPreFolded, "Number of pre-index updates folded"); 50 STATISTIC(NumUnscaledPairCreated, 51 "Number of load/store from unscaled generated"); 52 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted"); 53 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted"); 54 55 // The LdStLimit limits how far we search for load/store pairs. 56 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit", 57 cl::init(20), cl::Hidden); 58 59 // The UpdateLimit limits how far we search for update instructions when we form 60 // pre-/post-index instructions. 61 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100), 62 cl::Hidden); 63 64 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass" 65 66 namespace { 67 68 using LdStPairFlags = struct LdStPairFlags { 69 // If a matching instruction is found, MergeForward is set to true if the 70 // merge is to remove the first instruction and replace the second with 71 // a pair-wise insn, and false if the reverse is true. 72 bool MergeForward = false; 73 74 // SExtIdx gives the index of the result of the load pair that must be 75 // extended. The value of SExtIdx assumes that the paired load produces the 76 // value in this order: (I, returned iterator), i.e., -1 means no value has 77 // to be extended, 0 means I, and 1 means the returned iterator. 78 int SExtIdx = -1; 79 80 LdStPairFlags() = default; 81 82 void setMergeForward(bool V = true) { MergeForward = V; } 83 bool getMergeForward() const { return MergeForward; } 84 85 void setSExtIdx(int V) { SExtIdx = V; } 86 int getSExtIdx() const { return SExtIdx; } 87 }; 88 89 struct AArch64LoadStoreOpt : public MachineFunctionPass { 90 static char ID; 91 92 AArch64LoadStoreOpt() : MachineFunctionPass(ID) { 93 initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry()); 94 } 95 96 AliasAnalysis *AA; 97 const AArch64InstrInfo *TII; 98 const TargetRegisterInfo *TRI; 99 const AArch64Subtarget *Subtarget; 100 101 // Track which register units have been modified and used. 102 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 103 104 void getAnalysisUsage(AnalysisUsage &AU) const override { 105 AU.addRequired<AAResultsWrapperPass>(); 106 MachineFunctionPass::getAnalysisUsage(AU); 107 } 108 109 // Scan the instructions looking for a load/store that can be combined 110 // with the current instruction into a load/store pair. 111 // Return the matching instruction if one is found, else MBB->end(). 112 MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I, 113 LdStPairFlags &Flags, 114 unsigned Limit, 115 bool FindNarrowMerge); 116 117 // Scan the instructions looking for a store that writes to the address from 118 // which the current load instruction reads. Return true if one is found. 119 bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit, 120 MachineBasicBlock::iterator &StoreI); 121 122 // Merge the two instructions indicated into a wider narrow store instruction. 123 MachineBasicBlock::iterator 124 mergeNarrowZeroStores(MachineBasicBlock::iterator I, 125 MachineBasicBlock::iterator MergeMI, 126 const LdStPairFlags &Flags); 127 128 // Merge the two instructions indicated into a single pair-wise instruction. 129 MachineBasicBlock::iterator 130 mergePairedInsns(MachineBasicBlock::iterator I, 131 MachineBasicBlock::iterator Paired, 132 const LdStPairFlags &Flags); 133 134 // Promote the load that reads directly from the address stored to. 135 MachineBasicBlock::iterator 136 promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 137 MachineBasicBlock::iterator StoreI); 138 139 // Scan the instruction list to find a base register update that can 140 // be combined with the current instruction (a load or store) using 141 // pre or post indexed addressing with writeback. Scan forwards. 142 MachineBasicBlock::iterator 143 findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, 144 int UnscaledOffset, unsigned Limit); 145 146 // Scan the instruction list to find a base register update that can 147 // be combined with the current instruction (a load or store) using 148 // pre or post indexed addressing with writeback. Scan backwards. 149 MachineBasicBlock::iterator 150 findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit); 151 152 // Find an instruction that updates the base register of the ld/st 153 // instruction. 154 bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI, 155 unsigned BaseReg, int Offset); 156 157 // Merge a pre- or post-index base register update into a ld/st instruction. 158 MachineBasicBlock::iterator 159 mergeUpdateInsn(MachineBasicBlock::iterator I, 160 MachineBasicBlock::iterator Update, bool IsPreIdx); 161 162 // Find and merge zero store instructions. 163 bool tryToMergeZeroStInst(MachineBasicBlock::iterator &MBBI); 164 165 // Find and pair ldr/str instructions. 166 bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI); 167 168 // Find and promote load instructions which read directly from store. 169 bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI); 170 171 // Find and merge a base register updates before or after a ld/st instruction. 172 bool tryToMergeLdStUpdate(MachineBasicBlock::iterator &MBBI); 173 174 bool optimizeBlock(MachineBasicBlock &MBB, bool EnableNarrowZeroStOpt); 175 176 bool runOnMachineFunction(MachineFunction &Fn) override; 177 178 MachineFunctionProperties getRequiredProperties() const override { 179 return MachineFunctionProperties().set( 180 MachineFunctionProperties::Property::NoVRegs); 181 } 182 183 StringRef getPassName() const override { return AARCH64_LOAD_STORE_OPT_NAME; } 184 }; 185 186 char AArch64LoadStoreOpt::ID = 0; 187 188 } // end anonymous namespace 189 190 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt", 191 AARCH64_LOAD_STORE_OPT_NAME, false, false) 192 193 static bool isNarrowStore(unsigned Opc) { 194 switch (Opc) { 195 default: 196 return false; 197 case AArch64::STRBBui: 198 case AArch64::STURBBi: 199 case AArch64::STRHHui: 200 case AArch64::STURHHi: 201 return true; 202 } 203 } 204 205 // Scaling factor for unscaled load or store. 206 static int getMemScale(MachineInstr &MI) { 207 switch (MI.getOpcode()) { 208 default: 209 llvm_unreachable("Opcode has unknown scale!"); 210 case AArch64::LDRBBui: 211 case AArch64::LDURBBi: 212 case AArch64::LDRSBWui: 213 case AArch64::LDURSBWi: 214 case AArch64::STRBBui: 215 case AArch64::STURBBi: 216 return 1; 217 case AArch64::LDRHHui: 218 case AArch64::LDURHHi: 219 case AArch64::LDRSHWui: 220 case AArch64::LDURSHWi: 221 case AArch64::STRHHui: 222 case AArch64::STURHHi: 223 return 2; 224 case AArch64::LDRSui: 225 case AArch64::LDURSi: 226 case AArch64::LDRSWui: 227 case AArch64::LDURSWi: 228 case AArch64::LDRWui: 229 case AArch64::LDURWi: 230 case AArch64::STRSui: 231 case AArch64::STURSi: 232 case AArch64::STRWui: 233 case AArch64::STURWi: 234 case AArch64::LDPSi: 235 case AArch64::LDPSWi: 236 case AArch64::LDPWi: 237 case AArch64::STPSi: 238 case AArch64::STPWi: 239 return 4; 240 case AArch64::LDRDui: 241 case AArch64::LDURDi: 242 case AArch64::LDRXui: 243 case AArch64::LDURXi: 244 case AArch64::STRDui: 245 case AArch64::STURDi: 246 case AArch64::STRXui: 247 case AArch64::STURXi: 248 case AArch64::LDPDi: 249 case AArch64::LDPXi: 250 case AArch64::STPDi: 251 case AArch64::STPXi: 252 return 8; 253 case AArch64::LDRQui: 254 case AArch64::LDURQi: 255 case AArch64::STRQui: 256 case AArch64::STURQi: 257 case AArch64::LDPQi: 258 case AArch64::STPQi: 259 return 16; 260 } 261 } 262 263 static unsigned getMatchingNonSExtOpcode(unsigned Opc, 264 bool *IsValidLdStrOpc = nullptr) { 265 if (IsValidLdStrOpc) 266 *IsValidLdStrOpc = true; 267 switch (Opc) { 268 default: 269 if (IsValidLdStrOpc) 270 *IsValidLdStrOpc = false; 271 return std::numeric_limits<unsigned>::max(); 272 case AArch64::STRDui: 273 case AArch64::STURDi: 274 case AArch64::STRQui: 275 case AArch64::STURQi: 276 case AArch64::STRBBui: 277 case AArch64::STURBBi: 278 case AArch64::STRHHui: 279 case AArch64::STURHHi: 280 case AArch64::STRWui: 281 case AArch64::STURWi: 282 case AArch64::STRXui: 283 case AArch64::STURXi: 284 case AArch64::LDRDui: 285 case AArch64::LDURDi: 286 case AArch64::LDRQui: 287 case AArch64::LDURQi: 288 case AArch64::LDRWui: 289 case AArch64::LDURWi: 290 case AArch64::LDRXui: 291 case AArch64::LDURXi: 292 case AArch64::STRSui: 293 case AArch64::STURSi: 294 case AArch64::LDRSui: 295 case AArch64::LDURSi: 296 return Opc; 297 case AArch64::LDRSWui: 298 return AArch64::LDRWui; 299 case AArch64::LDURSWi: 300 return AArch64::LDURWi; 301 } 302 } 303 304 static unsigned getMatchingWideOpcode(unsigned Opc) { 305 switch (Opc) { 306 default: 307 llvm_unreachable("Opcode has no wide equivalent!"); 308 case AArch64::STRBBui: 309 return AArch64::STRHHui; 310 case AArch64::STRHHui: 311 return AArch64::STRWui; 312 case AArch64::STURBBi: 313 return AArch64::STURHHi; 314 case AArch64::STURHHi: 315 return AArch64::STURWi; 316 case AArch64::STURWi: 317 return AArch64::STURXi; 318 case AArch64::STRWui: 319 return AArch64::STRXui; 320 } 321 } 322 323 static unsigned getMatchingPairOpcode(unsigned Opc) { 324 switch (Opc) { 325 default: 326 llvm_unreachable("Opcode has no pairwise equivalent!"); 327 case AArch64::STRSui: 328 case AArch64::STURSi: 329 return AArch64::STPSi; 330 case AArch64::STRDui: 331 case AArch64::STURDi: 332 return AArch64::STPDi; 333 case AArch64::STRQui: 334 case AArch64::STURQi: 335 return AArch64::STPQi; 336 case AArch64::STRWui: 337 case AArch64::STURWi: 338 return AArch64::STPWi; 339 case AArch64::STRXui: 340 case AArch64::STURXi: 341 return AArch64::STPXi; 342 case AArch64::LDRSui: 343 case AArch64::LDURSi: 344 return AArch64::LDPSi; 345 case AArch64::LDRDui: 346 case AArch64::LDURDi: 347 return AArch64::LDPDi; 348 case AArch64::LDRQui: 349 case AArch64::LDURQi: 350 return AArch64::LDPQi; 351 case AArch64::LDRWui: 352 case AArch64::LDURWi: 353 return AArch64::LDPWi; 354 case AArch64::LDRXui: 355 case AArch64::LDURXi: 356 return AArch64::LDPXi; 357 case AArch64::LDRSWui: 358 case AArch64::LDURSWi: 359 return AArch64::LDPSWi; 360 } 361 } 362 363 static unsigned isMatchingStore(MachineInstr &LoadInst, 364 MachineInstr &StoreInst) { 365 unsigned LdOpc = LoadInst.getOpcode(); 366 unsigned StOpc = StoreInst.getOpcode(); 367 switch (LdOpc) { 368 default: 369 llvm_unreachable("Unsupported load instruction!"); 370 case AArch64::LDRBBui: 371 return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui || 372 StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 373 case AArch64::LDURBBi: 374 return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi || 375 StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 376 case AArch64::LDRHHui: 377 return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui || 378 StOpc == AArch64::STRXui; 379 case AArch64::LDURHHi: 380 return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi || 381 StOpc == AArch64::STURXi; 382 case AArch64::LDRWui: 383 return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 384 case AArch64::LDURWi: 385 return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 386 case AArch64::LDRXui: 387 return StOpc == AArch64::STRXui; 388 case AArch64::LDURXi: 389 return StOpc == AArch64::STURXi; 390 } 391 } 392 393 static unsigned getPreIndexedOpcode(unsigned Opc) { 394 // FIXME: We don't currently support creating pre-indexed loads/stores when 395 // the load or store is the unscaled version. If we decide to perform such an 396 // optimization in the future the cases for the unscaled loads/stores will 397 // need to be added here. 398 switch (Opc) { 399 default: 400 llvm_unreachable("Opcode has no pre-indexed equivalent!"); 401 case AArch64::STRSui: 402 return AArch64::STRSpre; 403 case AArch64::STRDui: 404 return AArch64::STRDpre; 405 case AArch64::STRQui: 406 return AArch64::STRQpre; 407 case AArch64::STRBBui: 408 return AArch64::STRBBpre; 409 case AArch64::STRHHui: 410 return AArch64::STRHHpre; 411 case AArch64::STRWui: 412 return AArch64::STRWpre; 413 case AArch64::STRXui: 414 return AArch64::STRXpre; 415 case AArch64::LDRSui: 416 return AArch64::LDRSpre; 417 case AArch64::LDRDui: 418 return AArch64::LDRDpre; 419 case AArch64::LDRQui: 420 return AArch64::LDRQpre; 421 case AArch64::LDRBBui: 422 return AArch64::LDRBBpre; 423 case AArch64::LDRHHui: 424 return AArch64::LDRHHpre; 425 case AArch64::LDRWui: 426 return AArch64::LDRWpre; 427 case AArch64::LDRXui: 428 return AArch64::LDRXpre; 429 case AArch64::LDRSWui: 430 return AArch64::LDRSWpre; 431 case AArch64::LDPSi: 432 return AArch64::LDPSpre; 433 case AArch64::LDPSWi: 434 return AArch64::LDPSWpre; 435 case AArch64::LDPDi: 436 return AArch64::LDPDpre; 437 case AArch64::LDPQi: 438 return AArch64::LDPQpre; 439 case AArch64::LDPWi: 440 return AArch64::LDPWpre; 441 case AArch64::LDPXi: 442 return AArch64::LDPXpre; 443 case AArch64::STPSi: 444 return AArch64::STPSpre; 445 case AArch64::STPDi: 446 return AArch64::STPDpre; 447 case AArch64::STPQi: 448 return AArch64::STPQpre; 449 case AArch64::STPWi: 450 return AArch64::STPWpre; 451 case AArch64::STPXi: 452 return AArch64::STPXpre; 453 } 454 } 455 456 static unsigned getPostIndexedOpcode(unsigned Opc) { 457 switch (Opc) { 458 default: 459 llvm_unreachable("Opcode has no post-indexed wise equivalent!"); 460 case AArch64::STRSui: 461 case AArch64::STURSi: 462 return AArch64::STRSpost; 463 case AArch64::STRDui: 464 case AArch64::STURDi: 465 return AArch64::STRDpost; 466 case AArch64::STRQui: 467 case AArch64::STURQi: 468 return AArch64::STRQpost; 469 case AArch64::STRBBui: 470 return AArch64::STRBBpost; 471 case AArch64::STRHHui: 472 return AArch64::STRHHpost; 473 case AArch64::STRWui: 474 case AArch64::STURWi: 475 return AArch64::STRWpost; 476 case AArch64::STRXui: 477 case AArch64::STURXi: 478 return AArch64::STRXpost; 479 case AArch64::LDRSui: 480 case AArch64::LDURSi: 481 return AArch64::LDRSpost; 482 case AArch64::LDRDui: 483 case AArch64::LDURDi: 484 return AArch64::LDRDpost; 485 case AArch64::LDRQui: 486 case AArch64::LDURQi: 487 return AArch64::LDRQpost; 488 case AArch64::LDRBBui: 489 return AArch64::LDRBBpost; 490 case AArch64::LDRHHui: 491 return AArch64::LDRHHpost; 492 case AArch64::LDRWui: 493 case AArch64::LDURWi: 494 return AArch64::LDRWpost; 495 case AArch64::LDRXui: 496 case AArch64::LDURXi: 497 return AArch64::LDRXpost; 498 case AArch64::LDRSWui: 499 return AArch64::LDRSWpost; 500 case AArch64::LDPSi: 501 return AArch64::LDPSpost; 502 case AArch64::LDPSWi: 503 return AArch64::LDPSWpost; 504 case AArch64::LDPDi: 505 return AArch64::LDPDpost; 506 case AArch64::LDPQi: 507 return AArch64::LDPQpost; 508 case AArch64::LDPWi: 509 return AArch64::LDPWpost; 510 case AArch64::LDPXi: 511 return AArch64::LDPXpost; 512 case AArch64::STPSi: 513 return AArch64::STPSpost; 514 case AArch64::STPDi: 515 return AArch64::STPDpost; 516 case AArch64::STPQi: 517 return AArch64::STPQpost; 518 case AArch64::STPWi: 519 return AArch64::STPWpost; 520 case AArch64::STPXi: 521 return AArch64::STPXpost; 522 } 523 } 524 525 static bool isPairedLdSt(const MachineInstr &MI) { 526 switch (MI.getOpcode()) { 527 default: 528 return false; 529 case AArch64::LDPSi: 530 case AArch64::LDPSWi: 531 case AArch64::LDPDi: 532 case AArch64::LDPQi: 533 case AArch64::LDPWi: 534 case AArch64::LDPXi: 535 case AArch64::STPSi: 536 case AArch64::STPDi: 537 case AArch64::STPQi: 538 case AArch64::STPWi: 539 case AArch64::STPXi: 540 return true; 541 } 542 } 543 544 static const MachineOperand &getLdStRegOp(const MachineInstr &MI, 545 unsigned PairedRegOp = 0) { 546 assert(PairedRegOp < 2 && "Unexpected register operand idx."); 547 unsigned Idx = isPairedLdSt(MI) ? PairedRegOp : 0; 548 return MI.getOperand(Idx); 549 } 550 551 static const MachineOperand &getLdStBaseOp(const MachineInstr &MI) { 552 unsigned Idx = isPairedLdSt(MI) ? 2 : 1; 553 return MI.getOperand(Idx); 554 } 555 556 static const MachineOperand &getLdStOffsetOp(const MachineInstr &MI) { 557 unsigned Idx = isPairedLdSt(MI) ? 3 : 2; 558 return MI.getOperand(Idx); 559 } 560 561 static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst, 562 MachineInstr &StoreInst, 563 const AArch64InstrInfo *TII) { 564 assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st."); 565 int LoadSize = getMemScale(LoadInst); 566 int StoreSize = getMemScale(StoreInst); 567 int UnscaledStOffset = TII->isUnscaledLdSt(StoreInst) 568 ? getLdStOffsetOp(StoreInst).getImm() 569 : getLdStOffsetOp(StoreInst).getImm() * StoreSize; 570 int UnscaledLdOffset = TII->isUnscaledLdSt(LoadInst) 571 ? getLdStOffsetOp(LoadInst).getImm() 572 : getLdStOffsetOp(LoadInst).getImm() * LoadSize; 573 return (UnscaledStOffset <= UnscaledLdOffset) && 574 (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize)); 575 } 576 577 static bool isPromotableZeroStoreInst(MachineInstr &MI) { 578 unsigned Opc = MI.getOpcode(); 579 return (Opc == AArch64::STRWui || Opc == AArch64::STURWi || 580 isNarrowStore(Opc)) && 581 getLdStRegOp(MI).getReg() == AArch64::WZR; 582 } 583 584 static bool isPromotableLoadFromStore(MachineInstr &MI) { 585 switch (MI.getOpcode()) { 586 default: 587 return false; 588 // Scaled instructions. 589 case AArch64::LDRBBui: 590 case AArch64::LDRHHui: 591 case AArch64::LDRWui: 592 case AArch64::LDRXui: 593 // Unscaled instructions. 594 case AArch64::LDURBBi: 595 case AArch64::LDURHHi: 596 case AArch64::LDURWi: 597 case AArch64::LDURXi: 598 return true; 599 } 600 } 601 602 static bool isMergeableLdStUpdate(MachineInstr &MI) { 603 unsigned Opc = MI.getOpcode(); 604 switch (Opc) { 605 default: 606 return false; 607 // Scaled instructions. 608 case AArch64::STRSui: 609 case AArch64::STRDui: 610 case AArch64::STRQui: 611 case AArch64::STRXui: 612 case AArch64::STRWui: 613 case AArch64::STRHHui: 614 case AArch64::STRBBui: 615 case AArch64::LDRSui: 616 case AArch64::LDRDui: 617 case AArch64::LDRQui: 618 case AArch64::LDRXui: 619 case AArch64::LDRWui: 620 case AArch64::LDRHHui: 621 case AArch64::LDRBBui: 622 // Unscaled instructions. 623 case AArch64::STURSi: 624 case AArch64::STURDi: 625 case AArch64::STURQi: 626 case AArch64::STURWi: 627 case AArch64::STURXi: 628 case AArch64::LDURSi: 629 case AArch64::LDURDi: 630 case AArch64::LDURQi: 631 case AArch64::LDURWi: 632 case AArch64::LDURXi: 633 // Paired instructions. 634 case AArch64::LDPSi: 635 case AArch64::LDPSWi: 636 case AArch64::LDPDi: 637 case AArch64::LDPQi: 638 case AArch64::LDPWi: 639 case AArch64::LDPXi: 640 case AArch64::STPSi: 641 case AArch64::STPDi: 642 case AArch64::STPQi: 643 case AArch64::STPWi: 644 case AArch64::STPXi: 645 // Make sure this is a reg+imm (as opposed to an address reloc). 646 if (!getLdStOffsetOp(MI).isImm()) 647 return false; 648 649 return true; 650 } 651 } 652 653 MachineBasicBlock::iterator 654 AArch64LoadStoreOpt::mergeNarrowZeroStores(MachineBasicBlock::iterator I, 655 MachineBasicBlock::iterator MergeMI, 656 const LdStPairFlags &Flags) { 657 assert(isPromotableZeroStoreInst(*I) && isPromotableZeroStoreInst(*MergeMI) && 658 "Expected promotable zero stores."); 659 660 MachineBasicBlock::iterator NextI = I; 661 ++NextI; 662 // If NextI is the second of the two instructions to be merged, we need 663 // to skip one further. Either way we merge will invalidate the iterator, 664 // and we don't need to scan the new instruction, as it's a pairwise 665 // instruction, which we're not considering for further action anyway. 666 if (NextI == MergeMI) 667 ++NextI; 668 669 unsigned Opc = I->getOpcode(); 670 bool IsScaled = !TII->isUnscaledLdSt(Opc); 671 int OffsetStride = IsScaled ? 1 : getMemScale(*I); 672 673 bool MergeForward = Flags.getMergeForward(); 674 // Insert our new paired instruction after whichever of the paired 675 // instructions MergeForward indicates. 676 MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I; 677 // Also based on MergeForward is from where we copy the base register operand 678 // so we get the flags compatible with the input code. 679 const MachineOperand &BaseRegOp = 680 MergeForward ? getLdStBaseOp(*MergeMI) : getLdStBaseOp(*I); 681 682 // Which register is Rt and which is Rt2 depends on the offset order. 683 MachineInstr *RtMI; 684 if (getLdStOffsetOp(*I).getImm() == 685 getLdStOffsetOp(*MergeMI).getImm() + OffsetStride) 686 RtMI = &*MergeMI; 687 else 688 RtMI = &*I; 689 690 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 691 // Change the scaled offset from small to large type. 692 if (IsScaled) { 693 assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); 694 OffsetImm /= 2; 695 } 696 697 // Construct the new instruction. 698 DebugLoc DL = I->getDebugLoc(); 699 MachineBasicBlock *MBB = I->getParent(); 700 MachineInstrBuilder MIB; 701 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 702 .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR) 703 .add(BaseRegOp) 704 .addImm(OffsetImm) 705 .cloneMergedMemRefs({&*I, &*MergeMI}) 706 .setMIFlags(I->mergeFlagsWith(*MergeMI)); 707 (void)MIB; 708 709 LLVM_DEBUG(dbgs() << "Creating wider store. Replacing instructions:\n "); 710 LLVM_DEBUG(I->print(dbgs())); 711 LLVM_DEBUG(dbgs() << " "); 712 LLVM_DEBUG(MergeMI->print(dbgs())); 713 LLVM_DEBUG(dbgs() << " with instruction:\n "); 714 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 715 LLVM_DEBUG(dbgs() << "\n"); 716 717 // Erase the old instructions. 718 I->eraseFromParent(); 719 MergeMI->eraseFromParent(); 720 return NextI; 721 } 722 723 MachineBasicBlock::iterator 724 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I, 725 MachineBasicBlock::iterator Paired, 726 const LdStPairFlags &Flags) { 727 MachineBasicBlock::iterator NextI = I; 728 ++NextI; 729 // If NextI is the second of the two instructions to be merged, we need 730 // to skip one further. Either way we merge will invalidate the iterator, 731 // and we don't need to scan the new instruction, as it's a pairwise 732 // instruction, which we're not considering for further action anyway. 733 if (NextI == Paired) 734 ++NextI; 735 736 int SExtIdx = Flags.getSExtIdx(); 737 unsigned Opc = 738 SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode()); 739 bool IsUnscaled = TII->isUnscaledLdSt(Opc); 740 int OffsetStride = IsUnscaled ? getMemScale(*I) : 1; 741 742 bool MergeForward = Flags.getMergeForward(); 743 // Insert our new paired instruction after whichever of the paired 744 // instructions MergeForward indicates. 745 MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I; 746 // Also based on MergeForward is from where we copy the base register operand 747 // so we get the flags compatible with the input code. 748 const MachineOperand &BaseRegOp = 749 MergeForward ? getLdStBaseOp(*Paired) : getLdStBaseOp(*I); 750 751 int Offset = getLdStOffsetOp(*I).getImm(); 752 int PairedOffset = getLdStOffsetOp(*Paired).getImm(); 753 bool PairedIsUnscaled = TII->isUnscaledLdSt(Paired->getOpcode()); 754 if (IsUnscaled != PairedIsUnscaled) { 755 // We're trying to pair instructions that differ in how they are scaled. If 756 // I is scaled then scale the offset of Paired accordingly. Otherwise, do 757 // the opposite (i.e., make Paired's offset unscaled). 758 int MemSize = getMemScale(*Paired); 759 if (PairedIsUnscaled) { 760 // If the unscaled offset isn't a multiple of the MemSize, we can't 761 // pair the operations together. 762 assert(!(PairedOffset % getMemScale(*Paired)) && 763 "Offset should be a multiple of the stride!"); 764 PairedOffset /= MemSize; 765 } else { 766 PairedOffset *= MemSize; 767 } 768 } 769 770 // Which register is Rt and which is Rt2 depends on the offset order. 771 MachineInstr *RtMI, *Rt2MI; 772 if (Offset == PairedOffset + OffsetStride) { 773 RtMI = &*Paired; 774 Rt2MI = &*I; 775 // Here we swapped the assumption made for SExtIdx. 776 // I.e., we turn ldp I, Paired into ldp Paired, I. 777 // Update the index accordingly. 778 if (SExtIdx != -1) 779 SExtIdx = (SExtIdx + 1) % 2; 780 } else { 781 RtMI = &*I; 782 Rt2MI = &*Paired; 783 } 784 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 785 // Scale the immediate offset, if necessary. 786 if (TII->isUnscaledLdSt(RtMI->getOpcode())) { 787 assert(!(OffsetImm % getMemScale(*RtMI)) && 788 "Unscaled offset cannot be scaled."); 789 OffsetImm /= getMemScale(*RtMI); 790 } 791 792 // Construct the new instruction. 793 MachineInstrBuilder MIB; 794 DebugLoc DL = I->getDebugLoc(); 795 MachineBasicBlock *MBB = I->getParent(); 796 MachineOperand RegOp0 = getLdStRegOp(*RtMI); 797 MachineOperand RegOp1 = getLdStRegOp(*Rt2MI); 798 // Kill flags may become invalid when moving stores for pairing. 799 if (RegOp0.isUse()) { 800 if (!MergeForward) { 801 // Clear kill flags on store if moving upwards. Example: 802 // STRWui %w0, ... 803 // USE %w1 804 // STRWui kill %w1 ; need to clear kill flag when moving STRWui upwards 805 RegOp0.setIsKill(false); 806 RegOp1.setIsKill(false); 807 } else { 808 // Clear kill flags of the first stores register. Example: 809 // STRWui %w1, ... 810 // USE kill %w1 ; need to clear kill flag when moving STRWui downwards 811 // STRW %w0 812 unsigned Reg = getLdStRegOp(*I).getReg(); 813 for (MachineInstr &MI : make_range(std::next(I), Paired)) 814 MI.clearRegisterKills(Reg, TRI); 815 } 816 } 817 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingPairOpcode(Opc))) 818 .add(RegOp0) 819 .add(RegOp1) 820 .add(BaseRegOp) 821 .addImm(OffsetImm) 822 .cloneMergedMemRefs({&*I, &*Paired}) 823 .setMIFlags(I->mergeFlagsWith(*Paired)); 824 825 (void)MIB; 826 827 LLVM_DEBUG( 828 dbgs() << "Creating pair load/store. Replacing instructions:\n "); 829 LLVM_DEBUG(I->print(dbgs())); 830 LLVM_DEBUG(dbgs() << " "); 831 LLVM_DEBUG(Paired->print(dbgs())); 832 LLVM_DEBUG(dbgs() << " with instruction:\n "); 833 if (SExtIdx != -1) { 834 // Generate the sign extension for the proper result of the ldp. 835 // I.e., with X1, that would be: 836 // %w1 = KILL %w1, implicit-def %x1 837 // %x1 = SBFMXri killed %x1, 0, 31 838 MachineOperand &DstMO = MIB->getOperand(SExtIdx); 839 // Right now, DstMO has the extended register, since it comes from an 840 // extended opcode. 841 unsigned DstRegX = DstMO.getReg(); 842 // Get the W variant of that register. 843 unsigned DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32); 844 // Update the result of LDP to use the W instead of the X variant. 845 DstMO.setReg(DstRegW); 846 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 847 LLVM_DEBUG(dbgs() << "\n"); 848 // Make the machine verifier happy by providing a definition for 849 // the X register. 850 // Insert this definition right after the generated LDP, i.e., before 851 // InsertionPoint. 852 MachineInstrBuilder MIBKill = 853 BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW) 854 .addReg(DstRegW) 855 .addReg(DstRegX, RegState::Define); 856 MIBKill->getOperand(2).setImplicit(); 857 // Create the sign extension. 858 MachineInstrBuilder MIBSXTW = 859 BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX) 860 .addReg(DstRegX) 861 .addImm(0) 862 .addImm(31); 863 (void)MIBSXTW; 864 LLVM_DEBUG(dbgs() << " Extend operand:\n "); 865 LLVM_DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs())); 866 } else { 867 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 868 } 869 LLVM_DEBUG(dbgs() << "\n"); 870 871 // Erase the old instructions. 872 I->eraseFromParent(); 873 Paired->eraseFromParent(); 874 875 return NextI; 876 } 877 878 MachineBasicBlock::iterator 879 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 880 MachineBasicBlock::iterator StoreI) { 881 MachineBasicBlock::iterator NextI = LoadI; 882 ++NextI; 883 884 int LoadSize = getMemScale(*LoadI); 885 int StoreSize = getMemScale(*StoreI); 886 unsigned LdRt = getLdStRegOp(*LoadI).getReg(); 887 const MachineOperand &StMO = getLdStRegOp(*StoreI); 888 unsigned StRt = getLdStRegOp(*StoreI).getReg(); 889 bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt); 890 891 assert((IsStoreXReg || 892 TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) && 893 "Unexpected RegClass"); 894 895 MachineInstr *BitExtMI; 896 if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) { 897 // Remove the load, if the destination register of the loads is the same 898 // register for stored value. 899 if (StRt == LdRt && LoadSize == 8) { 900 for (MachineInstr &MI : make_range(StoreI->getIterator(), 901 LoadI->getIterator())) { 902 if (MI.killsRegister(StRt, TRI)) { 903 MI.clearRegisterKills(StRt, TRI); 904 break; 905 } 906 } 907 LLVM_DEBUG(dbgs() << "Remove load instruction:\n "); 908 LLVM_DEBUG(LoadI->print(dbgs())); 909 LLVM_DEBUG(dbgs() << "\n"); 910 LoadI->eraseFromParent(); 911 return NextI; 912 } 913 // Replace the load with a mov if the load and store are in the same size. 914 BitExtMI = 915 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 916 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt) 917 .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR) 918 .add(StMO) 919 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) 920 .setMIFlags(LoadI->getFlags()); 921 } else { 922 // FIXME: Currently we disable this transformation in big-endian targets as 923 // performance and correctness are verified only in little-endian. 924 if (!Subtarget->isLittleEndian()) 925 return NextI; 926 bool IsUnscaled = TII->isUnscaledLdSt(*LoadI); 927 assert(IsUnscaled == TII->isUnscaledLdSt(*StoreI) && 928 "Unsupported ld/st match"); 929 assert(LoadSize <= StoreSize && "Invalid load size"); 930 int UnscaledLdOffset = IsUnscaled 931 ? getLdStOffsetOp(*LoadI).getImm() 932 : getLdStOffsetOp(*LoadI).getImm() * LoadSize; 933 int UnscaledStOffset = IsUnscaled 934 ? getLdStOffsetOp(*StoreI).getImm() 935 : getLdStOffsetOp(*StoreI).getImm() * StoreSize; 936 int Width = LoadSize * 8; 937 int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 938 int Imms = Immr + Width - 1; 939 unsigned DestReg = IsStoreXReg 940 ? TRI->getMatchingSuperReg(LdRt, AArch64::sub_32, 941 &AArch64::GPR64RegClass) 942 : LdRt; 943 944 assert((UnscaledLdOffset >= UnscaledStOffset && 945 (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) && 946 "Invalid offset"); 947 948 Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 949 Imms = Immr + Width - 1; 950 if (UnscaledLdOffset == UnscaledStOffset) { 951 uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N 952 | ((Immr) << 6) // immr 953 | ((Imms) << 0) // imms 954 ; 955 956 BitExtMI = 957 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 958 TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri), 959 DestReg) 960 .add(StMO) 961 .addImm(AndMaskEncoded) 962 .setMIFlags(LoadI->getFlags()); 963 } else { 964 BitExtMI = 965 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 966 TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri), 967 DestReg) 968 .add(StMO) 969 .addImm(Immr) 970 .addImm(Imms) 971 .setMIFlags(LoadI->getFlags()); 972 } 973 } 974 975 // Clear kill flags between store and load. 976 for (MachineInstr &MI : make_range(StoreI->getIterator(), 977 BitExtMI->getIterator())) 978 if (MI.killsRegister(StRt, TRI)) { 979 MI.clearRegisterKills(StRt, TRI); 980 break; 981 } 982 983 LLVM_DEBUG(dbgs() << "Promoting load by replacing :\n "); 984 LLVM_DEBUG(StoreI->print(dbgs())); 985 LLVM_DEBUG(dbgs() << " "); 986 LLVM_DEBUG(LoadI->print(dbgs())); 987 LLVM_DEBUG(dbgs() << " with instructions:\n "); 988 LLVM_DEBUG(StoreI->print(dbgs())); 989 LLVM_DEBUG(dbgs() << " "); 990 LLVM_DEBUG((BitExtMI)->print(dbgs())); 991 LLVM_DEBUG(dbgs() << "\n"); 992 993 // Erase the old instructions. 994 LoadI->eraseFromParent(); 995 return NextI; 996 } 997 998 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) { 999 // Convert the byte-offset used by unscaled into an "element" offset used 1000 // by the scaled pair load/store instructions. 1001 if (IsUnscaled) { 1002 // If the byte-offset isn't a multiple of the stride, there's no point 1003 // trying to match it. 1004 if (Offset % OffsetStride) 1005 return false; 1006 Offset /= OffsetStride; 1007 } 1008 return Offset <= 63 && Offset >= -64; 1009 } 1010 1011 // Do alignment, specialized to power of 2 and for signed ints, 1012 // avoiding having to do a C-style cast from uint_64t to int when 1013 // using alignTo from include/llvm/Support/MathExtras.h. 1014 // FIXME: Move this function to include/MathExtras.h? 1015 static int alignTo(int Num, int PowOf2) { 1016 return (Num + PowOf2 - 1) & ~(PowOf2 - 1); 1017 } 1018 1019 static bool mayAlias(MachineInstr &MIa, MachineInstr &MIb, 1020 AliasAnalysis *AA) { 1021 // One of the instructions must modify memory. 1022 if (!MIa.mayStore() && !MIb.mayStore()) 1023 return false; 1024 1025 // Both instructions must be memory operations. 1026 if (!MIa.mayLoadOrStore() && !MIb.mayLoadOrStore()) 1027 return false; 1028 1029 return MIa.mayAlias(AA, MIb, /*UseTBAA*/false); 1030 } 1031 1032 static bool mayAlias(MachineInstr &MIa, 1033 SmallVectorImpl<MachineInstr *> &MemInsns, 1034 AliasAnalysis *AA) { 1035 for (MachineInstr *MIb : MemInsns) 1036 if (mayAlias(MIa, *MIb, AA)) 1037 return true; 1038 1039 return false; 1040 } 1041 1042 bool AArch64LoadStoreOpt::findMatchingStore( 1043 MachineBasicBlock::iterator I, unsigned Limit, 1044 MachineBasicBlock::iterator &StoreI) { 1045 MachineBasicBlock::iterator B = I->getParent()->begin(); 1046 MachineBasicBlock::iterator MBBI = I; 1047 MachineInstr &LoadMI = *I; 1048 unsigned BaseReg = getLdStBaseOp(LoadMI).getReg(); 1049 1050 // If the load is the first instruction in the block, there's obviously 1051 // not any matching store. 1052 if (MBBI == B) 1053 return false; 1054 1055 // Track which register units have been modified and used between the first 1056 // insn and the second insn. 1057 ModifiedRegUnits.clear(); 1058 UsedRegUnits.clear(); 1059 1060 unsigned Count = 0; 1061 do { 1062 --MBBI; 1063 MachineInstr &MI = *MBBI; 1064 1065 // Don't count transient instructions towards the search limit since there 1066 // may be different numbers of them if e.g. debug information is present. 1067 if (!MI.isTransient()) 1068 ++Count; 1069 1070 // If the load instruction reads directly from the address to which the 1071 // store instruction writes and the stored value is not modified, we can 1072 // promote the load. Since we do not handle stores with pre-/post-index, 1073 // it's unnecessary to check if BaseReg is modified by the store itself. 1074 if (MI.mayStore() && isMatchingStore(LoadMI, MI) && 1075 BaseReg == getLdStBaseOp(MI).getReg() && 1076 isLdOffsetInRangeOfSt(LoadMI, MI, TII) && 1077 ModifiedRegUnits.available(getLdStRegOp(MI).getReg())) { 1078 StoreI = MBBI; 1079 return true; 1080 } 1081 1082 if (MI.isCall()) 1083 return false; 1084 1085 // Update modified / uses register units. 1086 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1087 1088 // Otherwise, if the base register is modified, we have no match, so 1089 // return early. 1090 if (!ModifiedRegUnits.available(BaseReg)) 1091 return false; 1092 1093 // If we encounter a store aliased with the load, return early. 1094 if (MI.mayStore() && mayAlias(LoadMI, MI, AA)) 1095 return false; 1096 } while (MBBI != B && Count < Limit); 1097 return false; 1098 } 1099 1100 // Returns true if FirstMI and MI are candidates for merging or pairing. 1101 // Otherwise, returns false. 1102 static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI, 1103 LdStPairFlags &Flags, 1104 const AArch64InstrInfo *TII) { 1105 // If this is volatile or if pairing is suppressed, not a candidate. 1106 if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI)) 1107 return false; 1108 1109 // We should have already checked FirstMI for pair suppression and volatility. 1110 assert(!FirstMI.hasOrderedMemoryRef() && 1111 !TII->isLdStPairSuppressed(FirstMI) && 1112 "FirstMI shouldn't get here if either of these checks are true."); 1113 1114 unsigned OpcA = FirstMI.getOpcode(); 1115 unsigned OpcB = MI.getOpcode(); 1116 1117 // Opcodes match: nothing more to check. 1118 if (OpcA == OpcB) 1119 return true; 1120 1121 // Try to match a sign-extended load/store with a zero-extended load/store. 1122 bool IsValidLdStrOpc, PairIsValidLdStrOpc; 1123 unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc); 1124 assert(IsValidLdStrOpc && 1125 "Given Opc should be a Load or Store with an immediate"); 1126 // OpcA will be the first instruction in the pair. 1127 if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) { 1128 Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0); 1129 return true; 1130 } 1131 1132 // If the second instruction isn't even a mergable/pairable load/store, bail 1133 // out. 1134 if (!PairIsValidLdStrOpc) 1135 return false; 1136 1137 // FIXME: We don't support merging narrow stores with mixed scaled/unscaled 1138 // offsets. 1139 if (isNarrowStore(OpcA) || isNarrowStore(OpcB)) 1140 return false; 1141 1142 // Try to match an unscaled load/store with a scaled load/store. 1143 return TII->isUnscaledLdSt(OpcA) != TII->isUnscaledLdSt(OpcB) && 1144 getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB); 1145 1146 // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair? 1147 } 1148 1149 /// Scan the instructions looking for a load/store that can be combined with the 1150 /// current instruction into a wider equivalent or a load/store pair. 1151 MachineBasicBlock::iterator 1152 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I, 1153 LdStPairFlags &Flags, unsigned Limit, 1154 bool FindNarrowMerge) { 1155 MachineBasicBlock::iterator E = I->getParent()->end(); 1156 MachineBasicBlock::iterator MBBI = I; 1157 MachineInstr &FirstMI = *I; 1158 ++MBBI; 1159 1160 bool MayLoad = FirstMI.mayLoad(); 1161 bool IsUnscaled = TII->isUnscaledLdSt(FirstMI); 1162 unsigned Reg = getLdStRegOp(FirstMI).getReg(); 1163 unsigned BaseReg = getLdStBaseOp(FirstMI).getReg(); 1164 int Offset = getLdStOffsetOp(FirstMI).getImm(); 1165 int OffsetStride = IsUnscaled ? getMemScale(FirstMI) : 1; 1166 bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI); 1167 1168 // Track which register units have been modified and used between the first 1169 // insn (inclusive) and the second insn. 1170 ModifiedRegUnits.clear(); 1171 UsedRegUnits.clear(); 1172 1173 // Remember any instructions that read/write memory between FirstMI and MI. 1174 SmallVector<MachineInstr *, 4> MemInsns; 1175 1176 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1177 MachineInstr &MI = *MBBI; 1178 1179 // Don't count transient instructions towards the search limit since there 1180 // may be different numbers of them if e.g. debug information is present. 1181 if (!MI.isTransient()) 1182 ++Count; 1183 1184 Flags.setSExtIdx(-1); 1185 if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) && 1186 getLdStOffsetOp(MI).isImm()) { 1187 assert(MI.mayLoadOrStore() && "Expected memory operation."); 1188 // If we've found another instruction with the same opcode, check to see 1189 // if the base and offset are compatible with our starting instruction. 1190 // These instructions all have scaled immediate operands, so we just 1191 // check for +1/-1. Make sure to check the new instruction offset is 1192 // actually an immediate and not a symbolic reference destined for 1193 // a relocation. 1194 unsigned MIBaseReg = getLdStBaseOp(MI).getReg(); 1195 int MIOffset = getLdStOffsetOp(MI).getImm(); 1196 bool MIIsUnscaled = TII->isUnscaledLdSt(MI); 1197 if (IsUnscaled != MIIsUnscaled) { 1198 // We're trying to pair instructions that differ in how they are scaled. 1199 // If FirstMI is scaled then scale the offset of MI accordingly. 1200 // Otherwise, do the opposite (i.e., make MI's offset unscaled). 1201 int MemSize = getMemScale(MI); 1202 if (MIIsUnscaled) { 1203 // If the unscaled offset isn't a multiple of the MemSize, we can't 1204 // pair the operations together: bail and keep looking. 1205 if (MIOffset % MemSize) { 1206 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1207 UsedRegUnits, TRI); 1208 MemInsns.push_back(&MI); 1209 continue; 1210 } 1211 MIOffset /= MemSize; 1212 } else { 1213 MIOffset *= MemSize; 1214 } 1215 } 1216 1217 if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) || 1218 (Offset + OffsetStride == MIOffset))) { 1219 int MinOffset = Offset < MIOffset ? Offset : MIOffset; 1220 if (FindNarrowMerge) { 1221 // If the alignment requirements of the scaled wide load/store 1222 // instruction can't express the offset of the scaled narrow input, 1223 // bail and keep looking. For promotable zero stores, allow only when 1224 // the stored value is the same (i.e., WZR). 1225 if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) || 1226 (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) { 1227 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1228 UsedRegUnits, TRI); 1229 MemInsns.push_back(&MI); 1230 continue; 1231 } 1232 } else { 1233 // Pairwise instructions have a 7-bit signed offset field. Single 1234 // insns have a 12-bit unsigned offset field. If the resultant 1235 // immediate offset of merging these instructions is out of range for 1236 // a pairwise instruction, bail and keep looking. 1237 if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) { 1238 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1239 UsedRegUnits, TRI); 1240 MemInsns.push_back(&MI); 1241 continue; 1242 } 1243 // If the alignment requirements of the paired (scaled) instruction 1244 // can't express the offset of the unscaled input, bail and keep 1245 // looking. 1246 if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) { 1247 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1248 UsedRegUnits, TRI); 1249 MemInsns.push_back(&MI); 1250 continue; 1251 } 1252 } 1253 // If the destination register of the loads is the same register, bail 1254 // and keep looking. A load-pair instruction with both destination 1255 // registers the same is UNPREDICTABLE and will result in an exception. 1256 if (MayLoad && Reg == getLdStRegOp(MI).getReg()) { 1257 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 1258 TRI); 1259 MemInsns.push_back(&MI); 1260 continue; 1261 } 1262 1263 // If the Rt of the second instruction was not modified or used between 1264 // the two instructions and none of the instructions between the second 1265 // and first alias with the second, we can combine the second into the 1266 // first. 1267 if (ModifiedRegUnits.available(getLdStRegOp(MI).getReg()) && 1268 !(MI.mayLoad() && 1269 !UsedRegUnits.available(getLdStRegOp(MI).getReg())) && 1270 !mayAlias(MI, MemInsns, AA)) { 1271 Flags.setMergeForward(false); 1272 return MBBI; 1273 } 1274 1275 // Likewise, if the Rt of the first instruction is not modified or used 1276 // between the two instructions and none of the instructions between the 1277 // first and the second alias with the first, we can combine the first 1278 // into the second. 1279 if (ModifiedRegUnits.available(getLdStRegOp(FirstMI).getReg()) && 1280 !(MayLoad && 1281 !UsedRegUnits.available(getLdStRegOp(FirstMI).getReg())) && 1282 !mayAlias(FirstMI, MemInsns, AA)) { 1283 Flags.setMergeForward(true); 1284 return MBBI; 1285 } 1286 // Unable to combine these instructions due to interference in between. 1287 // Keep looking. 1288 } 1289 } 1290 1291 // If the instruction wasn't a matching load or store. Stop searching if we 1292 // encounter a call instruction that might modify memory. 1293 if (MI.isCall()) 1294 return E; 1295 1296 // Update modified / uses register units. 1297 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1298 1299 // Otherwise, if the base register is modified, we have no match, so 1300 // return early. 1301 if (!ModifiedRegUnits.available(BaseReg)) 1302 return E; 1303 1304 // Update list of instructions that read/write memory. 1305 if (MI.mayLoadOrStore()) 1306 MemInsns.push_back(&MI); 1307 } 1308 return E; 1309 } 1310 1311 MachineBasicBlock::iterator 1312 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I, 1313 MachineBasicBlock::iterator Update, 1314 bool IsPreIdx) { 1315 assert((Update->getOpcode() == AArch64::ADDXri || 1316 Update->getOpcode() == AArch64::SUBXri) && 1317 "Unexpected base register update instruction to merge!"); 1318 MachineBasicBlock::iterator NextI = I; 1319 // Return the instruction following the merged instruction, which is 1320 // the instruction following our unmerged load. Unless that's the add/sub 1321 // instruction we're merging, in which case it's the one after that. 1322 if (++NextI == Update) 1323 ++NextI; 1324 1325 int Value = Update->getOperand(2).getImm(); 1326 assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 && 1327 "Can't merge 1 << 12 offset into pre-/post-indexed load / store"); 1328 if (Update->getOpcode() == AArch64::SUBXri) 1329 Value = -Value; 1330 1331 unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode()) 1332 : getPostIndexedOpcode(I->getOpcode()); 1333 MachineInstrBuilder MIB; 1334 if (!isPairedLdSt(*I)) { 1335 // Non-paired instruction. 1336 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1337 .add(getLdStRegOp(*Update)) 1338 .add(getLdStRegOp(*I)) 1339 .add(getLdStBaseOp(*I)) 1340 .addImm(Value) 1341 .setMemRefs(I->memoperands()) 1342 .setMIFlags(I->mergeFlagsWith(*Update)); 1343 } else { 1344 // Paired instruction. 1345 int Scale = getMemScale(*I); 1346 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1347 .add(getLdStRegOp(*Update)) 1348 .add(getLdStRegOp(*I, 0)) 1349 .add(getLdStRegOp(*I, 1)) 1350 .add(getLdStBaseOp(*I)) 1351 .addImm(Value / Scale) 1352 .setMemRefs(I->memoperands()) 1353 .setMIFlags(I->mergeFlagsWith(*Update)); 1354 } 1355 (void)MIB; 1356 1357 if (IsPreIdx) { 1358 ++NumPreFolded; 1359 LLVM_DEBUG(dbgs() << "Creating pre-indexed load/store."); 1360 } else { 1361 ++NumPostFolded; 1362 LLVM_DEBUG(dbgs() << "Creating post-indexed load/store."); 1363 } 1364 LLVM_DEBUG(dbgs() << " Replacing instructions:\n "); 1365 LLVM_DEBUG(I->print(dbgs())); 1366 LLVM_DEBUG(dbgs() << " "); 1367 LLVM_DEBUG(Update->print(dbgs())); 1368 LLVM_DEBUG(dbgs() << " with instruction:\n "); 1369 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1370 LLVM_DEBUG(dbgs() << "\n"); 1371 1372 // Erase the old instructions for the block. 1373 I->eraseFromParent(); 1374 Update->eraseFromParent(); 1375 1376 return NextI; 1377 } 1378 1379 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI, 1380 MachineInstr &MI, 1381 unsigned BaseReg, int Offset) { 1382 switch (MI.getOpcode()) { 1383 default: 1384 break; 1385 case AArch64::SUBXri: 1386 case AArch64::ADDXri: 1387 // Make sure it's a vanilla immediate operand, not a relocation or 1388 // anything else we can't handle. 1389 if (!MI.getOperand(2).isImm()) 1390 break; 1391 // Watch out for 1 << 12 shifted value. 1392 if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm())) 1393 break; 1394 1395 // The update instruction source and destination register must be the 1396 // same as the load/store base register. 1397 if (MI.getOperand(0).getReg() != BaseReg || 1398 MI.getOperand(1).getReg() != BaseReg) 1399 break; 1400 1401 bool IsPairedInsn = isPairedLdSt(MemMI); 1402 int UpdateOffset = MI.getOperand(2).getImm(); 1403 if (MI.getOpcode() == AArch64::SUBXri) 1404 UpdateOffset = -UpdateOffset; 1405 1406 // For non-paired load/store instructions, the immediate must fit in a 1407 // signed 9-bit integer. 1408 if (!IsPairedInsn && (UpdateOffset > 255 || UpdateOffset < -256)) 1409 break; 1410 1411 // For paired load/store instructions, the immediate must be a multiple of 1412 // the scaling factor. The scaled offset must also fit into a signed 7-bit 1413 // integer. 1414 if (IsPairedInsn) { 1415 int Scale = getMemScale(MemMI); 1416 if (UpdateOffset % Scale != 0) 1417 break; 1418 1419 int ScaledOffset = UpdateOffset / Scale; 1420 if (ScaledOffset > 63 || ScaledOffset < -64) 1421 break; 1422 } 1423 1424 // If we have a non-zero Offset, we check that it matches the amount 1425 // we're adding to the register. 1426 if (!Offset || Offset == UpdateOffset) 1427 return true; 1428 break; 1429 } 1430 return false; 1431 } 1432 1433 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward( 1434 MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) { 1435 MachineBasicBlock::iterator E = I->getParent()->end(); 1436 MachineInstr &MemMI = *I; 1437 MachineBasicBlock::iterator MBBI = I; 1438 1439 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1440 int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * getMemScale(MemMI); 1441 1442 // Scan forward looking for post-index opportunities. Updating instructions 1443 // can't be formed if the memory instruction doesn't have the offset we're 1444 // looking for. 1445 if (MIUnscaledOffset != UnscaledOffset) 1446 return E; 1447 1448 // If the base register overlaps a destination register, we can't 1449 // merge the update. 1450 bool IsPairedInsn = isPairedLdSt(MemMI); 1451 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1452 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1453 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1454 return E; 1455 } 1456 1457 // Track which register units have been modified and used between the first 1458 // insn (inclusive) and the second insn. 1459 ModifiedRegUnits.clear(); 1460 UsedRegUnits.clear(); 1461 ++MBBI; 1462 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1463 MachineInstr &MI = *MBBI; 1464 1465 // Don't count transient instructions towards the search limit since there 1466 // may be different numbers of them if e.g. debug information is present. 1467 if (!MI.isTransient()) 1468 ++Count; 1469 1470 // If we found a match, return it. 1471 if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset)) 1472 return MBBI; 1473 1474 // Update the status of what the instruction clobbered and used. 1475 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1476 1477 // Otherwise, if the base register is used or modified, we have no match, so 1478 // return early. 1479 if (!ModifiedRegUnits.available(BaseReg) || 1480 !UsedRegUnits.available(BaseReg)) 1481 return E; 1482 } 1483 return E; 1484 } 1485 1486 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward( 1487 MachineBasicBlock::iterator I, unsigned Limit) { 1488 MachineBasicBlock::iterator B = I->getParent()->begin(); 1489 MachineBasicBlock::iterator E = I->getParent()->end(); 1490 MachineInstr &MemMI = *I; 1491 MachineBasicBlock::iterator MBBI = I; 1492 1493 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1494 int Offset = getLdStOffsetOp(MemMI).getImm(); 1495 1496 // If the load/store is the first instruction in the block, there's obviously 1497 // not any matching update. Ditto if the memory offset isn't zero. 1498 if (MBBI == B || Offset != 0) 1499 return E; 1500 // If the base register overlaps a destination register, we can't 1501 // merge the update. 1502 bool IsPairedInsn = isPairedLdSt(MemMI); 1503 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1504 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1505 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1506 return E; 1507 } 1508 1509 // Track which register units have been modified and used between the first 1510 // insn (inclusive) and the second insn. 1511 ModifiedRegUnits.clear(); 1512 UsedRegUnits.clear(); 1513 unsigned Count = 0; 1514 do { 1515 --MBBI; 1516 MachineInstr &MI = *MBBI; 1517 1518 // Don't count transient instructions towards the search limit since there 1519 // may be different numbers of them if e.g. debug information is present. 1520 if (!MI.isTransient()) 1521 ++Count; 1522 1523 // If we found a match, return it. 1524 if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset)) 1525 return MBBI; 1526 1527 // Update the status of what the instruction clobbered and used. 1528 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1529 1530 // Otherwise, if the base register is used or modified, we have no match, so 1531 // return early. 1532 if (!ModifiedRegUnits.available(BaseReg) || 1533 !UsedRegUnits.available(BaseReg)) 1534 return E; 1535 } while (MBBI != B && Count < Limit); 1536 return E; 1537 } 1538 1539 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore( 1540 MachineBasicBlock::iterator &MBBI) { 1541 MachineInstr &MI = *MBBI; 1542 // If this is a volatile load, don't mess with it. 1543 if (MI.hasOrderedMemoryRef()) 1544 return false; 1545 1546 // Make sure this is a reg+imm. 1547 // FIXME: It is possible to extend it to handle reg+reg cases. 1548 if (!getLdStOffsetOp(MI).isImm()) 1549 return false; 1550 1551 // Look backward up to LdStLimit instructions. 1552 MachineBasicBlock::iterator StoreI; 1553 if (findMatchingStore(MBBI, LdStLimit, StoreI)) { 1554 ++NumLoadsFromStoresPromoted; 1555 // Promote the load. Keeping the iterator straight is a 1556 // pain, so we let the merge routine tell us what the next instruction 1557 // is after it's done mucking about. 1558 MBBI = promoteLoadFromStore(MBBI, StoreI); 1559 return true; 1560 } 1561 return false; 1562 } 1563 1564 // Merge adjacent zero stores into a wider store. 1565 bool AArch64LoadStoreOpt::tryToMergeZeroStInst( 1566 MachineBasicBlock::iterator &MBBI) { 1567 assert(isPromotableZeroStoreInst(*MBBI) && "Expected narrow store."); 1568 MachineInstr &MI = *MBBI; 1569 MachineBasicBlock::iterator E = MI.getParent()->end(); 1570 1571 if (!TII->isCandidateToMergeOrPair(MI)) 1572 return false; 1573 1574 // Look ahead up to LdStLimit instructions for a mergable instruction. 1575 LdStPairFlags Flags; 1576 MachineBasicBlock::iterator MergeMI = 1577 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true); 1578 if (MergeMI != E) { 1579 ++NumZeroStoresPromoted; 1580 1581 // Keeping the iterator straight is a pain, so we let the merge routine tell 1582 // us what the next instruction is after it's done mucking about. 1583 MBBI = mergeNarrowZeroStores(MBBI, MergeMI, Flags); 1584 return true; 1585 } 1586 return false; 1587 } 1588 1589 // Find loads and stores that can be merged into a single load or store pair 1590 // instruction. 1591 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) { 1592 MachineInstr &MI = *MBBI; 1593 MachineBasicBlock::iterator E = MI.getParent()->end(); 1594 1595 if (!TII->isCandidateToMergeOrPair(MI)) 1596 return false; 1597 1598 // Early exit if the offset is not possible to match. (6 bits of positive 1599 // range, plus allow an extra one in case we find a later insn that matches 1600 // with Offset-1) 1601 bool IsUnscaled = TII->isUnscaledLdSt(MI); 1602 int Offset = getLdStOffsetOp(MI).getImm(); 1603 int OffsetStride = IsUnscaled ? getMemScale(MI) : 1; 1604 // Allow one more for offset. 1605 if (Offset > 0) 1606 Offset -= OffsetStride; 1607 if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride)) 1608 return false; 1609 1610 // Look ahead up to LdStLimit instructions for a pairable instruction. 1611 LdStPairFlags Flags; 1612 MachineBasicBlock::iterator Paired = 1613 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false); 1614 if (Paired != E) { 1615 ++NumPairCreated; 1616 if (TII->isUnscaledLdSt(MI)) 1617 ++NumUnscaledPairCreated; 1618 // Keeping the iterator straight is a pain, so we let the merge routine tell 1619 // us what the next instruction is after it's done mucking about. 1620 MBBI = mergePairedInsns(MBBI, Paired, Flags); 1621 return true; 1622 } 1623 return false; 1624 } 1625 1626 bool AArch64LoadStoreOpt::tryToMergeLdStUpdate 1627 (MachineBasicBlock::iterator &MBBI) { 1628 MachineInstr &MI = *MBBI; 1629 MachineBasicBlock::iterator E = MI.getParent()->end(); 1630 MachineBasicBlock::iterator Update; 1631 1632 // Look forward to try to form a post-index instruction. For example, 1633 // ldr x0, [x20] 1634 // add x20, x20, #32 1635 // merged into: 1636 // ldr x0, [x20], #32 1637 Update = findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit); 1638 if (Update != E) { 1639 // Merge the update into the ld/st. 1640 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false); 1641 return true; 1642 } 1643 1644 // Don't know how to handle unscaled pre/post-index versions below, so bail. 1645 if (TII->isUnscaledLdSt(MI.getOpcode())) 1646 return false; 1647 1648 // Look back to try to find a pre-index instruction. For example, 1649 // add x0, x0, #8 1650 // ldr x1, [x0] 1651 // merged into: 1652 // ldr x1, [x0, #8]! 1653 Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit); 1654 if (Update != E) { 1655 // Merge the update into the ld/st. 1656 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1657 return true; 1658 } 1659 1660 // The immediate in the load/store is scaled by the size of the memory 1661 // operation. The immediate in the add we're looking for, 1662 // however, is not, so adjust here. 1663 int UnscaledOffset = getLdStOffsetOp(MI).getImm() * getMemScale(MI); 1664 1665 // Look forward to try to find a post-index instruction. For example, 1666 // ldr x1, [x0, #64] 1667 // add x0, x0, #64 1668 // merged into: 1669 // ldr x1, [x0, #64]! 1670 Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit); 1671 if (Update != E) { 1672 // Merge the update into the ld/st. 1673 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1674 return true; 1675 } 1676 1677 return false; 1678 } 1679 1680 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB, 1681 bool EnableNarrowZeroStOpt) { 1682 bool Modified = false; 1683 // Four tranformations to do here: 1684 // 1) Find loads that directly read from stores and promote them by 1685 // replacing with mov instructions. If the store is wider than the load, 1686 // the load will be replaced with a bitfield extract. 1687 // e.g., 1688 // str w1, [x0, #4] 1689 // ldrh w2, [x0, #6] 1690 // ; becomes 1691 // str w1, [x0, #4] 1692 // lsr w2, w1, #16 1693 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1694 MBBI != E;) { 1695 if (isPromotableLoadFromStore(*MBBI) && tryToPromoteLoadFromStore(MBBI)) 1696 Modified = true; 1697 else 1698 ++MBBI; 1699 } 1700 // 2) Merge adjacent zero stores into a wider store. 1701 // e.g., 1702 // strh wzr, [x0] 1703 // strh wzr, [x0, #2] 1704 // ; becomes 1705 // str wzr, [x0] 1706 // e.g., 1707 // str wzr, [x0] 1708 // str wzr, [x0, #4] 1709 // ; becomes 1710 // str xzr, [x0] 1711 if (EnableNarrowZeroStOpt) 1712 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1713 MBBI != E;) { 1714 if (isPromotableZeroStoreInst(*MBBI) && tryToMergeZeroStInst(MBBI)) 1715 Modified = true; 1716 else 1717 ++MBBI; 1718 } 1719 // 3) Find loads and stores that can be merged into a single load or store 1720 // pair instruction. 1721 // e.g., 1722 // ldr x0, [x2] 1723 // ldr x1, [x2, #8] 1724 // ; becomes 1725 // ldp x0, x1, [x2] 1726 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1727 MBBI != E;) { 1728 if (TII->isPairableLdStInst(*MBBI) && tryToPairLdStInst(MBBI)) 1729 Modified = true; 1730 else 1731 ++MBBI; 1732 } 1733 // 4) Find base register updates that can be merged into the load or store 1734 // as a base-reg writeback. 1735 // e.g., 1736 // ldr x0, [x2] 1737 // add x2, x2, #4 1738 // ; becomes 1739 // ldr x0, [x2], #4 1740 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1741 MBBI != E;) { 1742 if (isMergeableLdStUpdate(*MBBI) && tryToMergeLdStUpdate(MBBI)) 1743 Modified = true; 1744 else 1745 ++MBBI; 1746 } 1747 1748 return Modified; 1749 } 1750 1751 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 1752 if (skipFunction(Fn.getFunction())) 1753 return false; 1754 1755 Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget()); 1756 TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo()); 1757 TRI = Subtarget->getRegisterInfo(); 1758 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1759 1760 // Resize the modified and used register unit trackers. We do this once 1761 // per function and then clear the register units each time we optimize a load 1762 // or store. 1763 ModifiedRegUnits.init(*TRI); 1764 UsedRegUnits.init(*TRI); 1765 1766 bool Modified = false; 1767 bool enableNarrowZeroStOpt = !Subtarget->requiresStrictAlign(); 1768 for (auto &MBB : Fn) 1769 Modified |= optimizeBlock(MBB, enableNarrowZeroStOpt); 1770 1771 return Modified; 1772 } 1773 1774 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep loads and 1775 // stores near one another? Note: The pre-RA instruction scheduler already has 1776 // hooks to try and schedule pairable loads/stores together to improve pairing 1777 // opportunities. Thus, pre-RA pairing pass may not be worth the effort. 1778 1779 // FIXME: When pairing store instructions it's very possible for this pass to 1780 // hoist a store with a KILL marker above another use (without a KILL marker). 1781 // The resulting IR is invalid, but nothing uses the KILL markers after this 1782 // pass, so it's never caused a problem in practice. 1783 1784 /// createAArch64LoadStoreOptimizationPass - returns an instance of the 1785 /// load / store optimization pass. 1786 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() { 1787 return new AArch64LoadStoreOpt(); 1788 } 1789