1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the function verifier interface, that can be used for some 11 // sanity checking of input to the system. 12 // 13 // Note that this does not provide full `Java style' security and verifications, 14 // instead it just tries to ensure that code is well-formed. 15 // 16 // * Both of a binary operator's parameters are of the same type 17 // * Verify that the indices of mem access instructions match other operands 18 // * Verify that arithmetic and other things are only performed on first-class 19 // types. Verify that shifts & logicals only happen on integrals f.e. 20 // * All of the constants in a switch statement are of the correct type 21 // * The code is in valid SSA form 22 // * It should be illegal to put a label into any other type (like a structure) 23 // or to return one. [except constant arrays!] 24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 25 // * PHI nodes must have an entry for each predecessor, with no extras. 26 // * PHI nodes must be the first thing in a basic block, all grouped together 27 // * PHI nodes must have at least one entry 28 // * All basic blocks should only end with terminator insts, not contain them 29 // * The entry node to a function must not have predecessors 30 // * All Instructions must be embedded into a basic block 31 // * Functions cannot take a void-typed parameter 32 // * Verify that a function's argument list agrees with it's declared type. 33 // * It is illegal to specify a name for a void value. 34 // * It is illegal to have a internal global value with no initializer 35 // * It is illegal to have a ret instruction that returns a value that does not 36 // agree with the function return value type. 37 // * Function call argument types match the function prototype 38 // * A landing pad is defined by a landingpad instruction, and can be jumped to 39 // only by the unwind edge of an invoke instruction. 40 // * A landingpad instruction must be the first non-PHI instruction in the 41 // block. 42 // * Landingpad instructions must be in a function with a personality function. 43 // * All other things that are tested by asserts spread about the code... 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "llvm/IR/Verifier.h" 48 #include "llvm/ADT/APFloat.h" 49 #include "llvm/ADT/APInt.h" 50 #include "llvm/ADT/ArrayRef.h" 51 #include "llvm/ADT/DenseMap.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/Optional.h" 54 #include "llvm/ADT/STLExtras.h" 55 #include "llvm/ADT/SmallPtrSet.h" 56 #include "llvm/ADT/SmallSet.h" 57 #include "llvm/ADT/SmallVector.h" 58 #include "llvm/ADT/StringExtras.h" 59 #include "llvm/ADT/StringMap.h" 60 #include "llvm/ADT/StringRef.h" 61 #include "llvm/ADT/Twine.h" 62 #include "llvm/ADT/ilist.h" 63 #include "llvm/BinaryFormat/Dwarf.h" 64 #include "llvm/IR/Argument.h" 65 #include "llvm/IR/Attributes.h" 66 #include "llvm/IR/BasicBlock.h" 67 #include "llvm/IR/CFG.h" 68 #include "llvm/IR/CallingConv.h" 69 #include "llvm/IR/Comdat.h" 70 #include "llvm/IR/Constant.h" 71 #include "llvm/IR/ConstantRange.h" 72 #include "llvm/IR/Constants.h" 73 #include "llvm/IR/DataLayout.h" 74 #include "llvm/IR/DebugInfo.h" 75 #include "llvm/IR/DebugInfoMetadata.h" 76 #include "llvm/IR/DebugLoc.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/Dominators.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GlobalAlias.h" 81 #include "llvm/IR/GlobalValue.h" 82 #include "llvm/IR/GlobalVariable.h" 83 #include "llvm/IR/InlineAsm.h" 84 #include "llvm/IR/InstVisitor.h" 85 #include "llvm/IR/InstrTypes.h" 86 #include "llvm/IR/Instruction.h" 87 #include "llvm/IR/Instructions.h" 88 #include "llvm/IR/IntrinsicInst.h" 89 #include "llvm/IR/Intrinsics.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/ModuleSlotTracker.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/Pass.h" 101 #include "llvm/Support/AtomicOrdering.h" 102 #include "llvm/Support/Casting.h" 103 #include "llvm/Support/CommandLine.h" 104 #include "llvm/Support/Debug.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include <algorithm> 109 #include <cassert> 110 #include <cstdint> 111 #include <memory> 112 #include <string> 113 #include <utility> 114 115 using namespace llvm; 116 117 namespace llvm { 118 119 struct VerifierSupport { 120 raw_ostream *OS; 121 const Module &M; 122 ModuleSlotTracker MST; 123 const DataLayout &DL; 124 LLVMContext &Context; 125 126 /// Track the brokenness of the module while recursively visiting. 127 bool Broken = false; 128 /// Broken debug info can be "recovered" from by stripping the debug info. 129 bool BrokenDebugInfo = false; 130 /// Whether to treat broken debug info as an error. 131 bool TreatBrokenDebugInfoAsError = true; 132 133 explicit VerifierSupport(raw_ostream *OS, const Module &M) 134 : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {} 135 136 private: 137 void Write(const Module *M) { 138 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 139 } 140 141 void Write(const Value *V) { 142 if (V) 143 Write(*V); 144 } 145 146 void Write(const Value &V) { 147 if (isa<Instruction>(V)) { 148 V.print(*OS, MST); 149 *OS << '\n'; 150 } else { 151 V.printAsOperand(*OS, true, MST); 152 *OS << '\n'; 153 } 154 } 155 156 void Write(const Metadata *MD) { 157 if (!MD) 158 return; 159 MD->print(*OS, MST, &M); 160 *OS << '\n'; 161 } 162 163 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 164 Write(MD.get()); 165 } 166 167 void Write(const NamedMDNode *NMD) { 168 if (!NMD) 169 return; 170 NMD->print(*OS, MST); 171 *OS << '\n'; 172 } 173 174 void Write(Type *T) { 175 if (!T) 176 return; 177 *OS << ' ' << *T; 178 } 179 180 void Write(const Comdat *C) { 181 if (!C) 182 return; 183 *OS << *C; 184 } 185 186 void Write(const APInt *AI) { 187 if (!AI) 188 return; 189 *OS << *AI << '\n'; 190 } 191 192 void Write(const unsigned i) { *OS << i << '\n'; } 193 194 template <typename T> void Write(ArrayRef<T> Vs) { 195 for (const T &V : Vs) 196 Write(V); 197 } 198 199 template <typename T1, typename... Ts> 200 void WriteTs(const T1 &V1, const Ts &... Vs) { 201 Write(V1); 202 WriteTs(Vs...); 203 } 204 205 template <typename... Ts> void WriteTs() {} 206 207 public: 208 /// A check failed, so printout out the condition and the message. 209 /// 210 /// This provides a nice place to put a breakpoint if you want to see why 211 /// something is not correct. 212 void CheckFailed(const Twine &Message) { 213 if (OS) 214 *OS << Message << '\n'; 215 Broken = true; 216 } 217 218 /// A check failed (with values to print). 219 /// 220 /// This calls the Message-only version so that the above is easier to set a 221 /// breakpoint on. 222 template <typename T1, typename... Ts> 223 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 224 CheckFailed(Message); 225 if (OS) 226 WriteTs(V1, Vs...); 227 } 228 229 /// A debug info check failed. 230 void DebugInfoCheckFailed(const Twine &Message) { 231 if (OS) 232 *OS << Message << '\n'; 233 Broken |= TreatBrokenDebugInfoAsError; 234 BrokenDebugInfo = true; 235 } 236 237 /// A debug info check failed (with values to print). 238 template <typename T1, typename... Ts> 239 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 240 const Ts &... Vs) { 241 DebugInfoCheckFailed(Message); 242 if (OS) 243 WriteTs(V1, Vs...); 244 } 245 }; 246 247 } // namespace llvm 248 249 namespace { 250 251 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 252 friend class InstVisitor<Verifier>; 253 254 DominatorTree DT; 255 256 /// When verifying a basic block, keep track of all of the 257 /// instructions we have seen so far. 258 /// 259 /// This allows us to do efficient dominance checks for the case when an 260 /// instruction has an operand that is an instruction in the same block. 261 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 262 263 /// Keep track of the metadata nodes that have been checked already. 264 SmallPtrSet<const Metadata *, 32> MDNodes; 265 266 /// Keep track which DISubprogram is attached to which function. 267 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 268 269 /// Track all DICompileUnits visited. 270 SmallPtrSet<const Metadata *, 2> CUVisited; 271 272 /// The result type for a landingpad. 273 Type *LandingPadResultTy; 274 275 /// Whether we've seen a call to @llvm.localescape in this function 276 /// already. 277 bool SawFrameEscape; 278 279 /// Whether the current function has a DISubprogram attached to it. 280 bool HasDebugInfo = false; 281 282 /// Whether source was present on the first DIFile encountered in each CU. 283 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 284 285 /// Stores the count of how many objects were passed to llvm.localescape for a 286 /// given function and the largest index passed to llvm.localrecover. 287 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 288 289 // Maps catchswitches and cleanuppads that unwind to siblings to the 290 // terminators that indicate the unwind, used to detect cycles therein. 291 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 292 293 /// Cache of constants visited in search of ConstantExprs. 294 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 295 296 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 297 SmallVector<const Function *, 4> DeoptimizeDeclarations; 298 299 // Verify that this GlobalValue is only used in this module. 300 // This map is used to avoid visiting uses twice. We can arrive at a user 301 // twice, if they have multiple operands. In particular for very large 302 // constant expressions, we can arrive at a particular user many times. 303 SmallPtrSet<const Value *, 32> GlobalValueVisited; 304 305 // Keeps track of duplicate function argument debug info. 306 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 307 308 TBAAVerifier TBAAVerifyHelper; 309 310 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 311 312 public: 313 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 314 const Module &M) 315 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 316 SawFrameEscape(false), TBAAVerifyHelper(this) { 317 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 318 } 319 320 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 321 322 bool verify(const Function &F) { 323 assert(F.getParent() == &M && 324 "An instance of this class only works with a specific module!"); 325 326 // First ensure the function is well-enough formed to compute dominance 327 // information, and directly compute a dominance tree. We don't rely on the 328 // pass manager to provide this as it isolates us from a potentially 329 // out-of-date dominator tree and makes it significantly more complex to run 330 // this code outside of a pass manager. 331 // FIXME: It's really gross that we have to cast away constness here. 332 if (!F.empty()) 333 DT.recalculate(const_cast<Function &>(F)); 334 335 for (const BasicBlock &BB : F) { 336 if (!BB.empty() && BB.back().isTerminator()) 337 continue; 338 339 if (OS) { 340 *OS << "Basic Block in function '" << F.getName() 341 << "' does not have terminator!\n"; 342 BB.printAsOperand(*OS, true, MST); 343 *OS << "\n"; 344 } 345 return false; 346 } 347 348 Broken = false; 349 // FIXME: We strip const here because the inst visitor strips const. 350 visit(const_cast<Function &>(F)); 351 verifySiblingFuncletUnwinds(); 352 InstsInThisBlock.clear(); 353 DebugFnArgs.clear(); 354 LandingPadResultTy = nullptr; 355 SawFrameEscape = false; 356 SiblingFuncletInfo.clear(); 357 358 return !Broken; 359 } 360 361 /// Verify the module that this instance of \c Verifier was initialized with. 362 bool verify() { 363 Broken = false; 364 365 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 366 for (const Function &F : M) 367 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 368 DeoptimizeDeclarations.push_back(&F); 369 370 // Now that we've visited every function, verify that we never asked to 371 // recover a frame index that wasn't escaped. 372 verifyFrameRecoverIndices(); 373 for (const GlobalVariable &GV : M.globals()) 374 visitGlobalVariable(GV); 375 376 for (const GlobalAlias &GA : M.aliases()) 377 visitGlobalAlias(GA); 378 379 for (const NamedMDNode &NMD : M.named_metadata()) 380 visitNamedMDNode(NMD); 381 382 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 383 visitComdat(SMEC.getValue()); 384 385 visitModuleFlags(M); 386 visitModuleIdents(M); 387 visitModuleCommandLines(M); 388 389 verifyCompileUnits(); 390 391 verifyDeoptimizeCallingConvs(); 392 DISubprogramAttachments.clear(); 393 return !Broken; 394 } 395 396 private: 397 // Verification methods... 398 void visitGlobalValue(const GlobalValue &GV); 399 void visitGlobalVariable(const GlobalVariable &GV); 400 void visitGlobalAlias(const GlobalAlias &GA); 401 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 402 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 403 const GlobalAlias &A, const Constant &C); 404 void visitNamedMDNode(const NamedMDNode &NMD); 405 void visitMDNode(const MDNode &MD); 406 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 407 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 408 void visitComdat(const Comdat &C); 409 void visitModuleIdents(const Module &M); 410 void visitModuleCommandLines(const Module &M); 411 void visitModuleFlags(const Module &M); 412 void visitModuleFlag(const MDNode *Op, 413 DenseMap<const MDString *, const MDNode *> &SeenIDs, 414 SmallVectorImpl<const MDNode *> &Requirements); 415 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 416 void visitFunction(const Function &F); 417 void visitBasicBlock(BasicBlock &BB); 418 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 419 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 420 421 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 422 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 423 #include "llvm/IR/Metadata.def" 424 void visitDIScope(const DIScope &N); 425 void visitDIVariable(const DIVariable &N); 426 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 427 void visitDITemplateParameter(const DITemplateParameter &N); 428 429 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 430 431 // InstVisitor overrides... 432 using InstVisitor<Verifier>::visit; 433 void visit(Instruction &I); 434 435 void visitTruncInst(TruncInst &I); 436 void visitZExtInst(ZExtInst &I); 437 void visitSExtInst(SExtInst &I); 438 void visitFPTruncInst(FPTruncInst &I); 439 void visitFPExtInst(FPExtInst &I); 440 void visitFPToUIInst(FPToUIInst &I); 441 void visitFPToSIInst(FPToSIInst &I); 442 void visitUIToFPInst(UIToFPInst &I); 443 void visitSIToFPInst(SIToFPInst &I); 444 void visitIntToPtrInst(IntToPtrInst &I); 445 void visitPtrToIntInst(PtrToIntInst &I); 446 void visitBitCastInst(BitCastInst &I); 447 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 448 void visitPHINode(PHINode &PN); 449 void visitCallBase(CallBase &Call); 450 void visitUnaryOperator(UnaryOperator &U); 451 void visitBinaryOperator(BinaryOperator &B); 452 void visitICmpInst(ICmpInst &IC); 453 void visitFCmpInst(FCmpInst &FC); 454 void visitExtractElementInst(ExtractElementInst &EI); 455 void visitInsertElementInst(InsertElementInst &EI); 456 void visitShuffleVectorInst(ShuffleVectorInst &EI); 457 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 458 void visitCallInst(CallInst &CI); 459 void visitInvokeInst(InvokeInst &II); 460 void visitGetElementPtrInst(GetElementPtrInst &GEP); 461 void visitLoadInst(LoadInst &LI); 462 void visitStoreInst(StoreInst &SI); 463 void verifyDominatesUse(Instruction &I, unsigned i); 464 void visitInstruction(Instruction &I); 465 void visitTerminator(Instruction &I); 466 void visitBranchInst(BranchInst &BI); 467 void visitReturnInst(ReturnInst &RI); 468 void visitSwitchInst(SwitchInst &SI); 469 void visitIndirectBrInst(IndirectBrInst &BI); 470 void visitSelectInst(SelectInst &SI); 471 void visitUserOp1(Instruction &I); 472 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 473 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 474 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 475 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 476 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 477 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 478 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 479 void visitFenceInst(FenceInst &FI); 480 void visitAllocaInst(AllocaInst &AI); 481 void visitExtractValueInst(ExtractValueInst &EVI); 482 void visitInsertValueInst(InsertValueInst &IVI); 483 void visitEHPadPredecessors(Instruction &I); 484 void visitLandingPadInst(LandingPadInst &LPI); 485 void visitResumeInst(ResumeInst &RI); 486 void visitCatchPadInst(CatchPadInst &CPI); 487 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 488 void visitCleanupPadInst(CleanupPadInst &CPI); 489 void visitFuncletPadInst(FuncletPadInst &FPI); 490 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 491 void visitCleanupReturnInst(CleanupReturnInst &CRI); 492 493 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 494 void verifySwiftErrorValue(const Value *SwiftErrorVal); 495 void verifyMustTailCall(CallInst &CI); 496 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, 497 unsigned ArgNo, std::string &Suffix); 498 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 499 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 500 const Value *V); 501 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 502 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 503 const Value *V); 504 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 505 506 void visitConstantExprsRecursively(const Constant *EntryC); 507 void visitConstantExpr(const ConstantExpr *CE); 508 void verifyStatepoint(const CallBase &Call); 509 void verifyFrameRecoverIndices(); 510 void verifySiblingFuncletUnwinds(); 511 512 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 513 template <typename ValueOrMetadata> 514 void verifyFragmentExpression(const DIVariable &V, 515 DIExpression::FragmentInfo Fragment, 516 ValueOrMetadata *Desc); 517 void verifyFnArgs(const DbgVariableIntrinsic &I); 518 519 /// Module-level debug info verification... 520 void verifyCompileUnits(); 521 522 /// Module-level verification that all @llvm.experimental.deoptimize 523 /// declarations share the same calling convention. 524 void verifyDeoptimizeCallingConvs(); 525 526 /// Verify all-or-nothing property of DIFile source attribute within a CU. 527 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 528 }; 529 530 } // end anonymous namespace 531 532 /// We know that cond should be true, if not print an error message. 533 #define Assert(C, ...) \ 534 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 535 536 /// We know that a debug info condition should be true, if not print 537 /// an error message. 538 #define AssertDI(C, ...) \ 539 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 540 541 void Verifier::visit(Instruction &I) { 542 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 543 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 544 InstVisitor<Verifier>::visit(I); 545 } 546 547 // Helper to recursively iterate over indirect users. By 548 // returning false, the callback can ask to stop recursing 549 // further. 550 static void forEachUser(const Value *User, 551 SmallPtrSet<const Value *, 32> &Visited, 552 llvm::function_ref<bool(const Value *)> Callback) { 553 if (!Visited.insert(User).second) 554 return; 555 for (const Value *TheNextUser : User->materialized_users()) 556 if (Callback(TheNextUser)) 557 forEachUser(TheNextUser, Visited, Callback); 558 } 559 560 void Verifier::visitGlobalValue(const GlobalValue &GV) { 561 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 562 "Global is external, but doesn't have external or weak linkage!", &GV); 563 564 Assert(GV.getAlignment() <= Value::MaximumAlignment, 565 "huge alignment values are unsupported", &GV); 566 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 567 "Only global variables can have appending linkage!", &GV); 568 569 if (GV.hasAppendingLinkage()) { 570 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 571 Assert(GVar && GVar->getValueType()->isArrayTy(), 572 "Only global arrays can have appending linkage!", GVar); 573 } 574 575 if (GV.isDeclarationForLinker()) 576 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 577 578 if (GV.hasDLLImportStorageClass()) { 579 Assert(!GV.isDSOLocal(), 580 "GlobalValue with DLLImport Storage is dso_local!", &GV); 581 582 Assert((GV.isDeclaration() && GV.hasExternalLinkage()) || 583 GV.hasAvailableExternallyLinkage(), 584 "Global is marked as dllimport, but not external", &GV); 585 } 586 587 if (GV.hasLocalLinkage()) 588 Assert(GV.isDSOLocal(), 589 "GlobalValue with private or internal linkage must be dso_local!", 590 &GV); 591 592 if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage()) 593 Assert(GV.isDSOLocal(), 594 "GlobalValue with non default visibility must be dso_local!", &GV); 595 596 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 597 if (const Instruction *I = dyn_cast<Instruction>(V)) { 598 if (!I->getParent() || !I->getParent()->getParent()) 599 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 600 I); 601 else if (I->getParent()->getParent()->getParent() != &M) 602 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 603 I->getParent()->getParent(), 604 I->getParent()->getParent()->getParent()); 605 return false; 606 } else if (const Function *F = dyn_cast<Function>(V)) { 607 if (F->getParent() != &M) 608 CheckFailed("Global is used by function in a different module", &GV, &M, 609 F, F->getParent()); 610 return false; 611 } 612 return true; 613 }); 614 } 615 616 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 617 if (GV.hasInitializer()) { 618 Assert(GV.getInitializer()->getType() == GV.getValueType(), 619 "Global variable initializer type does not match global " 620 "variable type!", 621 &GV); 622 // If the global has common linkage, it must have a zero initializer and 623 // cannot be constant. 624 if (GV.hasCommonLinkage()) { 625 Assert(GV.getInitializer()->isNullValue(), 626 "'common' global must have a zero initializer!", &GV); 627 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 628 &GV); 629 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 630 } 631 } 632 633 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 634 GV.getName() == "llvm.global_dtors")) { 635 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 636 "invalid linkage for intrinsic global variable", &GV); 637 // Don't worry about emitting an error for it not being an array, 638 // visitGlobalValue will complain on appending non-array. 639 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 640 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 641 PointerType *FuncPtrTy = 642 FunctionType::get(Type::getVoidTy(Context), false)-> 643 getPointerTo(DL.getProgramAddressSpace()); 644 // FIXME: Reject the 2-field form in LLVM 4.0. 645 Assert(STy && 646 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 647 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 648 STy->getTypeAtIndex(1) == FuncPtrTy, 649 "wrong type for intrinsic global variable", &GV); 650 if (STy->getNumElements() == 3) { 651 Type *ETy = STy->getTypeAtIndex(2); 652 Assert(ETy->isPointerTy() && 653 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 654 "wrong type for intrinsic global variable", &GV); 655 } 656 } 657 } 658 659 if (GV.hasName() && (GV.getName() == "llvm.used" || 660 GV.getName() == "llvm.compiler.used")) { 661 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 662 "invalid linkage for intrinsic global variable", &GV); 663 Type *GVType = GV.getValueType(); 664 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 665 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 666 Assert(PTy, "wrong type for intrinsic global variable", &GV); 667 if (GV.hasInitializer()) { 668 const Constant *Init = GV.getInitializer(); 669 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 670 Assert(InitArray, "wrong initalizer for intrinsic global variable", 671 Init); 672 for (Value *Op : InitArray->operands()) { 673 Value *V = Op->stripPointerCastsNoFollowAliases(); 674 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 675 isa<GlobalAlias>(V), 676 "invalid llvm.used member", V); 677 Assert(V->hasName(), "members of llvm.used must be named", V); 678 } 679 } 680 } 681 } 682 683 // Visit any debug info attachments. 684 SmallVector<MDNode *, 1> MDs; 685 GV.getMetadata(LLVMContext::MD_dbg, MDs); 686 for (auto *MD : MDs) { 687 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 688 visitDIGlobalVariableExpression(*GVE); 689 else 690 AssertDI(false, "!dbg attachment of global variable must be a " 691 "DIGlobalVariableExpression"); 692 } 693 694 if (!GV.hasInitializer()) { 695 visitGlobalValue(GV); 696 return; 697 } 698 699 // Walk any aggregate initializers looking for bitcasts between address spaces 700 visitConstantExprsRecursively(GV.getInitializer()); 701 702 visitGlobalValue(GV); 703 } 704 705 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 706 SmallPtrSet<const GlobalAlias*, 4> Visited; 707 Visited.insert(&GA); 708 visitAliaseeSubExpr(Visited, GA, C); 709 } 710 711 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 712 const GlobalAlias &GA, const Constant &C) { 713 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 714 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 715 &GA); 716 717 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 718 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 719 720 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 721 &GA); 722 } else { 723 // Only continue verifying subexpressions of GlobalAliases. 724 // Do not recurse into global initializers. 725 return; 726 } 727 } 728 729 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 730 visitConstantExprsRecursively(CE); 731 732 for (const Use &U : C.operands()) { 733 Value *V = &*U; 734 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 735 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 736 else if (const auto *C2 = dyn_cast<Constant>(V)) 737 visitAliaseeSubExpr(Visited, GA, *C2); 738 } 739 } 740 741 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 742 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 743 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 744 "weak_odr, or external linkage!", 745 &GA); 746 const Constant *Aliasee = GA.getAliasee(); 747 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 748 Assert(GA.getType() == Aliasee->getType(), 749 "Alias and aliasee types should match!", &GA); 750 751 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 752 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 753 754 visitAliaseeSubExpr(GA, *Aliasee); 755 756 visitGlobalValue(GA); 757 } 758 759 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 760 // There used to be various other llvm.dbg.* nodes, but we don't support 761 // upgrading them and we want to reserve the namespace for future uses. 762 if (NMD.getName().startswith("llvm.dbg.")) 763 AssertDI(NMD.getName() == "llvm.dbg.cu", 764 "unrecognized named metadata node in the llvm.dbg namespace", 765 &NMD); 766 for (const MDNode *MD : NMD.operands()) { 767 if (NMD.getName() == "llvm.dbg.cu") 768 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 769 770 if (!MD) 771 continue; 772 773 visitMDNode(*MD); 774 } 775 } 776 777 void Verifier::visitMDNode(const MDNode &MD) { 778 // Only visit each node once. Metadata can be mutually recursive, so this 779 // avoids infinite recursion here, as well as being an optimization. 780 if (!MDNodes.insert(&MD).second) 781 return; 782 783 switch (MD.getMetadataID()) { 784 default: 785 llvm_unreachable("Invalid MDNode subclass"); 786 case Metadata::MDTupleKind: 787 break; 788 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 789 case Metadata::CLASS##Kind: \ 790 visit##CLASS(cast<CLASS>(MD)); \ 791 break; 792 #include "llvm/IR/Metadata.def" 793 } 794 795 for (const Metadata *Op : MD.operands()) { 796 if (!Op) 797 continue; 798 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 799 &MD, Op); 800 if (auto *N = dyn_cast<MDNode>(Op)) { 801 visitMDNode(*N); 802 continue; 803 } 804 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 805 visitValueAsMetadata(*V, nullptr); 806 continue; 807 } 808 } 809 810 // Check these last, so we diagnose problems in operands first. 811 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 812 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 813 } 814 815 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 816 Assert(MD.getValue(), "Expected valid value", &MD); 817 Assert(!MD.getValue()->getType()->isMetadataTy(), 818 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 819 820 auto *L = dyn_cast<LocalAsMetadata>(&MD); 821 if (!L) 822 return; 823 824 Assert(F, "function-local metadata used outside a function", L); 825 826 // If this was an instruction, bb, or argument, verify that it is in the 827 // function that we expect. 828 Function *ActualF = nullptr; 829 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 830 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 831 ActualF = I->getParent()->getParent(); 832 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 833 ActualF = BB->getParent(); 834 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 835 ActualF = A->getParent(); 836 assert(ActualF && "Unimplemented function local metadata case!"); 837 838 Assert(ActualF == F, "function-local metadata used in wrong function", L); 839 } 840 841 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 842 Metadata *MD = MDV.getMetadata(); 843 if (auto *N = dyn_cast<MDNode>(MD)) { 844 visitMDNode(*N); 845 return; 846 } 847 848 // Only visit each node once. Metadata can be mutually recursive, so this 849 // avoids infinite recursion here, as well as being an optimization. 850 if (!MDNodes.insert(MD).second) 851 return; 852 853 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 854 visitValueAsMetadata(*V, F); 855 } 856 857 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 858 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 859 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 860 861 void Verifier::visitDILocation(const DILocation &N) { 862 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 863 "location requires a valid scope", &N, N.getRawScope()); 864 if (auto *IA = N.getRawInlinedAt()) 865 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 866 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 867 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 868 } 869 870 void Verifier::visitGenericDINode(const GenericDINode &N) { 871 AssertDI(N.getTag(), "invalid tag", &N); 872 } 873 874 void Verifier::visitDIScope(const DIScope &N) { 875 if (auto *F = N.getRawFile()) 876 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 877 } 878 879 void Verifier::visitDISubrange(const DISubrange &N) { 880 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 881 auto Count = N.getCount(); 882 AssertDI(Count, "Count must either be a signed constant or a DIVariable", 883 &N); 884 AssertDI(!Count.is<ConstantInt*>() || 885 Count.get<ConstantInt*>()->getSExtValue() >= -1, 886 "invalid subrange count", &N); 887 } 888 889 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 890 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 891 } 892 893 void Verifier::visitDIBasicType(const DIBasicType &N) { 894 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 895 N.getTag() == dwarf::DW_TAG_unspecified_type, 896 "invalid tag", &N); 897 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 898 "has conflicting flags", &N); 899 } 900 901 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 902 // Common scope checks. 903 visitDIScope(N); 904 905 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 906 N.getTag() == dwarf::DW_TAG_pointer_type || 907 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 908 N.getTag() == dwarf::DW_TAG_reference_type || 909 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 910 N.getTag() == dwarf::DW_TAG_const_type || 911 N.getTag() == dwarf::DW_TAG_volatile_type || 912 N.getTag() == dwarf::DW_TAG_restrict_type || 913 N.getTag() == dwarf::DW_TAG_atomic_type || 914 N.getTag() == dwarf::DW_TAG_member || 915 N.getTag() == dwarf::DW_TAG_inheritance || 916 N.getTag() == dwarf::DW_TAG_friend, 917 "invalid tag", &N); 918 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 919 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 920 N.getRawExtraData()); 921 } 922 923 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 924 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 925 N.getRawBaseType()); 926 927 if (N.getDWARFAddressSpace()) { 928 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 929 N.getTag() == dwarf::DW_TAG_reference_type, 930 "DWARF address space only applies to pointer or reference types", 931 &N); 932 } 933 } 934 935 /// Detect mutually exclusive flags. 936 static bool hasConflictingReferenceFlags(unsigned Flags) { 937 return ((Flags & DINode::FlagLValueReference) && 938 (Flags & DINode::FlagRValueReference)) || 939 ((Flags & DINode::FlagTypePassByValue) && 940 (Flags & DINode::FlagTypePassByReference)); 941 } 942 943 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 944 auto *Params = dyn_cast<MDTuple>(&RawParams); 945 AssertDI(Params, "invalid template params", &N, &RawParams); 946 for (Metadata *Op : Params->operands()) { 947 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 948 &N, Params, Op); 949 } 950 } 951 952 void Verifier::visitDICompositeType(const DICompositeType &N) { 953 // Common scope checks. 954 visitDIScope(N); 955 956 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 957 N.getTag() == dwarf::DW_TAG_structure_type || 958 N.getTag() == dwarf::DW_TAG_union_type || 959 N.getTag() == dwarf::DW_TAG_enumeration_type || 960 N.getTag() == dwarf::DW_TAG_class_type || 961 N.getTag() == dwarf::DW_TAG_variant_part, 962 "invalid tag", &N); 963 964 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 965 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 966 N.getRawBaseType()); 967 968 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 969 "invalid composite elements", &N, N.getRawElements()); 970 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 971 N.getRawVTableHolder()); 972 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 973 "invalid reference flags", &N); 974 975 if (N.isVector()) { 976 const DINodeArray Elements = N.getElements(); 977 AssertDI(Elements.size() == 1 && 978 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 979 "invalid vector, expected one element of type subrange", &N); 980 } 981 982 if (auto *Params = N.getRawTemplateParams()) 983 visitTemplateParams(N, *Params); 984 985 if (N.getTag() == dwarf::DW_TAG_class_type || 986 N.getTag() == dwarf::DW_TAG_union_type) { 987 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), 988 "class/union requires a filename", &N, N.getFile()); 989 } 990 991 if (auto *D = N.getRawDiscriminator()) { 992 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 993 "discriminator can only appear on variant part"); 994 } 995 } 996 997 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 998 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 999 if (auto *Types = N.getRawTypeArray()) { 1000 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1001 for (Metadata *Ty : N.getTypeArray()->operands()) { 1002 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1003 } 1004 } 1005 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1006 "invalid reference flags", &N); 1007 } 1008 1009 void Verifier::visitDIFile(const DIFile &N) { 1010 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1011 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1012 if (Checksum) { 1013 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1014 "invalid checksum kind", &N); 1015 size_t Size; 1016 switch (Checksum->Kind) { 1017 case DIFile::CSK_MD5: 1018 Size = 32; 1019 break; 1020 case DIFile::CSK_SHA1: 1021 Size = 40; 1022 break; 1023 } 1024 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1025 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1026 "invalid checksum", &N); 1027 } 1028 } 1029 1030 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1031 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1032 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1033 1034 // Don't bother verifying the compilation directory or producer string 1035 // as those could be empty. 1036 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1037 N.getRawFile()); 1038 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1039 N.getFile()); 1040 1041 verifySourceDebugInfo(N, *N.getFile()); 1042 1043 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1044 "invalid emission kind", &N); 1045 1046 if (auto *Array = N.getRawEnumTypes()) { 1047 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1048 for (Metadata *Op : N.getEnumTypes()->operands()) { 1049 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1050 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1051 "invalid enum type", &N, N.getEnumTypes(), Op); 1052 } 1053 } 1054 if (auto *Array = N.getRawRetainedTypes()) { 1055 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1056 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1057 AssertDI(Op && (isa<DIType>(Op) || 1058 (isa<DISubprogram>(Op) && 1059 !cast<DISubprogram>(Op)->isDefinition())), 1060 "invalid retained type", &N, Op); 1061 } 1062 } 1063 if (auto *Array = N.getRawGlobalVariables()) { 1064 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1065 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1066 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1067 "invalid global variable ref", &N, Op); 1068 } 1069 } 1070 if (auto *Array = N.getRawImportedEntities()) { 1071 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1072 for (Metadata *Op : N.getImportedEntities()->operands()) { 1073 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1074 &N, Op); 1075 } 1076 } 1077 if (auto *Array = N.getRawMacros()) { 1078 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1079 for (Metadata *Op : N.getMacros()->operands()) { 1080 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1081 } 1082 } 1083 CUVisited.insert(&N); 1084 } 1085 1086 void Verifier::visitDISubprogram(const DISubprogram &N) { 1087 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1088 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1089 if (auto *F = N.getRawFile()) 1090 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1091 else 1092 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1093 if (auto *T = N.getRawType()) 1094 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1095 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1096 N.getRawContainingType()); 1097 if (auto *Params = N.getRawTemplateParams()) 1098 visitTemplateParams(N, *Params); 1099 if (auto *S = N.getRawDeclaration()) 1100 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1101 "invalid subprogram declaration", &N, S); 1102 if (auto *RawNode = N.getRawRetainedNodes()) { 1103 auto *Node = dyn_cast<MDTuple>(RawNode); 1104 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1105 for (Metadata *Op : Node->operands()) { 1106 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1107 "invalid retained nodes, expected DILocalVariable or DILabel", 1108 &N, Node, Op); 1109 } 1110 } 1111 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1112 "invalid reference flags", &N); 1113 1114 auto *Unit = N.getRawUnit(); 1115 if (N.isDefinition()) { 1116 // Subprogram definitions (not part of the type hierarchy). 1117 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1118 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1119 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1120 if (N.getFile()) 1121 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1122 } else { 1123 // Subprogram declarations (part of the type hierarchy). 1124 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1125 } 1126 1127 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1128 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1129 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1130 for (Metadata *Op : ThrownTypes->operands()) 1131 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1132 Op); 1133 } 1134 1135 if (N.areAllCallsDescribed()) 1136 AssertDI(N.isDefinition(), 1137 "DIFlagAllCallsDescribed must be attached to a definition"); 1138 } 1139 1140 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1141 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1142 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1143 "invalid local scope", &N, N.getRawScope()); 1144 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1145 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1146 } 1147 1148 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1149 visitDILexicalBlockBase(N); 1150 1151 AssertDI(N.getLine() || !N.getColumn(), 1152 "cannot have column info without line info", &N); 1153 } 1154 1155 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1156 visitDILexicalBlockBase(N); 1157 } 1158 1159 void Verifier::visitDINamespace(const DINamespace &N) { 1160 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1161 if (auto *S = N.getRawScope()) 1162 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1163 } 1164 1165 void Verifier::visitDIMacro(const DIMacro &N) { 1166 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1167 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1168 "invalid macinfo type", &N); 1169 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1170 if (!N.getValue().empty()) { 1171 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1172 } 1173 } 1174 1175 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1176 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1177 "invalid macinfo type", &N); 1178 if (auto *F = N.getRawFile()) 1179 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1180 1181 if (auto *Array = N.getRawElements()) { 1182 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1183 for (Metadata *Op : N.getElements()->operands()) { 1184 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1185 } 1186 } 1187 } 1188 1189 void Verifier::visitDIModule(const DIModule &N) { 1190 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1191 AssertDI(!N.getName().empty(), "anonymous module", &N); 1192 } 1193 1194 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1195 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1196 } 1197 1198 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1199 visitDITemplateParameter(N); 1200 1201 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1202 &N); 1203 } 1204 1205 void Verifier::visitDITemplateValueParameter( 1206 const DITemplateValueParameter &N) { 1207 visitDITemplateParameter(N); 1208 1209 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1210 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1211 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1212 "invalid tag", &N); 1213 } 1214 1215 void Verifier::visitDIVariable(const DIVariable &N) { 1216 if (auto *S = N.getRawScope()) 1217 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1218 if (auto *F = N.getRawFile()) 1219 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1220 } 1221 1222 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1223 // Checks common to all variables. 1224 visitDIVariable(N); 1225 1226 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1227 AssertDI(!N.getName().empty(), "missing global variable name", &N); 1228 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1229 AssertDI(N.getType(), "missing global variable type", &N); 1230 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1231 AssertDI(isa<DIDerivedType>(Member), 1232 "invalid static data member declaration", &N, Member); 1233 } 1234 } 1235 1236 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1237 // Checks common to all variables. 1238 visitDIVariable(N); 1239 1240 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1241 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1242 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1243 "local variable requires a valid scope", &N, N.getRawScope()); 1244 if (auto Ty = N.getType()) 1245 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1246 } 1247 1248 void Verifier::visitDILabel(const DILabel &N) { 1249 if (auto *S = N.getRawScope()) 1250 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1251 if (auto *F = N.getRawFile()) 1252 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1253 1254 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1255 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1256 "label requires a valid scope", &N, N.getRawScope()); 1257 } 1258 1259 void Verifier::visitDIExpression(const DIExpression &N) { 1260 AssertDI(N.isValid(), "invalid expression", &N); 1261 } 1262 1263 void Verifier::visitDIGlobalVariableExpression( 1264 const DIGlobalVariableExpression &GVE) { 1265 AssertDI(GVE.getVariable(), "missing variable"); 1266 if (auto *Var = GVE.getVariable()) 1267 visitDIGlobalVariable(*Var); 1268 if (auto *Expr = GVE.getExpression()) { 1269 visitDIExpression(*Expr); 1270 if (auto Fragment = Expr->getFragmentInfo()) 1271 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1272 } 1273 } 1274 1275 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1276 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1277 if (auto *T = N.getRawType()) 1278 AssertDI(isType(T), "invalid type ref", &N, T); 1279 if (auto *F = N.getRawFile()) 1280 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1281 } 1282 1283 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1284 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1285 N.getTag() == dwarf::DW_TAG_imported_declaration, 1286 "invalid tag", &N); 1287 if (auto *S = N.getRawScope()) 1288 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1289 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1290 N.getRawEntity()); 1291 } 1292 1293 void Verifier::visitComdat(const Comdat &C) { 1294 // The Module is invalid if the GlobalValue has private linkage. Entities 1295 // with private linkage don't have entries in the symbol table. 1296 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1297 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage", 1298 GV); 1299 } 1300 1301 void Verifier::visitModuleIdents(const Module &M) { 1302 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1303 if (!Idents) 1304 return; 1305 1306 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1307 // Scan each llvm.ident entry and make sure that this requirement is met. 1308 for (const MDNode *N : Idents->operands()) { 1309 Assert(N->getNumOperands() == 1, 1310 "incorrect number of operands in llvm.ident metadata", N); 1311 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1312 ("invalid value for llvm.ident metadata entry operand" 1313 "(the operand should be a string)"), 1314 N->getOperand(0)); 1315 } 1316 } 1317 1318 void Verifier::visitModuleCommandLines(const Module &M) { 1319 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1320 if (!CommandLines) 1321 return; 1322 1323 // llvm.commandline takes a list of metadata entry. Each entry has only one 1324 // string. Scan each llvm.commandline entry and make sure that this 1325 // requirement is met. 1326 for (const MDNode *N : CommandLines->operands()) { 1327 Assert(N->getNumOperands() == 1, 1328 "incorrect number of operands in llvm.commandline metadata", N); 1329 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1330 ("invalid value for llvm.commandline metadata entry operand" 1331 "(the operand should be a string)"), 1332 N->getOperand(0)); 1333 } 1334 } 1335 1336 void Verifier::visitModuleFlags(const Module &M) { 1337 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1338 if (!Flags) return; 1339 1340 // Scan each flag, and track the flags and requirements. 1341 DenseMap<const MDString*, const MDNode*> SeenIDs; 1342 SmallVector<const MDNode*, 16> Requirements; 1343 for (const MDNode *MDN : Flags->operands()) 1344 visitModuleFlag(MDN, SeenIDs, Requirements); 1345 1346 // Validate that the requirements in the module are valid. 1347 for (const MDNode *Requirement : Requirements) { 1348 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1349 const Metadata *ReqValue = Requirement->getOperand(1); 1350 1351 const MDNode *Op = SeenIDs.lookup(Flag); 1352 if (!Op) { 1353 CheckFailed("invalid requirement on flag, flag is not present in module", 1354 Flag); 1355 continue; 1356 } 1357 1358 if (Op->getOperand(2) != ReqValue) { 1359 CheckFailed(("invalid requirement on flag, " 1360 "flag does not have the required value"), 1361 Flag); 1362 continue; 1363 } 1364 } 1365 } 1366 1367 void 1368 Verifier::visitModuleFlag(const MDNode *Op, 1369 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1370 SmallVectorImpl<const MDNode *> &Requirements) { 1371 // Each module flag should have three arguments, the merge behavior (a 1372 // constant int), the flag ID (an MDString), and the value. 1373 Assert(Op->getNumOperands() == 3, 1374 "incorrect number of operands in module flag", Op); 1375 Module::ModFlagBehavior MFB; 1376 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1377 Assert( 1378 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1379 "invalid behavior operand in module flag (expected constant integer)", 1380 Op->getOperand(0)); 1381 Assert(false, 1382 "invalid behavior operand in module flag (unexpected constant)", 1383 Op->getOperand(0)); 1384 } 1385 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1386 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1387 Op->getOperand(1)); 1388 1389 // Sanity check the values for behaviors with additional requirements. 1390 switch (MFB) { 1391 case Module::Error: 1392 case Module::Warning: 1393 case Module::Override: 1394 // These behavior types accept any value. 1395 break; 1396 1397 case Module::Max: { 1398 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1399 "invalid value for 'max' module flag (expected constant integer)", 1400 Op->getOperand(2)); 1401 break; 1402 } 1403 1404 case Module::Require: { 1405 // The value should itself be an MDNode with two operands, a flag ID (an 1406 // MDString), and a value. 1407 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1408 Assert(Value && Value->getNumOperands() == 2, 1409 "invalid value for 'require' module flag (expected metadata pair)", 1410 Op->getOperand(2)); 1411 Assert(isa<MDString>(Value->getOperand(0)), 1412 ("invalid value for 'require' module flag " 1413 "(first value operand should be a string)"), 1414 Value->getOperand(0)); 1415 1416 // Append it to the list of requirements, to check once all module flags are 1417 // scanned. 1418 Requirements.push_back(Value); 1419 break; 1420 } 1421 1422 case Module::Append: 1423 case Module::AppendUnique: { 1424 // These behavior types require the operand be an MDNode. 1425 Assert(isa<MDNode>(Op->getOperand(2)), 1426 "invalid value for 'append'-type module flag " 1427 "(expected a metadata node)", 1428 Op->getOperand(2)); 1429 break; 1430 } 1431 } 1432 1433 // Unless this is a "requires" flag, check the ID is unique. 1434 if (MFB != Module::Require) { 1435 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1436 Assert(Inserted, 1437 "module flag identifiers must be unique (or of 'require' type)", ID); 1438 } 1439 1440 if (ID->getString() == "wchar_size") { 1441 ConstantInt *Value 1442 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1443 Assert(Value, "wchar_size metadata requires constant integer argument"); 1444 } 1445 1446 if (ID->getString() == "Linker Options") { 1447 // If the llvm.linker.options named metadata exists, we assume that the 1448 // bitcode reader has upgraded the module flag. Otherwise the flag might 1449 // have been created by a client directly. 1450 Assert(M.getNamedMetadata("llvm.linker.options"), 1451 "'Linker Options' named metadata no longer supported"); 1452 } 1453 1454 if (ID->getString() == "CG Profile") { 1455 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1456 visitModuleFlagCGProfileEntry(MDO); 1457 } 1458 } 1459 1460 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1461 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1462 if (!FuncMDO) 1463 return; 1464 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1465 Assert(F && isa<Function>(F->getValue()), "expected a Function or null", 1466 FuncMDO); 1467 }; 1468 auto Node = dyn_cast_or_null<MDNode>(MDO); 1469 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1470 CheckFunction(Node->getOperand(0)); 1471 CheckFunction(Node->getOperand(1)); 1472 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1473 Assert(Count && Count->getType()->isIntegerTy(), 1474 "expected an integer constant", Node->getOperand(2)); 1475 } 1476 1477 /// Return true if this attribute kind only applies to functions. 1478 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { 1479 switch (Kind) { 1480 case Attribute::NoReturn: 1481 case Attribute::NoCfCheck: 1482 case Attribute::NoUnwind: 1483 case Attribute::NoInline: 1484 case Attribute::AlwaysInline: 1485 case Attribute::OptimizeForSize: 1486 case Attribute::StackProtect: 1487 case Attribute::StackProtectReq: 1488 case Attribute::StackProtectStrong: 1489 case Attribute::SafeStack: 1490 case Attribute::ShadowCallStack: 1491 case Attribute::NoRedZone: 1492 case Attribute::NoImplicitFloat: 1493 case Attribute::Naked: 1494 case Attribute::InlineHint: 1495 case Attribute::StackAlignment: 1496 case Attribute::UWTable: 1497 case Attribute::NonLazyBind: 1498 case Attribute::ReturnsTwice: 1499 case Attribute::SanitizeAddress: 1500 case Attribute::SanitizeHWAddress: 1501 case Attribute::SanitizeThread: 1502 case Attribute::SanitizeMemory: 1503 case Attribute::MinSize: 1504 case Attribute::NoDuplicate: 1505 case Attribute::Builtin: 1506 case Attribute::NoBuiltin: 1507 case Attribute::Cold: 1508 case Attribute::OptForFuzzing: 1509 case Attribute::OptimizeNone: 1510 case Attribute::JumpTable: 1511 case Attribute::Convergent: 1512 case Attribute::ArgMemOnly: 1513 case Attribute::NoRecurse: 1514 case Attribute::InaccessibleMemOnly: 1515 case Attribute::InaccessibleMemOrArgMemOnly: 1516 case Attribute::AllocSize: 1517 case Attribute::SpeculativeLoadHardening: 1518 case Attribute::Speculatable: 1519 case Attribute::StrictFP: 1520 return true; 1521 default: 1522 break; 1523 } 1524 return false; 1525 } 1526 1527 /// Return true if this is a function attribute that can also appear on 1528 /// arguments. 1529 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { 1530 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || 1531 Kind == Attribute::ReadNone; 1532 } 1533 1534 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 1535 const Value *V) { 1536 for (Attribute A : Attrs) { 1537 if (A.isStringAttribute()) 1538 continue; 1539 1540 if (isFuncOnlyAttr(A.getKindAsEnum())) { 1541 if (!IsFunction) { 1542 CheckFailed("Attribute '" + A.getAsString() + 1543 "' only applies to functions!", 1544 V); 1545 return; 1546 } 1547 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { 1548 CheckFailed("Attribute '" + A.getAsString() + 1549 "' does not apply to functions!", 1550 V); 1551 return; 1552 } 1553 } 1554 } 1555 1556 // VerifyParameterAttrs - Check the given attributes for an argument or return 1557 // value of the specified type. The value V is printed in error messages. 1558 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1559 const Value *V) { 1560 if (!Attrs.hasAttributes()) 1561 return; 1562 1563 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); 1564 1565 // Check for mutually incompatible attributes. Only inreg is compatible with 1566 // sret. 1567 unsigned AttrCount = 0; 1568 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1569 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1570 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1571 Attrs.hasAttribute(Attribute::InReg); 1572 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1573 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " 1574 "and 'sret' are incompatible!", 1575 V); 1576 1577 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1578 Attrs.hasAttribute(Attribute::ReadOnly)), 1579 "Attributes " 1580 "'inalloca and readonly' are incompatible!", 1581 V); 1582 1583 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1584 Attrs.hasAttribute(Attribute::Returned)), 1585 "Attributes " 1586 "'sret and returned' are incompatible!", 1587 V); 1588 1589 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1590 Attrs.hasAttribute(Attribute::SExt)), 1591 "Attributes " 1592 "'zeroext and signext' are incompatible!", 1593 V); 1594 1595 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1596 Attrs.hasAttribute(Attribute::ReadOnly)), 1597 "Attributes " 1598 "'readnone and readonly' are incompatible!", 1599 V); 1600 1601 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1602 Attrs.hasAttribute(Attribute::WriteOnly)), 1603 "Attributes " 1604 "'readnone and writeonly' are incompatible!", 1605 V); 1606 1607 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1608 Attrs.hasAttribute(Attribute::WriteOnly)), 1609 "Attributes " 1610 "'readonly and writeonly' are incompatible!", 1611 V); 1612 1613 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1614 Attrs.hasAttribute(Attribute::AlwaysInline)), 1615 "Attributes " 1616 "'noinline and alwaysinline' are incompatible!", 1617 V); 1618 1619 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1620 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), 1621 "Wrong types for attribute: " + 1622 AttributeSet::get(Context, IncompatibleAttrs).getAsString(), 1623 V); 1624 1625 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1626 SmallPtrSet<Type*, 4> Visited; 1627 if (!PTy->getElementType()->isSized(&Visited)) { 1628 Assert(!Attrs.hasAttribute(Attribute::ByVal) && 1629 !Attrs.hasAttribute(Attribute::InAlloca), 1630 "Attributes 'byval' and 'inalloca' do not support unsized types!", 1631 V); 1632 } 1633 if (!isa<PointerType>(PTy->getElementType())) 1634 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1635 "Attribute 'swifterror' only applies to parameters " 1636 "with pointer to pointer type!", 1637 V); 1638 } else { 1639 Assert(!Attrs.hasAttribute(Attribute::ByVal), 1640 "Attribute 'byval' only applies to parameters with pointer type!", 1641 V); 1642 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1643 "Attribute 'swifterror' only applies to parameters " 1644 "with pointer type!", 1645 V); 1646 } 1647 } 1648 1649 // Check parameter attributes against a function type. 1650 // The value V is printed in error messages. 1651 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1652 const Value *V) { 1653 if (Attrs.isEmpty()) 1654 return; 1655 1656 bool SawNest = false; 1657 bool SawReturned = false; 1658 bool SawSRet = false; 1659 bool SawSwiftSelf = false; 1660 bool SawSwiftError = false; 1661 1662 // Verify return value attributes. 1663 AttributeSet RetAttrs = Attrs.getRetAttributes(); 1664 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && 1665 !RetAttrs.hasAttribute(Attribute::Nest) && 1666 !RetAttrs.hasAttribute(Attribute::StructRet) && 1667 !RetAttrs.hasAttribute(Attribute::NoCapture) && 1668 !RetAttrs.hasAttribute(Attribute::Returned) && 1669 !RetAttrs.hasAttribute(Attribute::InAlloca) && 1670 !RetAttrs.hasAttribute(Attribute::SwiftSelf) && 1671 !RetAttrs.hasAttribute(Attribute::SwiftError)), 1672 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', " 1673 "'returned', 'swiftself', and 'swifterror' do not apply to return " 1674 "values!", 1675 V); 1676 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && 1677 !RetAttrs.hasAttribute(Attribute::WriteOnly) && 1678 !RetAttrs.hasAttribute(Attribute::ReadNone)), 1679 "Attribute '" + RetAttrs.getAsString() + 1680 "' does not apply to function returns", 1681 V); 1682 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1683 1684 // Verify parameter attributes. 1685 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1686 Type *Ty = FT->getParamType(i); 1687 AttributeSet ArgAttrs = Attrs.getParamAttributes(i); 1688 1689 verifyParameterAttrs(ArgAttrs, Ty, V); 1690 1691 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1692 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1693 SawNest = true; 1694 } 1695 1696 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1697 Assert(!SawReturned, "More than one parameter has attribute returned!", 1698 V); 1699 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1700 "Incompatible argument and return types for 'returned' attribute", 1701 V); 1702 SawReturned = true; 1703 } 1704 1705 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1706 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1707 Assert(i == 0 || i == 1, 1708 "Attribute 'sret' is not on first or second parameter!", V); 1709 SawSRet = true; 1710 } 1711 1712 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1713 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1714 SawSwiftSelf = true; 1715 } 1716 1717 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1718 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1719 V); 1720 SawSwiftError = true; 1721 } 1722 1723 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1724 Assert(i == FT->getNumParams() - 1, 1725 "inalloca isn't on the last parameter!", V); 1726 } 1727 } 1728 1729 if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) 1730 return; 1731 1732 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); 1733 1734 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1735 Attrs.hasFnAttribute(Attribute::ReadOnly)), 1736 "Attributes 'readnone and readonly' are incompatible!", V); 1737 1738 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1739 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1740 "Attributes 'readnone and writeonly' are incompatible!", V); 1741 1742 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && 1743 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1744 "Attributes 'readonly and writeonly' are incompatible!", V); 1745 1746 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1747 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), 1748 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1749 "incompatible!", 1750 V); 1751 1752 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1753 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), 1754 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1755 1756 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && 1757 Attrs.hasFnAttribute(Attribute::AlwaysInline)), 1758 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1759 1760 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { 1761 Assert(Attrs.hasFnAttribute(Attribute::NoInline), 1762 "Attribute 'optnone' requires 'noinline'!", V); 1763 1764 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), 1765 "Attributes 'optsize and optnone' are incompatible!", V); 1766 1767 Assert(!Attrs.hasFnAttribute(Attribute::MinSize), 1768 "Attributes 'minsize and optnone' are incompatible!", V); 1769 } 1770 1771 if (Attrs.hasFnAttribute(Attribute::JumpTable)) { 1772 const GlobalValue *GV = cast<GlobalValue>(V); 1773 Assert(GV->hasGlobalUnnamedAddr(), 1774 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1775 } 1776 1777 if (Attrs.hasFnAttribute(Attribute::AllocSize)) { 1778 std::pair<unsigned, Optional<unsigned>> Args = 1779 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); 1780 1781 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1782 if (ParamNo >= FT->getNumParams()) { 1783 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1784 return false; 1785 } 1786 1787 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 1788 CheckFailed("'allocsize' " + Name + 1789 " argument must refer to an integer parameter", 1790 V); 1791 return false; 1792 } 1793 1794 return true; 1795 }; 1796 1797 if (!CheckParam("element size", Args.first)) 1798 return; 1799 1800 if (Args.second && !CheckParam("number of elements", *Args.second)) 1801 return; 1802 } 1803 } 1804 1805 void Verifier::verifyFunctionMetadata( 1806 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 1807 for (const auto &Pair : MDs) { 1808 if (Pair.first == LLVMContext::MD_prof) { 1809 MDNode *MD = Pair.second; 1810 Assert(MD->getNumOperands() >= 2, 1811 "!prof annotations should have no less than 2 operands", MD); 1812 1813 // Check first operand. 1814 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 1815 MD); 1816 Assert(isa<MDString>(MD->getOperand(0)), 1817 "expected string with name of the !prof annotation", MD); 1818 MDString *MDS = cast<MDString>(MD->getOperand(0)); 1819 StringRef ProfName = MDS->getString(); 1820 Assert(ProfName.equals("function_entry_count") || 1821 ProfName.equals("synthetic_function_entry_count"), 1822 "first operand should be 'function_entry_count'" 1823 " or 'synthetic_function_entry_count'", 1824 MD); 1825 1826 // Check second operand. 1827 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 1828 MD); 1829 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 1830 "expected integer argument to function_entry_count", MD); 1831 } 1832 } 1833 } 1834 1835 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 1836 if (!ConstantExprVisited.insert(EntryC).second) 1837 return; 1838 1839 SmallVector<const Constant *, 16> Stack; 1840 Stack.push_back(EntryC); 1841 1842 while (!Stack.empty()) { 1843 const Constant *C = Stack.pop_back_val(); 1844 1845 // Check this constant expression. 1846 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 1847 visitConstantExpr(CE); 1848 1849 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 1850 // Global Values get visited separately, but we do need to make sure 1851 // that the global value is in the correct module 1852 Assert(GV->getParent() == &M, "Referencing global in another module!", 1853 EntryC, &M, GV, GV->getParent()); 1854 continue; 1855 } 1856 1857 // Visit all sub-expressions. 1858 for (const Use &U : C->operands()) { 1859 const auto *OpC = dyn_cast<Constant>(U); 1860 if (!OpC) 1861 continue; 1862 if (!ConstantExprVisited.insert(OpC).second) 1863 continue; 1864 Stack.push_back(OpC); 1865 } 1866 } 1867 } 1868 1869 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 1870 if (CE->getOpcode() == Instruction::BitCast) 1871 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 1872 CE->getType()), 1873 "Invalid bitcast", CE); 1874 1875 if (CE->getOpcode() == Instruction::IntToPtr || 1876 CE->getOpcode() == Instruction::PtrToInt) { 1877 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr 1878 ? CE->getType() 1879 : CE->getOperand(0)->getType(); 1880 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr 1881 ? "inttoptr not supported for non-integral pointers" 1882 : "ptrtoint not supported for non-integral pointers"; 1883 Assert( 1884 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), 1885 Msg); 1886 } 1887 } 1888 1889 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 1890 // There shouldn't be more attribute sets than there are parameters plus the 1891 // function and return value. 1892 return Attrs.getNumAttrSets() <= Params + 2; 1893 } 1894 1895 /// Verify that statepoint intrinsic is well formed. 1896 void Verifier::verifyStatepoint(const CallBase &Call) { 1897 assert(Call.getCalledFunction() && 1898 Call.getCalledFunction()->getIntrinsicID() == 1899 Intrinsic::experimental_gc_statepoint); 1900 1901 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 1902 !Call.onlyAccessesArgMemory(), 1903 "gc.statepoint must read and write all memory to preserve " 1904 "reordering restrictions required by safepoint semantics", 1905 Call); 1906 1907 const Value *IDV = Call.getArgOperand(0); 1908 Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer", 1909 Call); 1910 1911 const Value *NumPatchBytesV = Call.getArgOperand(1); 1912 Assert(isa<ConstantInt>(NumPatchBytesV), 1913 "gc.statepoint number of patchable bytes must be a constant integer", 1914 Call); 1915 const int64_t NumPatchBytes = 1916 cast<ConstantInt>(NumPatchBytesV)->getSExtValue(); 1917 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 1918 Assert(NumPatchBytes >= 0, 1919 "gc.statepoint number of patchable bytes must be " 1920 "positive", 1921 Call); 1922 1923 const Value *Target = Call.getArgOperand(2); 1924 auto *PT = dyn_cast<PointerType>(Target->getType()); 1925 Assert(PT && PT->getElementType()->isFunctionTy(), 1926 "gc.statepoint callee must be of function pointer type", Call, Target); 1927 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 1928 1929 const Value *NumCallArgsV = Call.getArgOperand(3); 1930 Assert(isa<ConstantInt>(NumCallArgsV), 1931 "gc.statepoint number of arguments to underlying call " 1932 "must be constant integer", 1933 Call); 1934 const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue(); 1935 Assert(NumCallArgs >= 0, 1936 "gc.statepoint number of arguments to underlying call " 1937 "must be positive", 1938 Call); 1939 const int NumParams = (int)TargetFuncType->getNumParams(); 1940 if (TargetFuncType->isVarArg()) { 1941 Assert(NumCallArgs >= NumParams, 1942 "gc.statepoint mismatch in number of vararg call args", Call); 1943 1944 // TODO: Remove this limitation 1945 Assert(TargetFuncType->getReturnType()->isVoidTy(), 1946 "gc.statepoint doesn't support wrapping non-void " 1947 "vararg functions yet", 1948 Call); 1949 } else 1950 Assert(NumCallArgs == NumParams, 1951 "gc.statepoint mismatch in number of call args", Call); 1952 1953 const Value *FlagsV = Call.getArgOperand(4); 1954 Assert(isa<ConstantInt>(FlagsV), 1955 "gc.statepoint flags must be constant integer", Call); 1956 const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue(); 1957 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 1958 "unknown flag used in gc.statepoint flags argument", Call); 1959 1960 // Verify that the types of the call parameter arguments match 1961 // the type of the wrapped callee. 1962 AttributeList Attrs = Call.getAttributes(); 1963 for (int i = 0; i < NumParams; i++) { 1964 Type *ParamType = TargetFuncType->getParamType(i); 1965 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 1966 Assert(ArgType == ParamType, 1967 "gc.statepoint call argument does not match wrapped " 1968 "function type", 1969 Call); 1970 1971 if (TargetFuncType->isVarArg()) { 1972 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); 1973 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 1974 "Attribute 'sret' cannot be used for vararg call arguments!", 1975 Call); 1976 } 1977 } 1978 1979 const int EndCallArgsInx = 4 + NumCallArgs; 1980 1981 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 1982 Assert(isa<ConstantInt>(NumTransitionArgsV), 1983 "gc.statepoint number of transition arguments " 1984 "must be constant integer", 1985 Call); 1986 const int NumTransitionArgs = 1987 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 1988 Assert(NumTransitionArgs >= 0, 1989 "gc.statepoint number of transition arguments must be positive", Call); 1990 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 1991 1992 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 1993 Assert(isa<ConstantInt>(NumDeoptArgsV), 1994 "gc.statepoint number of deoptimization arguments " 1995 "must be constant integer", 1996 Call); 1997 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 1998 Assert(NumDeoptArgs >= 0, 1999 "gc.statepoint number of deoptimization arguments " 2000 "must be positive", 2001 Call); 2002 2003 const int ExpectedNumArgs = 2004 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; 2005 Assert(ExpectedNumArgs <= (int)Call.arg_size(), 2006 "gc.statepoint too few arguments according to length fields", Call); 2007 2008 // Check that the only uses of this gc.statepoint are gc.result or 2009 // gc.relocate calls which are tied to this statepoint and thus part 2010 // of the same statepoint sequence 2011 for (const User *U : Call.users()) { 2012 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2013 Assert(UserCall, "illegal use of statepoint token", Call, U); 2014 if (!UserCall) 2015 continue; 2016 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2017 "gc.result or gc.relocate are the only value uses " 2018 "of a gc.statepoint", 2019 Call, U); 2020 if (isa<GCResultInst>(UserCall)) { 2021 Assert(UserCall->getArgOperand(0) == &Call, 2022 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2023 } else if (isa<GCRelocateInst>(Call)) { 2024 Assert(UserCall->getArgOperand(0) == &Call, 2025 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2026 } 2027 } 2028 2029 // Note: It is legal for a single derived pointer to be listed multiple 2030 // times. It's non-optimal, but it is legal. It can also happen after 2031 // insertion if we strip a bitcast away. 2032 // Note: It is really tempting to check that each base is relocated and 2033 // that a derived pointer is never reused as a base pointer. This turns 2034 // out to be problematic since optimizations run after safepoint insertion 2035 // can recognize equality properties that the insertion logic doesn't know 2036 // about. See example statepoint.ll in the verifier subdirectory 2037 } 2038 2039 void Verifier::verifyFrameRecoverIndices() { 2040 for (auto &Counts : FrameEscapeInfo) { 2041 Function *F = Counts.first; 2042 unsigned EscapedObjectCount = Counts.second.first; 2043 unsigned MaxRecoveredIndex = Counts.second.second; 2044 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2045 "all indices passed to llvm.localrecover must be less than the " 2046 "number of arguments passed ot llvm.localescape in the parent " 2047 "function", 2048 F); 2049 } 2050 } 2051 2052 static Instruction *getSuccPad(Instruction *Terminator) { 2053 BasicBlock *UnwindDest; 2054 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2055 UnwindDest = II->getUnwindDest(); 2056 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2057 UnwindDest = CSI->getUnwindDest(); 2058 else 2059 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2060 return UnwindDest->getFirstNonPHI(); 2061 } 2062 2063 void Verifier::verifySiblingFuncletUnwinds() { 2064 SmallPtrSet<Instruction *, 8> Visited; 2065 SmallPtrSet<Instruction *, 8> Active; 2066 for (const auto &Pair : SiblingFuncletInfo) { 2067 Instruction *PredPad = Pair.first; 2068 if (Visited.count(PredPad)) 2069 continue; 2070 Active.insert(PredPad); 2071 Instruction *Terminator = Pair.second; 2072 do { 2073 Instruction *SuccPad = getSuccPad(Terminator); 2074 if (Active.count(SuccPad)) { 2075 // Found a cycle; report error 2076 Instruction *CyclePad = SuccPad; 2077 SmallVector<Instruction *, 8> CycleNodes; 2078 do { 2079 CycleNodes.push_back(CyclePad); 2080 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2081 if (CycleTerminator != CyclePad) 2082 CycleNodes.push_back(CycleTerminator); 2083 CyclePad = getSuccPad(CycleTerminator); 2084 } while (CyclePad != SuccPad); 2085 Assert(false, "EH pads can't handle each other's exceptions", 2086 ArrayRef<Instruction *>(CycleNodes)); 2087 } 2088 // Don't re-walk a node we've already checked 2089 if (!Visited.insert(SuccPad).second) 2090 break; 2091 // Walk to this successor if it has a map entry. 2092 PredPad = SuccPad; 2093 auto TermI = SiblingFuncletInfo.find(PredPad); 2094 if (TermI == SiblingFuncletInfo.end()) 2095 break; 2096 Terminator = TermI->second; 2097 Active.insert(PredPad); 2098 } while (true); 2099 // Each node only has one successor, so we've walked all the active 2100 // nodes' successors. 2101 Active.clear(); 2102 } 2103 } 2104 2105 // visitFunction - Verify that a function is ok. 2106 // 2107 void Verifier::visitFunction(const Function &F) { 2108 visitGlobalValue(F); 2109 2110 // Check function arguments. 2111 FunctionType *FT = F.getFunctionType(); 2112 unsigned NumArgs = F.arg_size(); 2113 2114 Assert(&Context == &F.getContext(), 2115 "Function context does not match Module context!", &F); 2116 2117 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2118 Assert(FT->getNumParams() == NumArgs, 2119 "# formal arguments must match # of arguments for function type!", &F, 2120 FT); 2121 Assert(F.getReturnType()->isFirstClassType() || 2122 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2123 "Functions cannot return aggregate values!", &F); 2124 2125 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2126 "Invalid struct return type!", &F); 2127 2128 AttributeList Attrs = F.getAttributes(); 2129 2130 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2131 "Attribute after last parameter!", &F); 2132 2133 // Check function attributes. 2134 verifyFunctionAttrs(FT, Attrs, &F); 2135 2136 // On function declarations/definitions, we do not support the builtin 2137 // attribute. We do not check this in VerifyFunctionAttrs since that is 2138 // checking for Attributes that can/can not ever be on functions. 2139 Assert(!Attrs.hasFnAttribute(Attribute::Builtin), 2140 "Attribute 'builtin' can only be applied to a callsite.", &F); 2141 2142 // Check that this function meets the restrictions on this calling convention. 2143 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2144 // restrictions can be lifted. 2145 switch (F.getCallingConv()) { 2146 default: 2147 case CallingConv::C: 2148 break; 2149 case CallingConv::AMDGPU_KERNEL: 2150 case CallingConv::SPIR_KERNEL: 2151 Assert(F.getReturnType()->isVoidTy(), 2152 "Calling convention requires void return type", &F); 2153 LLVM_FALLTHROUGH; 2154 case CallingConv::AMDGPU_VS: 2155 case CallingConv::AMDGPU_HS: 2156 case CallingConv::AMDGPU_GS: 2157 case CallingConv::AMDGPU_PS: 2158 case CallingConv::AMDGPU_CS: 2159 Assert(!F.hasStructRetAttr(), 2160 "Calling convention does not allow sret", &F); 2161 LLVM_FALLTHROUGH; 2162 case CallingConv::Fast: 2163 case CallingConv::Cold: 2164 case CallingConv::Intel_OCL_BI: 2165 case CallingConv::PTX_Kernel: 2166 case CallingConv::PTX_Device: 2167 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2168 "perfect forwarding!", 2169 &F); 2170 break; 2171 } 2172 2173 bool isLLVMdotName = F.getName().size() >= 5 && 2174 F.getName().substr(0, 5) == "llvm."; 2175 2176 // Check that the argument values match the function type for this function... 2177 unsigned i = 0; 2178 for (const Argument &Arg : F.args()) { 2179 Assert(Arg.getType() == FT->getParamType(i), 2180 "Argument value does not match function argument type!", &Arg, 2181 FT->getParamType(i)); 2182 Assert(Arg.getType()->isFirstClassType(), 2183 "Function arguments must have first-class types!", &Arg); 2184 if (!isLLVMdotName) { 2185 Assert(!Arg.getType()->isMetadataTy(), 2186 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2187 Assert(!Arg.getType()->isTokenTy(), 2188 "Function takes token but isn't an intrinsic", &Arg, &F); 2189 } 2190 2191 // Check that swifterror argument is only used by loads and stores. 2192 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { 2193 verifySwiftErrorValue(&Arg); 2194 } 2195 ++i; 2196 } 2197 2198 if (!isLLVMdotName) 2199 Assert(!F.getReturnType()->isTokenTy(), 2200 "Functions returns a token but isn't an intrinsic", &F); 2201 2202 // Get the function metadata attachments. 2203 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2204 F.getAllMetadata(MDs); 2205 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2206 verifyFunctionMetadata(MDs); 2207 2208 // Check validity of the personality function 2209 if (F.hasPersonalityFn()) { 2210 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2211 if (Per) 2212 Assert(Per->getParent() == F.getParent(), 2213 "Referencing personality function in another module!", 2214 &F, F.getParent(), Per, Per->getParent()); 2215 } 2216 2217 if (F.isMaterializable()) { 2218 // Function has a body somewhere we can't see. 2219 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2220 MDs.empty() ? nullptr : MDs.front().second); 2221 } else if (F.isDeclaration()) { 2222 for (const auto &I : MDs) { 2223 AssertDI(I.first != LLVMContext::MD_dbg, 2224 "function declaration may not have a !dbg attachment", &F); 2225 Assert(I.first != LLVMContext::MD_prof, 2226 "function declaration may not have a !prof attachment", &F); 2227 2228 // Verify the metadata itself. 2229 visitMDNode(*I.second); 2230 } 2231 Assert(!F.hasPersonalityFn(), 2232 "Function declaration shouldn't have a personality routine", &F); 2233 } else { 2234 // Verify that this function (which has a body) is not named "llvm.*". It 2235 // is not legal to define intrinsics. 2236 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 2237 2238 // Check the entry node 2239 const BasicBlock *Entry = &F.getEntryBlock(); 2240 Assert(pred_empty(Entry), 2241 "Entry block to function must not have predecessors!", Entry); 2242 2243 // The address of the entry block cannot be taken, unless it is dead. 2244 if (Entry->hasAddressTaken()) { 2245 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2246 "blockaddress may not be used with the entry block!", Entry); 2247 } 2248 2249 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2250 // Visit metadata attachments. 2251 for (const auto &I : MDs) { 2252 // Verify that the attachment is legal. 2253 switch (I.first) { 2254 default: 2255 break; 2256 case LLVMContext::MD_dbg: { 2257 ++NumDebugAttachments; 2258 AssertDI(NumDebugAttachments == 1, 2259 "function must have a single !dbg attachment", &F, I.second); 2260 AssertDI(isa<DISubprogram>(I.second), 2261 "function !dbg attachment must be a subprogram", &F, I.second); 2262 auto *SP = cast<DISubprogram>(I.second); 2263 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2264 AssertDI(!AttachedTo || AttachedTo == &F, 2265 "DISubprogram attached to more than one function", SP, &F); 2266 AttachedTo = &F; 2267 break; 2268 } 2269 case LLVMContext::MD_prof: 2270 ++NumProfAttachments; 2271 Assert(NumProfAttachments == 1, 2272 "function must have a single !prof attachment", &F, I.second); 2273 break; 2274 } 2275 2276 // Verify the metadata itself. 2277 visitMDNode(*I.second); 2278 } 2279 } 2280 2281 // If this function is actually an intrinsic, verify that it is only used in 2282 // direct call/invokes, never having its "address taken". 2283 // Only do this if the module is materialized, otherwise we don't have all the 2284 // uses. 2285 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 2286 const User *U; 2287 if (F.hasAddressTaken(&U)) 2288 Assert(false, "Invalid user of intrinsic instruction!", U); 2289 } 2290 2291 auto *N = F.getSubprogram(); 2292 HasDebugInfo = (N != nullptr); 2293 if (!HasDebugInfo) 2294 return; 2295 2296 // Check that all !dbg attachments lead to back to N (or, at least, another 2297 // subprogram that describes the same function). 2298 // 2299 // FIXME: Check this incrementally while visiting !dbg attachments. 2300 // FIXME: Only check when N is the canonical subprogram for F. 2301 SmallPtrSet<const MDNode *, 32> Seen; 2302 for (auto &BB : F) 2303 for (auto &I : BB) { 2304 // Be careful about using DILocation here since we might be dealing with 2305 // broken code (this is the Verifier after all). 2306 DILocation *DL = 2307 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode()); 2308 if (!DL) 2309 continue; 2310 if (!Seen.insert(DL).second) 2311 continue; 2312 2313 Metadata *Parent = DL->getRawScope(); 2314 AssertDI(Parent && isa<DILocalScope>(Parent), 2315 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2316 Parent); 2317 DILocalScope *Scope = DL->getInlinedAtScope(); 2318 if (Scope && !Seen.insert(Scope).second) 2319 continue; 2320 2321 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr; 2322 2323 // Scope and SP could be the same MDNode and we don't want to skip 2324 // validation in that case 2325 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2326 continue; 2327 2328 // FIXME: Once N is canonical, check "SP == &N". 2329 AssertDI(SP->describes(&F), 2330 "!dbg attachment points at wrong subprogram for function", N, &F, 2331 &I, DL, Scope, SP); 2332 } 2333 } 2334 2335 // verifyBasicBlock - Verify that a basic block is well formed... 2336 // 2337 void Verifier::visitBasicBlock(BasicBlock &BB) { 2338 InstsInThisBlock.clear(); 2339 2340 // Ensure that basic blocks have terminators! 2341 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2342 2343 // Check constraints that this basic block imposes on all of the PHI nodes in 2344 // it. 2345 if (isa<PHINode>(BB.front())) { 2346 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 2347 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2348 llvm::sort(Preds); 2349 for (const PHINode &PN : BB.phis()) { 2350 // Ensure that PHI nodes have at least one entry! 2351 Assert(PN.getNumIncomingValues() != 0, 2352 "PHI nodes must have at least one entry. If the block is dead, " 2353 "the PHI should be removed!", 2354 &PN); 2355 Assert(PN.getNumIncomingValues() == Preds.size(), 2356 "PHINode should have one entry for each predecessor of its " 2357 "parent basic block!", 2358 &PN); 2359 2360 // Get and sort all incoming values in the PHI node... 2361 Values.clear(); 2362 Values.reserve(PN.getNumIncomingValues()); 2363 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2364 Values.push_back( 2365 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2366 llvm::sort(Values); 2367 2368 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2369 // Check to make sure that if there is more than one entry for a 2370 // particular basic block in this PHI node, that the incoming values are 2371 // all identical. 2372 // 2373 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2374 Values[i].second == Values[i - 1].second, 2375 "PHI node has multiple entries for the same basic block with " 2376 "different incoming values!", 2377 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2378 2379 // Check to make sure that the predecessors and PHI node entries are 2380 // matched up. 2381 Assert(Values[i].first == Preds[i], 2382 "PHI node entries do not match predecessors!", &PN, 2383 Values[i].first, Preds[i]); 2384 } 2385 } 2386 } 2387 2388 // Check that all instructions have their parent pointers set up correctly. 2389 for (auto &I : BB) 2390 { 2391 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2392 } 2393 } 2394 2395 void Verifier::visitTerminator(Instruction &I) { 2396 // Ensure that terminators only exist at the end of the basic block. 2397 Assert(&I == I.getParent()->getTerminator(), 2398 "Terminator found in the middle of a basic block!", I.getParent()); 2399 visitInstruction(I); 2400 } 2401 2402 void Verifier::visitBranchInst(BranchInst &BI) { 2403 if (BI.isConditional()) { 2404 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2405 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2406 } 2407 visitTerminator(BI); 2408 } 2409 2410 void Verifier::visitReturnInst(ReturnInst &RI) { 2411 Function *F = RI.getParent()->getParent(); 2412 unsigned N = RI.getNumOperands(); 2413 if (F->getReturnType()->isVoidTy()) 2414 Assert(N == 0, 2415 "Found return instr that returns non-void in Function of void " 2416 "return type!", 2417 &RI, F->getReturnType()); 2418 else 2419 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2420 "Function return type does not match operand " 2421 "type of return inst!", 2422 &RI, F->getReturnType()); 2423 2424 // Check to make sure that the return value has necessary properties for 2425 // terminators... 2426 visitTerminator(RI); 2427 } 2428 2429 void Verifier::visitSwitchInst(SwitchInst &SI) { 2430 // Check to make sure that all of the constants in the switch instruction 2431 // have the same type as the switched-on value. 2432 Type *SwitchTy = SI.getCondition()->getType(); 2433 SmallPtrSet<ConstantInt*, 32> Constants; 2434 for (auto &Case : SI.cases()) { 2435 Assert(Case.getCaseValue()->getType() == SwitchTy, 2436 "Switch constants must all be same type as switch value!", &SI); 2437 Assert(Constants.insert(Case.getCaseValue()).second, 2438 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2439 } 2440 2441 visitTerminator(SI); 2442 } 2443 2444 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2445 Assert(BI.getAddress()->getType()->isPointerTy(), 2446 "Indirectbr operand must have pointer type!", &BI); 2447 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2448 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2449 "Indirectbr destinations must all have pointer type!", &BI); 2450 2451 visitTerminator(BI); 2452 } 2453 2454 void Verifier::visitSelectInst(SelectInst &SI) { 2455 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2456 SI.getOperand(2)), 2457 "Invalid operands for select instruction!", &SI); 2458 2459 Assert(SI.getTrueValue()->getType() == SI.getType(), 2460 "Select values must have same type as select instruction!", &SI); 2461 visitInstruction(SI); 2462 } 2463 2464 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2465 /// a pass, if any exist, it's an error. 2466 /// 2467 void Verifier::visitUserOp1(Instruction &I) { 2468 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2469 } 2470 2471 void Verifier::visitTruncInst(TruncInst &I) { 2472 // Get the source and destination types 2473 Type *SrcTy = I.getOperand(0)->getType(); 2474 Type *DestTy = I.getType(); 2475 2476 // Get the size of the types in bits, we'll need this later 2477 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2478 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2479 2480 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2481 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2482 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2483 "trunc source and destination must both be a vector or neither", &I); 2484 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2485 2486 visitInstruction(I); 2487 } 2488 2489 void Verifier::visitZExtInst(ZExtInst &I) { 2490 // Get the source and destination types 2491 Type *SrcTy = I.getOperand(0)->getType(); 2492 Type *DestTy = I.getType(); 2493 2494 // Get the size of the types in bits, we'll need this later 2495 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2496 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2497 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2498 "zext source and destination must both be a vector or neither", &I); 2499 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2500 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2501 2502 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2503 2504 visitInstruction(I); 2505 } 2506 2507 void Verifier::visitSExtInst(SExtInst &I) { 2508 // Get the source and destination types 2509 Type *SrcTy = I.getOperand(0)->getType(); 2510 Type *DestTy = I.getType(); 2511 2512 // Get the size of the types in bits, we'll need this later 2513 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2514 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2515 2516 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2517 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2518 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2519 "sext source and destination must both be a vector or neither", &I); 2520 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2521 2522 visitInstruction(I); 2523 } 2524 2525 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2526 // Get the source and destination types 2527 Type *SrcTy = I.getOperand(0)->getType(); 2528 Type *DestTy = I.getType(); 2529 // Get the size of the types in bits, we'll need this later 2530 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2531 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2532 2533 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2534 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2535 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2536 "fptrunc source and destination must both be a vector or neither", &I); 2537 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2538 2539 visitInstruction(I); 2540 } 2541 2542 void Verifier::visitFPExtInst(FPExtInst &I) { 2543 // Get the source and destination types 2544 Type *SrcTy = I.getOperand(0)->getType(); 2545 Type *DestTy = I.getType(); 2546 2547 // Get the size of the types in bits, we'll need this later 2548 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2549 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2550 2551 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2552 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2553 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2554 "fpext source and destination must both be a vector or neither", &I); 2555 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2556 2557 visitInstruction(I); 2558 } 2559 2560 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2561 // Get the source and destination types 2562 Type *SrcTy = I.getOperand(0)->getType(); 2563 Type *DestTy = I.getType(); 2564 2565 bool SrcVec = SrcTy->isVectorTy(); 2566 bool DstVec = DestTy->isVectorTy(); 2567 2568 Assert(SrcVec == DstVec, 2569 "UIToFP source and dest must both be vector or scalar", &I); 2570 Assert(SrcTy->isIntOrIntVectorTy(), 2571 "UIToFP source must be integer or integer vector", &I); 2572 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2573 &I); 2574 2575 if (SrcVec && DstVec) 2576 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2577 cast<VectorType>(DestTy)->getNumElements(), 2578 "UIToFP source and dest vector length mismatch", &I); 2579 2580 visitInstruction(I); 2581 } 2582 2583 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2584 // Get the source and destination types 2585 Type *SrcTy = I.getOperand(0)->getType(); 2586 Type *DestTy = I.getType(); 2587 2588 bool SrcVec = SrcTy->isVectorTy(); 2589 bool DstVec = DestTy->isVectorTy(); 2590 2591 Assert(SrcVec == DstVec, 2592 "SIToFP source and dest must both be vector or scalar", &I); 2593 Assert(SrcTy->isIntOrIntVectorTy(), 2594 "SIToFP source must be integer or integer vector", &I); 2595 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2596 &I); 2597 2598 if (SrcVec && DstVec) 2599 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2600 cast<VectorType>(DestTy)->getNumElements(), 2601 "SIToFP source and dest vector length mismatch", &I); 2602 2603 visitInstruction(I); 2604 } 2605 2606 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2607 // Get the source and destination types 2608 Type *SrcTy = I.getOperand(0)->getType(); 2609 Type *DestTy = I.getType(); 2610 2611 bool SrcVec = SrcTy->isVectorTy(); 2612 bool DstVec = DestTy->isVectorTy(); 2613 2614 Assert(SrcVec == DstVec, 2615 "FPToUI source and dest must both be vector or scalar", &I); 2616 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2617 &I); 2618 Assert(DestTy->isIntOrIntVectorTy(), 2619 "FPToUI result must be integer or integer vector", &I); 2620 2621 if (SrcVec && DstVec) 2622 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2623 cast<VectorType>(DestTy)->getNumElements(), 2624 "FPToUI source and dest vector length mismatch", &I); 2625 2626 visitInstruction(I); 2627 } 2628 2629 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2630 // Get the source and destination types 2631 Type *SrcTy = I.getOperand(0)->getType(); 2632 Type *DestTy = I.getType(); 2633 2634 bool SrcVec = SrcTy->isVectorTy(); 2635 bool DstVec = DestTy->isVectorTy(); 2636 2637 Assert(SrcVec == DstVec, 2638 "FPToSI source and dest must both be vector or scalar", &I); 2639 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2640 &I); 2641 Assert(DestTy->isIntOrIntVectorTy(), 2642 "FPToSI result must be integer or integer vector", &I); 2643 2644 if (SrcVec && DstVec) 2645 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2646 cast<VectorType>(DestTy)->getNumElements(), 2647 "FPToSI source and dest vector length mismatch", &I); 2648 2649 visitInstruction(I); 2650 } 2651 2652 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2653 // Get the source and destination types 2654 Type *SrcTy = I.getOperand(0)->getType(); 2655 Type *DestTy = I.getType(); 2656 2657 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 2658 2659 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) 2660 Assert(!DL.isNonIntegralPointerType(PTy), 2661 "ptrtoint not supported for non-integral pointers"); 2662 2663 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 2664 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2665 &I); 2666 2667 if (SrcTy->isVectorTy()) { 2668 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 2669 VectorType *VDest = dyn_cast<VectorType>(DestTy); 2670 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2671 "PtrToInt Vector width mismatch", &I); 2672 } 2673 2674 visitInstruction(I); 2675 } 2676 2677 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2678 // Get the source and destination types 2679 Type *SrcTy = I.getOperand(0)->getType(); 2680 Type *DestTy = I.getType(); 2681 2682 Assert(SrcTy->isIntOrIntVectorTy(), 2683 "IntToPtr source must be an integral", &I); 2684 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 2685 2686 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) 2687 Assert(!DL.isNonIntegralPointerType(PTy), 2688 "inttoptr not supported for non-integral pointers"); 2689 2690 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2691 &I); 2692 if (SrcTy->isVectorTy()) { 2693 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 2694 VectorType *VDest = dyn_cast<VectorType>(DestTy); 2695 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2696 "IntToPtr Vector width mismatch", &I); 2697 } 2698 visitInstruction(I); 2699 } 2700 2701 void Verifier::visitBitCastInst(BitCastInst &I) { 2702 Assert( 2703 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2704 "Invalid bitcast", &I); 2705 visitInstruction(I); 2706 } 2707 2708 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2709 Type *SrcTy = I.getOperand(0)->getType(); 2710 Type *DestTy = I.getType(); 2711 2712 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 2713 &I); 2714 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 2715 &I); 2716 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 2717 "AddrSpaceCast must be between different address spaces", &I); 2718 if (SrcTy->isVectorTy()) 2719 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), 2720 "AddrSpaceCast vector pointer number of elements mismatch", &I); 2721 visitInstruction(I); 2722 } 2723 2724 /// visitPHINode - Ensure that a PHI node is well formed. 2725 /// 2726 void Verifier::visitPHINode(PHINode &PN) { 2727 // Ensure that the PHI nodes are all grouped together at the top of the block. 2728 // This can be tested by checking whether the instruction before this is 2729 // either nonexistent (because this is begin()) or is a PHI node. If not, 2730 // then there is some other instruction before a PHI. 2731 Assert(&PN == &PN.getParent()->front() || 2732 isa<PHINode>(--BasicBlock::iterator(&PN)), 2733 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 2734 2735 // Check that a PHI doesn't yield a Token. 2736 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 2737 2738 // Check that all of the values of the PHI node have the same type as the 2739 // result, and that the incoming blocks are really basic blocks. 2740 for (Value *IncValue : PN.incoming_values()) { 2741 Assert(PN.getType() == IncValue->getType(), 2742 "PHI node operands are not the same type as the result!", &PN); 2743 } 2744 2745 // All other PHI node constraints are checked in the visitBasicBlock method. 2746 2747 visitInstruction(PN); 2748 } 2749 2750 void Verifier::visitCallBase(CallBase &Call) { 2751 Assert(Call.getCalledValue()->getType()->isPointerTy(), 2752 "Called function must be a pointer!", Call); 2753 PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType()); 2754 2755 Assert(FPTy->getElementType()->isFunctionTy(), 2756 "Called function is not pointer to function type!", Call); 2757 2758 Assert(FPTy->getElementType() == Call.getFunctionType(), 2759 "Called function is not the same type as the call!", Call); 2760 2761 FunctionType *FTy = Call.getFunctionType(); 2762 2763 // Verify that the correct number of arguments are being passed 2764 if (FTy->isVarArg()) 2765 Assert(Call.arg_size() >= FTy->getNumParams(), 2766 "Called function requires more parameters than were provided!", 2767 Call); 2768 else 2769 Assert(Call.arg_size() == FTy->getNumParams(), 2770 "Incorrect number of arguments passed to called function!", Call); 2771 2772 // Verify that all arguments to the call match the function type. 2773 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2774 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 2775 "Call parameter type does not match function signature!", 2776 Call.getArgOperand(i), FTy->getParamType(i), Call); 2777 2778 AttributeList Attrs = Call.getAttributes(); 2779 2780 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 2781 "Attribute after last parameter!", Call); 2782 2783 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) { 2784 // Don't allow speculatable on call sites, unless the underlying function 2785 // declaration is also speculatable. 2786 Function *Callee = 2787 dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts()); 2788 Assert(Callee && Callee->isSpeculatable(), 2789 "speculatable attribute may not apply to call sites", Call); 2790 } 2791 2792 // Verify call attributes. 2793 verifyFunctionAttrs(FTy, Attrs, &Call); 2794 2795 // Conservatively check the inalloca argument. 2796 // We have a bug if we can find that there is an underlying alloca without 2797 // inalloca. 2798 if (Call.hasInAllocaArgument()) { 2799 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 2800 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 2801 Assert(AI->isUsedWithInAlloca(), 2802 "inalloca argument for call has mismatched alloca", AI, Call); 2803 } 2804 2805 // For each argument of the callsite, if it has the swifterror argument, 2806 // make sure the underlying alloca/parameter it comes from has a swifterror as 2807 // well. 2808 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2809 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 2810 Value *SwiftErrorArg = Call.getArgOperand(i); 2811 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 2812 Assert(AI->isSwiftError(), 2813 "swifterror argument for call has mismatched alloca", AI, Call); 2814 continue; 2815 } 2816 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 2817 Assert(ArgI, 2818 "swifterror argument should come from an alloca or parameter", 2819 SwiftErrorArg, Call); 2820 Assert(ArgI->hasSwiftErrorAttr(), 2821 "swifterror argument for call has mismatched parameter", ArgI, 2822 Call); 2823 } 2824 2825 if (FTy->isVarArg()) { 2826 // FIXME? is 'nest' even legal here? 2827 bool SawNest = false; 2828 bool SawReturned = false; 2829 2830 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 2831 if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) 2832 SawNest = true; 2833 if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) 2834 SawReturned = true; 2835 } 2836 2837 // Check attributes on the varargs part. 2838 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 2839 Type *Ty = Call.getArgOperand(Idx)->getType(); 2840 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); 2841 verifyParameterAttrs(ArgAttrs, Ty, &Call); 2842 2843 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 2844 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 2845 SawNest = true; 2846 } 2847 2848 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 2849 Assert(!SawReturned, "More than one parameter has attribute returned!", 2850 Call); 2851 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 2852 "Incompatible argument and return types for 'returned' " 2853 "attribute", 2854 Call); 2855 SawReturned = true; 2856 } 2857 2858 // Statepoint intrinsic is vararg but the wrapped function may be not. 2859 // Allow sret here and check the wrapped function in verifyStatepoint. 2860 if (!Call.getCalledFunction() || 2861 Call.getCalledFunction()->getIntrinsicID() != 2862 Intrinsic::experimental_gc_statepoint) 2863 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2864 "Attribute 'sret' cannot be used for vararg call arguments!", 2865 Call); 2866 2867 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 2868 Assert(Idx == Call.arg_size() - 1, 2869 "inalloca isn't on the last argument!", Call); 2870 } 2871 } 2872 2873 // Verify that there's no metadata unless it's a direct call to an intrinsic. 2874 if (!Call.getCalledFunction() || 2875 !Call.getCalledFunction()->getName().startswith("llvm.")) { 2876 for (Type *ParamTy : FTy->params()) { 2877 Assert(!ParamTy->isMetadataTy(), 2878 "Function has metadata parameter but isn't an intrinsic", Call); 2879 Assert(!ParamTy->isTokenTy(), 2880 "Function has token parameter but isn't an intrinsic", Call); 2881 } 2882 } 2883 2884 // Verify that indirect calls don't return tokens. 2885 if (!Call.getCalledFunction()) 2886 Assert(!FTy->getReturnType()->isTokenTy(), 2887 "Return type cannot be token for indirect call!"); 2888 2889 if (Function *F = Call.getCalledFunction()) 2890 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 2891 visitIntrinsicCall(ID, Call); 2892 2893 // Verify that a callsite has at most one "deopt", at most one "funclet" and 2894 // at most one "gc-transition" operand bundle. 2895 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 2896 FoundGCTransitionBundle = false; 2897 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 2898 OperandBundleUse BU = Call.getOperandBundleAt(i); 2899 uint32_t Tag = BU.getTagID(); 2900 if (Tag == LLVMContext::OB_deopt) { 2901 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 2902 FoundDeoptBundle = true; 2903 } else if (Tag == LLVMContext::OB_gc_transition) { 2904 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 2905 Call); 2906 FoundGCTransitionBundle = true; 2907 } else if (Tag == LLVMContext::OB_funclet) { 2908 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 2909 FoundFuncletBundle = true; 2910 Assert(BU.Inputs.size() == 1, 2911 "Expected exactly one funclet bundle operand", Call); 2912 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 2913 "Funclet bundle operands should correspond to a FuncletPadInst", 2914 Call); 2915 } 2916 } 2917 2918 // Verify that each inlinable callsite of a debug-info-bearing function in a 2919 // debug-info-bearing function has a debug location attached to it. Failure to 2920 // do so causes assertion failures when the inliner sets up inline scope info. 2921 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 2922 Call.getCalledFunction()->getSubprogram()) 2923 AssertDI(Call.getDebugLoc(), 2924 "inlinable function call in a function with " 2925 "debug info must have a !dbg location", 2926 Call); 2927 2928 visitInstruction(Call); 2929 } 2930 2931 /// Two types are "congruent" if they are identical, or if they are both pointer 2932 /// types with different pointee types and the same address space. 2933 static bool isTypeCongruent(Type *L, Type *R) { 2934 if (L == R) 2935 return true; 2936 PointerType *PL = dyn_cast<PointerType>(L); 2937 PointerType *PR = dyn_cast<PointerType>(R); 2938 if (!PL || !PR) 2939 return false; 2940 return PL->getAddressSpace() == PR->getAddressSpace(); 2941 } 2942 2943 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { 2944 static const Attribute::AttrKind ABIAttrs[] = { 2945 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 2946 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf, 2947 Attribute::SwiftError}; 2948 AttrBuilder Copy; 2949 for (auto AK : ABIAttrs) { 2950 if (Attrs.hasParamAttribute(I, AK)) 2951 Copy.addAttribute(AK); 2952 } 2953 if (Attrs.hasParamAttribute(I, Attribute::Alignment)) 2954 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 2955 return Copy; 2956 } 2957 2958 void Verifier::verifyMustTailCall(CallInst &CI) { 2959 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 2960 2961 // - The caller and callee prototypes must match. Pointer types of 2962 // parameters or return types may differ in pointee type, but not 2963 // address space. 2964 Function *F = CI.getParent()->getParent(); 2965 FunctionType *CallerTy = F->getFunctionType(); 2966 FunctionType *CalleeTy = CI.getFunctionType(); 2967 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 2968 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 2969 "cannot guarantee tail call due to mismatched parameter counts", 2970 &CI); 2971 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 2972 Assert( 2973 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 2974 "cannot guarantee tail call due to mismatched parameter types", &CI); 2975 } 2976 } 2977 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 2978 "cannot guarantee tail call due to mismatched varargs", &CI); 2979 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 2980 "cannot guarantee tail call due to mismatched return types", &CI); 2981 2982 // - The calling conventions of the caller and callee must match. 2983 Assert(F->getCallingConv() == CI.getCallingConv(), 2984 "cannot guarantee tail call due to mismatched calling conv", &CI); 2985 2986 // - All ABI-impacting function attributes, such as sret, byval, inreg, 2987 // returned, and inalloca, must match. 2988 AttributeList CallerAttrs = F->getAttributes(); 2989 AttributeList CalleeAttrs = CI.getAttributes(); 2990 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 2991 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 2992 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 2993 Assert(CallerABIAttrs == CalleeABIAttrs, 2994 "cannot guarantee tail call due to mismatched ABI impacting " 2995 "function attributes", 2996 &CI, CI.getOperand(I)); 2997 } 2998 2999 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3000 // or a pointer bitcast followed by a ret instruction. 3001 // - The ret instruction must return the (possibly bitcasted) value 3002 // produced by the call or void. 3003 Value *RetVal = &CI; 3004 Instruction *Next = CI.getNextNode(); 3005 3006 // Handle the optional bitcast. 3007 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3008 Assert(BI->getOperand(0) == RetVal, 3009 "bitcast following musttail call must use the call", BI); 3010 RetVal = BI; 3011 Next = BI->getNextNode(); 3012 } 3013 3014 // Check the return. 3015 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3016 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3017 &CI); 3018 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 3019 "musttail call result must be returned", Ret); 3020 } 3021 3022 void Verifier::visitCallInst(CallInst &CI) { 3023 visitCallBase(CI); 3024 3025 if (CI.isMustTailCall()) 3026 verifyMustTailCall(CI); 3027 } 3028 3029 void Verifier::visitInvokeInst(InvokeInst &II) { 3030 visitCallBase(II); 3031 3032 // Verify that the first non-PHI instruction of the unwind destination is an 3033 // exception handling instruction. 3034 Assert( 3035 II.getUnwindDest()->isEHPad(), 3036 "The unwind destination does not have an exception handling instruction!", 3037 &II); 3038 3039 visitTerminator(II); 3040 } 3041 3042 /// visitUnaryOperator - Check the argument to the unary operator. 3043 /// 3044 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3045 Assert(U.getType() == U.getOperand(0)->getType(), 3046 "Unary operators must have same type for" 3047 "operands and result!", 3048 &U); 3049 3050 switch (U.getOpcode()) { 3051 // Check that floating-point arithmetic operators are only used with 3052 // floating-point operands. 3053 case Instruction::FNeg: 3054 Assert(U.getType()->isFPOrFPVectorTy(), 3055 "FNeg operator only works with float types!", &U); 3056 break; 3057 default: 3058 llvm_unreachable("Unknown UnaryOperator opcode!"); 3059 } 3060 3061 visitInstruction(U); 3062 } 3063 3064 /// visitBinaryOperator - Check that both arguments to the binary operator are 3065 /// of the same type! 3066 /// 3067 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3068 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3069 "Both operands to a binary operator are not of the same type!", &B); 3070 3071 switch (B.getOpcode()) { 3072 // Check that integer arithmetic operators are only used with 3073 // integral operands. 3074 case Instruction::Add: 3075 case Instruction::Sub: 3076 case Instruction::Mul: 3077 case Instruction::SDiv: 3078 case Instruction::UDiv: 3079 case Instruction::SRem: 3080 case Instruction::URem: 3081 Assert(B.getType()->isIntOrIntVectorTy(), 3082 "Integer arithmetic operators only work with integral types!", &B); 3083 Assert(B.getType() == B.getOperand(0)->getType(), 3084 "Integer arithmetic operators must have same type " 3085 "for operands and result!", 3086 &B); 3087 break; 3088 // Check that floating-point arithmetic operators are only used with 3089 // floating-point operands. 3090 case Instruction::FAdd: 3091 case Instruction::FSub: 3092 case Instruction::FMul: 3093 case Instruction::FDiv: 3094 case Instruction::FRem: 3095 Assert(B.getType()->isFPOrFPVectorTy(), 3096 "Floating-point arithmetic operators only work with " 3097 "floating-point types!", 3098 &B); 3099 Assert(B.getType() == B.getOperand(0)->getType(), 3100 "Floating-point arithmetic operators must have same type " 3101 "for operands and result!", 3102 &B); 3103 break; 3104 // Check that logical operators are only used with integral operands. 3105 case Instruction::And: 3106 case Instruction::Or: 3107 case Instruction::Xor: 3108 Assert(B.getType()->isIntOrIntVectorTy(), 3109 "Logical operators only work with integral types!", &B); 3110 Assert(B.getType() == B.getOperand(0)->getType(), 3111 "Logical operators must have same type for operands and result!", 3112 &B); 3113 break; 3114 case Instruction::Shl: 3115 case Instruction::LShr: 3116 case Instruction::AShr: 3117 Assert(B.getType()->isIntOrIntVectorTy(), 3118 "Shifts only work with integral types!", &B); 3119 Assert(B.getType() == B.getOperand(0)->getType(), 3120 "Shift return type must be same as operands!", &B); 3121 break; 3122 default: 3123 llvm_unreachable("Unknown BinaryOperator opcode!"); 3124 } 3125 3126 visitInstruction(B); 3127 } 3128 3129 void Verifier::visitICmpInst(ICmpInst &IC) { 3130 // Check that the operands are the same type 3131 Type *Op0Ty = IC.getOperand(0)->getType(); 3132 Type *Op1Ty = IC.getOperand(1)->getType(); 3133 Assert(Op0Ty == Op1Ty, 3134 "Both operands to ICmp instruction are not of the same type!", &IC); 3135 // Check that the operands are the right type 3136 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3137 "Invalid operand types for ICmp instruction", &IC); 3138 // Check that the predicate is valid. 3139 Assert(IC.isIntPredicate(), 3140 "Invalid predicate in ICmp instruction!", &IC); 3141 3142 visitInstruction(IC); 3143 } 3144 3145 void Verifier::visitFCmpInst(FCmpInst &FC) { 3146 // Check that the operands are the same type 3147 Type *Op0Ty = FC.getOperand(0)->getType(); 3148 Type *Op1Ty = FC.getOperand(1)->getType(); 3149 Assert(Op0Ty == Op1Ty, 3150 "Both operands to FCmp instruction are not of the same type!", &FC); 3151 // Check that the operands are the right type 3152 Assert(Op0Ty->isFPOrFPVectorTy(), 3153 "Invalid operand types for FCmp instruction", &FC); 3154 // Check that the predicate is valid. 3155 Assert(FC.isFPPredicate(), 3156 "Invalid predicate in FCmp instruction!", &FC); 3157 3158 visitInstruction(FC); 3159 } 3160 3161 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3162 Assert( 3163 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3164 "Invalid extractelement operands!", &EI); 3165 visitInstruction(EI); 3166 } 3167 3168 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3169 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3170 IE.getOperand(2)), 3171 "Invalid insertelement operands!", &IE); 3172 visitInstruction(IE); 3173 } 3174 3175 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3176 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3177 SV.getOperand(2)), 3178 "Invalid shufflevector operands!", &SV); 3179 visitInstruction(SV); 3180 } 3181 3182 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3183 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3184 3185 Assert(isa<PointerType>(TargetTy), 3186 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3187 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3188 3189 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 3190 Assert(all_of( 3191 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3192 "GEP indexes must be integers", &GEP); 3193 Type *ElTy = 3194 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3195 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3196 3197 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3198 GEP.getResultElementType() == ElTy, 3199 "GEP is not of right type for indices!", &GEP, ElTy); 3200 3201 if (GEP.getType()->isVectorTy()) { 3202 // Additional checks for vector GEPs. 3203 unsigned GEPWidth = GEP.getType()->getVectorNumElements(); 3204 if (GEP.getPointerOperandType()->isVectorTy()) 3205 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(), 3206 "Vector GEP result width doesn't match operand's", &GEP); 3207 for (Value *Idx : Idxs) { 3208 Type *IndexTy = Idx->getType(); 3209 if (IndexTy->isVectorTy()) { 3210 unsigned IndexWidth = IndexTy->getVectorNumElements(); 3211 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3212 } 3213 Assert(IndexTy->isIntOrIntVectorTy(), 3214 "All GEP indices should be of integer type"); 3215 } 3216 } 3217 3218 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3219 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3220 "GEP address space doesn't match type", &GEP); 3221 } 3222 3223 visitInstruction(GEP); 3224 } 3225 3226 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3227 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3228 } 3229 3230 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3231 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3232 "precondition violation"); 3233 3234 unsigned NumOperands = Range->getNumOperands(); 3235 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3236 unsigned NumRanges = NumOperands / 2; 3237 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3238 3239 ConstantRange LastRange(1); // Dummy initial value 3240 for (unsigned i = 0; i < NumRanges; ++i) { 3241 ConstantInt *Low = 3242 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3243 Assert(Low, "The lower limit must be an integer!", Low); 3244 ConstantInt *High = 3245 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3246 Assert(High, "The upper limit must be an integer!", High); 3247 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3248 "Range types must match instruction type!", &I); 3249 3250 APInt HighV = High->getValue(); 3251 APInt LowV = Low->getValue(); 3252 ConstantRange CurRange(LowV, HighV); 3253 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3254 "Range must not be empty!", Range); 3255 if (i != 0) { 3256 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3257 "Intervals are overlapping", Range); 3258 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3259 Range); 3260 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3261 Range); 3262 } 3263 LastRange = ConstantRange(LowV, HighV); 3264 } 3265 if (NumRanges > 2) { 3266 APInt FirstLow = 3267 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3268 APInt FirstHigh = 3269 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3270 ConstantRange FirstRange(FirstLow, FirstHigh); 3271 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3272 "Intervals are overlapping", Range); 3273 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3274 Range); 3275 } 3276 } 3277 3278 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3279 unsigned Size = DL.getTypeSizeInBits(Ty); 3280 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3281 Assert(!(Size & (Size - 1)), 3282 "atomic memory access' operand must have a power-of-two size", Ty, I); 3283 } 3284 3285 void Verifier::visitLoadInst(LoadInst &LI) { 3286 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3287 Assert(PTy, "Load operand must be a pointer.", &LI); 3288 Type *ElTy = LI.getType(); 3289 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3290 "huge alignment values are unsupported", &LI); 3291 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3292 if (LI.isAtomic()) { 3293 Assert(LI.getOrdering() != AtomicOrdering::Release && 3294 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3295 "Load cannot have Release ordering", &LI); 3296 Assert(LI.getAlignment() != 0, 3297 "Atomic load must specify explicit alignment", &LI); 3298 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3299 "atomic load operand must have integer, pointer, or floating point " 3300 "type!", 3301 ElTy, &LI); 3302 checkAtomicMemAccessSize(ElTy, &LI); 3303 } else { 3304 Assert(LI.getSyncScopeID() == SyncScope::System, 3305 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3306 } 3307 3308 visitInstruction(LI); 3309 } 3310 3311 void Verifier::visitStoreInst(StoreInst &SI) { 3312 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3313 Assert(PTy, "Store operand must be a pointer.", &SI); 3314 Type *ElTy = PTy->getElementType(); 3315 Assert(ElTy == SI.getOperand(0)->getType(), 3316 "Stored value type does not match pointer operand type!", &SI, ElTy); 3317 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3318 "huge alignment values are unsupported", &SI); 3319 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3320 if (SI.isAtomic()) { 3321 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3322 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3323 "Store cannot have Acquire ordering", &SI); 3324 Assert(SI.getAlignment() != 0, 3325 "Atomic store must specify explicit alignment", &SI); 3326 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3327 "atomic store operand must have integer, pointer, or floating point " 3328 "type!", 3329 ElTy, &SI); 3330 checkAtomicMemAccessSize(ElTy, &SI); 3331 } else { 3332 Assert(SI.getSyncScopeID() == SyncScope::System, 3333 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3334 } 3335 visitInstruction(SI); 3336 } 3337 3338 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3339 void Verifier::verifySwiftErrorCall(CallBase &Call, 3340 const Value *SwiftErrorVal) { 3341 unsigned Idx = 0; 3342 for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) { 3343 if (*I == SwiftErrorVal) { 3344 Assert(Call.paramHasAttr(Idx, Attribute::SwiftError), 3345 "swifterror value when used in a callsite should be marked " 3346 "with swifterror attribute", 3347 SwiftErrorVal, Call); 3348 } 3349 } 3350 } 3351 3352 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3353 // Check that swifterror value is only used by loads, stores, or as 3354 // a swifterror argument. 3355 for (const User *U : SwiftErrorVal->users()) { 3356 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3357 isa<InvokeInst>(U), 3358 "swifterror value can only be loaded and stored from, or " 3359 "as a swifterror argument!", 3360 SwiftErrorVal, U); 3361 // If it is used by a store, check it is the second operand. 3362 if (auto StoreI = dyn_cast<StoreInst>(U)) 3363 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3364 "swifterror value should be the second operand when used " 3365 "by stores", SwiftErrorVal, U); 3366 if (auto *Call = dyn_cast<CallBase>(U)) 3367 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3368 } 3369 } 3370 3371 void Verifier::visitAllocaInst(AllocaInst &AI) { 3372 SmallPtrSet<Type*, 4> Visited; 3373 PointerType *PTy = AI.getType(); 3374 // TODO: Relax this restriction? 3375 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(), 3376 "Allocation instruction pointer not in the stack address space!", 3377 &AI); 3378 Assert(AI.getAllocatedType()->isSized(&Visited), 3379 "Cannot allocate unsized type", &AI); 3380 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3381 "Alloca array size must have integer type", &AI); 3382 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3383 "huge alignment values are unsupported", &AI); 3384 3385 if (AI.isSwiftError()) { 3386 verifySwiftErrorValue(&AI); 3387 } 3388 3389 visitInstruction(AI); 3390 } 3391 3392 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3393 3394 // FIXME: more conditions??? 3395 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, 3396 "cmpxchg instructions must be atomic.", &CXI); 3397 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, 3398 "cmpxchg instructions must be atomic.", &CXI); 3399 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, 3400 "cmpxchg instructions cannot be unordered.", &CXI); 3401 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, 3402 "cmpxchg instructions cannot be unordered.", &CXI); 3403 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), 3404 "cmpxchg instructions failure argument shall be no stronger than the " 3405 "success argument", 3406 &CXI); 3407 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && 3408 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, 3409 "cmpxchg failure ordering cannot include release semantics", &CXI); 3410 3411 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 3412 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); 3413 Type *ElTy = PTy->getElementType(); 3414 Assert(ElTy->isIntOrPtrTy(), 3415 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3416 checkAtomicMemAccessSize(ElTy, &CXI); 3417 Assert(ElTy == CXI.getOperand(1)->getType(), 3418 "Expected value type does not match pointer operand type!", &CXI, 3419 ElTy); 3420 Assert(ElTy == CXI.getOperand(2)->getType(), 3421 "Stored value type does not match pointer operand type!", &CXI, ElTy); 3422 visitInstruction(CXI); 3423 } 3424 3425 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3426 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, 3427 "atomicrmw instructions must be atomic.", &RMWI); 3428 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3429 "atomicrmw instructions cannot be unordered.", &RMWI); 3430 auto Op = RMWI.getOperation(); 3431 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 3432 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 3433 Type *ElTy = PTy->getElementType(); 3434 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3435 AtomicRMWInst::getOperationName(Op) + 3436 " operand must have integer type!", 3437 &RMWI, ElTy); 3438 checkAtomicMemAccessSize(ElTy, &RMWI); 3439 Assert(ElTy == RMWI.getOperand(1)->getType(), 3440 "Argument value type does not match pointer operand type!", &RMWI, 3441 ElTy); 3442 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3443 "Invalid binary operation!", &RMWI); 3444 visitInstruction(RMWI); 3445 } 3446 3447 void Verifier::visitFenceInst(FenceInst &FI) { 3448 const AtomicOrdering Ordering = FI.getOrdering(); 3449 Assert(Ordering == AtomicOrdering::Acquire || 3450 Ordering == AtomicOrdering::Release || 3451 Ordering == AtomicOrdering::AcquireRelease || 3452 Ordering == AtomicOrdering::SequentiallyConsistent, 3453 "fence instructions may only have acquire, release, acq_rel, or " 3454 "seq_cst ordering.", 3455 &FI); 3456 visitInstruction(FI); 3457 } 3458 3459 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3460 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3461 EVI.getIndices()) == EVI.getType(), 3462 "Invalid ExtractValueInst operands!", &EVI); 3463 3464 visitInstruction(EVI); 3465 } 3466 3467 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3468 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3469 IVI.getIndices()) == 3470 IVI.getOperand(1)->getType(), 3471 "Invalid InsertValueInst operands!", &IVI); 3472 3473 visitInstruction(IVI); 3474 } 3475 3476 static Value *getParentPad(Value *EHPad) { 3477 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3478 return FPI->getParentPad(); 3479 3480 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3481 } 3482 3483 void Verifier::visitEHPadPredecessors(Instruction &I) { 3484 assert(I.isEHPad()); 3485 3486 BasicBlock *BB = I.getParent(); 3487 Function *F = BB->getParent(); 3488 3489 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3490 3491 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3492 // The landingpad instruction defines its parent as a landing pad block. The 3493 // landing pad block may be branched to only by the unwind edge of an 3494 // invoke. 3495 for (BasicBlock *PredBB : predecessors(BB)) { 3496 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3497 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3498 "Block containing LandingPadInst must be jumped to " 3499 "only by the unwind edge of an invoke.", 3500 LPI); 3501 } 3502 return; 3503 } 3504 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3505 if (!pred_empty(BB)) 3506 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3507 "Block containg CatchPadInst must be jumped to " 3508 "only by its catchswitch.", 3509 CPI); 3510 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3511 "Catchswitch cannot unwind to one of its catchpads", 3512 CPI->getCatchSwitch(), CPI); 3513 return; 3514 } 3515 3516 // Verify that each pred has a legal terminator with a legal to/from EH 3517 // pad relationship. 3518 Instruction *ToPad = &I; 3519 Value *ToPadParent = getParentPad(ToPad); 3520 for (BasicBlock *PredBB : predecessors(BB)) { 3521 Instruction *TI = PredBB->getTerminator(); 3522 Value *FromPad; 3523 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3524 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3525 "EH pad must be jumped to via an unwind edge", ToPad, II); 3526 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3527 FromPad = Bundle->Inputs[0]; 3528 else 3529 FromPad = ConstantTokenNone::get(II->getContext()); 3530 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3531 FromPad = CRI->getOperand(0); 3532 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3533 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3534 FromPad = CSI; 3535 } else { 3536 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3537 } 3538 3539 // The edge may exit from zero or more nested pads. 3540 SmallSet<Value *, 8> Seen; 3541 for (;; FromPad = getParentPad(FromPad)) { 3542 Assert(FromPad != ToPad, 3543 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3544 if (FromPad == ToPadParent) { 3545 // This is a legal unwind edge. 3546 break; 3547 } 3548 Assert(!isa<ConstantTokenNone>(FromPad), 3549 "A single unwind edge may only enter one EH pad", TI); 3550 Assert(Seen.insert(FromPad).second, 3551 "EH pad jumps through a cycle of pads", FromPad); 3552 } 3553 } 3554 } 3555 3556 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3557 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3558 // isn't a cleanup. 3559 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3560 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3561 3562 visitEHPadPredecessors(LPI); 3563 3564 if (!LandingPadResultTy) 3565 LandingPadResultTy = LPI.getType(); 3566 else 3567 Assert(LandingPadResultTy == LPI.getType(), 3568 "The landingpad instruction should have a consistent result type " 3569 "inside a function.", 3570 &LPI); 3571 3572 Function *F = LPI.getParent()->getParent(); 3573 Assert(F->hasPersonalityFn(), 3574 "LandingPadInst needs to be in a function with a personality.", &LPI); 3575 3576 // The landingpad instruction must be the first non-PHI instruction in the 3577 // block. 3578 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3579 "LandingPadInst not the first non-PHI instruction in the block.", 3580 &LPI); 3581 3582 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3583 Constant *Clause = LPI.getClause(i); 3584 if (LPI.isCatch(i)) { 3585 Assert(isa<PointerType>(Clause->getType()), 3586 "Catch operand does not have pointer type!", &LPI); 3587 } else { 3588 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3589 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3590 "Filter operand is not an array of constants!", &LPI); 3591 } 3592 } 3593 3594 visitInstruction(LPI); 3595 } 3596 3597 void Verifier::visitResumeInst(ResumeInst &RI) { 3598 Assert(RI.getFunction()->hasPersonalityFn(), 3599 "ResumeInst needs to be in a function with a personality.", &RI); 3600 3601 if (!LandingPadResultTy) 3602 LandingPadResultTy = RI.getValue()->getType(); 3603 else 3604 Assert(LandingPadResultTy == RI.getValue()->getType(), 3605 "The resume instruction should have a consistent result type " 3606 "inside a function.", 3607 &RI); 3608 3609 visitTerminator(RI); 3610 } 3611 3612 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3613 BasicBlock *BB = CPI.getParent(); 3614 3615 Function *F = BB->getParent(); 3616 Assert(F->hasPersonalityFn(), 3617 "CatchPadInst needs to be in a function with a personality.", &CPI); 3618 3619 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 3620 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 3621 CPI.getParentPad()); 3622 3623 // The catchpad instruction must be the first non-PHI instruction in the 3624 // block. 3625 Assert(BB->getFirstNonPHI() == &CPI, 3626 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 3627 3628 visitEHPadPredecessors(CPI); 3629 visitFuncletPadInst(CPI); 3630 } 3631 3632 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 3633 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 3634 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 3635 CatchReturn.getOperand(0)); 3636 3637 visitTerminator(CatchReturn); 3638 } 3639 3640 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 3641 BasicBlock *BB = CPI.getParent(); 3642 3643 Function *F = BB->getParent(); 3644 Assert(F->hasPersonalityFn(), 3645 "CleanupPadInst needs to be in a function with a personality.", &CPI); 3646 3647 // The cleanuppad instruction must be the first non-PHI instruction in the 3648 // block. 3649 Assert(BB->getFirstNonPHI() == &CPI, 3650 "CleanupPadInst not the first non-PHI instruction in the block.", 3651 &CPI); 3652 3653 auto *ParentPad = CPI.getParentPad(); 3654 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3655 "CleanupPadInst has an invalid parent.", &CPI); 3656 3657 visitEHPadPredecessors(CPI); 3658 visitFuncletPadInst(CPI); 3659 } 3660 3661 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 3662 User *FirstUser = nullptr; 3663 Value *FirstUnwindPad = nullptr; 3664 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 3665 SmallSet<FuncletPadInst *, 8> Seen; 3666 3667 while (!Worklist.empty()) { 3668 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 3669 Assert(Seen.insert(CurrentPad).second, 3670 "FuncletPadInst must not be nested within itself", CurrentPad); 3671 Value *UnresolvedAncestorPad = nullptr; 3672 for (User *U : CurrentPad->users()) { 3673 BasicBlock *UnwindDest; 3674 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 3675 UnwindDest = CRI->getUnwindDest(); 3676 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 3677 // We allow catchswitch unwind to caller to nest 3678 // within an outer pad that unwinds somewhere else, 3679 // because catchswitch doesn't have a nounwind variant. 3680 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 3681 if (CSI->unwindsToCaller()) 3682 continue; 3683 UnwindDest = CSI->getUnwindDest(); 3684 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 3685 UnwindDest = II->getUnwindDest(); 3686 } else if (isa<CallInst>(U)) { 3687 // Calls which don't unwind may be found inside funclet 3688 // pads that unwind somewhere else. We don't *require* 3689 // such calls to be annotated nounwind. 3690 continue; 3691 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 3692 // The unwind dest for a cleanup can only be found by 3693 // recursive search. Add it to the worklist, and we'll 3694 // search for its first use that determines where it unwinds. 3695 Worklist.push_back(CPI); 3696 continue; 3697 } else { 3698 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 3699 continue; 3700 } 3701 3702 Value *UnwindPad; 3703 bool ExitsFPI; 3704 if (UnwindDest) { 3705 UnwindPad = UnwindDest->getFirstNonPHI(); 3706 if (!cast<Instruction>(UnwindPad)->isEHPad()) 3707 continue; 3708 Value *UnwindParent = getParentPad(UnwindPad); 3709 // Ignore unwind edges that don't exit CurrentPad. 3710 if (UnwindParent == CurrentPad) 3711 continue; 3712 // Determine whether the original funclet pad is exited, 3713 // and if we are scanning nested pads determine how many 3714 // of them are exited so we can stop searching their 3715 // children. 3716 Value *ExitedPad = CurrentPad; 3717 ExitsFPI = false; 3718 do { 3719 if (ExitedPad == &FPI) { 3720 ExitsFPI = true; 3721 // Now we can resolve any ancestors of CurrentPad up to 3722 // FPI, but not including FPI since we need to make sure 3723 // to check all direct users of FPI for consistency. 3724 UnresolvedAncestorPad = &FPI; 3725 break; 3726 } 3727 Value *ExitedParent = getParentPad(ExitedPad); 3728 if (ExitedParent == UnwindParent) { 3729 // ExitedPad is the ancestor-most pad which this unwind 3730 // edge exits, so we can resolve up to it, meaning that 3731 // ExitedParent is the first ancestor still unresolved. 3732 UnresolvedAncestorPad = ExitedParent; 3733 break; 3734 } 3735 ExitedPad = ExitedParent; 3736 } while (!isa<ConstantTokenNone>(ExitedPad)); 3737 } else { 3738 // Unwinding to caller exits all pads. 3739 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 3740 ExitsFPI = true; 3741 UnresolvedAncestorPad = &FPI; 3742 } 3743 3744 if (ExitsFPI) { 3745 // This unwind edge exits FPI. Make sure it agrees with other 3746 // such edges. 3747 if (FirstUser) { 3748 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 3749 "pad must have the same unwind " 3750 "dest", 3751 &FPI, U, FirstUser); 3752 } else { 3753 FirstUser = U; 3754 FirstUnwindPad = UnwindPad; 3755 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 3756 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 3757 getParentPad(UnwindPad) == getParentPad(&FPI)) 3758 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 3759 } 3760 } 3761 // Make sure we visit all uses of FPI, but for nested pads stop as 3762 // soon as we know where they unwind to. 3763 if (CurrentPad != &FPI) 3764 break; 3765 } 3766 if (UnresolvedAncestorPad) { 3767 if (CurrentPad == UnresolvedAncestorPad) { 3768 // When CurrentPad is FPI itself, we don't mark it as resolved even if 3769 // we've found an unwind edge that exits it, because we need to verify 3770 // all direct uses of FPI. 3771 assert(CurrentPad == &FPI); 3772 continue; 3773 } 3774 // Pop off the worklist any nested pads that we've found an unwind 3775 // destination for. The pads on the worklist are the uncles, 3776 // great-uncles, etc. of CurrentPad. We've found an unwind destination 3777 // for all ancestors of CurrentPad up to but not including 3778 // UnresolvedAncestorPad. 3779 Value *ResolvedPad = CurrentPad; 3780 while (!Worklist.empty()) { 3781 Value *UnclePad = Worklist.back(); 3782 Value *AncestorPad = getParentPad(UnclePad); 3783 // Walk ResolvedPad up the ancestor list until we either find the 3784 // uncle's parent or the last resolved ancestor. 3785 while (ResolvedPad != AncestorPad) { 3786 Value *ResolvedParent = getParentPad(ResolvedPad); 3787 if (ResolvedParent == UnresolvedAncestorPad) { 3788 break; 3789 } 3790 ResolvedPad = ResolvedParent; 3791 } 3792 // If the resolved ancestor search didn't find the uncle's parent, 3793 // then the uncle is not yet resolved. 3794 if (ResolvedPad != AncestorPad) 3795 break; 3796 // This uncle is resolved, so pop it from the worklist. 3797 Worklist.pop_back(); 3798 } 3799 } 3800 } 3801 3802 if (FirstUnwindPad) { 3803 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 3804 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 3805 Value *SwitchUnwindPad; 3806 if (SwitchUnwindDest) 3807 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 3808 else 3809 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 3810 Assert(SwitchUnwindPad == FirstUnwindPad, 3811 "Unwind edges out of a catch must have the same unwind dest as " 3812 "the parent catchswitch", 3813 &FPI, FirstUser, CatchSwitch); 3814 } 3815 } 3816 3817 visitInstruction(FPI); 3818 } 3819 3820 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 3821 BasicBlock *BB = CatchSwitch.getParent(); 3822 3823 Function *F = BB->getParent(); 3824 Assert(F->hasPersonalityFn(), 3825 "CatchSwitchInst needs to be in a function with a personality.", 3826 &CatchSwitch); 3827 3828 // The catchswitch instruction must be the first non-PHI instruction in the 3829 // block. 3830 Assert(BB->getFirstNonPHI() == &CatchSwitch, 3831 "CatchSwitchInst not the first non-PHI instruction in the block.", 3832 &CatchSwitch); 3833 3834 auto *ParentPad = CatchSwitch.getParentPad(); 3835 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3836 "CatchSwitchInst has an invalid parent.", ParentPad); 3837 3838 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 3839 Instruction *I = UnwindDest->getFirstNonPHI(); 3840 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3841 "CatchSwitchInst must unwind to an EH block which is not a " 3842 "landingpad.", 3843 &CatchSwitch); 3844 3845 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 3846 if (getParentPad(I) == ParentPad) 3847 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 3848 } 3849 3850 Assert(CatchSwitch.getNumHandlers() != 0, 3851 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 3852 3853 for (BasicBlock *Handler : CatchSwitch.handlers()) { 3854 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 3855 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 3856 } 3857 3858 visitEHPadPredecessors(CatchSwitch); 3859 visitTerminator(CatchSwitch); 3860 } 3861 3862 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 3863 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 3864 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 3865 CRI.getOperand(0)); 3866 3867 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 3868 Instruction *I = UnwindDest->getFirstNonPHI(); 3869 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3870 "CleanupReturnInst must unwind to an EH block which is not a " 3871 "landingpad.", 3872 &CRI); 3873 } 3874 3875 visitTerminator(CRI); 3876 } 3877 3878 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 3879 Instruction *Op = cast<Instruction>(I.getOperand(i)); 3880 // If the we have an invalid invoke, don't try to compute the dominance. 3881 // We already reject it in the invoke specific checks and the dominance 3882 // computation doesn't handle multiple edges. 3883 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 3884 if (II->getNormalDest() == II->getUnwindDest()) 3885 return; 3886 } 3887 3888 // Quick check whether the def has already been encountered in the same block. 3889 // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI 3890 // uses are defined to happen on the incoming edge, not at the instruction. 3891 // 3892 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 3893 // wrapping an SSA value, assert that we've already encountered it. See 3894 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 3895 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 3896 return; 3897 3898 const Use &U = I.getOperandUse(i); 3899 Assert(DT.dominates(Op, U), 3900 "Instruction does not dominate all uses!", Op, &I); 3901 } 3902 3903 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 3904 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 3905 "apply only to pointer types", &I); 3906 Assert(isa<LoadInst>(I), 3907 "dereferenceable, dereferenceable_or_null apply only to load" 3908 " instructions, use attributes for calls or invokes", &I); 3909 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 3910 "take one operand!", &I); 3911 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 3912 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 3913 "dereferenceable_or_null metadata value must be an i64!", &I); 3914 } 3915 3916 /// verifyInstruction - Verify that an instruction is well formed. 3917 /// 3918 void Verifier::visitInstruction(Instruction &I) { 3919 BasicBlock *BB = I.getParent(); 3920 Assert(BB, "Instruction not embedded in basic block!", &I); 3921 3922 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 3923 for (User *U : I.users()) { 3924 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 3925 "Only PHI nodes may reference their own value!", &I); 3926 } 3927 } 3928 3929 // Check that void typed values don't have names 3930 Assert(!I.getType()->isVoidTy() || !I.hasName(), 3931 "Instruction has a name, but provides a void value!", &I); 3932 3933 // Check that the return value of the instruction is either void or a legal 3934 // value type. 3935 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 3936 "Instruction returns a non-scalar type!", &I); 3937 3938 // Check that the instruction doesn't produce metadata. Calls are already 3939 // checked against the callee type. 3940 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 3941 "Invalid use of metadata!", &I); 3942 3943 // Check that all uses of the instruction, if they are instructions 3944 // themselves, actually have parent basic blocks. If the use is not an 3945 // instruction, it is an error! 3946 for (Use &U : I.uses()) { 3947 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 3948 Assert(Used->getParent() != nullptr, 3949 "Instruction referencing" 3950 " instruction not embedded in a basic block!", 3951 &I, Used); 3952 else { 3953 CheckFailed("Use of instruction is not an instruction!", U); 3954 return; 3955 } 3956 } 3957 3958 // Get a pointer to the call base of the instruction if it is some form of 3959 // call. 3960 const CallBase *CBI = dyn_cast<CallBase>(&I); 3961 3962 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 3963 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 3964 3965 // Check to make sure that only first-class-values are operands to 3966 // instructions. 3967 if (!I.getOperand(i)->getType()->isFirstClassType()) { 3968 Assert(false, "Instruction operands must be first-class values!", &I); 3969 } 3970 3971 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 3972 // Check to make sure that the "address of" an intrinsic function is never 3973 // taken. 3974 Assert(!F->isIntrinsic() || 3975 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), 3976 "Cannot take the address of an intrinsic!", &I); 3977 Assert( 3978 !F->isIntrinsic() || isa<CallInst>(I) || 3979 F->getIntrinsicID() == Intrinsic::donothing || 3980 F->getIntrinsicID() == Intrinsic::coro_resume || 3981 F->getIntrinsicID() == Intrinsic::coro_destroy || 3982 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 3983 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 3984 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint, 3985 "Cannot invoke an intrinsic other than donothing, patchpoint, " 3986 "statepoint, coro_resume or coro_destroy", 3987 &I); 3988 Assert(F->getParent() == &M, "Referencing function in another module!", 3989 &I, &M, F, F->getParent()); 3990 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 3991 Assert(OpBB->getParent() == BB->getParent(), 3992 "Referring to a basic block in another function!", &I); 3993 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 3994 Assert(OpArg->getParent() == BB->getParent(), 3995 "Referring to an argument in another function!", &I); 3996 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 3997 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 3998 &M, GV, GV->getParent()); 3999 } else if (isa<Instruction>(I.getOperand(i))) { 4000 verifyDominatesUse(I, i); 4001 } else if (isa<InlineAsm>(I.getOperand(i))) { 4002 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4003 "Cannot take the address of an inline asm!", &I); 4004 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4005 if (CE->getType()->isPtrOrPtrVectorTy() || 4006 !DL.getNonIntegralAddressSpaces().empty()) { 4007 // If we have a ConstantExpr pointer, we need to see if it came from an 4008 // illegal bitcast. If the datalayout string specifies non-integral 4009 // address spaces then we also need to check for illegal ptrtoint and 4010 // inttoptr expressions. 4011 visitConstantExprsRecursively(CE); 4012 } 4013 } 4014 } 4015 4016 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4017 Assert(I.getType()->isFPOrFPVectorTy(), 4018 "fpmath requires a floating point result!", &I); 4019 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4020 if (ConstantFP *CFP0 = 4021 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4022 const APFloat &Accuracy = CFP0->getValueAPF(); 4023 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4024 "fpmath accuracy must have float type", &I); 4025 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4026 "fpmath accuracy not a positive number!", &I); 4027 } else { 4028 Assert(false, "invalid fpmath accuracy!", &I); 4029 } 4030 } 4031 4032 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4033 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4034 "Ranges are only for loads, calls and invokes!", &I); 4035 visitRangeMetadata(I, Range, I.getType()); 4036 } 4037 4038 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4039 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4040 &I); 4041 Assert(isa<LoadInst>(I), 4042 "nonnull applies only to load instructions, use attributes" 4043 " for calls or invokes", 4044 &I); 4045 } 4046 4047 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4048 visitDereferenceableMetadata(I, MD); 4049 4050 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4051 visitDereferenceableMetadata(I, MD); 4052 4053 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4054 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4055 4056 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4057 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4058 &I); 4059 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4060 "use attributes for calls or invokes", &I); 4061 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4062 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4063 Assert(CI && CI->getType()->isIntegerTy(64), 4064 "align metadata value must be an i64!", &I); 4065 uint64_t Align = CI->getZExtValue(); 4066 Assert(isPowerOf2_64(Align), 4067 "align metadata value must be a power of 2!", &I); 4068 Assert(Align <= Value::MaximumAlignment, 4069 "alignment is larger that implementation defined limit", &I); 4070 } 4071 4072 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4073 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4074 visitMDNode(*N); 4075 } 4076 4077 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) 4078 verifyFragmentExpression(*DII); 4079 4080 InstsInThisBlock.insert(&I); 4081 } 4082 4083 /// Allow intrinsics to be verified in different ways. 4084 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4085 Function *IF = Call.getCalledFunction(); 4086 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4087 IF); 4088 4089 // Verify that the intrinsic prototype lines up with what the .td files 4090 // describe. 4091 FunctionType *IFTy = IF->getFunctionType(); 4092 bool IsVarArg = IFTy->isVarArg(); 4093 4094 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4095 getIntrinsicInfoTableEntries(ID, Table); 4096 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4097 4098 SmallVector<Type *, 4> ArgTys; 4099 Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(), 4100 TableRef, ArgTys), 4101 "Intrinsic has incorrect return type!", IF); 4102 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i) 4103 Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i), 4104 TableRef, ArgTys), 4105 "Intrinsic has incorrect argument type!", IF); 4106 4107 // Verify if the intrinsic call matches the vararg property. 4108 if (IsVarArg) 4109 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4110 "Intrinsic was not defined with variable arguments!", IF); 4111 else 4112 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4113 "Callsite was not defined with variable arguments!", IF); 4114 4115 // All descriptors should be absorbed by now. 4116 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4117 4118 // Now that we have the intrinsic ID and the actual argument types (and we 4119 // know they are legal for the intrinsic!) get the intrinsic name through the 4120 // usual means. This allows us to verify the mangling of argument types into 4121 // the name. 4122 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 4123 Assert(ExpectedName == IF->getName(), 4124 "Intrinsic name not mangled correctly for type arguments! " 4125 "Should be: " + 4126 ExpectedName, 4127 IF); 4128 4129 // If the intrinsic takes MDNode arguments, verify that they are either global 4130 // or are local to *this* function. 4131 for (Value *V : Call.args()) 4132 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4133 visitMetadataAsValue(*MD, Call.getCaller()); 4134 4135 switch (ID) { 4136 default: 4137 break; 4138 case Intrinsic::coro_id: { 4139 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4140 if (isa<ConstantPointerNull>(InfoArg)) 4141 break; 4142 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4143 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4144 "info argument of llvm.coro.begin must refer to an initialized " 4145 "constant"); 4146 Constant *Init = GV->getInitializer(); 4147 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4148 "info argument of llvm.coro.begin must refer to either a struct or " 4149 "an array"); 4150 break; 4151 } 4152 case Intrinsic::ctlz: // llvm.ctlz 4153 case Intrinsic::cttz: // llvm.cttz 4154 Assert(isa<ConstantInt>(Call.getArgOperand(1)), 4155 "is_zero_undef argument of bit counting intrinsics must be a " 4156 "constant int", 4157 Call); 4158 break; 4159 case Intrinsic::experimental_constrained_fadd: 4160 case Intrinsic::experimental_constrained_fsub: 4161 case Intrinsic::experimental_constrained_fmul: 4162 case Intrinsic::experimental_constrained_fdiv: 4163 case Intrinsic::experimental_constrained_frem: 4164 case Intrinsic::experimental_constrained_fma: 4165 case Intrinsic::experimental_constrained_sqrt: 4166 case Intrinsic::experimental_constrained_pow: 4167 case Intrinsic::experimental_constrained_powi: 4168 case Intrinsic::experimental_constrained_sin: 4169 case Intrinsic::experimental_constrained_cos: 4170 case Intrinsic::experimental_constrained_exp: 4171 case Intrinsic::experimental_constrained_exp2: 4172 case Intrinsic::experimental_constrained_log: 4173 case Intrinsic::experimental_constrained_log10: 4174 case Intrinsic::experimental_constrained_log2: 4175 case Intrinsic::experimental_constrained_rint: 4176 case Intrinsic::experimental_constrained_nearbyint: 4177 case Intrinsic::experimental_constrained_maxnum: 4178 case Intrinsic::experimental_constrained_minnum: 4179 case Intrinsic::experimental_constrained_ceil: 4180 case Intrinsic::experimental_constrained_floor: 4181 case Intrinsic::experimental_constrained_round: 4182 case Intrinsic::experimental_constrained_trunc: 4183 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4184 break; 4185 case Intrinsic::dbg_declare: // llvm.dbg.declare 4186 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4187 "invalid llvm.dbg.declare intrinsic call 1", Call); 4188 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4189 break; 4190 case Intrinsic::dbg_addr: // llvm.dbg.addr 4191 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4192 break; 4193 case Intrinsic::dbg_value: // llvm.dbg.value 4194 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4195 break; 4196 case Intrinsic::dbg_label: // llvm.dbg.label 4197 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4198 break; 4199 case Intrinsic::memcpy: 4200 case Intrinsic::memmove: 4201 case Intrinsic::memset: { 4202 const auto *MI = cast<MemIntrinsic>(&Call); 4203 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4204 return Alignment == 0 || isPowerOf2_32(Alignment); 4205 }; 4206 Assert(IsValidAlignment(MI->getDestAlignment()), 4207 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4208 Call); 4209 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4210 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4211 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4212 Call); 4213 } 4214 Assert(isa<ConstantInt>(Call.getArgOperand(3)), 4215 "isvolatile argument of memory intrinsics must be a constant int", 4216 Call); 4217 break; 4218 } 4219 case Intrinsic::memcpy_element_unordered_atomic: 4220 case Intrinsic::memmove_element_unordered_atomic: 4221 case Intrinsic::memset_element_unordered_atomic: { 4222 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4223 4224 ConstantInt *ElementSizeCI = 4225 dyn_cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4226 Assert(ElementSizeCI, 4227 "element size of the element-wise unordered atomic memory " 4228 "intrinsic must be a constant int", 4229 Call); 4230 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4231 Assert(ElementSizeVal.isPowerOf2(), 4232 "element size of the element-wise atomic memory intrinsic " 4233 "must be a power of 2", 4234 Call); 4235 4236 if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) { 4237 uint64_t Length = LengthCI->getZExtValue(); 4238 uint64_t ElementSize = AMI->getElementSizeInBytes(); 4239 Assert((Length % ElementSize) == 0, 4240 "constant length must be a multiple of the element size in the " 4241 "element-wise atomic memory intrinsic", 4242 Call); 4243 } 4244 4245 auto IsValidAlignment = [&](uint64_t Alignment) { 4246 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4247 }; 4248 uint64_t DstAlignment = AMI->getDestAlignment(); 4249 Assert(IsValidAlignment(DstAlignment), 4250 "incorrect alignment of the destination argument", Call); 4251 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4252 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4253 Assert(IsValidAlignment(SrcAlignment), 4254 "incorrect alignment of the source argument", Call); 4255 } 4256 break; 4257 } 4258 case Intrinsic::gcroot: 4259 case Intrinsic::gcwrite: 4260 case Intrinsic::gcread: 4261 if (ID == Intrinsic::gcroot) { 4262 AllocaInst *AI = 4263 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4264 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4265 Assert(isa<Constant>(Call.getArgOperand(1)), 4266 "llvm.gcroot parameter #2 must be a constant.", Call); 4267 if (!AI->getAllocatedType()->isPointerTy()) { 4268 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4269 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4270 "or argument #2 must be a non-null constant.", 4271 Call); 4272 } 4273 } 4274 4275 Assert(Call.getParent()->getParent()->hasGC(), 4276 "Enclosing function does not use GC.", Call); 4277 break; 4278 case Intrinsic::init_trampoline: 4279 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4280 "llvm.init_trampoline parameter #2 must resolve to a function.", 4281 Call); 4282 break; 4283 case Intrinsic::prefetch: 4284 Assert(isa<ConstantInt>(Call.getArgOperand(1)) && 4285 isa<ConstantInt>(Call.getArgOperand(2)) && 4286 cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4287 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4288 "invalid arguments to llvm.prefetch", Call); 4289 break; 4290 case Intrinsic::stackprotector: 4291 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4292 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4293 break; 4294 case Intrinsic::lifetime_start: 4295 case Intrinsic::lifetime_end: 4296 case Intrinsic::invariant_start: 4297 Assert(isa<ConstantInt>(Call.getArgOperand(0)), 4298 "size argument of memory use markers must be a constant integer", 4299 Call); 4300 break; 4301 case Intrinsic::invariant_end: 4302 Assert(isa<ConstantInt>(Call.getArgOperand(1)), 4303 "llvm.invariant.end parameter #2 must be a constant integer", Call); 4304 break; 4305 4306 case Intrinsic::localescape: { 4307 BasicBlock *BB = Call.getParent(); 4308 Assert(BB == &BB->getParent()->front(), 4309 "llvm.localescape used outside of entry block", Call); 4310 Assert(!SawFrameEscape, 4311 "multiple calls to llvm.localescape in one function", Call); 4312 for (Value *Arg : Call.args()) { 4313 if (isa<ConstantPointerNull>(Arg)) 4314 continue; // Null values are allowed as placeholders. 4315 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4316 Assert(AI && AI->isStaticAlloca(), 4317 "llvm.localescape only accepts static allocas", Call); 4318 } 4319 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); 4320 SawFrameEscape = true; 4321 break; 4322 } 4323 case Intrinsic::localrecover: { 4324 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 4325 Function *Fn = dyn_cast<Function>(FnArg); 4326 Assert(Fn && !Fn->isDeclaration(), 4327 "llvm.localrecover first " 4328 "argument must be function defined in this module", 4329 Call); 4330 auto *IdxArg = dyn_cast<ConstantInt>(Call.getArgOperand(2)); 4331 Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int", 4332 Call); 4333 auto &Entry = FrameEscapeInfo[Fn]; 4334 Entry.second = unsigned( 4335 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4336 break; 4337 } 4338 4339 case Intrinsic::experimental_gc_statepoint: 4340 if (auto *CI = dyn_cast<CallInst>(&Call)) 4341 Assert(!CI->isInlineAsm(), 4342 "gc.statepoint support for inline assembly unimplemented", CI); 4343 Assert(Call.getParent()->getParent()->hasGC(), 4344 "Enclosing function does not use GC.", Call); 4345 4346 verifyStatepoint(Call); 4347 break; 4348 case Intrinsic::experimental_gc_result: { 4349 Assert(Call.getParent()->getParent()->hasGC(), 4350 "Enclosing function does not use GC.", Call); 4351 // Are we tied to a statepoint properly? 4352 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 4353 const Function *StatepointFn = 4354 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 4355 Assert(StatepointFn && StatepointFn->isDeclaration() && 4356 StatepointFn->getIntrinsicID() == 4357 Intrinsic::experimental_gc_statepoint, 4358 "gc.result operand #1 must be from a statepoint", Call, 4359 Call.getArgOperand(0)); 4360 4361 // Assert that result type matches wrapped callee. 4362 const Value *Target = StatepointCall->getArgOperand(2); 4363 auto *PT = cast<PointerType>(Target->getType()); 4364 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4365 Assert(Call.getType() == TargetFuncType->getReturnType(), 4366 "gc.result result type does not match wrapped callee", Call); 4367 break; 4368 } 4369 case Intrinsic::experimental_gc_relocate: { 4370 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call); 4371 4372 Assert(isa<PointerType>(Call.getType()->getScalarType()), 4373 "gc.relocate must return a pointer or a vector of pointers", Call); 4374 4375 // Check that this relocate is correctly tied to the statepoint 4376 4377 // This is case for relocate on the unwinding path of an invoke statepoint 4378 if (LandingPadInst *LandingPad = 4379 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 4380 4381 const BasicBlock *InvokeBB = 4382 LandingPad->getParent()->getUniquePredecessor(); 4383 4384 // Landingpad relocates should have only one predecessor with invoke 4385 // statepoint terminator 4386 Assert(InvokeBB, "safepoints should have unique landingpads", 4387 LandingPad->getParent()); 4388 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4389 InvokeBB); 4390 Assert(isStatepoint(InvokeBB->getTerminator()), 4391 "gc relocate should be linked to a statepoint", InvokeBB); 4392 } else { 4393 // In all other cases relocate should be tied to the statepoint directly. 4394 // This covers relocates on a normal return path of invoke statepoint and 4395 // relocates of a call statepoint. 4396 auto Token = Call.getArgOperand(0); 4397 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)), 4398 "gc relocate is incorrectly tied to the statepoint", Call, Token); 4399 } 4400 4401 // Verify rest of the relocate arguments. 4402 const CallBase &StatepointCall = 4403 *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint()); 4404 4405 // Both the base and derived must be piped through the safepoint. 4406 Value *Base = Call.getArgOperand(1); 4407 Assert(isa<ConstantInt>(Base), 4408 "gc.relocate operand #2 must be integer offset", Call); 4409 4410 Value *Derived = Call.getArgOperand(2); 4411 Assert(isa<ConstantInt>(Derived), 4412 "gc.relocate operand #3 must be integer offset", Call); 4413 4414 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4415 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4416 // Check the bounds 4417 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(), 4418 "gc.relocate: statepoint base index out of bounds", Call); 4419 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(), 4420 "gc.relocate: statepoint derived index out of bounds", Call); 4421 4422 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' 4423 // section of the statepoint's argument. 4424 Assert(StatepointCall.arg_size() > 0, 4425 "gc.statepoint: insufficient arguments"); 4426 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)), 4427 "gc.statement: number of call arguments must be constant integer"); 4428 const unsigned NumCallArgs = 4429 cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue(); 4430 Assert(StatepointCall.arg_size() > NumCallArgs + 5, 4431 "gc.statepoint: mismatch in number of call arguments"); 4432 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)), 4433 "gc.statepoint: number of transition arguments must be " 4434 "a constant integer"); 4435 const int NumTransitionArgs = 4436 cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)) 4437 ->getZExtValue(); 4438 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; 4439 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)), 4440 "gc.statepoint: number of deoptimization arguments must be " 4441 "a constant integer"); 4442 const int NumDeoptArgs = 4443 cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)) 4444 ->getZExtValue(); 4445 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; 4446 const int GCParamArgsEnd = StatepointCall.arg_size(); 4447 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, 4448 "gc.relocate: statepoint base index doesn't fall within the " 4449 "'gc parameters' section of the statepoint call", 4450 Call); 4451 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, 4452 "gc.relocate: statepoint derived index doesn't fall within the " 4453 "'gc parameters' section of the statepoint call", 4454 Call); 4455 4456 // Relocated value must be either a pointer type or vector-of-pointer type, 4457 // but gc_relocate does not need to return the same pointer type as the 4458 // relocated pointer. It can be casted to the correct type later if it's 4459 // desired. However, they must have the same address space and 'vectorness' 4460 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 4461 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 4462 "gc.relocate: relocated value must be a gc pointer", Call); 4463 4464 auto ResultType = Call.getType(); 4465 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4466 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4467 "gc.relocate: vector relocates to vector and pointer to pointer", 4468 Call); 4469 Assert( 4470 ResultType->getPointerAddressSpace() == 4471 DerivedType->getPointerAddressSpace(), 4472 "gc.relocate: relocating a pointer shouldn't change its address space", 4473 Call); 4474 break; 4475 } 4476 case Intrinsic::eh_exceptioncode: 4477 case Intrinsic::eh_exceptionpointer: { 4478 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 4479 "eh.exceptionpointer argument must be a catchpad", Call); 4480 break; 4481 } 4482 case Intrinsic::masked_load: { 4483 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 4484 Call); 4485 4486 Value *Ptr = Call.getArgOperand(0); 4487 // Value *Alignment = Call.getArgOperand(1); 4488 Value *Mask = Call.getArgOperand(2); 4489 Value *PassThru = Call.getArgOperand(3); 4490 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 4491 Call); 4492 4493 // DataTy is the overloaded type 4494 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4495 Assert(DataTy == Call.getType(), 4496 "masked_load: return must match pointer type", Call); 4497 Assert(PassThru->getType() == DataTy, 4498 "masked_load: pass through and data type must match", Call); 4499 Assert(Mask->getType()->getVectorNumElements() == 4500 DataTy->getVectorNumElements(), 4501 "masked_load: vector mask must be same length as data", Call); 4502 break; 4503 } 4504 case Intrinsic::masked_store: { 4505 Value *Val = Call.getArgOperand(0); 4506 Value *Ptr = Call.getArgOperand(1); 4507 // Value *Alignment = Call.getArgOperand(2); 4508 Value *Mask = Call.getArgOperand(3); 4509 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 4510 Call); 4511 4512 // DataTy is the overloaded type 4513 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4514 Assert(DataTy == Val->getType(), 4515 "masked_store: storee must match pointer type", Call); 4516 Assert(Mask->getType()->getVectorNumElements() == 4517 DataTy->getVectorNumElements(), 4518 "masked_store: vector mask must be same length as data", Call); 4519 break; 4520 } 4521 4522 case Intrinsic::experimental_guard: { 4523 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 4524 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4525 "experimental_guard must have exactly one " 4526 "\"deopt\" operand bundle"); 4527 break; 4528 } 4529 4530 case Intrinsic::experimental_deoptimize: { 4531 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 4532 Call); 4533 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4534 "experimental_deoptimize must have exactly one " 4535 "\"deopt\" operand bundle"); 4536 Assert(Call.getType() == Call.getFunction()->getReturnType(), 4537 "experimental_deoptimize return type must match caller return type"); 4538 4539 if (isa<CallInst>(Call)) { 4540 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 4541 Assert(RI, 4542 "calls to experimental_deoptimize must be followed by a return"); 4543 4544 if (!Call.getType()->isVoidTy() && RI) 4545 Assert(RI->getReturnValue() == &Call, 4546 "calls to experimental_deoptimize must be followed by a return " 4547 "of the value computed by experimental_deoptimize"); 4548 } 4549 4550 break; 4551 } 4552 case Intrinsic::sadd_sat: 4553 case Intrinsic::uadd_sat: 4554 case Intrinsic::ssub_sat: 4555 case Intrinsic::usub_sat: { 4556 Value *Op1 = Call.getArgOperand(0); 4557 Value *Op2 = Call.getArgOperand(1); 4558 Assert(Op1->getType()->isIntOrIntVectorTy(), 4559 "first operand of [us][add|sub]_sat must be an int type or vector " 4560 "of ints"); 4561 Assert(Op2->getType()->isIntOrIntVectorTy(), 4562 "second operand of [us][add|sub]_sat must be an int type or vector " 4563 "of ints"); 4564 break; 4565 } 4566 case Intrinsic::smul_fix: { 4567 Value *Op1 = Call.getArgOperand(0); 4568 Value *Op2 = Call.getArgOperand(1); 4569 Assert(Op1->getType()->isIntOrIntVectorTy(), 4570 "first operand of smul_fix must be an int type or vector " 4571 "of ints"); 4572 Assert(Op2->getType()->isIntOrIntVectorTy(), 4573 "second operand of smul_fix must be an int type or vector " 4574 "of ints"); 4575 4576 auto *Op3 = dyn_cast<ConstantInt>(Call.getArgOperand(2)); 4577 Assert(Op3, "third argument of smul_fix must be a constant integer"); 4578 Assert(Op3->getType()->getBitWidth() <= 32, 4579 "third argument of smul_fix must fit within 32 bits"); 4580 Assert(Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 4581 "the scale of smul_fix must be less than the width of the operands"); 4582 break; 4583 } 4584 }; 4585 } 4586 4587 /// Carefully grab the subprogram from a local scope. 4588 /// 4589 /// This carefully grabs the subprogram from a local scope, avoiding the 4590 /// built-in assertions that would typically fire. 4591 static DISubprogram *getSubprogram(Metadata *LocalScope) { 4592 if (!LocalScope) 4593 return nullptr; 4594 4595 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 4596 return SP; 4597 4598 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 4599 return getSubprogram(LB->getRawScope()); 4600 4601 // Just return null; broken scope chains are checked elsewhere. 4602 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 4603 return nullptr; 4604 } 4605 4606 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 4607 unsigned NumOperands = FPI.getNumArgOperands(); 4608 Assert(((NumOperands == 5 && FPI.isTernaryOp()) || 4609 (NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands == 4)), 4610 "invalid arguments for constrained FP intrinsic", &FPI); 4611 Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-1)), 4612 "invalid exception behavior argument", &FPI); 4613 Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-2)), 4614 "invalid rounding mode argument", &FPI); 4615 Assert(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid, 4616 "invalid rounding mode argument", &FPI); 4617 Assert(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid, 4618 "invalid exception behavior argument", &FPI); 4619 } 4620 4621 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 4622 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); 4623 AssertDI(isa<ValueAsMetadata>(MD) || 4624 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 4625 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 4626 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 4627 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 4628 DII.getRawVariable()); 4629 AssertDI(isa<DIExpression>(DII.getRawExpression()), 4630 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 4631 DII.getRawExpression()); 4632 4633 // Ignore broken !dbg attachments; they're checked elsewhere. 4634 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 4635 if (!isa<DILocation>(N)) 4636 return; 4637 4638 BasicBlock *BB = DII.getParent(); 4639 Function *F = BB ? BB->getParent() : nullptr; 4640 4641 // The scopes for variables and !dbg attachments must agree. 4642 DILocalVariable *Var = DII.getVariable(); 4643 DILocation *Loc = DII.getDebugLoc(); 4644 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4645 &DII, BB, F); 4646 4647 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 4648 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4649 if (!VarSP || !LocSP) 4650 return; // Broken scope chains are checked elsewhere. 4651 4652 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4653 " variable and !dbg attachment", 4654 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 4655 Loc->getScope()->getSubprogram()); 4656 4657 // This check is redundant with one in visitLocalVariable(). 4658 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 4659 Var->getRawType()); 4660 if (auto *Type = dyn_cast_or_null<DIType>(Var->getRawType())) 4661 if (Type->isBlockByrefStruct()) 4662 AssertDI(DII.getExpression() && DII.getExpression()->getNumElements(), 4663 "BlockByRef variable without complex expression", Var, &DII); 4664 4665 verifyFnArgs(DII); 4666 } 4667 4668 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 4669 AssertDI(isa<DILabel>(DLI.getRawLabel()), 4670 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 4671 DLI.getRawLabel()); 4672 4673 // Ignore broken !dbg attachments; they're checked elsewhere. 4674 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 4675 if (!isa<DILocation>(N)) 4676 return; 4677 4678 BasicBlock *BB = DLI.getParent(); 4679 Function *F = BB ? BB->getParent() : nullptr; 4680 4681 // The scopes for variables and !dbg attachments must agree. 4682 DILabel *Label = DLI.getLabel(); 4683 DILocation *Loc = DLI.getDebugLoc(); 4684 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4685 &DLI, BB, F); 4686 4687 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 4688 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4689 if (!LabelSP || !LocSP) 4690 return; 4691 4692 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4693 " label and !dbg attachment", 4694 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 4695 Loc->getScope()->getSubprogram()); 4696 } 4697 4698 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 4699 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 4700 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 4701 4702 // We don't know whether this intrinsic verified correctly. 4703 if (!V || !E || !E->isValid()) 4704 return; 4705 4706 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 4707 auto Fragment = E->getFragmentInfo(); 4708 if (!Fragment) 4709 return; 4710 4711 // The frontend helps out GDB by emitting the members of local anonymous 4712 // unions as artificial local variables with shared storage. When SROA splits 4713 // the storage for artificial local variables that are smaller than the entire 4714 // union, the overhang piece will be outside of the allotted space for the 4715 // variable and this check fails. 4716 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 4717 if (V->isArtificial()) 4718 return; 4719 4720 verifyFragmentExpression(*V, *Fragment, &I); 4721 } 4722 4723 template <typename ValueOrMetadata> 4724 void Verifier::verifyFragmentExpression(const DIVariable &V, 4725 DIExpression::FragmentInfo Fragment, 4726 ValueOrMetadata *Desc) { 4727 // If there's no size, the type is broken, but that should be checked 4728 // elsewhere. 4729 auto VarSize = V.getSizeInBits(); 4730 if (!VarSize) 4731 return; 4732 4733 unsigned FragSize = Fragment.SizeInBits; 4734 unsigned FragOffset = Fragment.OffsetInBits; 4735 AssertDI(FragSize + FragOffset <= *VarSize, 4736 "fragment is larger than or outside of variable", Desc, &V); 4737 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 4738 } 4739 4740 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 4741 // This function does not take the scope of noninlined function arguments into 4742 // account. Don't run it if current function is nodebug, because it may 4743 // contain inlined debug intrinsics. 4744 if (!HasDebugInfo) 4745 return; 4746 4747 // For performance reasons only check non-inlined ones. 4748 if (I.getDebugLoc()->getInlinedAt()) 4749 return; 4750 4751 DILocalVariable *Var = I.getVariable(); 4752 AssertDI(Var, "dbg intrinsic without variable"); 4753 4754 unsigned ArgNo = Var->getArg(); 4755 if (!ArgNo) 4756 return; 4757 4758 // Verify there are no duplicate function argument debug info entries. 4759 // These will cause hard-to-debug assertions in the DWARF backend. 4760 if (DebugFnArgs.size() < ArgNo) 4761 DebugFnArgs.resize(ArgNo, nullptr); 4762 4763 auto *Prev = DebugFnArgs[ArgNo - 1]; 4764 DebugFnArgs[ArgNo - 1] = Var; 4765 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 4766 Prev, Var); 4767 } 4768 4769 void Verifier::verifyCompileUnits() { 4770 // When more than one Module is imported into the same context, such as during 4771 // an LTO build before linking the modules, ODR type uniquing may cause types 4772 // to point to a different CU. This check does not make sense in this case. 4773 if (M.getContext().isODRUniquingDebugTypes()) 4774 return; 4775 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 4776 SmallPtrSet<const Metadata *, 2> Listed; 4777 if (CUs) 4778 Listed.insert(CUs->op_begin(), CUs->op_end()); 4779 for (auto *CU : CUVisited) 4780 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 4781 CUVisited.clear(); 4782 } 4783 4784 void Verifier::verifyDeoptimizeCallingConvs() { 4785 if (DeoptimizeDeclarations.empty()) 4786 return; 4787 4788 const Function *First = DeoptimizeDeclarations[0]; 4789 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 4790 Assert(First->getCallingConv() == F->getCallingConv(), 4791 "All llvm.experimental.deoptimize declarations must have the same " 4792 "calling convention", 4793 First, F); 4794 } 4795 } 4796 4797 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 4798 bool HasSource = F.getSource().hasValue(); 4799 if (!HasSourceDebugInfo.count(&U)) 4800 HasSourceDebugInfo[&U] = HasSource; 4801 AssertDI(HasSource == HasSourceDebugInfo[&U], 4802 "inconsistent use of embedded source"); 4803 } 4804 4805 //===----------------------------------------------------------------------===// 4806 // Implement the public interfaces to this file... 4807 //===----------------------------------------------------------------------===// 4808 4809 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 4810 Function &F = const_cast<Function &>(f); 4811 4812 // Don't use a raw_null_ostream. Printing IR is expensive. 4813 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 4814 4815 // Note that this function's return value is inverted from what you would 4816 // expect of a function called "verify". 4817 return !V.verify(F); 4818 } 4819 4820 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 4821 bool *BrokenDebugInfo) { 4822 // Don't use a raw_null_ostream. Printing IR is expensive. 4823 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 4824 4825 bool Broken = false; 4826 for (const Function &F : M) 4827 Broken |= !V.verify(F); 4828 4829 Broken |= !V.verify(); 4830 if (BrokenDebugInfo) 4831 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 4832 // Note that this function's return value is inverted from what you would 4833 // expect of a function called "verify". 4834 return Broken; 4835 } 4836 4837 namespace { 4838 4839 struct VerifierLegacyPass : public FunctionPass { 4840 static char ID; 4841 4842 std::unique_ptr<Verifier> V; 4843 bool FatalErrors = true; 4844 4845 VerifierLegacyPass() : FunctionPass(ID) { 4846 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 4847 } 4848 explicit VerifierLegacyPass(bool FatalErrors) 4849 : FunctionPass(ID), 4850 FatalErrors(FatalErrors) { 4851 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 4852 } 4853 4854 bool doInitialization(Module &M) override { 4855 V = llvm::make_unique<Verifier>( 4856 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 4857 return false; 4858 } 4859 4860 bool runOnFunction(Function &F) override { 4861 if (!V->verify(F) && FatalErrors) { 4862 errs() << "in function " << F.getName() << '\n'; 4863 report_fatal_error("Broken function found, compilation aborted!"); 4864 } 4865 return false; 4866 } 4867 4868 bool doFinalization(Module &M) override { 4869 bool HasErrors = false; 4870 for (Function &F : M) 4871 if (F.isDeclaration()) 4872 HasErrors |= !V->verify(F); 4873 4874 HasErrors |= !V->verify(); 4875 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 4876 report_fatal_error("Broken module found, compilation aborted!"); 4877 return false; 4878 } 4879 4880 void getAnalysisUsage(AnalysisUsage &AU) const override { 4881 AU.setPreservesAll(); 4882 } 4883 }; 4884 4885 } // end anonymous namespace 4886 4887 /// Helper to issue failure from the TBAA verification 4888 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 4889 if (Diagnostic) 4890 return Diagnostic->CheckFailed(Args...); 4891 } 4892 4893 #define AssertTBAA(C, ...) \ 4894 do { \ 4895 if (!(C)) { \ 4896 CheckFailed(__VA_ARGS__); \ 4897 return false; \ 4898 } \ 4899 } while (false) 4900 4901 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 4902 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 4903 /// struct-type node describing an aggregate data structure (like a struct). 4904 TBAAVerifier::TBAABaseNodeSummary 4905 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 4906 bool IsNewFormat) { 4907 if (BaseNode->getNumOperands() < 2) { 4908 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 4909 return {true, ~0u}; 4910 } 4911 4912 auto Itr = TBAABaseNodes.find(BaseNode); 4913 if (Itr != TBAABaseNodes.end()) 4914 return Itr->second; 4915 4916 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 4917 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 4918 (void)InsertResult; 4919 assert(InsertResult.second && "We just checked!"); 4920 return Result; 4921 } 4922 4923 TBAAVerifier::TBAABaseNodeSummary 4924 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 4925 bool IsNewFormat) { 4926 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 4927 4928 if (BaseNode->getNumOperands() == 2) { 4929 // Scalar nodes can only be accessed at offset 0. 4930 return isValidScalarTBAANode(BaseNode) 4931 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 4932 : InvalidNode; 4933 } 4934 4935 if (IsNewFormat) { 4936 if (BaseNode->getNumOperands() % 3 != 0) { 4937 CheckFailed("Access tag nodes must have the number of operands that is a " 4938 "multiple of 3!", BaseNode); 4939 return InvalidNode; 4940 } 4941 } else { 4942 if (BaseNode->getNumOperands() % 2 != 1) { 4943 CheckFailed("Struct tag nodes must have an odd number of operands!", 4944 BaseNode); 4945 return InvalidNode; 4946 } 4947 } 4948 4949 // Check the type size field. 4950 if (IsNewFormat) { 4951 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 4952 BaseNode->getOperand(1)); 4953 if (!TypeSizeNode) { 4954 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 4955 return InvalidNode; 4956 } 4957 } 4958 4959 // Check the type name field. In the new format it can be anything. 4960 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 4961 CheckFailed("Struct tag nodes have a string as their first operand", 4962 BaseNode); 4963 return InvalidNode; 4964 } 4965 4966 bool Failed = false; 4967 4968 Optional<APInt> PrevOffset; 4969 unsigned BitWidth = ~0u; 4970 4971 // We've already checked that BaseNode is not a degenerate root node with one 4972 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 4973 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 4974 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 4975 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 4976 Idx += NumOpsPerField) { 4977 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 4978 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 4979 if (!isa<MDNode>(FieldTy)) { 4980 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 4981 Failed = true; 4982 continue; 4983 } 4984 4985 auto *OffsetEntryCI = 4986 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 4987 if (!OffsetEntryCI) { 4988 CheckFailed("Offset entries must be constants!", &I, BaseNode); 4989 Failed = true; 4990 continue; 4991 } 4992 4993 if (BitWidth == ~0u) 4994 BitWidth = OffsetEntryCI->getBitWidth(); 4995 4996 if (OffsetEntryCI->getBitWidth() != BitWidth) { 4997 CheckFailed( 4998 "Bitwidth between the offsets and struct type entries must match", &I, 4999 BaseNode); 5000 Failed = true; 5001 continue; 5002 } 5003 5004 // NB! As far as I can tell, we generate a non-strictly increasing offset 5005 // sequence only from structs that have zero size bit fields. When 5006 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 5007 // pick the field lexically the latest in struct type metadata node. This 5008 // mirrors the actual behavior of the alias analysis implementation. 5009 bool IsAscending = 5010 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 5011 5012 if (!IsAscending) { 5013 CheckFailed("Offsets must be increasing!", &I, BaseNode); 5014 Failed = true; 5015 } 5016 5017 PrevOffset = OffsetEntryCI->getValue(); 5018 5019 if (IsNewFormat) { 5020 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5021 BaseNode->getOperand(Idx + 2)); 5022 if (!MemberSizeNode) { 5023 CheckFailed("Member size entries must be constants!", &I, BaseNode); 5024 Failed = true; 5025 continue; 5026 } 5027 } 5028 } 5029 5030 return Failed ? InvalidNode 5031 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 5032 } 5033 5034 static bool IsRootTBAANode(const MDNode *MD) { 5035 return MD->getNumOperands() < 2; 5036 } 5037 5038 static bool IsScalarTBAANodeImpl(const MDNode *MD, 5039 SmallPtrSetImpl<const MDNode *> &Visited) { 5040 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 5041 return false; 5042 5043 if (!isa<MDString>(MD->getOperand(0))) 5044 return false; 5045 5046 if (MD->getNumOperands() == 3) { 5047 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 5048 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 5049 return false; 5050 } 5051 5052 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5053 return Parent && Visited.insert(Parent).second && 5054 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 5055 } 5056 5057 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 5058 auto ResultIt = TBAAScalarNodes.find(MD); 5059 if (ResultIt != TBAAScalarNodes.end()) 5060 return ResultIt->second; 5061 5062 SmallPtrSet<const MDNode *, 4> Visited; 5063 bool Result = IsScalarTBAANodeImpl(MD, Visited); 5064 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 5065 (void)InsertResult; 5066 assert(InsertResult.second && "Just checked!"); 5067 5068 return Result; 5069 } 5070 5071 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 5072 /// Offset in place to be the offset within the field node returned. 5073 /// 5074 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 5075 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 5076 const MDNode *BaseNode, 5077 APInt &Offset, 5078 bool IsNewFormat) { 5079 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 5080 5081 // Scalar nodes have only one possible "field" -- their parent in the access 5082 // hierarchy. Offset must be zero at this point, but our caller is supposed 5083 // to Assert that. 5084 if (BaseNode->getNumOperands() == 2) 5085 return cast<MDNode>(BaseNode->getOperand(1)); 5086 5087 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5088 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5089 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5090 Idx += NumOpsPerField) { 5091 auto *OffsetEntryCI = 5092 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 5093 if (OffsetEntryCI->getValue().ugt(Offset)) { 5094 if (Idx == FirstFieldOpNo) { 5095 CheckFailed("Could not find TBAA parent in struct type node", &I, 5096 BaseNode, &Offset); 5097 return nullptr; 5098 } 5099 5100 unsigned PrevIdx = Idx - NumOpsPerField; 5101 auto *PrevOffsetEntryCI = 5102 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 5103 Offset -= PrevOffsetEntryCI->getValue(); 5104 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 5105 } 5106 } 5107 5108 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 5109 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 5110 BaseNode->getOperand(LastIdx + 1)); 5111 Offset -= LastOffsetEntryCI->getValue(); 5112 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 5113 } 5114 5115 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 5116 if (!Type || Type->getNumOperands() < 3) 5117 return false; 5118 5119 // In the new format type nodes shall have a reference to the parent type as 5120 // its first operand. 5121 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 5122 if (!Parent) 5123 return false; 5124 5125 return true; 5126 } 5127 5128 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 5129 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 5130 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 5131 isa<AtomicCmpXchgInst>(I), 5132 "This instruction shall not have a TBAA access tag!", &I); 5133 5134 bool IsStructPathTBAA = 5135 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 5136 5137 AssertTBAA( 5138 IsStructPathTBAA, 5139 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 5140 5141 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 5142 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5143 5144 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 5145 5146 if (IsNewFormat) { 5147 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 5148 "Access tag metadata must have either 4 or 5 operands", &I, MD); 5149 } else { 5150 AssertTBAA(MD->getNumOperands() < 5, 5151 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 5152 } 5153 5154 // Check the access size field. 5155 if (IsNewFormat) { 5156 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5157 MD->getOperand(3)); 5158 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 5159 } 5160 5161 // Check the immutability flag. 5162 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 5163 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 5164 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 5165 MD->getOperand(ImmutabilityFlagOpNo)); 5166 AssertTBAA(IsImmutableCI, 5167 "Immutability tag on struct tag metadata must be a constant", 5168 &I, MD); 5169 AssertTBAA( 5170 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 5171 "Immutability part of the struct tag metadata must be either 0 or 1", 5172 &I, MD); 5173 } 5174 5175 AssertTBAA(BaseNode && AccessType, 5176 "Malformed struct tag metadata: base and access-type " 5177 "should be non-null and point to Metadata nodes", 5178 &I, MD, BaseNode, AccessType); 5179 5180 if (!IsNewFormat) { 5181 AssertTBAA(isValidScalarTBAANode(AccessType), 5182 "Access type node must be a valid scalar type", &I, MD, 5183 AccessType); 5184 } 5185 5186 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 5187 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 5188 5189 APInt Offset = OffsetCI->getValue(); 5190 bool SeenAccessTypeInPath = false; 5191 5192 SmallPtrSet<MDNode *, 4> StructPath; 5193 5194 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 5195 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 5196 IsNewFormat)) { 5197 if (!StructPath.insert(BaseNode).second) { 5198 CheckFailed("Cycle detected in struct path", &I, MD); 5199 return false; 5200 } 5201 5202 bool Invalid; 5203 unsigned BaseNodeBitWidth; 5204 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 5205 IsNewFormat); 5206 5207 // If the base node is invalid in itself, then we've already printed all the 5208 // errors we wanted to print. 5209 if (Invalid) 5210 return false; 5211 5212 SeenAccessTypeInPath |= BaseNode == AccessType; 5213 5214 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 5215 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 5216 &I, MD, &Offset); 5217 5218 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 5219 (BaseNodeBitWidth == 0 && Offset == 0) || 5220 (IsNewFormat && BaseNodeBitWidth == ~0u), 5221 "Access bit-width not the same as description bit-width", &I, MD, 5222 BaseNodeBitWidth, Offset.getBitWidth()); 5223 5224 if (IsNewFormat && SeenAccessTypeInPath) 5225 break; 5226 } 5227 5228 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 5229 &I, MD); 5230 return true; 5231 } 5232 5233 char VerifierLegacyPass::ID = 0; 5234 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 5235 5236 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 5237 return new VerifierLegacyPass(FatalErrors); 5238 } 5239 5240 AnalysisKey VerifierAnalysis::Key; 5241 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 5242 ModuleAnalysisManager &) { 5243 Result Res; 5244 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 5245 return Res; 5246 } 5247 5248 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 5249 FunctionAnalysisManager &) { 5250 return { llvm::verifyFunction(F, &dbgs()), false }; 5251 } 5252 5253 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 5254 auto Res = AM.getResult<VerifierAnalysis>(M); 5255 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 5256 report_fatal_error("Broken module found, compilation aborted!"); 5257 5258 return PreservedAnalyses::all(); 5259 } 5260 5261 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 5262 auto res = AM.getResult<VerifierAnalysis>(F); 5263 if (res.IRBroken && FatalErrors) 5264 report_fatal_error("Broken function found, compilation aborted!"); 5265 5266 return PreservedAnalyses::all(); 5267 } 5268