1 //===- Module.cpp - Implement the Module class ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Module class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Module.h" 15 #include "SymbolTableListTraitsImpl.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringMap.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/IR/Attributes.h" 24 #include "llvm/IR/Comdat.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GVMaterializer.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/SymbolTableListTraits.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/TypeFinder.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/IR/ValueSymbolTable.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/CodeGen.h" 45 #include "llvm/Support/Error.h" 46 #include "llvm/Support/MemoryBuffer.h" 47 #include "llvm/Support/Path.h" 48 #include "llvm/Support/RandomNumberGenerator.h" 49 #include "llvm/Support/VersionTuple.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <cstdint> 53 #include <memory> 54 #include <utility> 55 #include <vector> 56 57 using namespace llvm; 58 59 //===----------------------------------------------------------------------===// 60 // Methods to implement the globals and functions lists. 61 // 62 63 // Explicit instantiations of SymbolTableListTraits since some of the methods 64 // are not in the public header file. 65 template class llvm::SymbolTableListTraits<Function>; 66 template class llvm::SymbolTableListTraits<GlobalVariable>; 67 template class llvm::SymbolTableListTraits<GlobalAlias>; 68 template class llvm::SymbolTableListTraits<GlobalIFunc>; 69 70 //===----------------------------------------------------------------------===// 71 // Primitive Module methods. 72 // 73 74 Module::Module(StringRef MID, LLVMContext &C) 75 : Context(C), Materializer(), ModuleID(MID), SourceFileName(MID), DL("") { 76 ValSymTab = new ValueSymbolTable(); 77 NamedMDSymTab = new StringMap<NamedMDNode *>(); 78 Context.addModule(this); 79 } 80 81 Module::~Module() { 82 Context.removeModule(this); 83 dropAllReferences(); 84 GlobalList.clear(); 85 FunctionList.clear(); 86 AliasList.clear(); 87 IFuncList.clear(); 88 NamedMDList.clear(); 89 delete ValSymTab; 90 delete static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab); 91 } 92 93 std::unique_ptr<RandomNumberGenerator> Module::createRNG(const Pass* P) const { 94 SmallString<32> Salt(P->getPassName()); 95 96 // This RNG is guaranteed to produce the same random stream only 97 // when the Module ID and thus the input filename is the same. This 98 // might be problematic if the input filename extension changes 99 // (e.g. from .c to .bc or .ll). 100 // 101 // We could store this salt in NamedMetadata, but this would make 102 // the parameter non-const. This would unfortunately make this 103 // interface unusable by any Machine passes, since they only have a 104 // const reference to their IR Module. Alternatively we can always 105 // store salt metadata from the Module constructor. 106 Salt += sys::path::filename(getModuleIdentifier()); 107 108 return std::unique_ptr<RandomNumberGenerator>(new RandomNumberGenerator(Salt)); 109 } 110 111 /// getNamedValue - Return the first global value in the module with 112 /// the specified name, of arbitrary type. This method returns null 113 /// if a global with the specified name is not found. 114 GlobalValue *Module::getNamedValue(StringRef Name) const { 115 return cast_or_null<GlobalValue>(getValueSymbolTable().lookup(Name)); 116 } 117 118 /// getMDKindID - Return a unique non-zero ID for the specified metadata kind. 119 /// This ID is uniqued across modules in the current LLVMContext. 120 unsigned Module::getMDKindID(StringRef Name) const { 121 return Context.getMDKindID(Name); 122 } 123 124 /// getMDKindNames - Populate client supplied SmallVector with the name for 125 /// custom metadata IDs registered in this LLVMContext. ID #0 is not used, 126 /// so it is filled in as an empty string. 127 void Module::getMDKindNames(SmallVectorImpl<StringRef> &Result) const { 128 return Context.getMDKindNames(Result); 129 } 130 131 void Module::getOperandBundleTags(SmallVectorImpl<StringRef> &Result) const { 132 return Context.getOperandBundleTags(Result); 133 } 134 135 //===----------------------------------------------------------------------===// 136 // Methods for easy access to the functions in the module. 137 // 138 139 // getOrInsertFunction - Look up the specified function in the module symbol 140 // table. If it does not exist, add a prototype for the function and return 141 // it. This is nice because it allows most passes to get away with not handling 142 // the symbol table directly for this common task. 143 // 144 Constant *Module::getOrInsertFunction(StringRef Name, FunctionType *Ty, 145 AttributeList AttributeList) { 146 // See if we have a definition for the specified function already. 147 GlobalValue *F = getNamedValue(Name); 148 if (!F) { 149 // Nope, add it 150 Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage, 151 DL.getProgramAddressSpace(), Name); 152 if (!New->isIntrinsic()) // Intrinsics get attrs set on construction 153 New->setAttributes(AttributeList); 154 FunctionList.push_back(New); 155 return New; // Return the new prototype. 156 } 157 158 // If the function exists but has the wrong type, return a bitcast to the 159 // right type. 160 auto *PTy = PointerType::get(Ty, F->getAddressSpace()); 161 if (F->getType() != PTy) 162 return ConstantExpr::getBitCast(F, PTy); 163 164 // Otherwise, we just found the existing function or a prototype. 165 return F; 166 } 167 168 Constant *Module::getOrInsertFunction(StringRef Name, 169 FunctionType *Ty) { 170 return getOrInsertFunction(Name, Ty, AttributeList()); 171 } 172 173 // getFunction - Look up the specified function in the module symbol table. 174 // If it does not exist, return null. 175 // 176 Function *Module::getFunction(StringRef Name) const { 177 return dyn_cast_or_null<Function>(getNamedValue(Name)); 178 } 179 180 //===----------------------------------------------------------------------===// 181 // Methods for easy access to the global variables in the module. 182 // 183 184 /// getGlobalVariable - Look up the specified global variable in the module 185 /// symbol table. If it does not exist, return null. The type argument 186 /// should be the underlying type of the global, i.e., it should not have 187 /// the top-level PointerType, which represents the address of the global. 188 /// If AllowLocal is set to true, this function will return types that 189 /// have an local. By default, these types are not returned. 190 /// 191 GlobalVariable *Module::getGlobalVariable(StringRef Name, 192 bool AllowLocal) const { 193 if (GlobalVariable *Result = 194 dyn_cast_or_null<GlobalVariable>(getNamedValue(Name))) 195 if (AllowLocal || !Result->hasLocalLinkage()) 196 return Result; 197 return nullptr; 198 } 199 200 /// getOrInsertGlobal - Look up the specified global in the module symbol table. 201 /// 1. If it does not exist, add a declaration of the global and return it. 202 /// 2. Else, the global exists but has the wrong type: return the function 203 /// with a constantexpr cast to the right type. 204 /// 3. Finally, if the existing global is the correct declaration, return the 205 /// existing global. 206 Constant *Module::getOrInsertGlobal( 207 StringRef Name, Type *Ty, 208 function_ref<GlobalVariable *()> CreateGlobalCallback) { 209 // See if we have a definition for the specified global already. 210 GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(getNamedValue(Name)); 211 if (!GV) 212 GV = CreateGlobalCallback(); 213 assert(GV && "The CreateGlobalCallback is expected to create a global"); 214 215 // If the variable exists but has the wrong type, return a bitcast to the 216 // right type. 217 Type *GVTy = GV->getType(); 218 PointerType *PTy = PointerType::get(Ty, GVTy->getPointerAddressSpace()); 219 if (GVTy != PTy) 220 return ConstantExpr::getBitCast(GV, PTy); 221 222 // Otherwise, we just found the existing function or a prototype. 223 return GV; 224 } 225 226 // Overload to construct a global variable using its constructor's defaults. 227 Constant *Module::getOrInsertGlobal(StringRef Name, Type *Ty) { 228 return getOrInsertGlobal(Name, Ty, [&] { 229 return new GlobalVariable(*this, Ty, false, GlobalVariable::ExternalLinkage, 230 nullptr, Name); 231 }); 232 } 233 234 //===----------------------------------------------------------------------===// 235 // Methods for easy access to the global variables in the module. 236 // 237 238 // getNamedAlias - Look up the specified global in the module symbol table. 239 // If it does not exist, return null. 240 // 241 GlobalAlias *Module::getNamedAlias(StringRef Name) const { 242 return dyn_cast_or_null<GlobalAlias>(getNamedValue(Name)); 243 } 244 245 GlobalIFunc *Module::getNamedIFunc(StringRef Name) const { 246 return dyn_cast_or_null<GlobalIFunc>(getNamedValue(Name)); 247 } 248 249 /// getNamedMetadata - Return the first NamedMDNode in the module with the 250 /// specified name. This method returns null if a NamedMDNode with the 251 /// specified name is not found. 252 NamedMDNode *Module::getNamedMetadata(const Twine &Name) const { 253 SmallString<256> NameData; 254 StringRef NameRef = Name.toStringRef(NameData); 255 return static_cast<StringMap<NamedMDNode*> *>(NamedMDSymTab)->lookup(NameRef); 256 } 257 258 /// getOrInsertNamedMetadata - Return the first named MDNode in the module 259 /// with the specified name. This method returns a new NamedMDNode if a 260 /// NamedMDNode with the specified name is not found. 261 NamedMDNode *Module::getOrInsertNamedMetadata(StringRef Name) { 262 NamedMDNode *&NMD = 263 (*static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab))[Name]; 264 if (!NMD) { 265 NMD = new NamedMDNode(Name); 266 NMD->setParent(this); 267 NamedMDList.push_back(NMD); 268 } 269 return NMD; 270 } 271 272 /// eraseNamedMetadata - Remove the given NamedMDNode from this module and 273 /// delete it. 274 void Module::eraseNamedMetadata(NamedMDNode *NMD) { 275 static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab)->erase(NMD->getName()); 276 NamedMDList.erase(NMD->getIterator()); 277 } 278 279 bool Module::isValidModFlagBehavior(Metadata *MD, ModFlagBehavior &MFB) { 280 if (ConstantInt *Behavior = mdconst::dyn_extract_or_null<ConstantInt>(MD)) { 281 uint64_t Val = Behavior->getLimitedValue(); 282 if (Val >= ModFlagBehaviorFirstVal && Val <= ModFlagBehaviorLastVal) { 283 MFB = static_cast<ModFlagBehavior>(Val); 284 return true; 285 } 286 } 287 return false; 288 } 289 290 /// getModuleFlagsMetadata - Returns the module flags in the provided vector. 291 void Module:: 292 getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const { 293 const NamedMDNode *ModFlags = getModuleFlagsMetadata(); 294 if (!ModFlags) return; 295 296 for (const MDNode *Flag : ModFlags->operands()) { 297 ModFlagBehavior MFB; 298 if (Flag->getNumOperands() >= 3 && 299 isValidModFlagBehavior(Flag->getOperand(0), MFB) && 300 dyn_cast_or_null<MDString>(Flag->getOperand(1))) { 301 // Check the operands of the MDNode before accessing the operands. 302 // The verifier will actually catch these failures. 303 MDString *Key = cast<MDString>(Flag->getOperand(1)); 304 Metadata *Val = Flag->getOperand(2); 305 Flags.push_back(ModuleFlagEntry(MFB, Key, Val)); 306 } 307 } 308 } 309 310 /// Return the corresponding value if Key appears in module flags, otherwise 311 /// return null. 312 Metadata *Module::getModuleFlag(StringRef Key) const { 313 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 314 getModuleFlagsMetadata(ModuleFlags); 315 for (const ModuleFlagEntry &MFE : ModuleFlags) { 316 if (Key == MFE.Key->getString()) 317 return MFE.Val; 318 } 319 return nullptr; 320 } 321 322 /// getModuleFlagsMetadata - Returns the NamedMDNode in the module that 323 /// represents module-level flags. This method returns null if there are no 324 /// module-level flags. 325 NamedMDNode *Module::getModuleFlagsMetadata() const { 326 return getNamedMetadata("llvm.module.flags"); 327 } 328 329 /// getOrInsertModuleFlagsMetadata - Returns the NamedMDNode in the module that 330 /// represents module-level flags. If module-level flags aren't found, it 331 /// creates the named metadata that contains them. 332 NamedMDNode *Module::getOrInsertModuleFlagsMetadata() { 333 return getOrInsertNamedMetadata("llvm.module.flags"); 334 } 335 336 /// addModuleFlag - Add a module-level flag to the module-level flags 337 /// metadata. It will create the module-level flags named metadata if it doesn't 338 /// already exist. 339 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 340 Metadata *Val) { 341 Type *Int32Ty = Type::getInt32Ty(Context); 342 Metadata *Ops[3] = { 343 ConstantAsMetadata::get(ConstantInt::get(Int32Ty, Behavior)), 344 MDString::get(Context, Key), Val}; 345 getOrInsertModuleFlagsMetadata()->addOperand(MDNode::get(Context, Ops)); 346 } 347 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 348 Constant *Val) { 349 addModuleFlag(Behavior, Key, ConstantAsMetadata::get(Val)); 350 } 351 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 352 uint32_t Val) { 353 Type *Int32Ty = Type::getInt32Ty(Context); 354 addModuleFlag(Behavior, Key, ConstantInt::get(Int32Ty, Val)); 355 } 356 void Module::addModuleFlag(MDNode *Node) { 357 assert(Node->getNumOperands() == 3 && 358 "Invalid number of operands for module flag!"); 359 assert(mdconst::hasa<ConstantInt>(Node->getOperand(0)) && 360 isa<MDString>(Node->getOperand(1)) && 361 "Invalid operand types for module flag!"); 362 getOrInsertModuleFlagsMetadata()->addOperand(Node); 363 } 364 365 void Module::setDataLayout(StringRef Desc) { 366 DL.reset(Desc); 367 } 368 369 void Module::setDataLayout(const DataLayout &Other) { DL = Other; } 370 371 const DataLayout &Module::getDataLayout() const { return DL; } 372 373 DICompileUnit *Module::debug_compile_units_iterator::operator*() const { 374 return cast<DICompileUnit>(CUs->getOperand(Idx)); 375 } 376 DICompileUnit *Module::debug_compile_units_iterator::operator->() const { 377 return cast<DICompileUnit>(CUs->getOperand(Idx)); 378 } 379 380 void Module::debug_compile_units_iterator::SkipNoDebugCUs() { 381 while (CUs && (Idx < CUs->getNumOperands()) && 382 ((*this)->getEmissionKind() == DICompileUnit::NoDebug)) 383 ++Idx; 384 } 385 386 //===----------------------------------------------------------------------===// 387 // Methods to control the materialization of GlobalValues in the Module. 388 // 389 void Module::setMaterializer(GVMaterializer *GVM) { 390 assert(!Materializer && 391 "Module already has a GVMaterializer. Call materializeAll" 392 " to clear it out before setting another one."); 393 Materializer.reset(GVM); 394 } 395 396 Error Module::materialize(GlobalValue *GV) { 397 if (!Materializer) 398 return Error::success(); 399 400 return Materializer->materialize(GV); 401 } 402 403 Error Module::materializeAll() { 404 if (!Materializer) 405 return Error::success(); 406 std::unique_ptr<GVMaterializer> M = std::move(Materializer); 407 return M->materializeModule(); 408 } 409 410 Error Module::materializeMetadata() { 411 if (!Materializer) 412 return Error::success(); 413 return Materializer->materializeMetadata(); 414 } 415 416 //===----------------------------------------------------------------------===// 417 // Other module related stuff. 418 // 419 420 std::vector<StructType *> Module::getIdentifiedStructTypes() const { 421 // If we have a materializer, it is possible that some unread function 422 // uses a type that is currently not visible to a TypeFinder, so ask 423 // the materializer which types it created. 424 if (Materializer) 425 return Materializer->getIdentifiedStructTypes(); 426 427 std::vector<StructType *> Ret; 428 TypeFinder SrcStructTypes; 429 SrcStructTypes.run(*this, true); 430 Ret.assign(SrcStructTypes.begin(), SrcStructTypes.end()); 431 return Ret; 432 } 433 434 // dropAllReferences() - This function causes all the subelements to "let go" 435 // of all references that they are maintaining. This allows one to 'delete' a 436 // whole module at a time, even though there may be circular references... first 437 // all references are dropped, and all use counts go to zero. Then everything 438 // is deleted for real. Note that no operations are valid on an object that 439 // has "dropped all references", except operator delete. 440 // 441 void Module::dropAllReferences() { 442 for (Function &F : *this) 443 F.dropAllReferences(); 444 445 for (GlobalVariable &GV : globals()) 446 GV.dropAllReferences(); 447 448 for (GlobalAlias &GA : aliases()) 449 GA.dropAllReferences(); 450 451 for (GlobalIFunc &GIF : ifuncs()) 452 GIF.dropAllReferences(); 453 } 454 455 unsigned Module::getNumberRegisterParameters() const { 456 auto *Val = 457 cast_or_null<ConstantAsMetadata>(getModuleFlag("NumRegisterParameters")); 458 if (!Val) 459 return 0; 460 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 461 } 462 463 unsigned Module::getDwarfVersion() const { 464 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Dwarf Version")); 465 if (!Val) 466 return 0; 467 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 468 } 469 470 unsigned Module::getCodeViewFlag() const { 471 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("CodeView")); 472 if (!Val) 473 return 0; 474 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 475 } 476 477 unsigned Module::getInstructionCount() { 478 unsigned NumInstrs = 0; 479 for (Function &F : FunctionList) 480 NumInstrs += F.getInstructionCount(); 481 return NumInstrs; 482 } 483 484 Comdat *Module::getOrInsertComdat(StringRef Name) { 485 auto &Entry = *ComdatSymTab.insert(std::make_pair(Name, Comdat())).first; 486 Entry.second.Name = &Entry; 487 return &Entry.second; 488 } 489 490 PICLevel::Level Module::getPICLevel() const { 491 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIC Level")); 492 493 if (!Val) 494 return PICLevel::NotPIC; 495 496 return static_cast<PICLevel::Level>( 497 cast<ConstantInt>(Val->getValue())->getZExtValue()); 498 } 499 500 void Module::setPICLevel(PICLevel::Level PL) { 501 addModuleFlag(ModFlagBehavior::Max, "PIC Level", PL); 502 } 503 504 PIELevel::Level Module::getPIELevel() const { 505 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIE Level")); 506 507 if (!Val) 508 return PIELevel::Default; 509 510 return static_cast<PIELevel::Level>( 511 cast<ConstantInt>(Val->getValue())->getZExtValue()); 512 } 513 514 void Module::setPIELevel(PIELevel::Level PL) { 515 addModuleFlag(ModFlagBehavior::Max, "PIE Level", PL); 516 } 517 518 Optional<CodeModel::Model> Module::getCodeModel() const { 519 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Code Model")); 520 521 if (!Val) 522 return None; 523 524 return static_cast<CodeModel::Model>( 525 cast<ConstantInt>(Val->getValue())->getZExtValue()); 526 } 527 528 void Module::setCodeModel(CodeModel::Model CL) { 529 // Linking object files with different code models is undefined behavior 530 // because the compiler would have to generate additional code (to span 531 // longer jumps) if a larger code model is used with a smaller one. 532 // Therefore we will treat attempts to mix code models as an error. 533 addModuleFlag(ModFlagBehavior::Error, "Code Model", CL); 534 } 535 536 void Module::setProfileSummary(Metadata *M) { 537 addModuleFlag(ModFlagBehavior::Error, "ProfileSummary", M); 538 } 539 540 Metadata *Module::getProfileSummary() { 541 return getModuleFlag("ProfileSummary"); 542 } 543 544 void Module::setOwnedMemoryBuffer(std::unique_ptr<MemoryBuffer> MB) { 545 OwnedMemoryBuffer = std::move(MB); 546 } 547 548 bool Module::getRtLibUseGOT() const { 549 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("RtLibUseGOT")); 550 return Val && (cast<ConstantInt>(Val->getValue())->getZExtValue() > 0); 551 } 552 553 void Module::setRtLibUseGOT() { 554 addModuleFlag(ModFlagBehavior::Max, "RtLibUseGOT", 1); 555 } 556 557 void Module::setSDKVersion(const VersionTuple &V) { 558 SmallVector<unsigned, 3> Entries; 559 Entries.push_back(V.getMajor()); 560 if (auto Minor = V.getMinor()) { 561 Entries.push_back(*Minor); 562 if (auto Subminor = V.getSubminor()) 563 Entries.push_back(*Subminor); 564 // Ignore the 'build' component as it can't be represented in the object 565 // file. 566 } 567 addModuleFlag(ModFlagBehavior::Warning, "SDK Version", 568 ConstantDataArray::get(Context, Entries)); 569 } 570 571 VersionTuple Module::getSDKVersion() const { 572 auto *CM = dyn_cast_or_null<ConstantAsMetadata>(getModuleFlag("SDK Version")); 573 if (!CM) 574 return {}; 575 auto *Arr = dyn_cast_or_null<ConstantDataArray>(CM->getValue()); 576 if (!Arr) 577 return {}; 578 auto getVersionComponent = [&](unsigned Index) -> Optional<unsigned> { 579 if (Index >= Arr->getNumElements()) 580 return None; 581 return (unsigned)Arr->getElementAsInteger(Index); 582 }; 583 auto Major = getVersionComponent(0); 584 if (!Major) 585 return {}; 586 VersionTuple Result = VersionTuple(*Major); 587 if (auto Minor = getVersionComponent(1)) { 588 Result = VersionTuple(*Major, *Minor); 589 if (auto Subminor = getVersionComponent(2)) { 590 Result = VersionTuple(*Major, *Minor, *Subminor); 591 } 592 } 593 return Result; 594 } 595 596 GlobalVariable *llvm::collectUsedGlobalVariables( 597 const Module &M, SmallPtrSetImpl<GlobalValue *> &Set, bool CompilerUsed) { 598 const char *Name = CompilerUsed ? "llvm.compiler.used" : "llvm.used"; 599 GlobalVariable *GV = M.getGlobalVariable(Name); 600 if (!GV || !GV->hasInitializer()) 601 return GV; 602 603 const ConstantArray *Init = cast<ConstantArray>(GV->getInitializer()); 604 for (Value *Op : Init->operands()) { 605 GlobalValue *G = cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases()); 606 Set.insert(G); 607 } 608 return GV; 609 } 610