1 //===-- APFloat.cpp - Implement APFloat class -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a class to represent arbitrary precision floating
11 // point values and provide a variety of arithmetic operations on them.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/Support/ErrorHandling.h"
19 #include "llvm/Support/MathExtras.h"
20 #include <limits.h>
21 #include <cstring>
22 
23 using namespace llvm;
24 
25 #define convolve(lhs, rhs) ((lhs) * 4 + (rhs))
26 
27 /* Assumed in hexadecimal significand parsing, and conversion to
28    hexadecimal strings.  */
29 #define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
30 COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0);
31 
32 namespace llvm {
33 
34   /* Represents floating point arithmetic semantics.  */
35   struct fltSemantics {
36     /* The largest E such that 2^E is representable; this matches the
37        definition of IEEE 754.  */
38     exponent_t maxExponent;
39 
40     /* The smallest E such that 2^E is a normalized number; this
41        matches the definition of IEEE 754.  */
42     exponent_t minExponent;
43 
44     /* Number of bits in the significand.  This includes the integer
45        bit.  */
46     unsigned int precision;
47 
48     /* True if arithmetic is supported.  */
49     unsigned int arithmeticOK;
50   };
51 
52   const fltSemantics APFloat::IEEEhalf = { 15, -14, 11, true };
53   const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true };
54   const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true };
55   const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true };
56   const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, true };
57   const fltSemantics APFloat::Bogus = { 0, 0, 0, true };
58 
59   // The PowerPC format consists of two doubles.  It does not map cleanly
60   // onto the usual format above.  For now only storage of constants of
61   // this type is supported, no arithmetic.
62   const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022, 106, false };
63 
64   /* A tight upper bound on number of parts required to hold the value
65      pow(5, power) is
66 
67        power * 815 / (351 * integerPartWidth) + 1
68 
69      However, whilst the result may require only this many parts,
70      because we are multiplying two values to get it, the
71      multiplication may require an extra part with the excess part
72      being zero (consider the trivial case of 1 * 1, tcFullMultiply
73      requires two parts to hold the single-part result).  So we add an
74      extra one to guarantee enough space whilst multiplying.  */
75   const unsigned int maxExponent = 16383;
76   const unsigned int maxPrecision = 113;
77   const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
78   const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815)
79                                                 / (351 * integerPartWidth));
80 }
81 
82 /* A bunch of private, handy routines.  */
83 
84 static inline unsigned int
85 partCountForBits(unsigned int bits)
86 {
87   return ((bits) + integerPartWidth - 1) / integerPartWidth;
88 }
89 
90 /* Returns 0U-9U.  Return values >= 10U are not digits.  */
91 static inline unsigned int
92 decDigitValue(unsigned int c)
93 {
94   return c - '0';
95 }
96 
97 static unsigned int
98 hexDigitValue(unsigned int c)
99 {
100   unsigned int r;
101 
102   r = c - '0';
103   if (r <= 9)
104     return r;
105 
106   r = c - 'A';
107   if (r <= 5)
108     return r + 10;
109 
110   r = c - 'a';
111   if (r <= 5)
112     return r + 10;
113 
114   return -1U;
115 }
116 
117 static inline void
118 assertArithmeticOK(const llvm::fltSemantics &semantics) {
119   assert(semantics.arithmeticOK &&
120          "Compile-time arithmetic does not support these semantics");
121 }
122 
123 /* Return the value of a decimal exponent of the form
124    [+-]ddddddd.
125 
126    If the exponent overflows, returns a large exponent with the
127    appropriate sign.  */
128 static int
129 readExponent(StringRef::iterator begin, StringRef::iterator end)
130 {
131   bool isNegative;
132   unsigned int absExponent;
133   const unsigned int overlargeExponent = 24000;  /* FIXME.  */
134   StringRef::iterator p = begin;
135 
136   assert(p != end && "Exponent has no digits");
137 
138   isNegative = (*p == '-');
139   if (*p == '-' || *p == '+') {
140     p++;
141     assert(p != end && "Exponent has no digits");
142   }
143 
144   absExponent = decDigitValue(*p++);
145   assert(absExponent < 10U && "Invalid character in exponent");
146 
147   for (; p != end; ++p) {
148     unsigned int value;
149 
150     value = decDigitValue(*p);
151     assert(value < 10U && "Invalid character in exponent");
152 
153     value += absExponent * 10;
154     if (absExponent >= overlargeExponent) {
155       absExponent = overlargeExponent;
156       break;
157     }
158     absExponent = value;
159   }
160 
161   assert(p == end && "Invalid exponent in exponent");
162 
163   if (isNegative)
164     return -(int) absExponent;
165   else
166     return (int) absExponent;
167 }
168 
169 /* This is ugly and needs cleaning up, but I don't immediately see
170    how whilst remaining safe.  */
171 static int
172 totalExponent(StringRef::iterator p, StringRef::iterator end,
173               int exponentAdjustment)
174 {
175   int unsignedExponent;
176   bool negative, overflow;
177   int exponent;
178 
179   assert(p != end && "Exponent has no digits");
180 
181   negative = *p == '-';
182   if (*p == '-' || *p == '+') {
183     p++;
184     assert(p != end && "Exponent has no digits");
185   }
186 
187   unsignedExponent = 0;
188   overflow = false;
189   for (; p != end; ++p) {
190     unsigned int value;
191 
192     value = decDigitValue(*p);
193     assert(value < 10U && "Invalid character in exponent");
194 
195     unsignedExponent = unsignedExponent * 10 + value;
196     if (unsignedExponent > 65535)
197       overflow = true;
198   }
199 
200   if (exponentAdjustment > 65535 || exponentAdjustment < -65536)
201     overflow = true;
202 
203   if (!overflow) {
204     exponent = unsignedExponent;
205     if (negative)
206       exponent = -exponent;
207     exponent += exponentAdjustment;
208     if (exponent > 65535 || exponent < -65536)
209       overflow = true;
210   }
211 
212   if (overflow)
213     exponent = negative ? -65536: 65535;
214 
215   return exponent;
216 }
217 
218 static StringRef::iterator
219 skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end,
220                            StringRef::iterator *dot)
221 {
222   StringRef::iterator p = begin;
223   *dot = end;
224   while (*p == '0' && p != end)
225     p++;
226 
227   if (*p == '.') {
228     *dot = p++;
229 
230     assert(end - begin != 1 && "Significand has no digits");
231 
232     while (*p == '0' && p != end)
233       p++;
234   }
235 
236   return p;
237 }
238 
239 /* Given a normal decimal floating point number of the form
240 
241      dddd.dddd[eE][+-]ddd
242 
243    where the decimal point and exponent are optional, fill out the
244    structure D.  Exponent is appropriate if the significand is
245    treated as an integer, and normalizedExponent if the significand
246    is taken to have the decimal point after a single leading
247    non-zero digit.
248 
249    If the value is zero, V->firstSigDigit points to a non-digit, and
250    the return exponent is zero.
251 */
252 struct decimalInfo {
253   const char *firstSigDigit;
254   const char *lastSigDigit;
255   int exponent;
256   int normalizedExponent;
257 };
258 
259 static void
260 interpretDecimal(StringRef::iterator begin, StringRef::iterator end,
261                  decimalInfo *D)
262 {
263   StringRef::iterator dot = end;
264   StringRef::iterator p = skipLeadingZeroesAndAnyDot (begin, end, &dot);
265 
266   D->firstSigDigit = p;
267   D->exponent = 0;
268   D->normalizedExponent = 0;
269 
270   for (; p != end; ++p) {
271     if (*p == '.') {
272       assert(dot == end && "String contains multiple dots");
273       dot = p++;
274       if (p == end)
275         break;
276     }
277     if (decDigitValue(*p) >= 10U)
278       break;
279   }
280 
281   if (p != end) {
282     assert((*p == 'e' || *p == 'E') && "Invalid character in significand");
283     assert(p != begin && "Significand has no digits");
284     assert((dot == end || p - begin != 1) && "Significand has no digits");
285 
286     /* p points to the first non-digit in the string */
287     D->exponent = readExponent(p + 1, end);
288 
289     /* Implied decimal point?  */
290     if (dot == end)
291       dot = p;
292   }
293 
294   /* If number is all zeroes accept any exponent.  */
295   if (p != D->firstSigDigit) {
296     /* Drop insignificant trailing zeroes.  */
297     if (p != begin) {
298       do
299         do
300           p--;
301         while (p != begin && *p == '0');
302       while (p != begin && *p == '.');
303     }
304 
305     /* Adjust the exponents for any decimal point.  */
306     D->exponent += static_cast<exponent_t>((dot - p) - (dot > p));
307     D->normalizedExponent = (D->exponent +
308               static_cast<exponent_t>((p - D->firstSigDigit)
309                                       - (dot > D->firstSigDigit && dot < p)));
310   }
311 
312   D->lastSigDigit = p;
313 }
314 
315 /* Return the trailing fraction of a hexadecimal number.
316    DIGITVALUE is the first hex digit of the fraction, P points to
317    the next digit.  */
318 static lostFraction
319 trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end,
320                             unsigned int digitValue)
321 {
322   unsigned int hexDigit;
323 
324   /* If the first trailing digit isn't 0 or 8 we can work out the
325      fraction immediately.  */
326   if (digitValue > 8)
327     return lfMoreThanHalf;
328   else if (digitValue < 8 && digitValue > 0)
329     return lfLessThanHalf;
330 
331   /* Otherwise we need to find the first non-zero digit.  */
332   while (*p == '0')
333     p++;
334 
335   assert(p != end && "Invalid trailing hexadecimal fraction!");
336 
337   hexDigit = hexDigitValue(*p);
338 
339   /* If we ran off the end it is exactly zero or one-half, otherwise
340      a little more.  */
341   if (hexDigit == -1U)
342     return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
343   else
344     return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
345 }
346 
347 /* Return the fraction lost were a bignum truncated losing the least
348    significant BITS bits.  */
349 static lostFraction
350 lostFractionThroughTruncation(const integerPart *parts,
351                               unsigned int partCount,
352                               unsigned int bits)
353 {
354   unsigned int lsb;
355 
356   lsb = APInt::tcLSB(parts, partCount);
357 
358   /* Note this is guaranteed true if bits == 0, or LSB == -1U.  */
359   if (bits <= lsb)
360     return lfExactlyZero;
361   if (bits == lsb + 1)
362     return lfExactlyHalf;
363   if (bits <= partCount * integerPartWidth &&
364       APInt::tcExtractBit(parts, bits - 1))
365     return lfMoreThanHalf;
366 
367   return lfLessThanHalf;
368 }
369 
370 /* Shift DST right BITS bits noting lost fraction.  */
371 static lostFraction
372 shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
373 {
374   lostFraction lost_fraction;
375 
376   lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
377 
378   APInt::tcShiftRight(dst, parts, bits);
379 
380   return lost_fraction;
381 }
382 
383 /* Combine the effect of two lost fractions.  */
384 static lostFraction
385 combineLostFractions(lostFraction moreSignificant,
386                      lostFraction lessSignificant)
387 {
388   if (lessSignificant != lfExactlyZero) {
389     if (moreSignificant == lfExactlyZero)
390       moreSignificant = lfLessThanHalf;
391     else if (moreSignificant == lfExactlyHalf)
392       moreSignificant = lfMoreThanHalf;
393   }
394 
395   return moreSignificant;
396 }
397 
398 /* The error from the true value, in half-ulps, on multiplying two
399    floating point numbers, which differ from the value they
400    approximate by at most HUE1 and HUE2 half-ulps, is strictly less
401    than the returned value.
402 
403    See "How to Read Floating Point Numbers Accurately" by William D
404    Clinger.  */
405 static unsigned int
406 HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
407 {
408   assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
409 
410   if (HUerr1 + HUerr2 == 0)
411     return inexactMultiply * 2;  /* <= inexactMultiply half-ulps.  */
412   else
413     return inexactMultiply + 2 * (HUerr1 + HUerr2);
414 }
415 
416 /* The number of ulps from the boundary (zero, or half if ISNEAREST)
417    when the least significant BITS are truncated.  BITS cannot be
418    zero.  */
419 static integerPart
420 ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest)
421 {
422   unsigned int count, partBits;
423   integerPart part, boundary;
424 
425   assert(bits != 0);
426 
427   bits--;
428   count = bits / integerPartWidth;
429   partBits = bits % integerPartWidth + 1;
430 
431   part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits));
432 
433   if (isNearest)
434     boundary = (integerPart) 1 << (partBits - 1);
435   else
436     boundary = 0;
437 
438   if (count == 0) {
439     if (part - boundary <= boundary - part)
440       return part - boundary;
441     else
442       return boundary - part;
443   }
444 
445   if (part == boundary) {
446     while (--count)
447       if (parts[count])
448         return ~(integerPart) 0; /* A lot.  */
449 
450     return parts[0];
451   } else if (part == boundary - 1) {
452     while (--count)
453       if (~parts[count])
454         return ~(integerPart) 0; /* A lot.  */
455 
456     return -parts[0];
457   }
458 
459   return ~(integerPart) 0; /* A lot.  */
460 }
461 
462 /* Place pow(5, power) in DST, and return the number of parts used.
463    DST must be at least one part larger than size of the answer.  */
464 static unsigned int
465 powerOf5(integerPart *dst, unsigned int power)
466 {
467   static const integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125,
468                                                   15625, 78125 };
469   integerPart pow5s[maxPowerOfFiveParts * 2 + 5];
470   pow5s[0] = 78125 * 5;
471 
472   unsigned int partsCount[16] = { 1 };
473   integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
474   unsigned int result;
475   assert(power <= maxExponent);
476 
477   p1 = dst;
478   p2 = scratch;
479 
480   *p1 = firstEightPowers[power & 7];
481   power >>= 3;
482 
483   result = 1;
484   pow5 = pow5s;
485 
486   for (unsigned int n = 0; power; power >>= 1, n++) {
487     unsigned int pc;
488 
489     pc = partsCount[n];
490 
491     /* Calculate pow(5,pow(2,n+3)) if we haven't yet.  */
492     if (pc == 0) {
493       pc = partsCount[n - 1];
494       APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
495       pc *= 2;
496       if (pow5[pc - 1] == 0)
497         pc--;
498       partsCount[n] = pc;
499     }
500 
501     if (power & 1) {
502       integerPart *tmp;
503 
504       APInt::tcFullMultiply(p2, p1, pow5, result, pc);
505       result += pc;
506       if (p2[result - 1] == 0)
507         result--;
508 
509       /* Now result is in p1 with partsCount parts and p2 is scratch
510          space.  */
511       tmp = p1, p1 = p2, p2 = tmp;
512     }
513 
514     pow5 += pc;
515   }
516 
517   if (p1 != dst)
518     APInt::tcAssign(dst, p1, result);
519 
520   return result;
521 }
522 
523 /* Zero at the end to avoid modular arithmetic when adding one; used
524    when rounding up during hexadecimal output.  */
525 static const char hexDigitsLower[] = "0123456789abcdef0";
526 static const char hexDigitsUpper[] = "0123456789ABCDEF0";
527 static const char infinityL[] = "infinity";
528 static const char infinityU[] = "INFINITY";
529 static const char NaNL[] = "nan";
530 static const char NaNU[] = "NAN";
531 
532 /* Write out an integerPart in hexadecimal, starting with the most
533    significant nibble.  Write out exactly COUNT hexdigits, return
534    COUNT.  */
535 static unsigned int
536 partAsHex (char *dst, integerPart part, unsigned int count,
537            const char *hexDigitChars)
538 {
539   unsigned int result = count;
540 
541   assert(count != 0 && count <= integerPartWidth / 4);
542 
543   part >>= (integerPartWidth - 4 * count);
544   while (count--) {
545     dst[count] = hexDigitChars[part & 0xf];
546     part >>= 4;
547   }
548 
549   return result;
550 }
551 
552 /* Write out an unsigned decimal integer.  */
553 static char *
554 writeUnsignedDecimal (char *dst, unsigned int n)
555 {
556   char buff[40], *p;
557 
558   p = buff;
559   do
560     *p++ = '0' + n % 10;
561   while (n /= 10);
562 
563   do
564     *dst++ = *--p;
565   while (p != buff);
566 
567   return dst;
568 }
569 
570 /* Write out a signed decimal integer.  */
571 static char *
572 writeSignedDecimal (char *dst, int value)
573 {
574   if (value < 0) {
575     *dst++ = '-';
576     dst = writeUnsignedDecimal(dst, -(unsigned) value);
577   } else
578     dst = writeUnsignedDecimal(dst, value);
579 
580   return dst;
581 }
582 
583 /* Constructors.  */
584 void
585 APFloat::initialize(const fltSemantics *ourSemantics)
586 {
587   unsigned int count;
588 
589   semantics = ourSemantics;
590   count = partCount();
591   if (count > 1)
592     significand.parts = new integerPart[count];
593 }
594 
595 void
596 APFloat::freeSignificand()
597 {
598   if (partCount() > 1)
599     delete [] significand.parts;
600 }
601 
602 void
603 APFloat::assign(const APFloat &rhs)
604 {
605   assert(semantics == rhs.semantics);
606 
607   sign = rhs.sign;
608   category = rhs.category;
609   exponent = rhs.exponent;
610   sign2 = rhs.sign2;
611   exponent2 = rhs.exponent2;
612   if (category == fcNormal || category == fcNaN)
613     copySignificand(rhs);
614 }
615 
616 void
617 APFloat::copySignificand(const APFloat &rhs)
618 {
619   assert(category == fcNormal || category == fcNaN);
620   assert(rhs.partCount() >= partCount());
621 
622   APInt::tcAssign(significandParts(), rhs.significandParts(),
623                   partCount());
624 }
625 
626 /* Make this number a NaN, with an arbitrary but deterministic value
627    for the significand.  If double or longer, this is a signalling NaN,
628    which may not be ideal.  If float, this is QNaN(0).  */
629 void APFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill)
630 {
631   category = fcNaN;
632   sign = Negative;
633 
634   integerPart *significand = significandParts();
635   unsigned numParts = partCount();
636 
637   // Set the significand bits to the fill.
638   if (!fill || fill->getNumWords() < numParts)
639     APInt::tcSet(significand, 0, numParts);
640   if (fill) {
641     APInt::tcAssign(significand, fill->getRawData(),
642                     std::min(fill->getNumWords(), numParts));
643 
644     // Zero out the excess bits of the significand.
645     unsigned bitsToPreserve = semantics->precision - 1;
646     unsigned part = bitsToPreserve / 64;
647     bitsToPreserve %= 64;
648     significand[part] &= ((1ULL << bitsToPreserve) - 1);
649     for (part++; part != numParts; ++part)
650       significand[part] = 0;
651   }
652 
653   unsigned QNaNBit = semantics->precision - 2;
654 
655   if (SNaN) {
656     // We always have to clear the QNaN bit to make it an SNaN.
657     APInt::tcClearBit(significand, QNaNBit);
658 
659     // If there are no bits set in the payload, we have to set
660     // *something* to make it a NaN instead of an infinity;
661     // conventionally, this is the next bit down from the QNaN bit.
662     if (APInt::tcIsZero(significand, numParts))
663       APInt::tcSetBit(significand, QNaNBit - 1);
664   } else {
665     // We always have to set the QNaN bit to make it a QNaN.
666     APInt::tcSetBit(significand, QNaNBit);
667   }
668 
669   // For x87 extended precision, we want to make a NaN, not a
670   // pseudo-NaN.  Maybe we should expose the ability to make
671   // pseudo-NaNs?
672   if (semantics == &APFloat::x87DoubleExtended)
673     APInt::tcSetBit(significand, QNaNBit + 1);
674 }
675 
676 APFloat APFloat::makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
677                          const APInt *fill) {
678   APFloat value(Sem, uninitialized);
679   value.makeNaN(SNaN, Negative, fill);
680   return value;
681 }
682 
683 APFloat &
684 APFloat::operator=(const APFloat &rhs)
685 {
686   if (this != &rhs) {
687     if (semantics != rhs.semantics) {
688       freeSignificand();
689       initialize(rhs.semantics);
690     }
691     assign(rhs);
692   }
693 
694   return *this;
695 }
696 
697 bool
698 APFloat::bitwiseIsEqual(const APFloat &rhs) const {
699   if (this == &rhs)
700     return true;
701   if (semantics != rhs.semantics ||
702       category != rhs.category ||
703       sign != rhs.sign)
704     return false;
705   if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
706       sign2 != rhs.sign2)
707     return false;
708   if (category==fcZero || category==fcInfinity)
709     return true;
710   else if (category==fcNormal && exponent!=rhs.exponent)
711     return false;
712   else if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
713            exponent2!=rhs.exponent2)
714     return false;
715   else {
716     int i= partCount();
717     const integerPart* p=significandParts();
718     const integerPart* q=rhs.significandParts();
719     for (; i>0; i--, p++, q++) {
720       if (*p != *q)
721         return false;
722     }
723     return true;
724   }
725 }
726 
727 APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
728 {
729   assertArithmeticOK(ourSemantics);
730   initialize(&ourSemantics);
731   sign = 0;
732   zeroSignificand();
733   exponent = ourSemantics.precision - 1;
734   significandParts()[0] = value;
735   normalize(rmNearestTiesToEven, lfExactlyZero);
736 }
737 
738 APFloat::APFloat(const fltSemantics &ourSemantics) {
739   assertArithmeticOK(ourSemantics);
740   initialize(&ourSemantics);
741   category = fcZero;
742   sign = false;
743 }
744 
745 APFloat::APFloat(const fltSemantics &ourSemantics, uninitializedTag tag) {
746   assertArithmeticOK(ourSemantics);
747   // Allocates storage if necessary but does not initialize it.
748   initialize(&ourSemantics);
749 }
750 
751 APFloat::APFloat(const fltSemantics &ourSemantics,
752                  fltCategory ourCategory, bool negative)
753 {
754   assertArithmeticOK(ourSemantics);
755   initialize(&ourSemantics);
756   category = ourCategory;
757   sign = negative;
758   if (category == fcNormal)
759     category = fcZero;
760   else if (ourCategory == fcNaN)
761     makeNaN();
762 }
763 
764 APFloat::APFloat(const fltSemantics &ourSemantics, StringRef text)
765 {
766   assertArithmeticOK(ourSemantics);
767   initialize(&ourSemantics);
768   convertFromString(text, rmNearestTiesToEven);
769 }
770 
771 APFloat::APFloat(const APFloat &rhs)
772 {
773   initialize(rhs.semantics);
774   assign(rhs);
775 }
776 
777 APFloat::~APFloat()
778 {
779   freeSignificand();
780 }
781 
782 // Profile - This method 'profiles' an APFloat for use with FoldingSet.
783 void APFloat::Profile(FoldingSetNodeID& ID) const {
784   ID.Add(bitcastToAPInt());
785 }
786 
787 unsigned int
788 APFloat::partCount() const
789 {
790   return partCountForBits(semantics->precision + 1);
791 }
792 
793 unsigned int
794 APFloat::semanticsPrecision(const fltSemantics &semantics)
795 {
796   return semantics.precision;
797 }
798 
799 const integerPart *
800 APFloat::significandParts() const
801 {
802   return const_cast<APFloat *>(this)->significandParts();
803 }
804 
805 integerPart *
806 APFloat::significandParts()
807 {
808   assert(category == fcNormal || category == fcNaN);
809 
810   if (partCount() > 1)
811     return significand.parts;
812   else
813     return &significand.part;
814 }
815 
816 void
817 APFloat::zeroSignificand()
818 {
819   category = fcNormal;
820   APInt::tcSet(significandParts(), 0, partCount());
821 }
822 
823 /* Increment an fcNormal floating point number's significand.  */
824 void
825 APFloat::incrementSignificand()
826 {
827   integerPart carry;
828 
829   carry = APInt::tcIncrement(significandParts(), partCount());
830 
831   /* Our callers should never cause us to overflow.  */
832   assert(carry == 0);
833 }
834 
835 /* Add the significand of the RHS.  Returns the carry flag.  */
836 integerPart
837 APFloat::addSignificand(const APFloat &rhs)
838 {
839   integerPart *parts;
840 
841   parts = significandParts();
842 
843   assert(semantics == rhs.semantics);
844   assert(exponent == rhs.exponent);
845 
846   return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
847 }
848 
849 /* Subtract the significand of the RHS with a borrow flag.  Returns
850    the borrow flag.  */
851 integerPart
852 APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
853 {
854   integerPart *parts;
855 
856   parts = significandParts();
857 
858   assert(semantics == rhs.semantics);
859   assert(exponent == rhs.exponent);
860 
861   return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
862                            partCount());
863 }
864 
865 /* Multiply the significand of the RHS.  If ADDEND is non-NULL, add it
866    on to the full-precision result of the multiplication.  Returns the
867    lost fraction.  */
868 lostFraction
869 APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
870 {
871   unsigned int omsb;        // One, not zero, based MSB.
872   unsigned int partsCount, newPartsCount, precision;
873   integerPart *lhsSignificand;
874   integerPart scratch[4];
875   integerPart *fullSignificand;
876   lostFraction lost_fraction;
877   bool ignored;
878 
879   assert(semantics == rhs.semantics);
880 
881   precision = semantics->precision;
882   newPartsCount = partCountForBits(precision * 2);
883 
884   if (newPartsCount > 4)
885     fullSignificand = new integerPart[newPartsCount];
886   else
887     fullSignificand = scratch;
888 
889   lhsSignificand = significandParts();
890   partsCount = partCount();
891 
892   APInt::tcFullMultiply(fullSignificand, lhsSignificand,
893                         rhs.significandParts(), partsCount, partsCount);
894 
895   lost_fraction = lfExactlyZero;
896   omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
897   exponent += rhs.exponent;
898 
899   if (addend) {
900     Significand savedSignificand = significand;
901     const fltSemantics *savedSemantics = semantics;
902     fltSemantics extendedSemantics;
903     opStatus status;
904     unsigned int extendedPrecision;
905 
906     /* Normalize our MSB.  */
907     extendedPrecision = precision + precision - 1;
908     if (omsb != extendedPrecision) {
909       APInt::tcShiftLeft(fullSignificand, newPartsCount,
910                          extendedPrecision - omsb);
911       exponent -= extendedPrecision - omsb;
912     }
913 
914     /* Create new semantics.  */
915     extendedSemantics = *semantics;
916     extendedSemantics.precision = extendedPrecision;
917 
918     if (newPartsCount == 1)
919       significand.part = fullSignificand[0];
920     else
921       significand.parts = fullSignificand;
922     semantics = &extendedSemantics;
923 
924     APFloat extendedAddend(*addend);
925     status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
926     assert(status == opOK);
927     lost_fraction = addOrSubtractSignificand(extendedAddend, false);
928 
929     /* Restore our state.  */
930     if (newPartsCount == 1)
931       fullSignificand[0] = significand.part;
932     significand = savedSignificand;
933     semantics = savedSemantics;
934 
935     omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
936   }
937 
938   exponent -= (precision - 1);
939 
940   if (omsb > precision) {
941     unsigned int bits, significantParts;
942     lostFraction lf;
943 
944     bits = omsb - precision;
945     significantParts = partCountForBits(omsb);
946     lf = shiftRight(fullSignificand, significantParts, bits);
947     lost_fraction = combineLostFractions(lf, lost_fraction);
948     exponent += bits;
949   }
950 
951   APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
952 
953   if (newPartsCount > 4)
954     delete [] fullSignificand;
955 
956   return lost_fraction;
957 }
958 
959 /* Multiply the significands of LHS and RHS to DST.  */
960 lostFraction
961 APFloat::divideSignificand(const APFloat &rhs)
962 {
963   unsigned int bit, i, partsCount;
964   const integerPart *rhsSignificand;
965   integerPart *lhsSignificand, *dividend, *divisor;
966   integerPart scratch[4];
967   lostFraction lost_fraction;
968 
969   assert(semantics == rhs.semantics);
970 
971   lhsSignificand = significandParts();
972   rhsSignificand = rhs.significandParts();
973   partsCount = partCount();
974 
975   if (partsCount > 2)
976     dividend = new integerPart[partsCount * 2];
977   else
978     dividend = scratch;
979 
980   divisor = dividend + partsCount;
981 
982   /* Copy the dividend and divisor as they will be modified in-place.  */
983   for (i = 0; i < partsCount; i++) {
984     dividend[i] = lhsSignificand[i];
985     divisor[i] = rhsSignificand[i];
986     lhsSignificand[i] = 0;
987   }
988 
989   exponent -= rhs.exponent;
990 
991   unsigned int precision = semantics->precision;
992 
993   /* Normalize the divisor.  */
994   bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
995   if (bit) {
996     exponent += bit;
997     APInt::tcShiftLeft(divisor, partsCount, bit);
998   }
999 
1000   /* Normalize the dividend.  */
1001   bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
1002   if (bit) {
1003     exponent -= bit;
1004     APInt::tcShiftLeft(dividend, partsCount, bit);
1005   }
1006 
1007   /* Ensure the dividend >= divisor initially for the loop below.
1008      Incidentally, this means that the division loop below is
1009      guaranteed to set the integer bit to one.  */
1010   if (APInt::tcCompare(dividend, divisor, partsCount) < 0) {
1011     exponent--;
1012     APInt::tcShiftLeft(dividend, partsCount, 1);
1013     assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
1014   }
1015 
1016   /* Long division.  */
1017   for (bit = precision; bit; bit -= 1) {
1018     if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
1019       APInt::tcSubtract(dividend, divisor, 0, partsCount);
1020       APInt::tcSetBit(lhsSignificand, bit - 1);
1021     }
1022 
1023     APInt::tcShiftLeft(dividend, partsCount, 1);
1024   }
1025 
1026   /* Figure out the lost fraction.  */
1027   int cmp = APInt::tcCompare(dividend, divisor, partsCount);
1028 
1029   if (cmp > 0)
1030     lost_fraction = lfMoreThanHalf;
1031   else if (cmp == 0)
1032     lost_fraction = lfExactlyHalf;
1033   else if (APInt::tcIsZero(dividend, partsCount))
1034     lost_fraction = lfExactlyZero;
1035   else
1036     lost_fraction = lfLessThanHalf;
1037 
1038   if (partsCount > 2)
1039     delete [] dividend;
1040 
1041   return lost_fraction;
1042 }
1043 
1044 unsigned int
1045 APFloat::significandMSB() const
1046 {
1047   return APInt::tcMSB(significandParts(), partCount());
1048 }
1049 
1050 unsigned int
1051 APFloat::significandLSB() const
1052 {
1053   return APInt::tcLSB(significandParts(), partCount());
1054 }
1055 
1056 /* Note that a zero result is NOT normalized to fcZero.  */
1057 lostFraction
1058 APFloat::shiftSignificandRight(unsigned int bits)
1059 {
1060   /* Our exponent should not overflow.  */
1061   assert((exponent_t) (exponent + bits) >= exponent);
1062 
1063   exponent += bits;
1064 
1065   return shiftRight(significandParts(), partCount(), bits);
1066 }
1067 
1068 /* Shift the significand left BITS bits, subtract BITS from its exponent.  */
1069 void
1070 APFloat::shiftSignificandLeft(unsigned int bits)
1071 {
1072   assert(bits < semantics->precision);
1073 
1074   if (bits) {
1075     unsigned int partsCount = partCount();
1076 
1077     APInt::tcShiftLeft(significandParts(), partsCount, bits);
1078     exponent -= bits;
1079 
1080     assert(!APInt::tcIsZero(significandParts(), partsCount));
1081   }
1082 }
1083 
1084 APFloat::cmpResult
1085 APFloat::compareAbsoluteValue(const APFloat &rhs) const
1086 {
1087   int compare;
1088 
1089   assert(semantics == rhs.semantics);
1090   assert(category == fcNormal);
1091   assert(rhs.category == fcNormal);
1092 
1093   compare = exponent - rhs.exponent;
1094 
1095   /* If exponents are equal, do an unsigned bignum comparison of the
1096      significands.  */
1097   if (compare == 0)
1098     compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
1099                                partCount());
1100 
1101   if (compare > 0)
1102     return cmpGreaterThan;
1103   else if (compare < 0)
1104     return cmpLessThan;
1105   else
1106     return cmpEqual;
1107 }
1108 
1109 /* Handle overflow.  Sign is preserved.  We either become infinity or
1110    the largest finite number.  */
1111 APFloat::opStatus
1112 APFloat::handleOverflow(roundingMode rounding_mode)
1113 {
1114   /* Infinity?  */
1115   if (rounding_mode == rmNearestTiesToEven ||
1116       rounding_mode == rmNearestTiesToAway ||
1117       (rounding_mode == rmTowardPositive && !sign) ||
1118       (rounding_mode == rmTowardNegative && sign)) {
1119     category = fcInfinity;
1120     return (opStatus) (opOverflow | opInexact);
1121   }
1122 
1123   /* Otherwise we become the largest finite number.  */
1124   category = fcNormal;
1125   exponent = semantics->maxExponent;
1126   APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
1127                                    semantics->precision);
1128 
1129   return opInexact;
1130 }
1131 
1132 /* Returns TRUE if, when truncating the current number, with BIT the
1133    new LSB, with the given lost fraction and rounding mode, the result
1134    would need to be rounded away from zero (i.e., by increasing the
1135    signficand).  This routine must work for fcZero of both signs, and
1136    fcNormal numbers.  */
1137 bool
1138 APFloat::roundAwayFromZero(roundingMode rounding_mode,
1139                            lostFraction lost_fraction,
1140                            unsigned int bit) const
1141 {
1142   /* NaNs and infinities should not have lost fractions.  */
1143   assert(category == fcNormal || category == fcZero);
1144 
1145   /* Current callers never pass this so we don't handle it.  */
1146   assert(lost_fraction != lfExactlyZero);
1147 
1148   switch (rounding_mode) {
1149   default:
1150     llvm_unreachable(0);
1151 
1152   case rmNearestTiesToAway:
1153     return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
1154 
1155   case rmNearestTiesToEven:
1156     if (lost_fraction == lfMoreThanHalf)
1157       return true;
1158 
1159     /* Our zeroes don't have a significand to test.  */
1160     if (lost_fraction == lfExactlyHalf && category != fcZero)
1161       return APInt::tcExtractBit(significandParts(), bit);
1162 
1163     return false;
1164 
1165   case rmTowardZero:
1166     return false;
1167 
1168   case rmTowardPositive:
1169     return sign == false;
1170 
1171   case rmTowardNegative:
1172     return sign == true;
1173   }
1174 }
1175 
1176 APFloat::opStatus
1177 APFloat::normalize(roundingMode rounding_mode,
1178                    lostFraction lost_fraction)
1179 {
1180   unsigned int omsb;                /* One, not zero, based MSB.  */
1181   int exponentChange;
1182 
1183   if (category != fcNormal)
1184     return opOK;
1185 
1186   /* Before rounding normalize the exponent of fcNormal numbers.  */
1187   omsb = significandMSB() + 1;
1188 
1189   if (omsb) {
1190     /* OMSB is numbered from 1.  We want to place it in the integer
1191        bit numbered PRECISON if possible, with a compensating change in
1192        the exponent.  */
1193     exponentChange = omsb - semantics->precision;
1194 
1195     /* If the resulting exponent is too high, overflow according to
1196        the rounding mode.  */
1197     if (exponent + exponentChange > semantics->maxExponent)
1198       return handleOverflow(rounding_mode);
1199 
1200     /* Subnormal numbers have exponent minExponent, and their MSB
1201        is forced based on that.  */
1202     if (exponent + exponentChange < semantics->minExponent)
1203       exponentChange = semantics->minExponent - exponent;
1204 
1205     /* Shifting left is easy as we don't lose precision.  */
1206     if (exponentChange < 0) {
1207       assert(lost_fraction == lfExactlyZero);
1208 
1209       shiftSignificandLeft(-exponentChange);
1210 
1211       return opOK;
1212     }
1213 
1214     if (exponentChange > 0) {
1215       lostFraction lf;
1216 
1217       /* Shift right and capture any new lost fraction.  */
1218       lf = shiftSignificandRight(exponentChange);
1219 
1220       lost_fraction = combineLostFractions(lf, lost_fraction);
1221 
1222       /* Keep OMSB up-to-date.  */
1223       if (omsb > (unsigned) exponentChange)
1224         omsb -= exponentChange;
1225       else
1226         omsb = 0;
1227     }
1228   }
1229 
1230   /* Now round the number according to rounding_mode given the lost
1231      fraction.  */
1232 
1233   /* As specified in IEEE 754, since we do not trap we do not report
1234      underflow for exact results.  */
1235   if (lost_fraction == lfExactlyZero) {
1236     /* Canonicalize zeroes.  */
1237     if (omsb == 0)
1238       category = fcZero;
1239 
1240     return opOK;
1241   }
1242 
1243   /* Increment the significand if we're rounding away from zero.  */
1244   if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
1245     if (omsb == 0)
1246       exponent = semantics->minExponent;
1247 
1248     incrementSignificand();
1249     omsb = significandMSB() + 1;
1250 
1251     /* Did the significand increment overflow?  */
1252     if (omsb == (unsigned) semantics->precision + 1) {
1253       /* Renormalize by incrementing the exponent and shifting our
1254          significand right one.  However if we already have the
1255          maximum exponent we overflow to infinity.  */
1256       if (exponent == semantics->maxExponent) {
1257         category = fcInfinity;
1258 
1259         return (opStatus) (opOverflow | opInexact);
1260       }
1261 
1262       shiftSignificandRight(1);
1263 
1264       return opInexact;
1265     }
1266   }
1267 
1268   /* The normal case - we were and are not denormal, and any
1269      significand increment above didn't overflow.  */
1270   if (omsb == semantics->precision)
1271     return opInexact;
1272 
1273   /* We have a non-zero denormal.  */
1274   assert(omsb < semantics->precision);
1275 
1276   /* Canonicalize zeroes.  */
1277   if (omsb == 0)
1278     category = fcZero;
1279 
1280   /* The fcZero case is a denormal that underflowed to zero.  */
1281   return (opStatus) (opUnderflow | opInexact);
1282 }
1283 
1284 APFloat::opStatus
1285 APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
1286 {
1287   switch (convolve(category, rhs.category)) {
1288   default:
1289     llvm_unreachable(0);
1290 
1291   case convolve(fcNaN, fcZero):
1292   case convolve(fcNaN, fcNormal):
1293   case convolve(fcNaN, fcInfinity):
1294   case convolve(fcNaN, fcNaN):
1295   case convolve(fcNormal, fcZero):
1296   case convolve(fcInfinity, fcNormal):
1297   case convolve(fcInfinity, fcZero):
1298     return opOK;
1299 
1300   case convolve(fcZero, fcNaN):
1301   case convolve(fcNormal, fcNaN):
1302   case convolve(fcInfinity, fcNaN):
1303     category = fcNaN;
1304     copySignificand(rhs);
1305     return opOK;
1306 
1307   case convolve(fcNormal, fcInfinity):
1308   case convolve(fcZero, fcInfinity):
1309     category = fcInfinity;
1310     sign = rhs.sign ^ subtract;
1311     return opOK;
1312 
1313   case convolve(fcZero, fcNormal):
1314     assign(rhs);
1315     sign = rhs.sign ^ subtract;
1316     return opOK;
1317 
1318   case convolve(fcZero, fcZero):
1319     /* Sign depends on rounding mode; handled by caller.  */
1320     return opOK;
1321 
1322   case convolve(fcInfinity, fcInfinity):
1323     /* Differently signed infinities can only be validly
1324        subtracted.  */
1325     if (((sign ^ rhs.sign)!=0) != subtract) {
1326       makeNaN();
1327       return opInvalidOp;
1328     }
1329 
1330     return opOK;
1331 
1332   case convolve(fcNormal, fcNormal):
1333     return opDivByZero;
1334   }
1335 }
1336 
1337 /* Add or subtract two normal numbers.  */
1338 lostFraction
1339 APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
1340 {
1341   integerPart carry;
1342   lostFraction lost_fraction;
1343   int bits;
1344 
1345   /* Determine if the operation on the absolute values is effectively
1346      an addition or subtraction.  */
1347   subtract ^= (sign ^ rhs.sign) ? true : false;
1348 
1349   /* Are we bigger exponent-wise than the RHS?  */
1350   bits = exponent - rhs.exponent;
1351 
1352   /* Subtraction is more subtle than one might naively expect.  */
1353   if (subtract) {
1354     APFloat temp_rhs(rhs);
1355     bool reverse;
1356 
1357     if (bits == 0) {
1358       reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
1359       lost_fraction = lfExactlyZero;
1360     } else if (bits > 0) {
1361       lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
1362       shiftSignificandLeft(1);
1363       reverse = false;
1364     } else {
1365       lost_fraction = shiftSignificandRight(-bits - 1);
1366       temp_rhs.shiftSignificandLeft(1);
1367       reverse = true;
1368     }
1369 
1370     if (reverse) {
1371       carry = temp_rhs.subtractSignificand
1372         (*this, lost_fraction != lfExactlyZero);
1373       copySignificand(temp_rhs);
1374       sign = !sign;
1375     } else {
1376       carry = subtractSignificand
1377         (temp_rhs, lost_fraction != lfExactlyZero);
1378     }
1379 
1380     /* Invert the lost fraction - it was on the RHS and
1381        subtracted.  */
1382     if (lost_fraction == lfLessThanHalf)
1383       lost_fraction = lfMoreThanHalf;
1384     else if (lost_fraction == lfMoreThanHalf)
1385       lost_fraction = lfLessThanHalf;
1386 
1387     /* The code above is intended to ensure that no borrow is
1388        necessary.  */
1389     assert(!carry);
1390   } else {
1391     if (bits > 0) {
1392       APFloat temp_rhs(rhs);
1393 
1394       lost_fraction = temp_rhs.shiftSignificandRight(bits);
1395       carry = addSignificand(temp_rhs);
1396     } else {
1397       lost_fraction = shiftSignificandRight(-bits);
1398       carry = addSignificand(rhs);
1399     }
1400 
1401     /* We have a guard bit; generating a carry cannot happen.  */
1402     assert(!carry);
1403   }
1404 
1405   return lost_fraction;
1406 }
1407 
1408 APFloat::opStatus
1409 APFloat::multiplySpecials(const APFloat &rhs)
1410 {
1411   switch (convolve(category, rhs.category)) {
1412   default:
1413     llvm_unreachable(0);
1414 
1415   case convolve(fcNaN, fcZero):
1416   case convolve(fcNaN, fcNormal):
1417   case convolve(fcNaN, fcInfinity):
1418   case convolve(fcNaN, fcNaN):
1419     return opOK;
1420 
1421   case convolve(fcZero, fcNaN):
1422   case convolve(fcNormal, fcNaN):
1423   case convolve(fcInfinity, fcNaN):
1424     category = fcNaN;
1425     copySignificand(rhs);
1426     return opOK;
1427 
1428   case convolve(fcNormal, fcInfinity):
1429   case convolve(fcInfinity, fcNormal):
1430   case convolve(fcInfinity, fcInfinity):
1431     category = fcInfinity;
1432     return opOK;
1433 
1434   case convolve(fcZero, fcNormal):
1435   case convolve(fcNormal, fcZero):
1436   case convolve(fcZero, fcZero):
1437     category = fcZero;
1438     return opOK;
1439 
1440   case convolve(fcZero, fcInfinity):
1441   case convolve(fcInfinity, fcZero):
1442     makeNaN();
1443     return opInvalidOp;
1444 
1445   case convolve(fcNormal, fcNormal):
1446     return opOK;
1447   }
1448 }
1449 
1450 APFloat::opStatus
1451 APFloat::divideSpecials(const APFloat &rhs)
1452 {
1453   switch (convolve(category, rhs.category)) {
1454   default:
1455     llvm_unreachable(0);
1456 
1457   case convolve(fcNaN, fcZero):
1458   case convolve(fcNaN, fcNormal):
1459   case convolve(fcNaN, fcInfinity):
1460   case convolve(fcNaN, fcNaN):
1461   case convolve(fcInfinity, fcZero):
1462   case convolve(fcInfinity, fcNormal):
1463   case convolve(fcZero, fcInfinity):
1464   case convolve(fcZero, fcNormal):
1465     return opOK;
1466 
1467   case convolve(fcZero, fcNaN):
1468   case convolve(fcNormal, fcNaN):
1469   case convolve(fcInfinity, fcNaN):
1470     category = fcNaN;
1471     copySignificand(rhs);
1472     return opOK;
1473 
1474   case convolve(fcNormal, fcInfinity):
1475     category = fcZero;
1476     return opOK;
1477 
1478   case convolve(fcNormal, fcZero):
1479     category = fcInfinity;
1480     return opDivByZero;
1481 
1482   case convolve(fcInfinity, fcInfinity):
1483   case convolve(fcZero, fcZero):
1484     makeNaN();
1485     return opInvalidOp;
1486 
1487   case convolve(fcNormal, fcNormal):
1488     return opOK;
1489   }
1490 }
1491 
1492 APFloat::opStatus
1493 APFloat::modSpecials(const APFloat &rhs)
1494 {
1495   switch (convolve(category, rhs.category)) {
1496   default:
1497     llvm_unreachable(0);
1498 
1499   case convolve(fcNaN, fcZero):
1500   case convolve(fcNaN, fcNormal):
1501   case convolve(fcNaN, fcInfinity):
1502   case convolve(fcNaN, fcNaN):
1503   case convolve(fcZero, fcInfinity):
1504   case convolve(fcZero, fcNormal):
1505   case convolve(fcNormal, fcInfinity):
1506     return opOK;
1507 
1508   case convolve(fcZero, fcNaN):
1509   case convolve(fcNormal, fcNaN):
1510   case convolve(fcInfinity, fcNaN):
1511     category = fcNaN;
1512     copySignificand(rhs);
1513     return opOK;
1514 
1515   case convolve(fcNormal, fcZero):
1516   case convolve(fcInfinity, fcZero):
1517   case convolve(fcInfinity, fcNormal):
1518   case convolve(fcInfinity, fcInfinity):
1519   case convolve(fcZero, fcZero):
1520     makeNaN();
1521     return opInvalidOp;
1522 
1523   case convolve(fcNormal, fcNormal):
1524     return opOK;
1525   }
1526 }
1527 
1528 /* Change sign.  */
1529 void
1530 APFloat::changeSign()
1531 {
1532   /* Look mummy, this one's easy.  */
1533   sign = !sign;
1534 }
1535 
1536 void
1537 APFloat::clearSign()
1538 {
1539   /* So is this one. */
1540   sign = 0;
1541 }
1542 
1543 void
1544 APFloat::copySign(const APFloat &rhs)
1545 {
1546   /* And this one. */
1547   sign = rhs.sign;
1548 }
1549 
1550 /* Normalized addition or subtraction.  */
1551 APFloat::opStatus
1552 APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
1553                        bool subtract)
1554 {
1555   opStatus fs;
1556 
1557   assertArithmeticOK(*semantics);
1558 
1559   fs = addOrSubtractSpecials(rhs, subtract);
1560 
1561   /* This return code means it was not a simple case.  */
1562   if (fs == opDivByZero) {
1563     lostFraction lost_fraction;
1564 
1565     lost_fraction = addOrSubtractSignificand(rhs, subtract);
1566     fs = normalize(rounding_mode, lost_fraction);
1567 
1568     /* Can only be zero if we lost no fraction.  */
1569     assert(category != fcZero || lost_fraction == lfExactlyZero);
1570   }
1571 
1572   /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1573      positive zero unless rounding to minus infinity, except that
1574      adding two like-signed zeroes gives that zero.  */
1575   if (category == fcZero) {
1576     if (rhs.category != fcZero || (sign == rhs.sign) == subtract)
1577       sign = (rounding_mode == rmTowardNegative);
1578   }
1579 
1580   return fs;
1581 }
1582 
1583 /* Normalized addition.  */
1584 APFloat::opStatus
1585 APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
1586 {
1587   return addOrSubtract(rhs, rounding_mode, false);
1588 }
1589 
1590 /* Normalized subtraction.  */
1591 APFloat::opStatus
1592 APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
1593 {
1594   return addOrSubtract(rhs, rounding_mode, true);
1595 }
1596 
1597 /* Normalized multiply.  */
1598 APFloat::opStatus
1599 APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
1600 {
1601   opStatus fs;
1602 
1603   assertArithmeticOK(*semantics);
1604   sign ^= rhs.sign;
1605   fs = multiplySpecials(rhs);
1606 
1607   if (category == fcNormal) {
1608     lostFraction lost_fraction = multiplySignificand(rhs, 0);
1609     fs = normalize(rounding_mode, lost_fraction);
1610     if (lost_fraction != lfExactlyZero)
1611       fs = (opStatus) (fs | opInexact);
1612   }
1613 
1614   return fs;
1615 }
1616 
1617 /* Normalized divide.  */
1618 APFloat::opStatus
1619 APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
1620 {
1621   opStatus fs;
1622 
1623   assertArithmeticOK(*semantics);
1624   sign ^= rhs.sign;
1625   fs = divideSpecials(rhs);
1626 
1627   if (category == fcNormal) {
1628     lostFraction lost_fraction = divideSignificand(rhs);
1629     fs = normalize(rounding_mode, lost_fraction);
1630     if (lost_fraction != lfExactlyZero)
1631       fs = (opStatus) (fs | opInexact);
1632   }
1633 
1634   return fs;
1635 }
1636 
1637 /* Normalized remainder.  This is not currently correct in all cases.  */
1638 APFloat::opStatus
1639 APFloat::remainder(const APFloat &rhs)
1640 {
1641   opStatus fs;
1642   APFloat V = *this;
1643   unsigned int origSign = sign;
1644 
1645   assertArithmeticOK(*semantics);
1646   fs = V.divide(rhs, rmNearestTiesToEven);
1647   if (fs == opDivByZero)
1648     return fs;
1649 
1650   int parts = partCount();
1651   integerPart *x = new integerPart[parts];
1652   bool ignored;
1653   fs = V.convertToInteger(x, parts * integerPartWidth, true,
1654                           rmNearestTiesToEven, &ignored);
1655   if (fs==opInvalidOp)
1656     return fs;
1657 
1658   fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
1659                                         rmNearestTiesToEven);
1660   assert(fs==opOK);   // should always work
1661 
1662   fs = V.multiply(rhs, rmNearestTiesToEven);
1663   assert(fs==opOK || fs==opInexact);   // should not overflow or underflow
1664 
1665   fs = subtract(V, rmNearestTiesToEven);
1666   assert(fs==opOK || fs==opInexact);   // likewise
1667 
1668   if (isZero())
1669     sign = origSign;    // IEEE754 requires this
1670   delete[] x;
1671   return fs;
1672 }
1673 
1674 /* Normalized llvm frem (C fmod).
1675    This is not currently correct in all cases.  */
1676 APFloat::opStatus
1677 APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
1678 {
1679   opStatus fs;
1680   assertArithmeticOK(*semantics);
1681   fs = modSpecials(rhs);
1682 
1683   if (category == fcNormal && rhs.category == fcNormal) {
1684     APFloat V = *this;
1685     unsigned int origSign = sign;
1686 
1687     fs = V.divide(rhs, rmNearestTiesToEven);
1688     if (fs == opDivByZero)
1689       return fs;
1690 
1691     int parts = partCount();
1692     integerPart *x = new integerPart[parts];
1693     bool ignored;
1694     fs = V.convertToInteger(x, parts * integerPartWidth, true,
1695                             rmTowardZero, &ignored);
1696     if (fs==opInvalidOp)
1697       return fs;
1698 
1699     fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
1700                                           rmNearestTiesToEven);
1701     assert(fs==opOK);   // should always work
1702 
1703     fs = V.multiply(rhs, rounding_mode);
1704     assert(fs==opOK || fs==opInexact);   // should not overflow or underflow
1705 
1706     fs = subtract(V, rounding_mode);
1707     assert(fs==opOK || fs==opInexact);   // likewise
1708 
1709     if (isZero())
1710       sign = origSign;    // IEEE754 requires this
1711     delete[] x;
1712   }
1713   return fs;
1714 }
1715 
1716 /* Normalized fused-multiply-add.  */
1717 APFloat::opStatus
1718 APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
1719                           const APFloat &addend,
1720                           roundingMode rounding_mode)
1721 {
1722   opStatus fs;
1723 
1724   assertArithmeticOK(*semantics);
1725 
1726   /* Post-multiplication sign, before addition.  */
1727   sign ^= multiplicand.sign;
1728 
1729   /* If and only if all arguments are normal do we need to do an
1730      extended-precision calculation.  */
1731   if (category == fcNormal &&
1732       multiplicand.category == fcNormal &&
1733       addend.category == fcNormal) {
1734     lostFraction lost_fraction;
1735 
1736     lost_fraction = multiplySignificand(multiplicand, &addend);
1737     fs = normalize(rounding_mode, lost_fraction);
1738     if (lost_fraction != lfExactlyZero)
1739       fs = (opStatus) (fs | opInexact);
1740 
1741     /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1742        positive zero unless rounding to minus infinity, except that
1743        adding two like-signed zeroes gives that zero.  */
1744     if (category == fcZero && sign != addend.sign)
1745       sign = (rounding_mode == rmTowardNegative);
1746   } else {
1747     fs = multiplySpecials(multiplicand);
1748 
1749     /* FS can only be opOK or opInvalidOp.  There is no more work
1750        to do in the latter case.  The IEEE-754R standard says it is
1751        implementation-defined in this case whether, if ADDEND is a
1752        quiet NaN, we raise invalid op; this implementation does so.
1753 
1754        If we need to do the addition we can do so with normal
1755        precision.  */
1756     if (fs == opOK)
1757       fs = addOrSubtract(addend, rounding_mode, false);
1758   }
1759 
1760   return fs;
1761 }
1762 
1763 /* Comparison requires normalized numbers.  */
1764 APFloat::cmpResult
1765 APFloat::compare(const APFloat &rhs) const
1766 {
1767   cmpResult result;
1768 
1769   assertArithmeticOK(*semantics);
1770   assert(semantics == rhs.semantics);
1771 
1772   switch (convolve(category, rhs.category)) {
1773   default:
1774     llvm_unreachable(0);
1775 
1776   case convolve(fcNaN, fcZero):
1777   case convolve(fcNaN, fcNormal):
1778   case convolve(fcNaN, fcInfinity):
1779   case convolve(fcNaN, fcNaN):
1780   case convolve(fcZero, fcNaN):
1781   case convolve(fcNormal, fcNaN):
1782   case convolve(fcInfinity, fcNaN):
1783     return cmpUnordered;
1784 
1785   case convolve(fcInfinity, fcNormal):
1786   case convolve(fcInfinity, fcZero):
1787   case convolve(fcNormal, fcZero):
1788     if (sign)
1789       return cmpLessThan;
1790     else
1791       return cmpGreaterThan;
1792 
1793   case convolve(fcNormal, fcInfinity):
1794   case convolve(fcZero, fcInfinity):
1795   case convolve(fcZero, fcNormal):
1796     if (rhs.sign)
1797       return cmpGreaterThan;
1798     else
1799       return cmpLessThan;
1800 
1801   case convolve(fcInfinity, fcInfinity):
1802     if (sign == rhs.sign)
1803       return cmpEqual;
1804     else if (sign)
1805       return cmpLessThan;
1806     else
1807       return cmpGreaterThan;
1808 
1809   case convolve(fcZero, fcZero):
1810     return cmpEqual;
1811 
1812   case convolve(fcNormal, fcNormal):
1813     break;
1814   }
1815 
1816   /* Two normal numbers.  Do they have the same sign?  */
1817   if (sign != rhs.sign) {
1818     if (sign)
1819       result = cmpLessThan;
1820     else
1821       result = cmpGreaterThan;
1822   } else {
1823     /* Compare absolute values; invert result if negative.  */
1824     result = compareAbsoluteValue(rhs);
1825 
1826     if (sign) {
1827       if (result == cmpLessThan)
1828         result = cmpGreaterThan;
1829       else if (result == cmpGreaterThan)
1830         result = cmpLessThan;
1831     }
1832   }
1833 
1834   return result;
1835 }
1836 
1837 /// APFloat::convert - convert a value of one floating point type to another.
1838 /// The return value corresponds to the IEEE754 exceptions.  *losesInfo
1839 /// records whether the transformation lost information, i.e. whether
1840 /// converting the result back to the original type will produce the
1841 /// original value (this is almost the same as return value==fsOK, but there
1842 /// are edge cases where this is not so).
1843 
1844 APFloat::opStatus
1845 APFloat::convert(const fltSemantics &toSemantics,
1846                  roundingMode rounding_mode, bool *losesInfo)
1847 {
1848   lostFraction lostFraction;
1849   unsigned int newPartCount, oldPartCount;
1850   opStatus fs;
1851 
1852   assertArithmeticOK(*semantics);
1853   assertArithmeticOK(toSemantics);
1854   lostFraction = lfExactlyZero;
1855   newPartCount = partCountForBits(toSemantics.precision + 1);
1856   oldPartCount = partCount();
1857 
1858   /* Handle storage complications.  If our new form is wider,
1859      re-allocate our bit pattern into wider storage.  If it is
1860      narrower, we ignore the excess parts, but if narrowing to a
1861      single part we need to free the old storage.
1862      Be careful not to reference significandParts for zeroes
1863      and infinities, since it aborts.  */
1864   if (newPartCount > oldPartCount) {
1865     integerPart *newParts;
1866     newParts = new integerPart[newPartCount];
1867     APInt::tcSet(newParts, 0, newPartCount);
1868     if (category==fcNormal || category==fcNaN)
1869       APInt::tcAssign(newParts, significandParts(), oldPartCount);
1870     freeSignificand();
1871     significand.parts = newParts;
1872   } else if (newPartCount < oldPartCount) {
1873     /* Capture any lost fraction through truncation of parts so we get
1874        correct rounding whilst normalizing.  */
1875     if (category==fcNormal)
1876       lostFraction = lostFractionThroughTruncation
1877         (significandParts(), oldPartCount, toSemantics.precision);
1878     if (newPartCount == 1) {
1879         integerPart newPart = 0;
1880         if (category==fcNormal || category==fcNaN)
1881           newPart = significandParts()[0];
1882         freeSignificand();
1883         significand.part = newPart;
1884     }
1885   }
1886 
1887   if (category == fcNormal) {
1888     /* Re-interpret our bit-pattern.  */
1889     exponent += toSemantics.precision - semantics->precision;
1890     semantics = &toSemantics;
1891     fs = normalize(rounding_mode, lostFraction);
1892     *losesInfo = (fs != opOK);
1893   } else if (category == fcNaN) {
1894     int shift = toSemantics.precision - semantics->precision;
1895     // Do this now so significandParts gets the right answer
1896     const fltSemantics *oldSemantics = semantics;
1897     semantics = &toSemantics;
1898     *losesInfo = false;
1899     // No normalization here, just truncate
1900     if (shift>0)
1901       APInt::tcShiftLeft(significandParts(), newPartCount, shift);
1902     else if (shift < 0) {
1903       unsigned ushift = -shift;
1904       // Figure out if we are losing information.  This happens
1905       // if are shifting out something other than 0s, or if the x87 long
1906       // double input did not have its integer bit set (pseudo-NaN), or if the
1907       // x87 long double input did not have its QNan bit set (because the x87
1908       // hardware sets this bit when converting a lower-precision NaN to
1909       // x87 long double).
1910       if (APInt::tcLSB(significandParts(), newPartCount) < ushift)
1911         *losesInfo = true;
1912       if (oldSemantics == &APFloat::x87DoubleExtended &&
1913           (!(*significandParts() & 0x8000000000000000ULL) ||
1914            !(*significandParts() & 0x4000000000000000ULL)))
1915         *losesInfo = true;
1916       APInt::tcShiftRight(significandParts(), newPartCount, ushift);
1917     }
1918     // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
1919     // does not give you back the same bits.  This is dubious, and we
1920     // don't currently do it.  You're really supposed to get
1921     // an invalid operation signal at runtime, but nobody does that.
1922     fs = opOK;
1923   } else {
1924     semantics = &toSemantics;
1925     fs = opOK;
1926     *losesInfo = false;
1927   }
1928 
1929   return fs;
1930 }
1931 
1932 /* Convert a floating point number to an integer according to the
1933    rounding mode.  If the rounded integer value is out of range this
1934    returns an invalid operation exception and the contents of the
1935    destination parts are unspecified.  If the rounded value is in
1936    range but the floating point number is not the exact integer, the C
1937    standard doesn't require an inexact exception to be raised.  IEEE
1938    854 does require it so we do that.
1939 
1940    Note that for conversions to integer type the C standard requires
1941    round-to-zero to always be used.  */
1942 APFloat::opStatus
1943 APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
1944                                       bool isSigned,
1945                                       roundingMode rounding_mode,
1946                                       bool *isExact) const
1947 {
1948   lostFraction lost_fraction;
1949   const integerPart *src;
1950   unsigned int dstPartsCount, truncatedBits;
1951 
1952   assertArithmeticOK(*semantics);
1953 
1954   *isExact = false;
1955 
1956   /* Handle the three special cases first.  */
1957   if (category == fcInfinity || category == fcNaN)
1958     return opInvalidOp;
1959 
1960   dstPartsCount = partCountForBits(width);
1961 
1962   if (category == fcZero) {
1963     APInt::tcSet(parts, 0, dstPartsCount);
1964     // Negative zero can't be represented as an int.
1965     *isExact = !sign;
1966     return opOK;
1967   }
1968 
1969   src = significandParts();
1970 
1971   /* Step 1: place our absolute value, with any fraction truncated, in
1972      the destination.  */
1973   if (exponent < 0) {
1974     /* Our absolute value is less than one; truncate everything.  */
1975     APInt::tcSet(parts, 0, dstPartsCount);
1976     /* For exponent -1 the integer bit represents .5, look at that.
1977        For smaller exponents leftmost truncated bit is 0. */
1978     truncatedBits = semantics->precision -1U - exponent;
1979   } else {
1980     /* We want the most significant (exponent + 1) bits; the rest are
1981        truncated.  */
1982     unsigned int bits = exponent + 1U;
1983 
1984     /* Hopelessly large in magnitude?  */
1985     if (bits > width)
1986       return opInvalidOp;
1987 
1988     if (bits < semantics->precision) {
1989       /* We truncate (semantics->precision - bits) bits.  */
1990       truncatedBits = semantics->precision - bits;
1991       APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits);
1992     } else {
1993       /* We want at least as many bits as are available.  */
1994       APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0);
1995       APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision);
1996       truncatedBits = 0;
1997     }
1998   }
1999 
2000   /* Step 2: work out any lost fraction, and increment the absolute
2001      value if we would round away from zero.  */
2002   if (truncatedBits) {
2003     lost_fraction = lostFractionThroughTruncation(src, partCount(),
2004                                                   truncatedBits);
2005     if (lost_fraction != lfExactlyZero &&
2006         roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
2007       if (APInt::tcIncrement(parts, dstPartsCount))
2008         return opInvalidOp;     /* Overflow.  */
2009     }
2010   } else {
2011     lost_fraction = lfExactlyZero;
2012   }
2013 
2014   /* Step 3: check if we fit in the destination.  */
2015   unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1;
2016 
2017   if (sign) {
2018     if (!isSigned) {
2019       /* Negative numbers cannot be represented as unsigned.  */
2020       if (omsb != 0)
2021         return opInvalidOp;
2022     } else {
2023       /* It takes omsb bits to represent the unsigned integer value.
2024          We lose a bit for the sign, but care is needed as the
2025          maximally negative integer is a special case.  */
2026       if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb)
2027         return opInvalidOp;
2028 
2029       /* This case can happen because of rounding.  */
2030       if (omsb > width)
2031         return opInvalidOp;
2032     }
2033 
2034     APInt::tcNegate (parts, dstPartsCount);
2035   } else {
2036     if (omsb >= width + !isSigned)
2037       return opInvalidOp;
2038   }
2039 
2040   if (lost_fraction == lfExactlyZero) {
2041     *isExact = true;
2042     return opOK;
2043   } else
2044     return opInexact;
2045 }
2046 
2047 /* Same as convertToSignExtendedInteger, except we provide
2048    deterministic values in case of an invalid operation exception,
2049    namely zero for NaNs and the minimal or maximal value respectively
2050    for underflow or overflow.
2051    The *isExact output tells whether the result is exact, in the sense
2052    that converting it back to the original floating point type produces
2053    the original value.  This is almost equivalent to result==opOK,
2054    except for negative zeroes.
2055 */
2056 APFloat::opStatus
2057 APFloat::convertToInteger(integerPart *parts, unsigned int width,
2058                           bool isSigned,
2059                           roundingMode rounding_mode, bool *isExact) const
2060 {
2061   opStatus fs;
2062 
2063   fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode,
2064                                     isExact);
2065 
2066   if (fs == opInvalidOp) {
2067     unsigned int bits, dstPartsCount;
2068 
2069     dstPartsCount = partCountForBits(width);
2070 
2071     if (category == fcNaN)
2072       bits = 0;
2073     else if (sign)
2074       bits = isSigned;
2075     else
2076       bits = width - isSigned;
2077 
2078     APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits);
2079     if (sign && isSigned)
2080       APInt::tcShiftLeft(parts, dstPartsCount, width - 1);
2081   }
2082 
2083   return fs;
2084 }
2085 
2086 /* Convert an unsigned integer SRC to a floating point number,
2087    rounding according to ROUNDING_MODE.  The sign of the floating
2088    point number is not modified.  */
2089 APFloat::opStatus
2090 APFloat::convertFromUnsignedParts(const integerPart *src,
2091                                   unsigned int srcCount,
2092                                   roundingMode rounding_mode)
2093 {
2094   unsigned int omsb, precision, dstCount;
2095   integerPart *dst;
2096   lostFraction lost_fraction;
2097 
2098   assertArithmeticOK(*semantics);
2099   category = fcNormal;
2100   omsb = APInt::tcMSB(src, srcCount) + 1;
2101   dst = significandParts();
2102   dstCount = partCount();
2103   precision = semantics->precision;
2104 
2105   /* We want the most significant PRECISON bits of SRC.  There may not
2106      be that many; extract what we can.  */
2107   if (precision <= omsb) {
2108     exponent = omsb - 1;
2109     lost_fraction = lostFractionThroughTruncation(src, srcCount,
2110                                                   omsb - precision);
2111     APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
2112   } else {
2113     exponent = precision - 1;
2114     lost_fraction = lfExactlyZero;
2115     APInt::tcExtract(dst, dstCount, src, omsb, 0);
2116   }
2117 
2118   return normalize(rounding_mode, lost_fraction);
2119 }
2120 
2121 APFloat::opStatus
2122 APFloat::convertFromAPInt(const APInt &Val,
2123                           bool isSigned,
2124                           roundingMode rounding_mode)
2125 {
2126   unsigned int partCount = Val.getNumWords();
2127   APInt api = Val;
2128 
2129   sign = false;
2130   if (isSigned && api.isNegative()) {
2131     sign = true;
2132     api = -api;
2133   }
2134 
2135   return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
2136 }
2137 
2138 /* Convert a two's complement integer SRC to a floating point number,
2139    rounding according to ROUNDING_MODE.  ISSIGNED is true if the
2140    integer is signed, in which case it must be sign-extended.  */
2141 APFloat::opStatus
2142 APFloat::convertFromSignExtendedInteger(const integerPart *src,
2143                                         unsigned int srcCount,
2144                                         bool isSigned,
2145                                         roundingMode rounding_mode)
2146 {
2147   opStatus status;
2148 
2149   assertArithmeticOK(*semantics);
2150   if (isSigned &&
2151       APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
2152     integerPart *copy;
2153 
2154     /* If we're signed and negative negate a copy.  */
2155     sign = true;
2156     copy = new integerPart[srcCount];
2157     APInt::tcAssign(copy, src, srcCount);
2158     APInt::tcNegate(copy, srcCount);
2159     status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
2160     delete [] copy;
2161   } else {
2162     sign = false;
2163     status = convertFromUnsignedParts(src, srcCount, rounding_mode);
2164   }
2165 
2166   return status;
2167 }
2168 
2169 /* FIXME: should this just take a const APInt reference?  */
2170 APFloat::opStatus
2171 APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
2172                                         unsigned int width, bool isSigned,
2173                                         roundingMode rounding_mode)
2174 {
2175   unsigned int partCount = partCountForBits(width);
2176   APInt api = APInt(width, partCount, parts);
2177 
2178   sign = false;
2179   if (isSigned && APInt::tcExtractBit(parts, width - 1)) {
2180     sign = true;
2181     api = -api;
2182   }
2183 
2184   return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
2185 }
2186 
2187 APFloat::opStatus
2188 APFloat::convertFromHexadecimalString(StringRef s, roundingMode rounding_mode)
2189 {
2190   lostFraction lost_fraction = lfExactlyZero;
2191   integerPart *significand;
2192   unsigned int bitPos, partsCount;
2193   StringRef::iterator dot, firstSignificantDigit;
2194 
2195   zeroSignificand();
2196   exponent = 0;
2197   category = fcNormal;
2198 
2199   significand = significandParts();
2200   partsCount = partCount();
2201   bitPos = partsCount * integerPartWidth;
2202 
2203   /* Skip leading zeroes and any (hexa)decimal point.  */
2204   StringRef::iterator begin = s.begin();
2205   StringRef::iterator end = s.end();
2206   StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot);
2207   firstSignificantDigit = p;
2208 
2209   for (; p != end;) {
2210     integerPart hex_value;
2211 
2212     if (*p == '.') {
2213       assert(dot == end && "String contains multiple dots");
2214       dot = p++;
2215       if (p == end) {
2216         break;
2217       }
2218     }
2219 
2220     hex_value = hexDigitValue(*p);
2221     if (hex_value == -1U) {
2222       break;
2223     }
2224 
2225     p++;
2226 
2227     if (p == end) {
2228       break;
2229     } else {
2230       /* Store the number whilst 4-bit nibbles remain.  */
2231       if (bitPos) {
2232         bitPos -= 4;
2233         hex_value <<= bitPos % integerPartWidth;
2234         significand[bitPos / integerPartWidth] |= hex_value;
2235       } else {
2236         lost_fraction = trailingHexadecimalFraction(p, end, hex_value);
2237         while (p != end && hexDigitValue(*p) != -1U)
2238           p++;
2239         break;
2240       }
2241     }
2242   }
2243 
2244   /* Hex floats require an exponent but not a hexadecimal point.  */
2245   assert(p != end && "Hex strings require an exponent");
2246   assert((*p == 'p' || *p == 'P') && "Invalid character in significand");
2247   assert(p != begin && "Significand has no digits");
2248   assert((dot == end || p - begin != 1) && "Significand has no digits");
2249 
2250   /* Ignore the exponent if we are zero.  */
2251   if (p != firstSignificantDigit) {
2252     int expAdjustment;
2253 
2254     /* Implicit hexadecimal point?  */
2255     if (dot == end)
2256       dot = p;
2257 
2258     /* Calculate the exponent adjustment implicit in the number of
2259        significant digits.  */
2260     expAdjustment = static_cast<int>(dot - firstSignificantDigit);
2261     if (expAdjustment < 0)
2262       expAdjustment++;
2263     expAdjustment = expAdjustment * 4 - 1;
2264 
2265     /* Adjust for writing the significand starting at the most
2266        significant nibble.  */
2267     expAdjustment += semantics->precision;
2268     expAdjustment -= partsCount * integerPartWidth;
2269 
2270     /* Adjust for the given exponent.  */
2271     exponent = totalExponent(p + 1, end, expAdjustment);
2272   }
2273 
2274   return normalize(rounding_mode, lost_fraction);
2275 }
2276 
2277 APFloat::opStatus
2278 APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
2279                                       unsigned sigPartCount, int exp,
2280                                       roundingMode rounding_mode)
2281 {
2282   unsigned int parts, pow5PartCount;
2283   fltSemantics calcSemantics = { 32767, -32767, 0, true };
2284   integerPart pow5Parts[maxPowerOfFiveParts];
2285   bool isNearest;
2286 
2287   isNearest = (rounding_mode == rmNearestTiesToEven ||
2288                rounding_mode == rmNearestTiesToAway);
2289 
2290   parts = partCountForBits(semantics->precision + 11);
2291 
2292   /* Calculate pow(5, abs(exp)).  */
2293   pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
2294 
2295   for (;; parts *= 2) {
2296     opStatus sigStatus, powStatus;
2297     unsigned int excessPrecision, truncatedBits;
2298 
2299     calcSemantics.precision = parts * integerPartWidth - 1;
2300     excessPrecision = calcSemantics.precision - semantics->precision;
2301     truncatedBits = excessPrecision;
2302 
2303     APFloat decSig(calcSemantics, fcZero, sign);
2304     APFloat pow5(calcSemantics, fcZero, false);
2305 
2306     sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
2307                                                 rmNearestTiesToEven);
2308     powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
2309                                               rmNearestTiesToEven);
2310     /* Add exp, as 10^n = 5^n * 2^n.  */
2311     decSig.exponent += exp;
2312 
2313     lostFraction calcLostFraction;
2314     integerPart HUerr, HUdistance;
2315     unsigned int powHUerr;
2316 
2317     if (exp >= 0) {
2318       /* multiplySignificand leaves the precision-th bit set to 1.  */
2319       calcLostFraction = decSig.multiplySignificand(pow5, NULL);
2320       powHUerr = powStatus != opOK;
2321     } else {
2322       calcLostFraction = decSig.divideSignificand(pow5);
2323       /* Denormal numbers have less precision.  */
2324       if (decSig.exponent < semantics->minExponent) {
2325         excessPrecision += (semantics->minExponent - decSig.exponent);
2326         truncatedBits = excessPrecision;
2327         if (excessPrecision > calcSemantics.precision)
2328           excessPrecision = calcSemantics.precision;
2329       }
2330       /* Extra half-ulp lost in reciprocal of exponent.  */
2331       powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
2332     }
2333 
2334     /* Both multiplySignificand and divideSignificand return the
2335        result with the integer bit set.  */
2336     assert(APInt::tcExtractBit
2337            (decSig.significandParts(), calcSemantics.precision - 1) == 1);
2338 
2339     HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
2340                        powHUerr);
2341     HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
2342                                       excessPrecision, isNearest);
2343 
2344     /* Are we guaranteed to round correctly if we truncate?  */
2345     if (HUdistance >= HUerr) {
2346       APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
2347                        calcSemantics.precision - excessPrecision,
2348                        excessPrecision);
2349       /* Take the exponent of decSig.  If we tcExtract-ed less bits
2350          above we must adjust our exponent to compensate for the
2351          implicit right shift.  */
2352       exponent = (decSig.exponent + semantics->precision
2353                   - (calcSemantics.precision - excessPrecision));
2354       calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
2355                                                        decSig.partCount(),
2356                                                        truncatedBits);
2357       return normalize(rounding_mode, calcLostFraction);
2358     }
2359   }
2360 }
2361 
2362 APFloat::opStatus
2363 APFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode)
2364 {
2365   decimalInfo D;
2366   opStatus fs;
2367 
2368   /* Scan the text.  */
2369   StringRef::iterator p = str.begin();
2370   interpretDecimal(p, str.end(), &D);
2371 
2372   /* Handle the quick cases.  First the case of no significant digits,
2373      i.e. zero, and then exponents that are obviously too large or too
2374      small.  Writing L for log 10 / log 2, a number d.ddddd*10^exp
2375      definitely overflows if
2376 
2377            (exp - 1) * L >= maxExponent
2378 
2379      and definitely underflows to zero where
2380 
2381            (exp + 1) * L <= minExponent - precision
2382 
2383      With integer arithmetic the tightest bounds for L are
2384 
2385            93/28 < L < 196/59            [ numerator <= 256 ]
2386            42039/12655 < L < 28738/8651  [ numerator <= 65536 ]
2387   */
2388 
2389   if (decDigitValue(*D.firstSigDigit) >= 10U) {
2390     category = fcZero;
2391     fs = opOK;
2392 
2393   /* Check whether the normalized exponent is high enough to overflow
2394      max during the log-rebasing in the max-exponent check below. */
2395   } else if (D.normalizedExponent - 1 > INT_MAX / 42039) {
2396     fs = handleOverflow(rounding_mode);
2397 
2398   /* If it wasn't, then it also wasn't high enough to overflow max
2399      during the log-rebasing in the min-exponent check.  Check that it
2400      won't overflow min in either check, then perform the min-exponent
2401      check. */
2402   } else if (D.normalizedExponent - 1 < INT_MIN / 42039 ||
2403              (D.normalizedExponent + 1) * 28738 <=
2404                8651 * (semantics->minExponent - (int) semantics->precision)) {
2405     /* Underflow to zero and round.  */
2406     zeroSignificand();
2407     fs = normalize(rounding_mode, lfLessThanHalf);
2408 
2409   /* We can finally safely perform the max-exponent check. */
2410   } else if ((D.normalizedExponent - 1) * 42039
2411              >= 12655 * semantics->maxExponent) {
2412     /* Overflow and round.  */
2413     fs = handleOverflow(rounding_mode);
2414   } else {
2415     integerPart *decSignificand;
2416     unsigned int partCount;
2417 
2418     /* A tight upper bound on number of bits required to hold an
2419        N-digit decimal integer is N * 196 / 59.  Allocate enough space
2420        to hold the full significand, and an extra part required by
2421        tcMultiplyPart.  */
2422     partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
2423     partCount = partCountForBits(1 + 196 * partCount / 59);
2424     decSignificand = new integerPart[partCount + 1];
2425     partCount = 0;
2426 
2427     /* Convert to binary efficiently - we do almost all multiplication
2428        in an integerPart.  When this would overflow do we do a single
2429        bignum multiplication, and then revert again to multiplication
2430        in an integerPart.  */
2431     do {
2432       integerPart decValue, val, multiplier;
2433 
2434       val = 0;
2435       multiplier = 1;
2436 
2437       do {
2438         if (*p == '.') {
2439           p++;
2440           if (p == str.end()) {
2441             break;
2442           }
2443         }
2444         decValue = decDigitValue(*p++);
2445         assert(decValue < 10U && "Invalid character in significand");
2446         multiplier *= 10;
2447         val = val * 10 + decValue;
2448         /* The maximum number that can be multiplied by ten with any
2449            digit added without overflowing an integerPart.  */
2450       } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
2451 
2452       /* Multiply out the current part.  */
2453       APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
2454                             partCount, partCount + 1, false);
2455 
2456       /* If we used another part (likely but not guaranteed), increase
2457          the count.  */
2458       if (decSignificand[partCount])
2459         partCount++;
2460     } while (p <= D.lastSigDigit);
2461 
2462     category = fcNormal;
2463     fs = roundSignificandWithExponent(decSignificand, partCount,
2464                                       D.exponent, rounding_mode);
2465 
2466     delete [] decSignificand;
2467   }
2468 
2469   return fs;
2470 }
2471 
2472 APFloat::opStatus
2473 APFloat::convertFromString(StringRef str, roundingMode rounding_mode)
2474 {
2475   assertArithmeticOK(*semantics);
2476   assert(!str.empty() && "Invalid string length");
2477 
2478   /* Handle a leading minus sign.  */
2479   StringRef::iterator p = str.begin();
2480   size_t slen = str.size();
2481   sign = *p == '-' ? 1 : 0;
2482   if (*p == '-' || *p == '+') {
2483     p++;
2484     slen--;
2485     assert(slen && "String has no digits");
2486   }
2487 
2488   if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
2489     assert(slen - 2 && "Invalid string");
2490     return convertFromHexadecimalString(StringRef(p + 2, slen - 2),
2491                                         rounding_mode);
2492   }
2493 
2494   return convertFromDecimalString(StringRef(p, slen), rounding_mode);
2495 }
2496 
2497 /* Write out a hexadecimal representation of the floating point value
2498    to DST, which must be of sufficient size, in the C99 form
2499    [-]0xh.hhhhp[+-]d.  Return the number of characters written,
2500    excluding the terminating NUL.
2501 
2502    If UPPERCASE, the output is in upper case, otherwise in lower case.
2503 
2504    HEXDIGITS digits appear altogether, rounding the value if
2505    necessary.  If HEXDIGITS is 0, the minimal precision to display the
2506    number precisely is used instead.  If nothing would appear after
2507    the decimal point it is suppressed.
2508 
2509    The decimal exponent is always printed and has at least one digit.
2510    Zero values display an exponent of zero.  Infinities and NaNs
2511    appear as "infinity" or "nan" respectively.
2512 
2513    The above rules are as specified by C99.  There is ambiguity about
2514    what the leading hexadecimal digit should be.  This implementation
2515    uses whatever is necessary so that the exponent is displayed as
2516    stored.  This implies the exponent will fall within the IEEE format
2517    range, and the leading hexadecimal digit will be 0 (for denormals),
2518    1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
2519    any other digits zero).
2520 */
2521 unsigned int
2522 APFloat::convertToHexString(char *dst, unsigned int hexDigits,
2523                             bool upperCase, roundingMode rounding_mode) const
2524 {
2525   char *p;
2526 
2527   assertArithmeticOK(*semantics);
2528 
2529   p = dst;
2530   if (sign)
2531     *dst++ = '-';
2532 
2533   switch (category) {
2534   case fcInfinity:
2535     memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
2536     dst += sizeof infinityL - 1;
2537     break;
2538 
2539   case fcNaN:
2540     memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
2541     dst += sizeof NaNU - 1;
2542     break;
2543 
2544   case fcZero:
2545     *dst++ = '0';
2546     *dst++ = upperCase ? 'X': 'x';
2547     *dst++ = '0';
2548     if (hexDigits > 1) {
2549       *dst++ = '.';
2550       memset (dst, '0', hexDigits - 1);
2551       dst += hexDigits - 1;
2552     }
2553     *dst++ = upperCase ? 'P': 'p';
2554     *dst++ = '0';
2555     break;
2556 
2557   case fcNormal:
2558     dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
2559     break;
2560   }
2561 
2562   *dst = 0;
2563 
2564   return static_cast<unsigned int>(dst - p);
2565 }
2566 
2567 /* Does the hard work of outputting the correctly rounded hexadecimal
2568    form of a normal floating point number with the specified number of
2569    hexadecimal digits.  If HEXDIGITS is zero the minimum number of
2570    digits necessary to print the value precisely is output.  */
2571 char *
2572 APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
2573                                   bool upperCase,
2574                                   roundingMode rounding_mode) const
2575 {
2576   unsigned int count, valueBits, shift, partsCount, outputDigits;
2577   const char *hexDigitChars;
2578   const integerPart *significand;
2579   char *p;
2580   bool roundUp;
2581 
2582   *dst++ = '0';
2583   *dst++ = upperCase ? 'X': 'x';
2584 
2585   roundUp = false;
2586   hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
2587 
2588   significand = significandParts();
2589   partsCount = partCount();
2590 
2591   /* +3 because the first digit only uses the single integer bit, so
2592      we have 3 virtual zero most-significant-bits.  */
2593   valueBits = semantics->precision + 3;
2594   shift = integerPartWidth - valueBits % integerPartWidth;
2595 
2596   /* The natural number of digits required ignoring trailing
2597      insignificant zeroes.  */
2598   outputDigits = (valueBits - significandLSB () + 3) / 4;
2599 
2600   /* hexDigits of zero means use the required number for the
2601      precision.  Otherwise, see if we are truncating.  If we are,
2602      find out if we need to round away from zero.  */
2603   if (hexDigits) {
2604     if (hexDigits < outputDigits) {
2605       /* We are dropping non-zero bits, so need to check how to round.
2606          "bits" is the number of dropped bits.  */
2607       unsigned int bits;
2608       lostFraction fraction;
2609 
2610       bits = valueBits - hexDigits * 4;
2611       fraction = lostFractionThroughTruncation (significand, partsCount, bits);
2612       roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
2613     }
2614     outputDigits = hexDigits;
2615   }
2616 
2617   /* Write the digits consecutively, and start writing in the location
2618      of the hexadecimal point.  We move the most significant digit
2619      left and add the hexadecimal point later.  */
2620   p = ++dst;
2621 
2622   count = (valueBits + integerPartWidth - 1) / integerPartWidth;
2623 
2624   while (outputDigits && count) {
2625     integerPart part;
2626 
2627     /* Put the most significant integerPartWidth bits in "part".  */
2628     if (--count == partsCount)
2629       part = 0;  /* An imaginary higher zero part.  */
2630     else
2631       part = significand[count] << shift;
2632 
2633     if (count && shift)
2634       part |= significand[count - 1] >> (integerPartWidth - shift);
2635 
2636     /* Convert as much of "part" to hexdigits as we can.  */
2637     unsigned int curDigits = integerPartWidth / 4;
2638 
2639     if (curDigits > outputDigits)
2640       curDigits = outputDigits;
2641     dst += partAsHex (dst, part, curDigits, hexDigitChars);
2642     outputDigits -= curDigits;
2643   }
2644 
2645   if (roundUp) {
2646     char *q = dst;
2647 
2648     /* Note that hexDigitChars has a trailing '0'.  */
2649     do {
2650       q--;
2651       *q = hexDigitChars[hexDigitValue (*q) + 1];
2652     } while (*q == '0');
2653     assert(q >= p);
2654   } else {
2655     /* Add trailing zeroes.  */
2656     memset (dst, '0', outputDigits);
2657     dst += outputDigits;
2658   }
2659 
2660   /* Move the most significant digit to before the point, and if there
2661      is something after the decimal point add it.  This must come
2662      after rounding above.  */
2663   p[-1] = p[0];
2664   if (dst -1 == p)
2665     dst--;
2666   else
2667     p[0] = '.';
2668 
2669   /* Finally output the exponent.  */
2670   *dst++ = upperCase ? 'P': 'p';
2671 
2672   return writeSignedDecimal (dst, exponent);
2673 }
2674 
2675 // For good performance it is desirable for different APFloats
2676 // to produce different integers.
2677 uint32_t
2678 APFloat::getHashValue() const
2679 {
2680   if (category==fcZero) return sign<<8 | semantics->precision ;
2681   else if (category==fcInfinity) return sign<<9 | semantics->precision;
2682   else if (category==fcNaN) return 1<<10 | semantics->precision;
2683   else {
2684     uint32_t hash = sign<<11 | semantics->precision | exponent<<12;
2685     const integerPart* p = significandParts();
2686     for (int i=partCount(); i>0; i--, p++)
2687       hash ^= ((uint32_t)*p) ^ (uint32_t)((*p)>>32);
2688     return hash;
2689   }
2690 }
2691 
2692 // Conversion from APFloat to/from host float/double.  It may eventually be
2693 // possible to eliminate these and have everybody deal with APFloats, but that
2694 // will take a while.  This approach will not easily extend to long double.
2695 // Current implementation requires integerPartWidth==64, which is correct at
2696 // the moment but could be made more general.
2697 
2698 // Denormals have exponent minExponent in APFloat, but minExponent-1 in
2699 // the actual IEEE respresentations.  We compensate for that here.
2700 
2701 APInt
2702 APFloat::convertF80LongDoubleAPFloatToAPInt() const
2703 {
2704   assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended);
2705   assert(partCount()==2);
2706 
2707   uint64_t myexponent, mysignificand;
2708 
2709   if (category==fcNormal) {
2710     myexponent = exponent+16383; //bias
2711     mysignificand = significandParts()[0];
2712     if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
2713       myexponent = 0;   // denormal
2714   } else if (category==fcZero) {
2715     myexponent = 0;
2716     mysignificand = 0;
2717   } else if (category==fcInfinity) {
2718     myexponent = 0x7fff;
2719     mysignificand = 0x8000000000000000ULL;
2720   } else {
2721     assert(category == fcNaN && "Unknown category");
2722     myexponent = 0x7fff;
2723     mysignificand = significandParts()[0];
2724   }
2725 
2726   uint64_t words[2];
2727   words[0] = mysignificand;
2728   words[1] =  ((uint64_t)(sign & 1) << 15) |
2729               (myexponent & 0x7fffLL);
2730   return APInt(80, 2, words);
2731 }
2732 
2733 APInt
2734 APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
2735 {
2736   assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble);
2737   assert(partCount()==2);
2738 
2739   uint64_t myexponent, mysignificand, myexponent2, mysignificand2;
2740 
2741   if (category==fcNormal) {
2742     myexponent = exponent + 1023; //bias
2743     myexponent2 = exponent2 + 1023;
2744     mysignificand = significandParts()[0];
2745     mysignificand2 = significandParts()[1];
2746     if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
2747       myexponent = 0;   // denormal
2748     if (myexponent2==1 && !(mysignificand2 & 0x10000000000000LL))
2749       myexponent2 = 0;   // denormal
2750   } else if (category==fcZero) {
2751     myexponent = 0;
2752     mysignificand = 0;
2753     myexponent2 = 0;
2754     mysignificand2 = 0;
2755   } else if (category==fcInfinity) {
2756     myexponent = 0x7ff;
2757     myexponent2 = 0;
2758     mysignificand = 0;
2759     mysignificand2 = 0;
2760   } else {
2761     assert(category == fcNaN && "Unknown category");
2762     myexponent = 0x7ff;
2763     mysignificand = significandParts()[0];
2764     myexponent2 = exponent2;
2765     mysignificand2 = significandParts()[1];
2766   }
2767 
2768   uint64_t words[2];
2769   words[0] =  ((uint64_t)(sign & 1) << 63) |
2770               ((myexponent & 0x7ff) <<  52) |
2771               (mysignificand & 0xfffffffffffffLL);
2772   words[1] =  ((uint64_t)(sign2 & 1) << 63) |
2773               ((myexponent2 & 0x7ff) <<  52) |
2774               (mysignificand2 & 0xfffffffffffffLL);
2775   return APInt(128, 2, words);
2776 }
2777 
2778 APInt
2779 APFloat::convertQuadrupleAPFloatToAPInt() const
2780 {
2781   assert(semantics == (const llvm::fltSemantics*)&IEEEquad);
2782   assert(partCount()==2);
2783 
2784   uint64_t myexponent, mysignificand, mysignificand2;
2785 
2786   if (category==fcNormal) {
2787     myexponent = exponent+16383; //bias
2788     mysignificand = significandParts()[0];
2789     mysignificand2 = significandParts()[1];
2790     if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL))
2791       myexponent = 0;   // denormal
2792   } else if (category==fcZero) {
2793     myexponent = 0;
2794     mysignificand = mysignificand2 = 0;
2795   } else if (category==fcInfinity) {
2796     myexponent = 0x7fff;
2797     mysignificand = mysignificand2 = 0;
2798   } else {
2799     assert(category == fcNaN && "Unknown category!");
2800     myexponent = 0x7fff;
2801     mysignificand = significandParts()[0];
2802     mysignificand2 = significandParts()[1];
2803   }
2804 
2805   uint64_t words[2];
2806   words[0] = mysignificand;
2807   words[1] = ((uint64_t)(sign & 1) << 63) |
2808              ((myexponent & 0x7fff) << 48) |
2809              (mysignificand2 & 0xffffffffffffLL);
2810 
2811   return APInt(128, 2, words);
2812 }
2813 
2814 APInt
2815 APFloat::convertDoubleAPFloatToAPInt() const
2816 {
2817   assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
2818   assert(partCount()==1);
2819 
2820   uint64_t myexponent, mysignificand;
2821 
2822   if (category==fcNormal) {
2823     myexponent = exponent+1023; //bias
2824     mysignificand = *significandParts();
2825     if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
2826       myexponent = 0;   // denormal
2827   } else if (category==fcZero) {
2828     myexponent = 0;
2829     mysignificand = 0;
2830   } else if (category==fcInfinity) {
2831     myexponent = 0x7ff;
2832     mysignificand = 0;
2833   } else {
2834     assert(category == fcNaN && "Unknown category!");
2835     myexponent = 0x7ff;
2836     mysignificand = *significandParts();
2837   }
2838 
2839   return APInt(64, ((((uint64_t)(sign & 1) << 63) |
2840                      ((myexponent & 0x7ff) <<  52) |
2841                      (mysignificand & 0xfffffffffffffLL))));
2842 }
2843 
2844 APInt
2845 APFloat::convertFloatAPFloatToAPInt() const
2846 {
2847   assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
2848   assert(partCount()==1);
2849 
2850   uint32_t myexponent, mysignificand;
2851 
2852   if (category==fcNormal) {
2853     myexponent = exponent+127; //bias
2854     mysignificand = (uint32_t)*significandParts();
2855     if (myexponent == 1 && !(mysignificand & 0x800000))
2856       myexponent = 0;   // denormal
2857   } else if (category==fcZero) {
2858     myexponent = 0;
2859     mysignificand = 0;
2860   } else if (category==fcInfinity) {
2861     myexponent = 0xff;
2862     mysignificand = 0;
2863   } else {
2864     assert(category == fcNaN && "Unknown category!");
2865     myexponent = 0xff;
2866     mysignificand = (uint32_t)*significandParts();
2867   }
2868 
2869   return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
2870                     (mysignificand & 0x7fffff)));
2871 }
2872 
2873 APInt
2874 APFloat::convertHalfAPFloatToAPInt() const
2875 {
2876   assert(semantics == (const llvm::fltSemantics*)&IEEEhalf);
2877   assert(partCount()==1);
2878 
2879   uint32_t myexponent, mysignificand;
2880 
2881   if (category==fcNormal) {
2882     myexponent = exponent+15; //bias
2883     mysignificand = (uint32_t)*significandParts();
2884     if (myexponent == 1 && !(mysignificand & 0x400))
2885       myexponent = 0;   // denormal
2886   } else if (category==fcZero) {
2887     myexponent = 0;
2888     mysignificand = 0;
2889   } else if (category==fcInfinity) {
2890     myexponent = 0x1f;
2891     mysignificand = 0;
2892   } else {
2893     assert(category == fcNaN && "Unknown category!");
2894     myexponent = 0x1f;
2895     mysignificand = (uint32_t)*significandParts();
2896   }
2897 
2898   return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) |
2899                     (mysignificand & 0x3ff)));
2900 }
2901 
2902 // This function creates an APInt that is just a bit map of the floating
2903 // point constant as it would appear in memory.  It is not a conversion,
2904 // and treating the result as a normal integer is unlikely to be useful.
2905 
2906 APInt
2907 APFloat::bitcastToAPInt() const
2908 {
2909   if (semantics == (const llvm::fltSemantics*)&IEEEhalf)
2910     return convertHalfAPFloatToAPInt();
2911 
2912   if (semantics == (const llvm::fltSemantics*)&IEEEsingle)
2913     return convertFloatAPFloatToAPInt();
2914 
2915   if (semantics == (const llvm::fltSemantics*)&IEEEdouble)
2916     return convertDoubleAPFloatToAPInt();
2917 
2918   if (semantics == (const llvm::fltSemantics*)&IEEEquad)
2919     return convertQuadrupleAPFloatToAPInt();
2920 
2921   if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble)
2922     return convertPPCDoubleDoubleAPFloatToAPInt();
2923 
2924   assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended &&
2925          "unknown format!");
2926   return convertF80LongDoubleAPFloatToAPInt();
2927 }
2928 
2929 float
2930 APFloat::convertToFloat() const
2931 {
2932   assert(semantics == (const llvm::fltSemantics*)&IEEEsingle &&
2933          "Float semantics are not IEEEsingle");
2934   APInt api = bitcastToAPInt();
2935   return api.bitsToFloat();
2936 }
2937 
2938 double
2939 APFloat::convertToDouble() const
2940 {
2941   assert(semantics == (const llvm::fltSemantics*)&IEEEdouble &&
2942          "Float semantics are not IEEEdouble");
2943   APInt api = bitcastToAPInt();
2944   return api.bitsToDouble();
2945 }
2946 
2947 /// Integer bit is explicit in this format.  Intel hardware (387 and later)
2948 /// does not support these bit patterns:
2949 ///  exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
2950 ///  exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
2951 ///  exponent = 0, integer bit 1 ("pseudodenormal")
2952 ///  exponent!=0 nor all 1's, integer bit 0 ("unnormal")
2953 /// At the moment, the first two are treated as NaNs, the second two as Normal.
2954 void
2955 APFloat::initFromF80LongDoubleAPInt(const APInt &api)
2956 {
2957   assert(api.getBitWidth()==80);
2958   uint64_t i1 = api.getRawData()[0];
2959   uint64_t i2 = api.getRawData()[1];
2960   uint64_t myexponent = (i2 & 0x7fff);
2961   uint64_t mysignificand = i1;
2962 
2963   initialize(&APFloat::x87DoubleExtended);
2964   assert(partCount()==2);
2965 
2966   sign = static_cast<unsigned int>(i2>>15);
2967   if (myexponent==0 && mysignificand==0) {
2968     // exponent, significand meaningless
2969     category = fcZero;
2970   } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
2971     // exponent, significand meaningless
2972     category = fcInfinity;
2973   } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) {
2974     // exponent meaningless
2975     category = fcNaN;
2976     significandParts()[0] = mysignificand;
2977     significandParts()[1] = 0;
2978   } else {
2979     category = fcNormal;
2980     exponent = myexponent - 16383;
2981     significandParts()[0] = mysignificand;
2982     significandParts()[1] = 0;
2983     if (myexponent==0)          // denormal
2984       exponent = -16382;
2985   }
2986 }
2987 
2988 void
2989 APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
2990 {
2991   assert(api.getBitWidth()==128);
2992   uint64_t i1 = api.getRawData()[0];
2993   uint64_t i2 = api.getRawData()[1];
2994   uint64_t myexponent = (i1 >> 52) & 0x7ff;
2995   uint64_t mysignificand = i1 & 0xfffffffffffffLL;
2996   uint64_t myexponent2 = (i2 >> 52) & 0x7ff;
2997   uint64_t mysignificand2 = i2 & 0xfffffffffffffLL;
2998 
2999   initialize(&APFloat::PPCDoubleDouble);
3000   assert(partCount()==2);
3001 
3002   sign = static_cast<unsigned int>(i1>>63);
3003   sign2 = static_cast<unsigned int>(i2>>63);
3004   if (myexponent==0 && mysignificand==0) {
3005     // exponent, significand meaningless
3006     // exponent2 and significand2 are required to be 0; we don't check
3007     category = fcZero;
3008   } else if (myexponent==0x7ff && mysignificand==0) {
3009     // exponent, significand meaningless
3010     // exponent2 and significand2 are required to be 0; we don't check
3011     category = fcInfinity;
3012   } else if (myexponent==0x7ff && mysignificand!=0) {
3013     // exponent meaningless.  So is the whole second word, but keep it
3014     // for determinism.
3015     category = fcNaN;
3016     exponent2 = myexponent2;
3017     significandParts()[0] = mysignificand;
3018     significandParts()[1] = mysignificand2;
3019   } else {
3020     category = fcNormal;
3021     // Note there is no category2; the second word is treated as if it is
3022     // fcNormal, although it might be something else considered by itself.
3023     exponent = myexponent - 1023;
3024     exponent2 = myexponent2 - 1023;
3025     significandParts()[0] = mysignificand;
3026     significandParts()[1] = mysignificand2;
3027     if (myexponent==0)          // denormal
3028       exponent = -1022;
3029     else
3030       significandParts()[0] |= 0x10000000000000LL;  // integer bit
3031     if (myexponent2==0)
3032       exponent2 = -1022;
3033     else
3034       significandParts()[1] |= 0x10000000000000LL;  // integer bit
3035   }
3036 }
3037 
3038 void
3039 APFloat::initFromQuadrupleAPInt(const APInt &api)
3040 {
3041   assert(api.getBitWidth()==128);
3042   uint64_t i1 = api.getRawData()[0];
3043   uint64_t i2 = api.getRawData()[1];
3044   uint64_t myexponent = (i2 >> 48) & 0x7fff;
3045   uint64_t mysignificand  = i1;
3046   uint64_t mysignificand2 = i2 & 0xffffffffffffLL;
3047 
3048   initialize(&APFloat::IEEEquad);
3049   assert(partCount()==2);
3050 
3051   sign = static_cast<unsigned int>(i2>>63);
3052   if (myexponent==0 &&
3053       (mysignificand==0 && mysignificand2==0)) {
3054     // exponent, significand meaningless
3055     category = fcZero;
3056   } else if (myexponent==0x7fff &&
3057              (mysignificand==0 && mysignificand2==0)) {
3058     // exponent, significand meaningless
3059     category = fcInfinity;
3060   } else if (myexponent==0x7fff &&
3061              (mysignificand!=0 || mysignificand2 !=0)) {
3062     // exponent meaningless
3063     category = fcNaN;
3064     significandParts()[0] = mysignificand;
3065     significandParts()[1] = mysignificand2;
3066   } else {
3067     category = fcNormal;
3068     exponent = myexponent - 16383;
3069     significandParts()[0] = mysignificand;
3070     significandParts()[1] = mysignificand2;
3071     if (myexponent==0)          // denormal
3072       exponent = -16382;
3073     else
3074       significandParts()[1] |= 0x1000000000000LL;  // integer bit
3075   }
3076 }
3077 
3078 void
3079 APFloat::initFromDoubleAPInt(const APInt &api)
3080 {
3081   assert(api.getBitWidth()==64);
3082   uint64_t i = *api.getRawData();
3083   uint64_t myexponent = (i >> 52) & 0x7ff;
3084   uint64_t mysignificand = i & 0xfffffffffffffLL;
3085 
3086   initialize(&APFloat::IEEEdouble);
3087   assert(partCount()==1);
3088 
3089   sign = static_cast<unsigned int>(i>>63);
3090   if (myexponent==0 && mysignificand==0) {
3091     // exponent, significand meaningless
3092     category = fcZero;
3093   } else if (myexponent==0x7ff && mysignificand==0) {
3094     // exponent, significand meaningless
3095     category = fcInfinity;
3096   } else if (myexponent==0x7ff && mysignificand!=0) {
3097     // exponent meaningless
3098     category = fcNaN;
3099     *significandParts() = mysignificand;
3100   } else {
3101     category = fcNormal;
3102     exponent = myexponent - 1023;
3103     *significandParts() = mysignificand;
3104     if (myexponent==0)          // denormal
3105       exponent = -1022;
3106     else
3107       *significandParts() |= 0x10000000000000LL;  // integer bit
3108   }
3109 }
3110 
3111 void
3112 APFloat::initFromFloatAPInt(const APInt & api)
3113 {
3114   assert(api.getBitWidth()==32);
3115   uint32_t i = (uint32_t)*api.getRawData();
3116   uint32_t myexponent = (i >> 23) & 0xff;
3117   uint32_t mysignificand = i & 0x7fffff;
3118 
3119   initialize(&APFloat::IEEEsingle);
3120   assert(partCount()==1);
3121 
3122   sign = i >> 31;
3123   if (myexponent==0 && mysignificand==0) {
3124     // exponent, significand meaningless
3125     category = fcZero;
3126   } else if (myexponent==0xff && mysignificand==0) {
3127     // exponent, significand meaningless
3128     category = fcInfinity;
3129   } else if (myexponent==0xff && mysignificand!=0) {
3130     // sign, exponent, significand meaningless
3131     category = fcNaN;
3132     *significandParts() = mysignificand;
3133   } else {
3134     category = fcNormal;
3135     exponent = myexponent - 127;  //bias
3136     *significandParts() = mysignificand;
3137     if (myexponent==0)    // denormal
3138       exponent = -126;
3139     else
3140       *significandParts() |= 0x800000; // integer bit
3141   }
3142 }
3143 
3144 void
3145 APFloat::initFromHalfAPInt(const APInt & api)
3146 {
3147   assert(api.getBitWidth()==16);
3148   uint32_t i = (uint32_t)*api.getRawData();
3149   uint32_t myexponent = (i >> 10) & 0x1f;
3150   uint32_t mysignificand = i & 0x3ff;
3151 
3152   initialize(&APFloat::IEEEhalf);
3153   assert(partCount()==1);
3154 
3155   sign = i >> 15;
3156   if (myexponent==0 && mysignificand==0) {
3157     // exponent, significand meaningless
3158     category = fcZero;
3159   } else if (myexponent==0x1f && mysignificand==0) {
3160     // exponent, significand meaningless
3161     category = fcInfinity;
3162   } else if (myexponent==0x1f && mysignificand!=0) {
3163     // sign, exponent, significand meaningless
3164     category = fcNaN;
3165     *significandParts() = mysignificand;
3166   } else {
3167     category = fcNormal;
3168     exponent = myexponent - 15;  //bias
3169     *significandParts() = mysignificand;
3170     if (myexponent==0)    // denormal
3171       exponent = -14;
3172     else
3173       *significandParts() |= 0x400; // integer bit
3174   }
3175 }
3176 
3177 /// Treat api as containing the bits of a floating point number.  Currently
3178 /// we infer the floating point type from the size of the APInt.  The
3179 /// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
3180 /// when the size is anything else).
3181 void
3182 APFloat::initFromAPInt(const APInt& api, bool isIEEE)
3183 {
3184   if (api.getBitWidth() == 16)
3185     return initFromHalfAPInt(api);
3186   else if (api.getBitWidth() == 32)
3187     return initFromFloatAPInt(api);
3188   else if (api.getBitWidth()==64)
3189     return initFromDoubleAPInt(api);
3190   else if (api.getBitWidth()==80)
3191     return initFromF80LongDoubleAPInt(api);
3192   else if (api.getBitWidth()==128)
3193     return (isIEEE ?
3194             initFromQuadrupleAPInt(api) : initFromPPCDoubleDoubleAPInt(api));
3195   else
3196     llvm_unreachable(0);
3197 }
3198 
3199 APFloat APFloat::getLargest(const fltSemantics &Sem, bool Negative) {
3200   APFloat Val(Sem, fcNormal, Negative);
3201 
3202   // We want (in interchange format):
3203   //   sign = {Negative}
3204   //   exponent = 1..10
3205   //   significand = 1..1
3206 
3207   Val.exponent = Sem.maxExponent; // unbiased
3208 
3209   // 1-initialize all bits....
3210   Val.zeroSignificand();
3211   integerPart *significand = Val.significandParts();
3212   unsigned N = partCountForBits(Sem.precision);
3213   for (unsigned i = 0; i != N; ++i)
3214     significand[i] = ~((integerPart) 0);
3215 
3216   // ...and then clear the top bits for internal consistency.
3217   significand[N-1] &=
3218     (((integerPart) 1) << ((Sem.precision % integerPartWidth) - 1)) - 1;
3219 
3220   return Val;
3221 }
3222 
3223 APFloat APFloat::getSmallest(const fltSemantics &Sem, bool Negative) {
3224   APFloat Val(Sem, fcNormal, Negative);
3225 
3226   // We want (in interchange format):
3227   //   sign = {Negative}
3228   //   exponent = 0..0
3229   //   significand = 0..01
3230 
3231   Val.exponent = Sem.minExponent; // unbiased
3232   Val.zeroSignificand();
3233   Val.significandParts()[0] = 1;
3234   return Val;
3235 }
3236 
3237 APFloat APFloat::getSmallestNormalized(const fltSemantics &Sem, bool Negative) {
3238   APFloat Val(Sem, fcNormal, Negative);
3239 
3240   // We want (in interchange format):
3241   //   sign = {Negative}
3242   //   exponent = 0..0
3243   //   significand = 10..0
3244 
3245   Val.exponent = Sem.minExponent;
3246   Val.zeroSignificand();
3247   Val.significandParts()[partCountForBits(Sem.precision)-1] |=
3248     (((integerPart) 1) << ((Sem.precision % integerPartWidth) - 1));
3249 
3250   return Val;
3251 }
3252 
3253 APFloat::APFloat(const APInt& api, bool isIEEE)
3254 {
3255   initFromAPInt(api, isIEEE);
3256 }
3257 
3258 APFloat::APFloat(float f)
3259 {
3260   APInt api = APInt(32, 0);
3261   initFromAPInt(api.floatToBits(f));
3262 }
3263 
3264 APFloat::APFloat(double d)
3265 {
3266   APInt api = APInt(64, 0);
3267   initFromAPInt(api.doubleToBits(d));
3268 }
3269 
3270 namespace {
3271   static void append(SmallVectorImpl<char> &Buffer,
3272                      unsigned N, const char *Str) {
3273     unsigned Start = Buffer.size();
3274     Buffer.set_size(Start + N);
3275     memcpy(&Buffer[Start], Str, N);
3276   }
3277 
3278   template <unsigned N>
3279   void append(SmallVectorImpl<char> &Buffer, const char (&Str)[N]) {
3280     append(Buffer, N, Str);
3281   }
3282 
3283   /// Removes data from the given significand until it is no more
3284   /// precise than is required for the desired precision.
3285   void AdjustToPrecision(APInt &significand,
3286                          int &exp, unsigned FormatPrecision) {
3287     unsigned bits = significand.getActiveBits();
3288 
3289     // 196/59 is a very slight overestimate of lg_2(10).
3290     unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59;
3291 
3292     if (bits <= bitsRequired) return;
3293 
3294     unsigned tensRemovable = (bits - bitsRequired) * 59 / 196;
3295     if (!tensRemovable) return;
3296 
3297     exp += tensRemovable;
3298 
3299     APInt divisor(significand.getBitWidth(), 1);
3300     APInt powten(significand.getBitWidth(), 10);
3301     while (true) {
3302       if (tensRemovable & 1)
3303         divisor *= powten;
3304       tensRemovable >>= 1;
3305       if (!tensRemovable) break;
3306       powten *= powten;
3307     }
3308 
3309     significand = significand.udiv(divisor);
3310 
3311     // Truncate the significand down to its active bit count, but
3312     // don't try to drop below 32.
3313     unsigned newPrecision = std::max(32U, significand.getActiveBits());
3314     significand.trunc(newPrecision);
3315   }
3316 
3317 
3318   void AdjustToPrecision(SmallVectorImpl<char> &buffer,
3319                          int &exp, unsigned FormatPrecision) {
3320     unsigned N = buffer.size();
3321     if (N <= FormatPrecision) return;
3322 
3323     // The most significant figures are the last ones in the buffer.
3324     unsigned FirstSignificant = N - FormatPrecision;
3325 
3326     // Round.
3327     // FIXME: this probably shouldn't use 'round half up'.
3328 
3329     // Rounding down is just a truncation, except we also want to drop
3330     // trailing zeros from the new result.
3331     if (buffer[FirstSignificant - 1] < '5') {
3332       while (buffer[FirstSignificant] == '0')
3333         FirstSignificant++;
3334 
3335       exp += FirstSignificant;
3336       buffer.erase(&buffer[0], &buffer[FirstSignificant]);
3337       return;
3338     }
3339 
3340     // Rounding up requires a decimal add-with-carry.  If we continue
3341     // the carry, the newly-introduced zeros will just be truncated.
3342     for (unsigned I = FirstSignificant; I != N; ++I) {
3343       if (buffer[I] == '9') {
3344         FirstSignificant++;
3345       } else {
3346         buffer[I]++;
3347         break;
3348       }
3349     }
3350 
3351     // If we carried through, we have exactly one digit of precision.
3352     if (FirstSignificant == N) {
3353       exp += FirstSignificant;
3354       buffer.clear();
3355       buffer.push_back('1');
3356       return;
3357     }
3358 
3359     exp += FirstSignificant;
3360     buffer.erase(&buffer[0], &buffer[FirstSignificant]);
3361   }
3362 }
3363 
3364 void APFloat::toString(SmallVectorImpl<char> &Str,
3365                        unsigned FormatPrecision,
3366                        unsigned FormatMaxPadding) const {
3367   switch (category) {
3368   case fcInfinity:
3369     if (isNegative())
3370       return append(Str, "-Inf");
3371     else
3372       return append(Str, "+Inf");
3373 
3374   case fcNaN: return append(Str, "NaN");
3375 
3376   case fcZero:
3377     if (isNegative())
3378       Str.push_back('-');
3379 
3380     if (!FormatMaxPadding)
3381       append(Str, "0.0E+0");
3382     else
3383       Str.push_back('0');
3384     return;
3385 
3386   case fcNormal:
3387     break;
3388   }
3389 
3390   if (isNegative())
3391     Str.push_back('-');
3392 
3393   // Decompose the number into an APInt and an exponent.
3394   int exp = exponent - ((int) semantics->precision - 1);
3395   APInt significand(semantics->precision,
3396                     partCountForBits(semantics->precision),
3397                     significandParts());
3398 
3399   // Set FormatPrecision if zero.  We want to do this before we
3400   // truncate trailing zeros, as those are part of the precision.
3401   if (!FormatPrecision) {
3402     // It's an interesting question whether to use the nominal
3403     // precision or the active precision here for denormals.
3404 
3405     // FormatPrecision = ceil(significandBits / lg_2(10))
3406     FormatPrecision = (semantics->precision * 59 + 195) / 196;
3407   }
3408 
3409   // Ignore trailing binary zeros.
3410   int trailingZeros = significand.countTrailingZeros();
3411   exp += trailingZeros;
3412   significand = significand.lshr(trailingZeros);
3413 
3414   // Change the exponent from 2^e to 10^e.
3415   if (exp == 0) {
3416     // Nothing to do.
3417   } else if (exp > 0) {
3418     // Just shift left.
3419     significand.zext(semantics->precision + exp);
3420     significand <<= exp;
3421     exp = 0;
3422   } else { /* exp < 0 */
3423     int texp = -exp;
3424 
3425     // We transform this using the identity:
3426     //   (N)(2^-e) == (N)(5^e)(10^-e)
3427     // This means we have to multiply N (the significand) by 5^e.
3428     // To avoid overflow, we have to operate on numbers large
3429     // enough to store N * 5^e:
3430     //   log2(N * 5^e) == log2(N) + e * log2(5)
3431     //                 <= semantics->precision + e * 137 / 59
3432     //   (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59)
3433 
3434     unsigned precision = semantics->precision + 137 * texp / 59;
3435 
3436     // Multiply significand by 5^e.
3437     //   N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8)
3438     significand.zext(precision);
3439     APInt five_to_the_i(precision, 5);
3440     while (true) {
3441       if (texp & 1) significand *= five_to_the_i;
3442 
3443       texp >>= 1;
3444       if (!texp) break;
3445       five_to_the_i *= five_to_the_i;
3446     }
3447   }
3448 
3449   AdjustToPrecision(significand, exp, FormatPrecision);
3450 
3451   llvm::SmallVector<char, 256> buffer;
3452 
3453   // Fill the buffer.
3454   unsigned precision = significand.getBitWidth();
3455   APInt ten(precision, 10);
3456   APInt digit(precision, 0);
3457 
3458   bool inTrail = true;
3459   while (significand != 0) {
3460     // digit <- significand % 10
3461     // significand <- significand / 10
3462     APInt::udivrem(significand, ten, significand, digit);
3463 
3464     unsigned d = digit.getZExtValue();
3465 
3466     // Drop trailing zeros.
3467     if (inTrail && !d) exp++;
3468     else {
3469       buffer.push_back((char) ('0' + d));
3470       inTrail = false;
3471     }
3472   }
3473 
3474   assert(!buffer.empty() && "no characters in buffer!");
3475 
3476   // Drop down to FormatPrecision.
3477   // TODO: don't do more precise calculations above than are required.
3478   AdjustToPrecision(buffer, exp, FormatPrecision);
3479 
3480   unsigned NDigits = buffer.size();
3481 
3482   // Check whether we should use scientific notation.
3483   bool FormatScientific;
3484   if (!FormatMaxPadding)
3485     FormatScientific = true;
3486   else {
3487     if (exp >= 0) {
3488       // 765e3 --> 765000
3489       //              ^^^
3490       // But we shouldn't make the number look more precise than it is.
3491       FormatScientific = ((unsigned) exp > FormatMaxPadding ||
3492                           NDigits + (unsigned) exp > FormatPrecision);
3493     } else {
3494       // Power of the most significant digit.
3495       int MSD = exp + (int) (NDigits - 1);
3496       if (MSD >= 0) {
3497         // 765e-2 == 7.65
3498         FormatScientific = false;
3499       } else {
3500         // 765e-5 == 0.00765
3501         //           ^ ^^
3502         FormatScientific = ((unsigned) -MSD) > FormatMaxPadding;
3503       }
3504     }
3505   }
3506 
3507   // Scientific formatting is pretty straightforward.
3508   if (FormatScientific) {
3509     exp += (NDigits - 1);
3510 
3511     Str.push_back(buffer[NDigits-1]);
3512     Str.push_back('.');
3513     if (NDigits == 1)
3514       Str.push_back('0');
3515     else
3516       for (unsigned I = 1; I != NDigits; ++I)
3517         Str.push_back(buffer[NDigits-1-I]);
3518     Str.push_back('E');
3519 
3520     Str.push_back(exp >= 0 ? '+' : '-');
3521     if (exp < 0) exp = -exp;
3522     SmallVector<char, 6> expbuf;
3523     do {
3524       expbuf.push_back((char) ('0' + (exp % 10)));
3525       exp /= 10;
3526     } while (exp);
3527     for (unsigned I = 0, E = expbuf.size(); I != E; ++I)
3528       Str.push_back(expbuf[E-1-I]);
3529     return;
3530   }
3531 
3532   // Non-scientific, positive exponents.
3533   if (exp >= 0) {
3534     for (unsigned I = 0; I != NDigits; ++I)
3535       Str.push_back(buffer[NDigits-1-I]);
3536     for (unsigned I = 0; I != (unsigned) exp; ++I)
3537       Str.push_back('0');
3538     return;
3539   }
3540 
3541   // Non-scientific, negative exponents.
3542 
3543   // The number of digits to the left of the decimal point.
3544   int NWholeDigits = exp + (int) NDigits;
3545 
3546   unsigned I = 0;
3547   if (NWholeDigits > 0) {
3548     for (; I != (unsigned) NWholeDigits; ++I)
3549       Str.push_back(buffer[NDigits-I-1]);
3550     Str.push_back('.');
3551   } else {
3552     unsigned NZeros = 1 + (unsigned) -NWholeDigits;
3553 
3554     Str.push_back('0');
3555     Str.push_back('.');
3556     for (unsigned Z = 1; Z != NZeros; ++Z)
3557       Str.push_back('0');
3558   }
3559 
3560   for (; I != NDigits; ++I)
3561     Str.push_back(buffer[NDigits-I-1]);
3562 }
3563