1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements ELF object file writer information. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/BinaryFormat/ELF.h" 22 #include "llvm/MC/MCAsmBackend.h" 23 #include "llvm/MC/MCAsmInfo.h" 24 #include "llvm/MC/MCAsmLayout.h" 25 #include "llvm/MC/MCAssembler.h" 26 #include "llvm/MC/MCContext.h" 27 #include "llvm/MC/MCELFObjectWriter.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/MC/MCFixup.h" 30 #include "llvm/MC/MCFixupKindInfo.h" 31 #include "llvm/MC/MCFragment.h" 32 #include "llvm/MC/MCObjectFileInfo.h" 33 #include "llvm/MC/MCObjectWriter.h" 34 #include "llvm/MC/MCSection.h" 35 #include "llvm/MC/MCSectionELF.h" 36 #include "llvm/MC/MCSymbol.h" 37 #include "llvm/MC/MCSymbolELF.h" 38 #include "llvm/MC/MCValue.h" 39 #include "llvm/MC/StringTableBuilder.h" 40 #include "llvm/Support/Allocator.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/Compression.h" 43 #include "llvm/Support/Endian.h" 44 #include "llvm/Support/Error.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/Host.h" 47 #include "llvm/Support/LEB128.h" 48 #include "llvm/Support/MathExtras.h" 49 #include "llvm/Support/SMLoc.h" 50 #include "llvm/Support/StringSaver.h" 51 #include "llvm/Support/SwapByteOrder.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <cstddef> 56 #include <cstdint> 57 #include <map> 58 #include <memory> 59 #include <string> 60 #include <utility> 61 #include <vector> 62 63 using namespace llvm; 64 65 #undef DEBUG_TYPE 66 #define DEBUG_TYPE "reloc-info" 67 68 namespace { 69 70 using SectionIndexMapTy = DenseMap<const MCSectionELF *, uint32_t>; 71 72 class ELFObjectWriter; 73 struct ELFWriter; 74 75 bool isDwoSection(const MCSectionELF &Sec) { 76 return Sec.getSectionName().endswith(".dwo"); 77 } 78 79 class SymbolTableWriter { 80 ELFWriter &EWriter; 81 bool Is64Bit; 82 83 // indexes we are going to write to .symtab_shndx. 84 std::vector<uint32_t> ShndxIndexes; 85 86 // The numbel of symbols written so far. 87 unsigned NumWritten; 88 89 void createSymtabShndx(); 90 91 template <typename T> void write(T Value); 92 93 public: 94 SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit); 95 96 void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size, 97 uint8_t other, uint32_t shndx, bool Reserved); 98 99 ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; } 100 }; 101 102 struct ELFWriter { 103 ELFObjectWriter &OWriter; 104 support::endian::Writer W; 105 106 enum DwoMode { 107 AllSections, 108 NonDwoOnly, 109 DwoOnly, 110 } Mode; 111 112 static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout); 113 static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol, 114 bool Used, bool Renamed); 115 116 /// Helper struct for containing some precomputed information on symbols. 117 struct ELFSymbolData { 118 const MCSymbolELF *Symbol; 119 uint32_t SectionIndex; 120 StringRef Name; 121 122 // Support lexicographic sorting. 123 bool operator<(const ELFSymbolData &RHS) const { 124 unsigned LHSType = Symbol->getType(); 125 unsigned RHSType = RHS.Symbol->getType(); 126 if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION) 127 return false; 128 if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION) 129 return true; 130 if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION) 131 return SectionIndex < RHS.SectionIndex; 132 return Name < RHS.Name; 133 } 134 }; 135 136 /// @} 137 /// @name Symbol Table Data 138 /// @{ 139 140 StringTableBuilder StrTabBuilder{StringTableBuilder::ELF}; 141 142 /// @} 143 144 // This holds the symbol table index of the last local symbol. 145 unsigned LastLocalSymbolIndex; 146 // This holds the .strtab section index. 147 unsigned StringTableIndex; 148 // This holds the .symtab section index. 149 unsigned SymbolTableIndex; 150 151 // Sections in the order they are to be output in the section table. 152 std::vector<const MCSectionELF *> SectionTable; 153 unsigned addToSectionTable(const MCSectionELF *Sec); 154 155 // TargetObjectWriter wrappers. 156 bool is64Bit() const; 157 bool hasRelocationAddend() const; 158 159 void align(unsigned Alignment); 160 161 bool maybeWriteCompression(uint64_t Size, 162 SmallVectorImpl<char> &CompressedContents, 163 bool ZLibStyle, unsigned Alignment); 164 165 public: 166 ELFWriter(ELFObjectWriter &OWriter, raw_pwrite_stream &OS, 167 bool IsLittleEndian, DwoMode Mode) 168 : OWriter(OWriter), 169 W(OS, IsLittleEndian ? support::little : support::big), Mode(Mode) {} 170 171 void WriteWord(uint64_t Word) { 172 if (is64Bit()) 173 W.write<uint64_t>(Word); 174 else 175 W.write<uint32_t>(Word); 176 } 177 178 template <typename T> void write(T Val) { 179 W.write(Val); 180 } 181 182 void writeHeader(const MCAssembler &Asm); 183 184 void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex, 185 ELFSymbolData &MSD, const MCAsmLayout &Layout); 186 187 // Start and end offset of each section 188 using SectionOffsetsTy = 189 std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>; 190 191 // Map from a signature symbol to the group section index 192 using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>; 193 194 /// Compute the symbol table data 195 /// 196 /// \param Asm - The assembler. 197 /// \param SectionIndexMap - Maps a section to its index. 198 /// \param RevGroupMap - Maps a signature symbol to the group section. 199 void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout, 200 const SectionIndexMapTy &SectionIndexMap, 201 const RevGroupMapTy &RevGroupMap, 202 SectionOffsetsTy &SectionOffsets); 203 204 void writeAddrsigSection(); 205 206 MCSectionELF *createRelocationSection(MCContext &Ctx, 207 const MCSectionELF &Sec); 208 209 const MCSectionELF *createStringTable(MCContext &Ctx); 210 211 void writeSectionHeader(const MCAsmLayout &Layout, 212 const SectionIndexMapTy &SectionIndexMap, 213 const SectionOffsetsTy &SectionOffsets); 214 215 void writeSectionData(const MCAssembler &Asm, MCSection &Sec, 216 const MCAsmLayout &Layout); 217 218 void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags, 219 uint64_t Address, uint64_t Offset, uint64_t Size, 220 uint32_t Link, uint32_t Info, uint64_t Alignment, 221 uint64_t EntrySize); 222 223 void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec); 224 225 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout); 226 void writeSection(const SectionIndexMapTy &SectionIndexMap, 227 uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size, 228 const MCSectionELF &Section); 229 }; 230 231 class ELFObjectWriter : public MCObjectWriter { 232 /// The target specific ELF writer instance. 233 std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter; 234 235 DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> Relocations; 236 237 DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames; 238 239 bool EmitAddrsigSection = false; 240 std::vector<const MCSymbol *> AddrsigSyms; 241 242 bool hasRelocationAddend() const; 243 244 bool shouldRelocateWithSymbol(const MCAssembler &Asm, 245 const MCSymbolRefExpr *RefA, 246 const MCSymbolELF *Sym, uint64_t C, 247 unsigned Type) const; 248 249 public: 250 ELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW) 251 : TargetObjectWriter(std::move(MOTW)) {} 252 253 void reset() override { 254 Relocations.clear(); 255 Renames.clear(); 256 MCObjectWriter::reset(); 257 } 258 259 bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm, 260 const MCSymbol &SymA, 261 const MCFragment &FB, bool InSet, 262 bool IsPCRel) const override; 263 264 virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc, 265 const MCSectionELF *From, 266 const MCSectionELF *To) { 267 return true; 268 } 269 270 void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, 271 const MCFragment *Fragment, const MCFixup &Fixup, 272 MCValue Target, uint64_t &FixedValue) override; 273 274 void executePostLayoutBinding(MCAssembler &Asm, 275 const MCAsmLayout &Layout) override; 276 277 void emitAddrsigSection() override { EmitAddrsigSection = true; } 278 void addAddrsigSymbol(const MCSymbol *Sym) override { 279 AddrsigSyms.push_back(Sym); 280 } 281 282 friend struct ELFWriter; 283 }; 284 285 class ELFSingleObjectWriter : public ELFObjectWriter { 286 raw_pwrite_stream &OS; 287 bool IsLittleEndian; 288 289 public: 290 ELFSingleObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 291 raw_pwrite_stream &OS, bool IsLittleEndian) 292 : ELFObjectWriter(std::move(MOTW)), OS(OS), 293 IsLittleEndian(IsLittleEndian) {} 294 295 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override { 296 return ELFWriter(*this, OS, IsLittleEndian, ELFWriter::AllSections) 297 .writeObject(Asm, Layout); 298 } 299 300 friend struct ELFWriter; 301 }; 302 303 class ELFDwoObjectWriter : public ELFObjectWriter { 304 raw_pwrite_stream &OS, &DwoOS; 305 bool IsLittleEndian; 306 307 public: 308 ELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 309 raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS, 310 bool IsLittleEndian) 311 : ELFObjectWriter(std::move(MOTW)), OS(OS), DwoOS(DwoOS), 312 IsLittleEndian(IsLittleEndian) {} 313 314 virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc, 315 const MCSectionELF *From, 316 const MCSectionELF *To) override { 317 if (isDwoSection(*From)) { 318 Ctx.reportError(Loc, "A dwo section may not contain relocations"); 319 return false; 320 } 321 if (To && isDwoSection(*To)) { 322 Ctx.reportError(Loc, "A relocation may not refer to a dwo section"); 323 return false; 324 } 325 return true; 326 } 327 328 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override { 329 uint64_t Size = ELFWriter(*this, OS, IsLittleEndian, ELFWriter::NonDwoOnly) 330 .writeObject(Asm, Layout); 331 Size += ELFWriter(*this, DwoOS, IsLittleEndian, ELFWriter::DwoOnly) 332 .writeObject(Asm, Layout); 333 return Size; 334 } 335 }; 336 337 } // end anonymous namespace 338 339 void ELFWriter::align(unsigned Alignment) { 340 uint64_t Padding = OffsetToAlignment(W.OS.tell(), Alignment); 341 W.OS.write_zeros(Padding); 342 } 343 344 unsigned ELFWriter::addToSectionTable(const MCSectionELF *Sec) { 345 SectionTable.push_back(Sec); 346 StrTabBuilder.add(Sec->getSectionName()); 347 return SectionTable.size(); 348 } 349 350 void SymbolTableWriter::createSymtabShndx() { 351 if (!ShndxIndexes.empty()) 352 return; 353 354 ShndxIndexes.resize(NumWritten); 355 } 356 357 template <typename T> void SymbolTableWriter::write(T Value) { 358 EWriter.write(Value); 359 } 360 361 SymbolTableWriter::SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit) 362 : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {} 363 364 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value, 365 uint64_t size, uint8_t other, 366 uint32_t shndx, bool Reserved) { 367 bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved; 368 369 if (LargeIndex) 370 createSymtabShndx(); 371 372 if (!ShndxIndexes.empty()) { 373 if (LargeIndex) 374 ShndxIndexes.push_back(shndx); 375 else 376 ShndxIndexes.push_back(0); 377 } 378 379 uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx; 380 381 if (Is64Bit) { 382 write(name); // st_name 383 write(info); // st_info 384 write(other); // st_other 385 write(Index); // st_shndx 386 write(value); // st_value 387 write(size); // st_size 388 } else { 389 write(name); // st_name 390 write(uint32_t(value)); // st_value 391 write(uint32_t(size)); // st_size 392 write(info); // st_info 393 write(other); // st_other 394 write(Index); // st_shndx 395 } 396 397 ++NumWritten; 398 } 399 400 bool ELFWriter::is64Bit() const { 401 return OWriter.TargetObjectWriter->is64Bit(); 402 } 403 404 bool ELFWriter::hasRelocationAddend() const { 405 return OWriter.hasRelocationAddend(); 406 } 407 408 // Emit the ELF header. 409 void ELFWriter::writeHeader(const MCAssembler &Asm) { 410 // ELF Header 411 // ---------- 412 // 413 // Note 414 // ---- 415 // emitWord method behaves differently for ELF32 and ELF64, writing 416 // 4 bytes in the former and 8 in the latter. 417 418 W.OS << ELF::ElfMagic; // e_ident[EI_MAG0] to e_ident[EI_MAG3] 419 420 W.OS << char(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS] 421 422 // e_ident[EI_DATA] 423 W.OS << char(W.Endian == support::little ? ELF::ELFDATA2LSB 424 : ELF::ELFDATA2MSB); 425 426 W.OS << char(ELF::EV_CURRENT); // e_ident[EI_VERSION] 427 // e_ident[EI_OSABI] 428 W.OS << char(OWriter.TargetObjectWriter->getOSABI()); 429 W.OS << char(0); // e_ident[EI_ABIVERSION] 430 431 W.OS.write_zeros(ELF::EI_NIDENT - ELF::EI_PAD); 432 433 W.write<uint16_t>(ELF::ET_REL); // e_type 434 435 W.write<uint16_t>(OWriter.TargetObjectWriter->getEMachine()); // e_machine = target 436 437 W.write<uint32_t>(ELF::EV_CURRENT); // e_version 438 WriteWord(0); // e_entry, no entry point in .o file 439 WriteWord(0); // e_phoff, no program header for .o 440 WriteWord(0); // e_shoff = sec hdr table off in bytes 441 442 // e_flags = whatever the target wants 443 W.write<uint32_t>(Asm.getELFHeaderEFlags()); 444 445 // e_ehsize = ELF header size 446 W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Ehdr) 447 : sizeof(ELF::Elf32_Ehdr)); 448 449 W.write<uint16_t>(0); // e_phentsize = prog header entry size 450 W.write<uint16_t>(0); // e_phnum = # prog header entries = 0 451 452 // e_shentsize = Section header entry size 453 W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Shdr) 454 : sizeof(ELF::Elf32_Shdr)); 455 456 // e_shnum = # of section header ents 457 W.write<uint16_t>(0); 458 459 // e_shstrndx = Section # of '.shstrtab' 460 assert(StringTableIndex < ELF::SHN_LORESERVE); 461 W.write<uint16_t>(StringTableIndex); 462 } 463 464 uint64_t ELFWriter::SymbolValue(const MCSymbol &Sym, 465 const MCAsmLayout &Layout) { 466 if (Sym.isCommon() && Sym.isExternal()) 467 return Sym.getCommonAlignment(); 468 469 uint64_t Res; 470 if (!Layout.getSymbolOffset(Sym, Res)) 471 return 0; 472 473 if (Layout.getAssembler().isThumbFunc(&Sym)) 474 Res |= 1; 475 476 return Res; 477 } 478 479 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) { 480 uint8_t Type = newType; 481 482 // Propagation rules: 483 // IFUNC > FUNC > OBJECT > NOTYPE 484 // TLS_OBJECT > OBJECT > NOTYPE 485 // 486 // dont let the new type degrade the old type 487 switch (origType) { 488 default: 489 break; 490 case ELF::STT_GNU_IFUNC: 491 if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT || 492 Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS) 493 Type = ELF::STT_GNU_IFUNC; 494 break; 495 case ELF::STT_FUNC: 496 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 497 Type == ELF::STT_TLS) 498 Type = ELF::STT_FUNC; 499 break; 500 case ELF::STT_OBJECT: 501 if (Type == ELF::STT_NOTYPE) 502 Type = ELF::STT_OBJECT; 503 break; 504 case ELF::STT_TLS: 505 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 506 Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC) 507 Type = ELF::STT_TLS; 508 break; 509 } 510 511 return Type; 512 } 513 514 void ELFWriter::writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex, 515 ELFSymbolData &MSD, const MCAsmLayout &Layout) { 516 const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol); 517 const MCSymbolELF *Base = 518 cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol)); 519 520 // This has to be in sync with when computeSymbolTable uses SHN_ABS or 521 // SHN_COMMON. 522 bool IsReserved = !Base || Symbol.isCommon(); 523 524 // Binding and Type share the same byte as upper and lower nibbles 525 uint8_t Binding = Symbol.getBinding(); 526 uint8_t Type = Symbol.getType(); 527 if (Base) { 528 Type = mergeTypeForSet(Type, Base->getType()); 529 } 530 uint8_t Info = (Binding << 4) | Type; 531 532 // Other and Visibility share the same byte with Visibility using the lower 533 // 2 bits 534 uint8_t Visibility = Symbol.getVisibility(); 535 uint8_t Other = Symbol.getOther() | Visibility; 536 537 uint64_t Value = SymbolValue(*MSD.Symbol, Layout); 538 uint64_t Size = 0; 539 540 const MCExpr *ESize = MSD.Symbol->getSize(); 541 if (!ESize && Base) 542 ESize = Base->getSize(); 543 544 if (ESize) { 545 int64_t Res; 546 if (!ESize->evaluateKnownAbsolute(Res, Layout)) 547 report_fatal_error("Size expression must be absolute."); 548 Size = Res; 549 } 550 551 // Write out the symbol table entry 552 Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex, 553 IsReserved); 554 } 555 556 // True if the assembler knows nothing about the final value of the symbol. 557 // This doesn't cover the comdat issues, since in those cases the assembler 558 // can at least know that all symbols in the section will move together. 559 static bool isWeak(const MCSymbolELF &Sym) { 560 if (Sym.getType() == ELF::STT_GNU_IFUNC) 561 return true; 562 563 switch (Sym.getBinding()) { 564 default: 565 llvm_unreachable("Unknown binding"); 566 case ELF::STB_LOCAL: 567 return false; 568 case ELF::STB_GLOBAL: 569 return false; 570 case ELF::STB_WEAK: 571 case ELF::STB_GNU_UNIQUE: 572 return true; 573 } 574 } 575 576 bool ELFWriter::isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol, 577 bool Used, bool Renamed) { 578 if (Symbol.isVariable()) { 579 const MCExpr *Expr = Symbol.getVariableValue(); 580 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) { 581 if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF) 582 return false; 583 } 584 } 585 586 if (Used) 587 return true; 588 589 if (Renamed) 590 return false; 591 592 if (Symbol.isVariable() && Symbol.isUndefined()) { 593 // FIXME: this is here just to diagnose the case of a var = commmon_sym. 594 Layout.getBaseSymbol(Symbol); 595 return false; 596 } 597 598 if (Symbol.isUndefined() && !Symbol.isBindingSet()) 599 return false; 600 601 if (Symbol.isTemporary()) 602 return false; 603 604 if (Symbol.getType() == ELF::STT_SECTION) 605 return false; 606 607 return true; 608 } 609 610 void ELFWriter::computeSymbolTable( 611 MCAssembler &Asm, const MCAsmLayout &Layout, 612 const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap, 613 SectionOffsetsTy &SectionOffsets) { 614 MCContext &Ctx = Asm.getContext(); 615 SymbolTableWriter Writer(*this, is64Bit()); 616 617 // Symbol table 618 unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32; 619 MCSectionELF *SymtabSection = 620 Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize, ""); 621 SymtabSection->setAlignment(is64Bit() ? 8 : 4); 622 SymbolTableIndex = addToSectionTable(SymtabSection); 623 624 align(SymtabSection->getAlignment()); 625 uint64_t SecStart = W.OS.tell(); 626 627 // The first entry is the undefined symbol entry. 628 Writer.writeSymbol(0, 0, 0, 0, 0, 0, false); 629 630 std::vector<ELFSymbolData> LocalSymbolData; 631 std::vector<ELFSymbolData> ExternalSymbolData; 632 633 // Add the data for the symbols. 634 bool HasLargeSectionIndex = false; 635 for (const MCSymbol &S : Asm.symbols()) { 636 const auto &Symbol = cast<MCSymbolELF>(S); 637 bool Used = Symbol.isUsedInReloc(); 638 bool WeakrefUsed = Symbol.isWeakrefUsedInReloc(); 639 bool isSignature = Symbol.isSignature(); 640 641 if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature, 642 OWriter.Renames.count(&Symbol))) 643 continue; 644 645 if (Symbol.isTemporary() && Symbol.isUndefined()) { 646 Ctx.reportError(SMLoc(), "Undefined temporary symbol"); 647 continue; 648 } 649 650 ELFSymbolData MSD; 651 MSD.Symbol = cast<MCSymbolELF>(&Symbol); 652 653 bool Local = Symbol.getBinding() == ELF::STB_LOCAL; 654 assert(Local || !Symbol.isTemporary()); 655 656 if (Symbol.isAbsolute()) { 657 MSD.SectionIndex = ELF::SHN_ABS; 658 } else if (Symbol.isCommon()) { 659 assert(!Local); 660 MSD.SectionIndex = ELF::SHN_COMMON; 661 } else if (Symbol.isUndefined()) { 662 if (isSignature && !Used) { 663 MSD.SectionIndex = RevGroupMap.lookup(&Symbol); 664 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 665 HasLargeSectionIndex = true; 666 } else { 667 MSD.SectionIndex = ELF::SHN_UNDEF; 668 } 669 } else { 670 const MCSectionELF &Section = 671 static_cast<const MCSectionELF &>(Symbol.getSection()); 672 673 // We may end up with a situation when section symbol is technically 674 // defined, but should not be. That happens because we explicitly 675 // pre-create few .debug_* sections to have accessors. 676 // And if these sections were not really defined in the code, but were 677 // referenced, we simply error out. 678 if (!Section.isRegistered()) { 679 assert(static_cast<const MCSymbolELF &>(Symbol).getType() == 680 ELF::STT_SECTION); 681 Ctx.reportError(SMLoc(), 682 "Undefined section reference: " + Symbol.getName()); 683 continue; 684 } 685 686 if (Mode == NonDwoOnly && isDwoSection(Section)) 687 continue; 688 MSD.SectionIndex = SectionIndexMap.lookup(&Section); 689 assert(MSD.SectionIndex && "Invalid section index!"); 690 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 691 HasLargeSectionIndex = true; 692 } 693 694 StringRef Name = Symbol.getName(); 695 696 // Sections have their own string table 697 if (Symbol.getType() != ELF::STT_SECTION) { 698 MSD.Name = Name; 699 StrTabBuilder.add(Name); 700 } 701 702 if (Local) 703 LocalSymbolData.push_back(MSD); 704 else 705 ExternalSymbolData.push_back(MSD); 706 } 707 708 // This holds the .symtab_shndx section index. 709 unsigned SymtabShndxSectionIndex = 0; 710 711 if (HasLargeSectionIndex) { 712 MCSectionELF *SymtabShndxSection = 713 Ctx.getELFSection(".symtab_shndxr", ELF::SHT_SYMTAB_SHNDX, 0, 4, ""); 714 SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection); 715 SymtabShndxSection->setAlignment(4); 716 } 717 718 ArrayRef<std::string> FileNames = Asm.getFileNames(); 719 for (const std::string &Name : FileNames) 720 StrTabBuilder.add(Name); 721 722 StrTabBuilder.finalize(); 723 724 // File symbols are emitted first and handled separately from normal symbols, 725 // i.e. a non-STT_FILE symbol with the same name may appear. 726 for (const std::string &Name : FileNames) 727 Writer.writeSymbol(StrTabBuilder.getOffset(Name), 728 ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT, 729 ELF::SHN_ABS, true); 730 731 // Symbols are required to be in lexicographic order. 732 array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end()); 733 array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end()); 734 735 // Set the symbol indices. Local symbols must come before all other 736 // symbols with non-local bindings. 737 unsigned Index = FileNames.size() + 1; 738 739 for (ELFSymbolData &MSD : LocalSymbolData) { 740 unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION 741 ? 0 742 : StrTabBuilder.getOffset(MSD.Name); 743 MSD.Symbol->setIndex(Index++); 744 writeSymbol(Writer, StringIndex, MSD, Layout); 745 } 746 747 // Write the symbol table entries. 748 LastLocalSymbolIndex = Index; 749 750 for (ELFSymbolData &MSD : ExternalSymbolData) { 751 unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name); 752 MSD.Symbol->setIndex(Index++); 753 writeSymbol(Writer, StringIndex, MSD, Layout); 754 assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL); 755 } 756 757 uint64_t SecEnd = W.OS.tell(); 758 SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd); 759 760 ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes(); 761 if (ShndxIndexes.empty()) { 762 assert(SymtabShndxSectionIndex == 0); 763 return; 764 } 765 assert(SymtabShndxSectionIndex != 0); 766 767 SecStart = W.OS.tell(); 768 const MCSectionELF *SymtabShndxSection = 769 SectionTable[SymtabShndxSectionIndex - 1]; 770 for (uint32_t Index : ShndxIndexes) 771 write(Index); 772 SecEnd = W.OS.tell(); 773 SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd); 774 } 775 776 void ELFWriter::writeAddrsigSection() { 777 for (const MCSymbol *Sym : OWriter.AddrsigSyms) 778 encodeULEB128(Sym->getIndex(), W.OS); 779 } 780 781 MCSectionELF *ELFWriter::createRelocationSection(MCContext &Ctx, 782 const MCSectionELF &Sec) { 783 if (OWriter.Relocations[&Sec].empty()) 784 return nullptr; 785 786 const StringRef SectionName = Sec.getSectionName(); 787 std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel"; 788 RelaSectionName += SectionName; 789 790 unsigned EntrySize; 791 if (hasRelocationAddend()) 792 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela); 793 else 794 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel); 795 796 unsigned Flags = 0; 797 if (Sec.getFlags() & ELF::SHF_GROUP) 798 Flags = ELF::SHF_GROUP; 799 800 MCSectionELF *RelaSection = Ctx.createELFRelSection( 801 RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL, 802 Flags, EntrySize, Sec.getGroup(), &Sec); 803 RelaSection->setAlignment(is64Bit() ? 8 : 4); 804 return RelaSection; 805 } 806 807 // Include the debug info compression header. 808 bool ELFWriter::maybeWriteCompression( 809 uint64_t Size, SmallVectorImpl<char> &CompressedContents, bool ZLibStyle, 810 unsigned Alignment) { 811 if (ZLibStyle) { 812 uint64_t HdrSize = 813 is64Bit() ? sizeof(ELF::Elf32_Chdr) : sizeof(ELF::Elf64_Chdr); 814 if (Size <= HdrSize + CompressedContents.size()) 815 return false; 816 // Platform specific header is followed by compressed data. 817 if (is64Bit()) { 818 // Write Elf64_Chdr header. 819 write(static_cast<ELF::Elf64_Word>(ELF::ELFCOMPRESS_ZLIB)); 820 write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field. 821 write(static_cast<ELF::Elf64_Xword>(Size)); 822 write(static_cast<ELF::Elf64_Xword>(Alignment)); 823 } else { 824 // Write Elf32_Chdr header otherwise. 825 write(static_cast<ELF::Elf32_Word>(ELF::ELFCOMPRESS_ZLIB)); 826 write(static_cast<ELF::Elf32_Word>(Size)); 827 write(static_cast<ELF::Elf32_Word>(Alignment)); 828 } 829 return true; 830 } 831 832 // "ZLIB" followed by 8 bytes representing the uncompressed size of the section, 833 // useful for consumers to preallocate a buffer to decompress into. 834 const StringRef Magic = "ZLIB"; 835 if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size()) 836 return false; 837 W.OS << Magic; 838 support::endian::write(W.OS, Size, support::big); 839 return true; 840 } 841 842 void ELFWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec, 843 const MCAsmLayout &Layout) { 844 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 845 StringRef SectionName = Section.getSectionName(); 846 847 auto &MC = Asm.getContext(); 848 const auto &MAI = MC.getAsmInfo(); 849 850 // Compressing debug_frame requires handling alignment fragments which is 851 // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow 852 // for writing to arbitrary buffers) for little benefit. 853 bool CompressionEnabled = 854 MAI->compressDebugSections() != DebugCompressionType::None; 855 if (!CompressionEnabled || !SectionName.startswith(".debug_") || 856 SectionName == ".debug_frame") { 857 Asm.writeSectionData(W.OS, &Section, Layout); 858 return; 859 } 860 861 assert((MAI->compressDebugSections() == DebugCompressionType::Z || 862 MAI->compressDebugSections() == DebugCompressionType::GNU) && 863 "expected zlib or zlib-gnu style compression"); 864 865 SmallVector<char, 128> UncompressedData; 866 raw_svector_ostream VecOS(UncompressedData); 867 Asm.writeSectionData(VecOS, &Section, Layout); 868 869 SmallVector<char, 128> CompressedContents; 870 if (Error E = zlib::compress( 871 StringRef(UncompressedData.data(), UncompressedData.size()), 872 CompressedContents)) { 873 consumeError(std::move(E)); 874 W.OS << UncompressedData; 875 return; 876 } 877 878 bool ZlibStyle = MAI->compressDebugSections() == DebugCompressionType::Z; 879 if (!maybeWriteCompression(UncompressedData.size(), CompressedContents, 880 ZlibStyle, Sec.getAlignment())) { 881 W.OS << UncompressedData; 882 return; 883 } 884 885 if (ZlibStyle) 886 // Set the compressed flag. That is zlib style. 887 Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED); 888 else 889 // Add "z" prefix to section name. This is zlib-gnu style. 890 MC.renameELFSection(&Section, (".z" + SectionName.drop_front(1)).str()); 891 W.OS << CompressedContents; 892 } 893 894 void ELFWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags, 895 uint64_t Address, uint64_t Offset, 896 uint64_t Size, uint32_t Link, uint32_t Info, 897 uint64_t Alignment, uint64_t EntrySize) { 898 W.write<uint32_t>(Name); // sh_name: index into string table 899 W.write<uint32_t>(Type); // sh_type 900 WriteWord(Flags); // sh_flags 901 WriteWord(Address); // sh_addr 902 WriteWord(Offset); // sh_offset 903 WriteWord(Size); // sh_size 904 W.write<uint32_t>(Link); // sh_link 905 W.write<uint32_t>(Info); // sh_info 906 WriteWord(Alignment); // sh_addralign 907 WriteWord(EntrySize); // sh_entsize 908 } 909 910 void ELFWriter::writeRelocations(const MCAssembler &Asm, 911 const MCSectionELF &Sec) { 912 std::vector<ELFRelocationEntry> &Relocs = OWriter.Relocations[&Sec]; 913 914 // We record relocations by pushing to the end of a vector. Reverse the vector 915 // to get the relocations in the order they were created. 916 // In most cases that is not important, but it can be for special sections 917 // (.eh_frame) or specific relocations (TLS optimizations on SystemZ). 918 std::reverse(Relocs.begin(), Relocs.end()); 919 920 // Sort the relocation entries. MIPS needs this. 921 OWriter.TargetObjectWriter->sortRelocs(Asm, Relocs); 922 923 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 924 const ELFRelocationEntry &Entry = Relocs[e - i - 1]; 925 unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0; 926 927 if (is64Bit()) { 928 write(Entry.Offset); 929 if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) { 930 write(uint32_t(Index)); 931 932 write(OWriter.TargetObjectWriter->getRSsym(Entry.Type)); 933 write(OWriter.TargetObjectWriter->getRType3(Entry.Type)); 934 write(OWriter.TargetObjectWriter->getRType2(Entry.Type)); 935 write(OWriter.TargetObjectWriter->getRType(Entry.Type)); 936 } else { 937 struct ELF::Elf64_Rela ERE64; 938 ERE64.setSymbolAndType(Index, Entry.Type); 939 write(ERE64.r_info); 940 } 941 if (hasRelocationAddend()) 942 write(Entry.Addend); 943 } else { 944 write(uint32_t(Entry.Offset)); 945 946 struct ELF::Elf32_Rela ERE32; 947 ERE32.setSymbolAndType(Index, Entry.Type); 948 write(ERE32.r_info); 949 950 if (hasRelocationAddend()) 951 write(uint32_t(Entry.Addend)); 952 953 if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) { 954 if (uint32_t RType = 955 OWriter.TargetObjectWriter->getRType2(Entry.Type)) { 956 write(uint32_t(Entry.Offset)); 957 958 ERE32.setSymbolAndType(0, RType); 959 write(ERE32.r_info); 960 write(uint32_t(0)); 961 } 962 if (uint32_t RType = 963 OWriter.TargetObjectWriter->getRType3(Entry.Type)) { 964 write(uint32_t(Entry.Offset)); 965 966 ERE32.setSymbolAndType(0, RType); 967 write(ERE32.r_info); 968 write(uint32_t(0)); 969 } 970 } 971 } 972 } 973 } 974 975 const MCSectionELF *ELFWriter::createStringTable(MCContext &Ctx) { 976 const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1]; 977 StrTabBuilder.write(W.OS); 978 return StrtabSection; 979 } 980 981 void ELFWriter::writeSection(const SectionIndexMapTy &SectionIndexMap, 982 uint32_t GroupSymbolIndex, uint64_t Offset, 983 uint64_t Size, const MCSectionELF &Section) { 984 uint64_t sh_link = 0; 985 uint64_t sh_info = 0; 986 987 switch(Section.getType()) { 988 default: 989 // Nothing to do. 990 break; 991 992 case ELF::SHT_DYNAMIC: 993 llvm_unreachable("SHT_DYNAMIC in a relocatable object"); 994 995 case ELF::SHT_REL: 996 case ELF::SHT_RELA: { 997 sh_link = SymbolTableIndex; 998 assert(sh_link && ".symtab not found"); 999 const MCSection *InfoSection = Section.getAssociatedSection(); 1000 sh_info = SectionIndexMap.lookup(cast<MCSectionELF>(InfoSection)); 1001 break; 1002 } 1003 1004 case ELF::SHT_SYMTAB: 1005 sh_link = StringTableIndex; 1006 sh_info = LastLocalSymbolIndex; 1007 break; 1008 1009 case ELF::SHT_SYMTAB_SHNDX: 1010 case ELF::SHT_LLVM_CALL_GRAPH_PROFILE: 1011 case ELF::SHT_LLVM_ADDRSIG: 1012 sh_link = SymbolTableIndex; 1013 break; 1014 1015 case ELF::SHT_GROUP: 1016 sh_link = SymbolTableIndex; 1017 sh_info = GroupSymbolIndex; 1018 break; 1019 } 1020 1021 if (Section.getFlags() & ELF::SHF_LINK_ORDER) { 1022 const MCSymbol *Sym = Section.getAssociatedSymbol(); 1023 const MCSectionELF *Sec = cast<MCSectionELF>(&Sym->getSection()); 1024 sh_link = SectionIndexMap.lookup(Sec); 1025 } 1026 1027 WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getSectionName()), 1028 Section.getType(), Section.getFlags(), 0, Offset, Size, 1029 sh_link, sh_info, Section.getAlignment(), 1030 Section.getEntrySize()); 1031 } 1032 1033 void ELFWriter::writeSectionHeader( 1034 const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap, 1035 const SectionOffsetsTy &SectionOffsets) { 1036 const unsigned NumSections = SectionTable.size(); 1037 1038 // Null section first. 1039 uint64_t FirstSectionSize = 1040 (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0; 1041 WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0); 1042 1043 for (const MCSectionELF *Section : SectionTable) { 1044 uint32_t GroupSymbolIndex; 1045 unsigned Type = Section->getType(); 1046 if (Type != ELF::SHT_GROUP) 1047 GroupSymbolIndex = 0; 1048 else 1049 GroupSymbolIndex = Section->getGroup()->getIndex(); 1050 1051 const std::pair<uint64_t, uint64_t> &Offsets = 1052 SectionOffsets.find(Section)->second; 1053 uint64_t Size; 1054 if (Type == ELF::SHT_NOBITS) 1055 Size = Layout.getSectionAddressSize(Section); 1056 else 1057 Size = Offsets.second - Offsets.first; 1058 1059 writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size, 1060 *Section); 1061 } 1062 } 1063 1064 uint64_t ELFWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) { 1065 uint64_t StartOffset = W.OS.tell(); 1066 1067 MCContext &Ctx = Asm.getContext(); 1068 MCSectionELF *StrtabSection = 1069 Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0); 1070 StringTableIndex = addToSectionTable(StrtabSection); 1071 1072 RevGroupMapTy RevGroupMap; 1073 SectionIndexMapTy SectionIndexMap; 1074 1075 std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers; 1076 1077 // Write out the ELF header ... 1078 writeHeader(Asm); 1079 1080 // ... then the sections ... 1081 SectionOffsetsTy SectionOffsets; 1082 std::vector<MCSectionELF *> Groups; 1083 std::vector<MCSectionELF *> Relocations; 1084 for (MCSection &Sec : Asm) { 1085 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 1086 if (Mode == NonDwoOnly && isDwoSection(Section)) 1087 continue; 1088 if (Mode == DwoOnly && !isDwoSection(Section)) 1089 continue; 1090 1091 align(Section.getAlignment()); 1092 1093 // Remember the offset into the file for this section. 1094 uint64_t SecStart = W.OS.tell(); 1095 1096 const MCSymbolELF *SignatureSymbol = Section.getGroup(); 1097 writeSectionData(Asm, Section, Layout); 1098 1099 uint64_t SecEnd = W.OS.tell(); 1100 SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd); 1101 1102 MCSectionELF *RelSection = createRelocationSection(Ctx, Section); 1103 1104 if (SignatureSymbol) { 1105 Asm.registerSymbol(*SignatureSymbol); 1106 unsigned &GroupIdx = RevGroupMap[SignatureSymbol]; 1107 if (!GroupIdx) { 1108 MCSectionELF *Group = Ctx.createELFGroupSection(SignatureSymbol); 1109 GroupIdx = addToSectionTable(Group); 1110 Group->setAlignment(4); 1111 Groups.push_back(Group); 1112 } 1113 std::vector<const MCSectionELF *> &Members = 1114 GroupMembers[SignatureSymbol]; 1115 Members.push_back(&Section); 1116 if (RelSection) 1117 Members.push_back(RelSection); 1118 } 1119 1120 SectionIndexMap[&Section] = addToSectionTable(&Section); 1121 if (RelSection) { 1122 SectionIndexMap[RelSection] = addToSectionTable(RelSection); 1123 Relocations.push_back(RelSection); 1124 } 1125 1126 OWriter.TargetObjectWriter->addTargetSectionFlags(Ctx, Section); 1127 } 1128 1129 MCSectionELF *CGProfileSection = nullptr; 1130 if (!Asm.CGProfile.empty()) { 1131 CGProfileSection = Ctx.getELFSection(".llvm.call-graph-profile", 1132 ELF::SHT_LLVM_CALL_GRAPH_PROFILE, 1133 ELF::SHF_EXCLUDE, 16, ""); 1134 SectionIndexMap[CGProfileSection] = addToSectionTable(CGProfileSection); 1135 } 1136 1137 for (MCSectionELF *Group : Groups) { 1138 align(Group->getAlignment()); 1139 1140 // Remember the offset into the file for this section. 1141 uint64_t SecStart = W.OS.tell(); 1142 1143 const MCSymbol *SignatureSymbol = Group->getGroup(); 1144 assert(SignatureSymbol); 1145 write(uint32_t(ELF::GRP_COMDAT)); 1146 for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) { 1147 uint32_t SecIndex = SectionIndexMap.lookup(Member); 1148 write(SecIndex); 1149 } 1150 1151 uint64_t SecEnd = W.OS.tell(); 1152 SectionOffsets[Group] = std::make_pair(SecStart, SecEnd); 1153 } 1154 1155 if (Mode == DwoOnly) { 1156 // dwo files don't have symbol tables or relocations, but they do have 1157 // string tables. 1158 StrTabBuilder.finalize(); 1159 } else { 1160 MCSectionELF *AddrsigSection; 1161 if (OWriter.EmitAddrsigSection) { 1162 AddrsigSection = Ctx.getELFSection(".llvm_addrsig", ELF::SHT_LLVM_ADDRSIG, 1163 ELF::SHF_EXCLUDE); 1164 addToSectionTable(AddrsigSection); 1165 } 1166 1167 // Compute symbol table information. 1168 computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap, 1169 SectionOffsets); 1170 1171 for (MCSectionELF *RelSection : Relocations) { 1172 align(RelSection->getAlignment()); 1173 1174 // Remember the offset into the file for this section. 1175 uint64_t SecStart = W.OS.tell(); 1176 1177 writeRelocations(Asm, 1178 cast<MCSectionELF>(*RelSection->getAssociatedSection())); 1179 1180 uint64_t SecEnd = W.OS.tell(); 1181 SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd); 1182 } 1183 1184 if (OWriter.EmitAddrsigSection) { 1185 uint64_t SecStart = W.OS.tell(); 1186 writeAddrsigSection(); 1187 uint64_t SecEnd = W.OS.tell(); 1188 SectionOffsets[AddrsigSection] = std::make_pair(SecStart, SecEnd); 1189 } 1190 } 1191 1192 if (CGProfileSection) { 1193 uint64_t SecStart = W.OS.tell(); 1194 for (const MCAssembler::CGProfileEntry &CGPE : Asm.CGProfile) { 1195 W.write<uint32_t>(CGPE.From->getSymbol().getIndex()); 1196 W.write<uint32_t>(CGPE.To->getSymbol().getIndex()); 1197 W.write<uint64_t>(CGPE.Count); 1198 } 1199 uint64_t SecEnd = W.OS.tell(); 1200 SectionOffsets[CGProfileSection] = std::make_pair(SecStart, SecEnd); 1201 } 1202 1203 { 1204 uint64_t SecStart = W.OS.tell(); 1205 const MCSectionELF *Sec = createStringTable(Ctx); 1206 uint64_t SecEnd = W.OS.tell(); 1207 SectionOffsets[Sec] = std::make_pair(SecStart, SecEnd); 1208 } 1209 1210 uint64_t NaturalAlignment = is64Bit() ? 8 : 4; 1211 align(NaturalAlignment); 1212 1213 const uint64_t SectionHeaderOffset = W.OS.tell(); 1214 1215 // ... then the section header table ... 1216 writeSectionHeader(Layout, SectionIndexMap, SectionOffsets); 1217 1218 uint16_t NumSections = support::endian::byte_swap<uint16_t>( 1219 (SectionTable.size() + 1 >= ELF::SHN_LORESERVE) ? (uint16_t)ELF::SHN_UNDEF 1220 : SectionTable.size() + 1, 1221 W.Endian); 1222 unsigned NumSectionsOffset; 1223 1224 auto &Stream = static_cast<raw_pwrite_stream &>(W.OS); 1225 if (is64Bit()) { 1226 uint64_t Val = 1227 support::endian::byte_swap<uint64_t>(SectionHeaderOffset, W.Endian); 1228 Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1229 offsetof(ELF::Elf64_Ehdr, e_shoff)); 1230 NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum); 1231 } else { 1232 uint32_t Val = 1233 support::endian::byte_swap<uint32_t>(SectionHeaderOffset, W.Endian); 1234 Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1235 offsetof(ELF::Elf32_Ehdr, e_shoff)); 1236 NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum); 1237 } 1238 Stream.pwrite(reinterpret_cast<char *>(&NumSections), sizeof(NumSections), 1239 NumSectionsOffset); 1240 1241 return W.OS.tell() - StartOffset; 1242 } 1243 1244 bool ELFObjectWriter::hasRelocationAddend() const { 1245 return TargetObjectWriter->hasRelocationAddend(); 1246 } 1247 1248 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm, 1249 const MCAsmLayout &Layout) { 1250 // The presence of symbol versions causes undefined symbols and 1251 // versions declared with @@@ to be renamed. 1252 for (const std::pair<StringRef, const MCSymbol *> &P : Asm.Symvers) { 1253 StringRef AliasName = P.first; 1254 const auto &Symbol = cast<MCSymbolELF>(*P.second); 1255 size_t Pos = AliasName.find('@'); 1256 assert(Pos != StringRef::npos); 1257 1258 StringRef Prefix = AliasName.substr(0, Pos); 1259 StringRef Rest = AliasName.substr(Pos); 1260 StringRef Tail = Rest; 1261 if (Rest.startswith("@@@")) 1262 Tail = Rest.substr(Symbol.isUndefined() ? 2 : 1); 1263 1264 auto *Alias = 1265 cast<MCSymbolELF>(Asm.getContext().getOrCreateSymbol(Prefix + Tail)); 1266 Asm.registerSymbol(*Alias); 1267 const MCExpr *Value = MCSymbolRefExpr::create(&Symbol, Asm.getContext()); 1268 Alias->setVariableValue(Value); 1269 1270 // Aliases defined with .symvar copy the binding from the symbol they alias. 1271 // This is the first place we are able to copy this information. 1272 Alias->setExternal(Symbol.isExternal()); 1273 Alias->setBinding(Symbol.getBinding()); 1274 Alias->setOther(Symbol.getOther()); 1275 1276 if (!Symbol.isUndefined() && !Rest.startswith("@@@")) 1277 continue; 1278 1279 // FIXME: Get source locations for these errors or diagnose them earlier. 1280 if (Symbol.isUndefined() && Rest.startswith("@@") && 1281 !Rest.startswith("@@@")) { 1282 Asm.getContext().reportError(SMLoc(), "versioned symbol " + AliasName + 1283 " must be defined"); 1284 continue; 1285 } 1286 1287 if (Renames.count(&Symbol) && Renames[&Symbol] != Alias) { 1288 Asm.getContext().reportError( 1289 SMLoc(), llvm::Twine("multiple symbol versions defined for ") + 1290 Symbol.getName()); 1291 continue; 1292 } 1293 1294 Renames.insert(std::make_pair(&Symbol, Alias)); 1295 } 1296 1297 for (const MCSymbol *&Sym : AddrsigSyms) { 1298 if (const MCSymbol *R = Renames.lookup(cast<MCSymbolELF>(Sym))) 1299 Sym = R; 1300 if (Sym->isInSection() && Sym->getName().startswith(".L")) 1301 Sym = Sym->getSection().getBeginSymbol(); 1302 Sym->setUsedInReloc(); 1303 } 1304 } 1305 1306 // It is always valid to create a relocation with a symbol. It is preferable 1307 // to use a relocation with a section if that is possible. Using the section 1308 // allows us to omit some local symbols from the symbol table. 1309 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm, 1310 const MCSymbolRefExpr *RefA, 1311 const MCSymbolELF *Sym, 1312 uint64_t C, 1313 unsigned Type) const { 1314 // A PCRel relocation to an absolute value has no symbol (or section). We 1315 // represent that with a relocation to a null section. 1316 if (!RefA) 1317 return false; 1318 1319 MCSymbolRefExpr::VariantKind Kind = RefA->getKind(); 1320 switch (Kind) { 1321 default: 1322 break; 1323 // The .odp creation emits a relocation against the symbol ".TOC." which 1324 // create a R_PPC64_TOC relocation. However the relocation symbol name 1325 // in final object creation should be NULL, since the symbol does not 1326 // really exist, it is just the reference to TOC base for the current 1327 // object file. Since the symbol is undefined, returning false results 1328 // in a relocation with a null section which is the desired result. 1329 case MCSymbolRefExpr::VK_PPC_TOCBASE: 1330 return false; 1331 1332 // These VariantKind cause the relocation to refer to something other than 1333 // the symbol itself, like a linker generated table. Since the address of 1334 // symbol is not relevant, we cannot replace the symbol with the 1335 // section and patch the difference in the addend. 1336 case MCSymbolRefExpr::VK_GOT: 1337 case MCSymbolRefExpr::VK_PLT: 1338 case MCSymbolRefExpr::VK_GOTPCREL: 1339 case MCSymbolRefExpr::VK_PPC_GOT_LO: 1340 case MCSymbolRefExpr::VK_PPC_GOT_HI: 1341 case MCSymbolRefExpr::VK_PPC_GOT_HA: 1342 return true; 1343 } 1344 1345 // An undefined symbol is not in any section, so the relocation has to point 1346 // to the symbol itself. 1347 assert(Sym && "Expected a symbol"); 1348 if (Sym->isUndefined()) 1349 return true; 1350 1351 unsigned Binding = Sym->getBinding(); 1352 switch(Binding) { 1353 default: 1354 llvm_unreachable("Invalid Binding"); 1355 case ELF::STB_LOCAL: 1356 break; 1357 case ELF::STB_WEAK: 1358 // If the symbol is weak, it might be overridden by a symbol in another 1359 // file. The relocation has to point to the symbol so that the linker 1360 // can update it. 1361 return true; 1362 case ELF::STB_GLOBAL: 1363 // Global ELF symbols can be preempted by the dynamic linker. The relocation 1364 // has to point to the symbol for a reason analogous to the STB_WEAK case. 1365 return true; 1366 } 1367 1368 // If a relocation points to a mergeable section, we have to be careful. 1369 // If the offset is zero, a relocation with the section will encode the 1370 // same information. With a non-zero offset, the situation is different. 1371 // For example, a relocation can point 42 bytes past the end of a string. 1372 // If we change such a relocation to use the section, the linker would think 1373 // that it pointed to another string and subtracting 42 at runtime will 1374 // produce the wrong value. 1375 if (Sym->isInSection()) { 1376 auto &Sec = cast<MCSectionELF>(Sym->getSection()); 1377 unsigned Flags = Sec.getFlags(); 1378 if (Flags & ELF::SHF_MERGE) { 1379 if (C != 0) 1380 return true; 1381 1382 // It looks like gold has a bug (http://sourceware.org/PR16794) and can 1383 // only handle section relocations to mergeable sections if using RELA. 1384 if (!hasRelocationAddend()) 1385 return true; 1386 } 1387 1388 // Most TLS relocations use a got, so they need the symbol. Even those that 1389 // are just an offset (@tpoff), require a symbol in gold versions before 1390 // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed 1391 // http://sourceware.org/PR16773. 1392 if (Flags & ELF::SHF_TLS) 1393 return true; 1394 } 1395 1396 // If the symbol is a thumb function the final relocation must set the lowest 1397 // bit. With a symbol that is done by just having the symbol have that bit 1398 // set, so we would lose the bit if we relocated with the section. 1399 // FIXME: We could use the section but add the bit to the relocation value. 1400 if (Asm.isThumbFunc(Sym)) 1401 return true; 1402 1403 if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type)) 1404 return true; 1405 return false; 1406 } 1407 1408 void ELFObjectWriter::recordRelocation(MCAssembler &Asm, 1409 const MCAsmLayout &Layout, 1410 const MCFragment *Fragment, 1411 const MCFixup &Fixup, MCValue Target, 1412 uint64_t &FixedValue) { 1413 MCAsmBackend &Backend = Asm.getBackend(); 1414 bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags & 1415 MCFixupKindInfo::FKF_IsPCRel; 1416 const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent()); 1417 uint64_t C = Target.getConstant(); 1418 uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); 1419 MCContext &Ctx = Asm.getContext(); 1420 1421 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 1422 // Let A, B and C being the components of Target and R be the location of 1423 // the fixup. If the fixup is not pcrel, we want to compute (A - B + C). 1424 // If it is pcrel, we want to compute (A - B + C - R). 1425 1426 // In general, ELF has no relocations for -B. It can only represent (A + C) 1427 // or (A + C - R). If B = R + K and the relocation is not pcrel, we can 1428 // replace B to implement it: (A - R - K + C) 1429 if (IsPCRel) { 1430 Ctx.reportError( 1431 Fixup.getLoc(), 1432 "No relocation available to represent this relative expression"); 1433 return; 1434 } 1435 1436 const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol()); 1437 1438 if (SymB.isUndefined()) { 1439 Ctx.reportError(Fixup.getLoc(), 1440 Twine("symbol '") + SymB.getName() + 1441 "' can not be undefined in a subtraction expression"); 1442 return; 1443 } 1444 1445 assert(!SymB.isAbsolute() && "Should have been folded"); 1446 const MCSection &SecB = SymB.getSection(); 1447 if (&SecB != &FixupSection) { 1448 Ctx.reportError(Fixup.getLoc(), 1449 "Cannot represent a difference across sections"); 1450 return; 1451 } 1452 1453 uint64_t SymBOffset = Layout.getSymbolOffset(SymB); 1454 uint64_t K = SymBOffset - FixupOffset; 1455 IsPCRel = true; 1456 C -= K; 1457 } 1458 1459 // We either rejected the fixup or folded B into C at this point. 1460 const MCSymbolRefExpr *RefA = Target.getSymA(); 1461 const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr; 1462 1463 bool ViaWeakRef = false; 1464 if (SymA && SymA->isVariable()) { 1465 const MCExpr *Expr = SymA->getVariableValue(); 1466 if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) { 1467 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) { 1468 SymA = cast<MCSymbolELF>(&Inner->getSymbol()); 1469 ViaWeakRef = true; 1470 } 1471 } 1472 } 1473 1474 unsigned Type = TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel); 1475 uint64_t OriginalC = C; 1476 bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type); 1477 if (!RelocateWithSymbol && SymA && !SymA->isUndefined()) 1478 C += Layout.getSymbolOffset(*SymA); 1479 1480 uint64_t Addend = 0; 1481 if (hasRelocationAddend()) { 1482 Addend = C; 1483 C = 0; 1484 } 1485 1486 FixedValue = C; 1487 1488 const MCSectionELF *SecA = (SymA && SymA->isInSection()) 1489 ? cast<MCSectionELF>(&SymA->getSection()) 1490 : nullptr; 1491 if (!checkRelocation(Ctx, Fixup.getLoc(), &FixupSection, SecA)) 1492 return; 1493 1494 if (!RelocateWithSymbol) { 1495 const auto *SectionSymbol = 1496 SecA ? cast<MCSymbolELF>(SecA->getBeginSymbol()) : nullptr; 1497 if (SectionSymbol) 1498 SectionSymbol->setUsedInReloc(); 1499 ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA, 1500 OriginalC); 1501 Relocations[&FixupSection].push_back(Rec); 1502 return; 1503 } 1504 1505 const auto *RenamedSymA = SymA; 1506 if (SymA) { 1507 if (const MCSymbolELF *R = Renames.lookup(SymA)) 1508 RenamedSymA = R; 1509 1510 if (ViaWeakRef) 1511 RenamedSymA->setIsWeakrefUsedInReloc(); 1512 else 1513 RenamedSymA->setUsedInReloc(); 1514 } 1515 ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA, 1516 OriginalC); 1517 Relocations[&FixupSection].push_back(Rec); 1518 } 1519 1520 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl( 1521 const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB, 1522 bool InSet, bool IsPCRel) const { 1523 const auto &SymA = cast<MCSymbolELF>(SA); 1524 if (IsPCRel) { 1525 assert(!InSet); 1526 if (isWeak(SymA)) 1527 return false; 1528 } 1529 return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB, 1530 InSet, IsPCRel); 1531 } 1532 1533 std::unique_ptr<MCObjectWriter> 1534 llvm::createELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 1535 raw_pwrite_stream &OS, bool IsLittleEndian) { 1536 return llvm::make_unique<ELFSingleObjectWriter>(std::move(MOTW), OS, 1537 IsLittleEndian); 1538 } 1539 1540 std::unique_ptr<MCObjectWriter> 1541 llvm::createELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 1542 raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS, 1543 bool IsLittleEndian) { 1544 return llvm::make_unique<ELFDwoObjectWriter>(std::move(MOTW), OS, DwoOS, 1545 IsLittleEndian); 1546 } 1547