1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements all of the non-inline methods for the LLVM instruction 11 // classes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/IR/Instructions.h" 16 #include "LLVMContextImpl.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/IR/Attributes.h" 21 #include "llvm/IR/BasicBlock.h" 22 #include "llvm/IR/CallSite.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Support/AtomicOrdering.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/MathExtras.h" 41 #include <algorithm> 42 #include <cassert> 43 #include <cstdint> 44 #include <vector> 45 46 using namespace llvm; 47 48 //===----------------------------------------------------------------------===// 49 // AllocaInst Class 50 //===----------------------------------------------------------------------===// 51 52 Optional<uint64_t> 53 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const { 54 uint64_t Size = DL.getTypeAllocSizeInBits(getAllocatedType()); 55 if (isArrayAllocation()) { 56 auto C = dyn_cast<ConstantInt>(getArraySize()); 57 if (!C) 58 return None; 59 Size *= C->getZExtValue(); 60 } 61 return Size; 62 } 63 64 //===----------------------------------------------------------------------===// 65 // CallSite Class 66 //===----------------------------------------------------------------------===// 67 68 User::op_iterator CallSite::getCallee() const { 69 return cast<CallBase>(getInstruction())->op_end() - 1; 70 } 71 72 //===----------------------------------------------------------------------===// 73 // SelectInst Class 74 //===----------------------------------------------------------------------===// 75 76 /// areInvalidOperands - Return a string if the specified operands are invalid 77 /// for a select operation, otherwise return null. 78 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) { 79 if (Op1->getType() != Op2->getType()) 80 return "both values to select must have same type"; 81 82 if (Op1->getType()->isTokenTy()) 83 return "select values cannot have token type"; 84 85 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) { 86 // Vector select. 87 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext())) 88 return "vector select condition element type must be i1"; 89 VectorType *ET = dyn_cast<VectorType>(Op1->getType()); 90 if (!ET) 91 return "selected values for vector select must be vectors"; 92 if (ET->getNumElements() != VT->getNumElements()) 93 return "vector select requires selected vectors to have " 94 "the same vector length as select condition"; 95 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) { 96 return "select condition must be i1 or <n x i1>"; 97 } 98 return nullptr; 99 } 100 101 //===----------------------------------------------------------------------===// 102 // PHINode Class 103 //===----------------------------------------------------------------------===// 104 105 PHINode::PHINode(const PHINode &PN) 106 : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()), 107 ReservedSpace(PN.getNumOperands()) { 108 allocHungoffUses(PN.getNumOperands()); 109 std::copy(PN.op_begin(), PN.op_end(), op_begin()); 110 std::copy(PN.block_begin(), PN.block_end(), block_begin()); 111 SubclassOptionalData = PN.SubclassOptionalData; 112 } 113 114 // removeIncomingValue - Remove an incoming value. This is useful if a 115 // predecessor basic block is deleted. 116 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) { 117 Value *Removed = getIncomingValue(Idx); 118 119 // Move everything after this operand down. 120 // 121 // FIXME: we could just swap with the end of the list, then erase. However, 122 // clients might not expect this to happen. The code as it is thrashes the 123 // use/def lists, which is kinda lame. 124 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx); 125 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx); 126 127 // Nuke the last value. 128 Op<-1>().set(nullptr); 129 setNumHungOffUseOperands(getNumOperands() - 1); 130 131 // If the PHI node is dead, because it has zero entries, nuke it now. 132 if (getNumOperands() == 0 && DeletePHIIfEmpty) { 133 // If anyone is using this PHI, make them use a dummy value instead... 134 replaceAllUsesWith(UndefValue::get(getType())); 135 eraseFromParent(); 136 } 137 return Removed; 138 } 139 140 /// growOperands - grow operands - This grows the operand list in response 141 /// to a push_back style of operation. This grows the number of ops by 1.5 142 /// times. 143 /// 144 void PHINode::growOperands() { 145 unsigned e = getNumOperands(); 146 unsigned NumOps = e + e / 2; 147 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common. 148 149 ReservedSpace = NumOps; 150 growHungoffUses(ReservedSpace, /* IsPhi */ true); 151 } 152 153 /// hasConstantValue - If the specified PHI node always merges together the same 154 /// value, return the value, otherwise return null. 155 Value *PHINode::hasConstantValue() const { 156 // Exploit the fact that phi nodes always have at least one entry. 157 Value *ConstantValue = getIncomingValue(0); 158 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i) 159 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) { 160 if (ConstantValue != this) 161 return nullptr; // Incoming values not all the same. 162 // The case where the first value is this PHI. 163 ConstantValue = getIncomingValue(i); 164 } 165 if (ConstantValue == this) 166 return UndefValue::get(getType()); 167 return ConstantValue; 168 } 169 170 /// hasConstantOrUndefValue - Whether the specified PHI node always merges 171 /// together the same value, assuming that undefs result in the same value as 172 /// non-undefs. 173 /// Unlike \ref hasConstantValue, this does not return a value because the 174 /// unique non-undef incoming value need not dominate the PHI node. 175 bool PHINode::hasConstantOrUndefValue() const { 176 Value *ConstantValue = nullptr; 177 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) { 178 Value *Incoming = getIncomingValue(i); 179 if (Incoming != this && !isa<UndefValue>(Incoming)) { 180 if (ConstantValue && ConstantValue != Incoming) 181 return false; 182 ConstantValue = Incoming; 183 } 184 } 185 return true; 186 } 187 188 //===----------------------------------------------------------------------===// 189 // LandingPadInst Implementation 190 //===----------------------------------------------------------------------===// 191 192 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, 193 const Twine &NameStr, Instruction *InsertBefore) 194 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) { 195 init(NumReservedValues, NameStr); 196 } 197 198 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, 199 const Twine &NameStr, BasicBlock *InsertAtEnd) 200 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) { 201 init(NumReservedValues, NameStr); 202 } 203 204 LandingPadInst::LandingPadInst(const LandingPadInst &LP) 205 : Instruction(LP.getType(), Instruction::LandingPad, nullptr, 206 LP.getNumOperands()), 207 ReservedSpace(LP.getNumOperands()) { 208 allocHungoffUses(LP.getNumOperands()); 209 Use *OL = getOperandList(); 210 const Use *InOL = LP.getOperandList(); 211 for (unsigned I = 0, E = ReservedSpace; I != E; ++I) 212 OL[I] = InOL[I]; 213 214 setCleanup(LP.isCleanup()); 215 } 216 217 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, 218 const Twine &NameStr, 219 Instruction *InsertBefore) { 220 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore); 221 } 222 223 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, 224 const Twine &NameStr, 225 BasicBlock *InsertAtEnd) { 226 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd); 227 } 228 229 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) { 230 ReservedSpace = NumReservedValues; 231 setNumHungOffUseOperands(0); 232 allocHungoffUses(ReservedSpace); 233 setName(NameStr); 234 setCleanup(false); 235 } 236 237 /// growOperands - grow operands - This grows the operand list in response to a 238 /// push_back style of operation. This grows the number of ops by 2 times. 239 void LandingPadInst::growOperands(unsigned Size) { 240 unsigned e = getNumOperands(); 241 if (ReservedSpace >= e + Size) return; 242 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2; 243 growHungoffUses(ReservedSpace); 244 } 245 246 void LandingPadInst::addClause(Constant *Val) { 247 unsigned OpNo = getNumOperands(); 248 growOperands(1); 249 assert(OpNo < ReservedSpace && "Growing didn't work!"); 250 setNumHungOffUseOperands(getNumOperands() + 1); 251 getOperandList()[OpNo] = Val; 252 } 253 254 //===----------------------------------------------------------------------===// 255 // CallBase Implementation 256 //===----------------------------------------------------------------------===// 257 258 Function *CallBase::getCaller() { return getParent()->getParent(); } 259 260 bool CallBase::isIndirectCall() const { 261 const Value *V = getCalledValue(); 262 if (isa<Function>(V) || isa<Constant>(V)) 263 return false; 264 if (const CallInst *CI = dyn_cast<CallInst>(this)) 265 if (CI->isInlineAsm()) 266 return false; 267 return true; 268 } 269 270 Intrinsic::ID CallBase::getIntrinsicID() const { 271 if (auto *F = getCalledFunction()) 272 return F->getIntrinsicID(); 273 return Intrinsic::not_intrinsic; 274 } 275 276 bool CallBase::isReturnNonNull() const { 277 if (hasRetAttr(Attribute::NonNull)) 278 return true; 279 280 if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 && 281 !NullPointerIsDefined(getCaller(), 282 getType()->getPointerAddressSpace())) 283 return true; 284 285 return false; 286 } 287 288 Value *CallBase::getReturnedArgOperand() const { 289 unsigned Index; 290 291 if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index) 292 return getArgOperand(Index - AttributeList::FirstArgIndex); 293 if (const Function *F = getCalledFunction()) 294 if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) && 295 Index) 296 return getArgOperand(Index - AttributeList::FirstArgIndex); 297 298 return nullptr; 299 } 300 301 bool CallBase::hasRetAttr(Attribute::AttrKind Kind) const { 302 if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind)) 303 return true; 304 305 // Look at the callee, if available. 306 if (const Function *F = getCalledFunction()) 307 return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind); 308 return false; 309 } 310 311 /// Determine whether the argument or parameter has the given attribute. 312 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const { 313 assert(ArgNo < getNumArgOperands() && "Param index out of bounds!"); 314 315 if (Attrs.hasParamAttribute(ArgNo, Kind)) 316 return true; 317 if (const Function *F = getCalledFunction()) 318 return F->getAttributes().hasParamAttribute(ArgNo, Kind); 319 return false; 320 } 321 322 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const { 323 if (const Function *F = getCalledFunction()) 324 return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind); 325 return false; 326 } 327 328 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const { 329 if (const Function *F = getCalledFunction()) 330 return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind); 331 return false; 332 } 333 334 CallBase::op_iterator 335 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles, 336 const unsigned BeginIndex) { 337 auto It = op_begin() + BeginIndex; 338 for (auto &B : Bundles) 339 It = std::copy(B.input_begin(), B.input_end(), It); 340 341 auto *ContextImpl = getContext().pImpl; 342 auto BI = Bundles.begin(); 343 unsigned CurrentIndex = BeginIndex; 344 345 for (auto &BOI : bundle_op_infos()) { 346 assert(BI != Bundles.end() && "Incorrect allocation?"); 347 348 BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag()); 349 BOI.Begin = CurrentIndex; 350 BOI.End = CurrentIndex + BI->input_size(); 351 CurrentIndex = BOI.End; 352 BI++; 353 } 354 355 assert(BI == Bundles.end() && "Incorrect allocation?"); 356 357 return It; 358 } 359 360 //===----------------------------------------------------------------------===// 361 // CallInst Implementation 362 //===----------------------------------------------------------------------===// 363 364 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, 365 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) { 366 this->FTy = FTy; 367 assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 && 368 "NumOperands not set up?"); 369 setCalledOperand(Func); 370 371 #ifndef NDEBUG 372 assert((Args.size() == FTy->getNumParams() || 373 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 374 "Calling a function with bad signature!"); 375 376 for (unsigned i = 0; i != Args.size(); ++i) 377 assert((i >= FTy->getNumParams() || 378 FTy->getParamType(i) == Args[i]->getType()) && 379 "Calling a function with a bad signature!"); 380 #endif 381 382 llvm::copy(Args, op_begin()); 383 384 auto It = populateBundleOperandInfos(Bundles, Args.size()); 385 (void)It; 386 assert(It + 1 == op_end() && "Should add up!"); 387 388 setName(NameStr); 389 } 390 391 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) { 392 this->FTy = FTy; 393 assert(getNumOperands() == 1 && "NumOperands not set up?"); 394 setCalledOperand(Func); 395 396 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature"); 397 398 setName(NameStr); 399 } 400 401 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name, 402 Instruction *InsertBefore) 403 : CallBase(Ty->getReturnType(), Instruction::Call, 404 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) { 405 init(Ty, Func, Name); 406 } 407 408 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name, 409 BasicBlock *InsertAtEnd) 410 : CallBase(Ty->getReturnType(), Instruction::Call, 411 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) { 412 init(Ty, Func, Name); 413 } 414 415 CallInst::CallInst(const CallInst &CI) 416 : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call, 417 OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(), 418 CI.getNumOperands()) { 419 setTailCallKind(CI.getTailCallKind()); 420 setCallingConv(CI.getCallingConv()); 421 422 std::copy(CI.op_begin(), CI.op_end(), op_begin()); 423 std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(), 424 bundle_op_info_begin()); 425 SubclassOptionalData = CI.SubclassOptionalData; 426 } 427 428 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB, 429 Instruction *InsertPt) { 430 std::vector<Value *> Args(CI->arg_begin(), CI->arg_end()); 431 432 auto *NewCI = CallInst::Create(CI->getCalledValue(), Args, OpB, CI->getName(), 433 InsertPt); 434 NewCI->setTailCallKind(CI->getTailCallKind()); 435 NewCI->setCallingConv(CI->getCallingConv()); 436 NewCI->SubclassOptionalData = CI->SubclassOptionalData; 437 NewCI->setAttributes(CI->getAttributes()); 438 NewCI->setDebugLoc(CI->getDebugLoc()); 439 return NewCI; 440 } 441 442 443 444 445 446 447 448 449 450 451 /// IsConstantOne - Return true only if val is constant int 1 452 static bool IsConstantOne(Value *val) { 453 assert(val && "IsConstantOne does not work with nullptr val"); 454 const ConstantInt *CVal = dyn_cast<ConstantInt>(val); 455 return CVal && CVal->isOne(); 456 } 457 458 static Instruction *createMalloc(Instruction *InsertBefore, 459 BasicBlock *InsertAtEnd, Type *IntPtrTy, 460 Type *AllocTy, Value *AllocSize, 461 Value *ArraySize, 462 ArrayRef<OperandBundleDef> OpB, 463 Function *MallocF, const Twine &Name) { 464 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 465 "createMalloc needs either InsertBefore or InsertAtEnd"); 466 467 // malloc(type) becomes: 468 // bitcast (i8* malloc(typeSize)) to type* 469 // malloc(type, arraySize) becomes: 470 // bitcast (i8* malloc(typeSize*arraySize)) to type* 471 if (!ArraySize) 472 ArraySize = ConstantInt::get(IntPtrTy, 1); 473 else if (ArraySize->getType() != IntPtrTy) { 474 if (InsertBefore) 475 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 476 "", InsertBefore); 477 else 478 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 479 "", InsertAtEnd); 480 } 481 482 if (!IsConstantOne(ArraySize)) { 483 if (IsConstantOne(AllocSize)) { 484 AllocSize = ArraySize; // Operand * 1 = Operand 485 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) { 486 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy, 487 false /*ZExt*/); 488 // Malloc arg is constant product of type size and array size 489 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize)); 490 } else { 491 // Multiply type size by the array size... 492 if (InsertBefore) 493 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 494 "mallocsize", InsertBefore); 495 else 496 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 497 "mallocsize", InsertAtEnd); 498 } 499 } 500 501 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size"); 502 // Create the call to Malloc. 503 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 504 Module *M = BB->getParent()->getParent(); 505 Type *BPTy = Type::getInt8PtrTy(BB->getContext()); 506 Value *MallocFunc = MallocF; 507 if (!MallocFunc) 508 // prototype malloc as "void *malloc(size_t)" 509 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy); 510 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy); 511 CallInst *MCall = nullptr; 512 Instruction *Result = nullptr; 513 if (InsertBefore) { 514 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall", 515 InsertBefore); 516 Result = MCall; 517 if (Result->getType() != AllocPtrType) 518 // Create a cast instruction to convert to the right type... 519 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore); 520 } else { 521 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall"); 522 Result = MCall; 523 if (Result->getType() != AllocPtrType) { 524 InsertAtEnd->getInstList().push_back(MCall); 525 // Create a cast instruction to convert to the right type... 526 Result = new BitCastInst(MCall, AllocPtrType, Name); 527 } 528 } 529 MCall->setTailCall(); 530 if (Function *F = dyn_cast<Function>(MallocFunc)) { 531 MCall->setCallingConv(F->getCallingConv()); 532 if (!F->returnDoesNotAlias()) 533 F->setReturnDoesNotAlias(); 534 } 535 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type"); 536 537 return Result; 538 } 539 540 /// CreateMalloc - Generate the IR for a call to malloc: 541 /// 1. Compute the malloc call's argument as the specified type's size, 542 /// possibly multiplied by the array size if the array size is not 543 /// constant 1. 544 /// 2. Call malloc with that argument. 545 /// 3. Bitcast the result of the malloc call to the specified type. 546 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, 547 Type *IntPtrTy, Type *AllocTy, 548 Value *AllocSize, Value *ArraySize, 549 Function *MallocF, 550 const Twine &Name) { 551 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize, 552 ArraySize, None, MallocF, Name); 553 } 554 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, 555 Type *IntPtrTy, Type *AllocTy, 556 Value *AllocSize, Value *ArraySize, 557 ArrayRef<OperandBundleDef> OpB, 558 Function *MallocF, 559 const Twine &Name) { 560 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize, 561 ArraySize, OpB, MallocF, Name); 562 } 563 564 /// CreateMalloc - Generate the IR for a call to malloc: 565 /// 1. Compute the malloc call's argument as the specified type's size, 566 /// possibly multiplied by the array size if the array size is not 567 /// constant 1. 568 /// 2. Call malloc with that argument. 569 /// 3. Bitcast the result of the malloc call to the specified type. 570 /// Note: This function does not add the bitcast to the basic block, that is the 571 /// responsibility of the caller. 572 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, 573 Type *IntPtrTy, Type *AllocTy, 574 Value *AllocSize, Value *ArraySize, 575 Function *MallocF, const Twine &Name) { 576 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, 577 ArraySize, None, MallocF, Name); 578 } 579 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, 580 Type *IntPtrTy, Type *AllocTy, 581 Value *AllocSize, Value *ArraySize, 582 ArrayRef<OperandBundleDef> OpB, 583 Function *MallocF, const Twine &Name) { 584 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, 585 ArraySize, OpB, MallocF, Name); 586 } 587 588 static Instruction *createFree(Value *Source, 589 ArrayRef<OperandBundleDef> Bundles, 590 Instruction *InsertBefore, 591 BasicBlock *InsertAtEnd) { 592 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 593 "createFree needs either InsertBefore or InsertAtEnd"); 594 assert(Source->getType()->isPointerTy() && 595 "Can not free something of nonpointer type!"); 596 597 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 598 Module *M = BB->getParent()->getParent(); 599 600 Type *VoidTy = Type::getVoidTy(M->getContext()); 601 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext()); 602 // prototype free as "void free(void*)" 603 Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy); 604 CallInst *Result = nullptr; 605 Value *PtrCast = Source; 606 if (InsertBefore) { 607 if (Source->getType() != IntPtrTy) 608 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore); 609 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore); 610 } else { 611 if (Source->getType() != IntPtrTy) 612 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd); 613 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, ""); 614 } 615 Result->setTailCall(); 616 if (Function *F = dyn_cast<Function>(FreeFunc)) 617 Result->setCallingConv(F->getCallingConv()); 618 619 return Result; 620 } 621 622 /// CreateFree - Generate the IR for a call to the builtin free function. 623 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) { 624 return createFree(Source, None, InsertBefore, nullptr); 625 } 626 Instruction *CallInst::CreateFree(Value *Source, 627 ArrayRef<OperandBundleDef> Bundles, 628 Instruction *InsertBefore) { 629 return createFree(Source, Bundles, InsertBefore, nullptr); 630 } 631 632 /// CreateFree - Generate the IR for a call to the builtin free function. 633 /// Note: This function does not add the call to the basic block, that is the 634 /// responsibility of the caller. 635 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) { 636 Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd); 637 assert(FreeCall && "CreateFree did not create a CallInst"); 638 return FreeCall; 639 } 640 Instruction *CallInst::CreateFree(Value *Source, 641 ArrayRef<OperandBundleDef> Bundles, 642 BasicBlock *InsertAtEnd) { 643 Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd); 644 assert(FreeCall && "CreateFree did not create a CallInst"); 645 return FreeCall; 646 } 647 648 //===----------------------------------------------------------------------===// 649 // InvokeInst Implementation 650 //===----------------------------------------------------------------------===// 651 652 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal, 653 BasicBlock *IfException, ArrayRef<Value *> Args, 654 ArrayRef<OperandBundleDef> Bundles, 655 const Twine &NameStr) { 656 this->FTy = FTy; 657 658 assert((int)getNumOperands() == 659 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) && 660 "NumOperands not set up?"); 661 setNormalDest(IfNormal); 662 setUnwindDest(IfException); 663 setCalledOperand(Fn); 664 665 #ifndef NDEBUG 666 assert(((Args.size() == FTy->getNumParams()) || 667 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 668 "Invoking a function with bad signature"); 669 670 for (unsigned i = 0, e = Args.size(); i != e; i++) 671 assert((i >= FTy->getNumParams() || 672 FTy->getParamType(i) == Args[i]->getType()) && 673 "Invoking a function with a bad signature!"); 674 #endif 675 676 llvm::copy(Args, op_begin()); 677 678 auto It = populateBundleOperandInfos(Bundles, Args.size()); 679 (void)It; 680 assert(It + 3 == op_end() && "Should add up!"); 681 682 setName(NameStr); 683 } 684 685 InvokeInst::InvokeInst(const InvokeInst &II) 686 : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke, 687 OperandTraits<CallBase>::op_end(this) - II.getNumOperands(), 688 II.getNumOperands()) { 689 setCallingConv(II.getCallingConv()); 690 std::copy(II.op_begin(), II.op_end(), op_begin()); 691 std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(), 692 bundle_op_info_begin()); 693 SubclassOptionalData = II.SubclassOptionalData; 694 } 695 696 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB, 697 Instruction *InsertPt) { 698 std::vector<Value *> Args(II->arg_begin(), II->arg_end()); 699 700 auto *NewII = InvokeInst::Create(II->getCalledValue(), II->getNormalDest(), 701 II->getUnwindDest(), Args, OpB, 702 II->getName(), InsertPt); 703 NewII->setCallingConv(II->getCallingConv()); 704 NewII->SubclassOptionalData = II->SubclassOptionalData; 705 NewII->setAttributes(II->getAttributes()); 706 NewII->setDebugLoc(II->getDebugLoc()); 707 return NewII; 708 } 709 710 711 LandingPadInst *InvokeInst::getLandingPadInst() const { 712 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI()); 713 } 714 715 //===----------------------------------------------------------------------===// 716 // ReturnInst Implementation 717 //===----------------------------------------------------------------------===// 718 719 ReturnInst::ReturnInst(const ReturnInst &RI) 720 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret, 721 OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(), 722 RI.getNumOperands()) { 723 if (RI.getNumOperands()) 724 Op<0>() = RI.Op<0>(); 725 SubclassOptionalData = RI.SubclassOptionalData; 726 } 727 728 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore) 729 : Instruction(Type::getVoidTy(C), Instruction::Ret, 730 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 731 InsertBefore) { 732 if (retVal) 733 Op<0>() = retVal; 734 } 735 736 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd) 737 : Instruction(Type::getVoidTy(C), Instruction::Ret, 738 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 739 InsertAtEnd) { 740 if (retVal) 741 Op<0>() = retVal; 742 } 743 744 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 745 : Instruction(Type::getVoidTy(Context), Instruction::Ret, 746 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {} 747 748 //===----------------------------------------------------------------------===// 749 // ResumeInst Implementation 750 //===----------------------------------------------------------------------===// 751 752 ResumeInst::ResumeInst(const ResumeInst &RI) 753 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume, 754 OperandTraits<ResumeInst>::op_begin(this), 1) { 755 Op<0>() = RI.Op<0>(); 756 } 757 758 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore) 759 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 760 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) { 761 Op<0>() = Exn; 762 } 763 764 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd) 765 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 766 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) { 767 Op<0>() = Exn; 768 } 769 770 //===----------------------------------------------------------------------===// 771 // CleanupReturnInst Implementation 772 //===----------------------------------------------------------------------===// 773 774 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI) 775 : Instruction(CRI.getType(), Instruction::CleanupRet, 776 OperandTraits<CleanupReturnInst>::op_end(this) - 777 CRI.getNumOperands(), 778 CRI.getNumOperands()) { 779 setInstructionSubclassData(CRI.getSubclassDataFromInstruction()); 780 Op<0>() = CRI.Op<0>(); 781 if (CRI.hasUnwindDest()) 782 Op<1>() = CRI.Op<1>(); 783 } 784 785 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) { 786 if (UnwindBB) 787 setInstructionSubclassData(getSubclassDataFromInstruction() | 1); 788 789 Op<0>() = CleanupPad; 790 if (UnwindBB) 791 Op<1>() = UnwindBB; 792 } 793 794 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, 795 unsigned Values, Instruction *InsertBefore) 796 : Instruction(Type::getVoidTy(CleanupPad->getContext()), 797 Instruction::CleanupRet, 798 OperandTraits<CleanupReturnInst>::op_end(this) - Values, 799 Values, InsertBefore) { 800 init(CleanupPad, UnwindBB); 801 } 802 803 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, 804 unsigned Values, BasicBlock *InsertAtEnd) 805 : Instruction(Type::getVoidTy(CleanupPad->getContext()), 806 Instruction::CleanupRet, 807 OperandTraits<CleanupReturnInst>::op_end(this) - Values, 808 Values, InsertAtEnd) { 809 init(CleanupPad, UnwindBB); 810 } 811 812 //===----------------------------------------------------------------------===// 813 // CatchReturnInst Implementation 814 //===----------------------------------------------------------------------===// 815 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) { 816 Op<0>() = CatchPad; 817 Op<1>() = BB; 818 } 819 820 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI) 821 : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet, 822 OperandTraits<CatchReturnInst>::op_begin(this), 2) { 823 Op<0>() = CRI.Op<0>(); 824 Op<1>() = CRI.Op<1>(); 825 } 826 827 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, 828 Instruction *InsertBefore) 829 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, 830 OperandTraits<CatchReturnInst>::op_begin(this), 2, 831 InsertBefore) { 832 init(CatchPad, BB); 833 } 834 835 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, 836 BasicBlock *InsertAtEnd) 837 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, 838 OperandTraits<CatchReturnInst>::op_begin(this), 2, 839 InsertAtEnd) { 840 init(CatchPad, BB); 841 } 842 843 //===----------------------------------------------------------------------===// 844 // CatchSwitchInst Implementation 845 //===----------------------------------------------------------------------===// 846 847 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, 848 unsigned NumReservedValues, 849 const Twine &NameStr, 850 Instruction *InsertBefore) 851 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, 852 InsertBefore) { 853 if (UnwindDest) 854 ++NumReservedValues; 855 init(ParentPad, UnwindDest, NumReservedValues + 1); 856 setName(NameStr); 857 } 858 859 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, 860 unsigned NumReservedValues, 861 const Twine &NameStr, BasicBlock *InsertAtEnd) 862 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, 863 InsertAtEnd) { 864 if (UnwindDest) 865 ++NumReservedValues; 866 init(ParentPad, UnwindDest, NumReservedValues + 1); 867 setName(NameStr); 868 } 869 870 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI) 871 : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr, 872 CSI.getNumOperands()) { 873 init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands()); 874 setNumHungOffUseOperands(ReservedSpace); 875 Use *OL = getOperandList(); 876 const Use *InOL = CSI.getOperandList(); 877 for (unsigned I = 1, E = ReservedSpace; I != E; ++I) 878 OL[I] = InOL[I]; 879 } 880 881 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest, 882 unsigned NumReservedValues) { 883 assert(ParentPad && NumReservedValues); 884 885 ReservedSpace = NumReservedValues; 886 setNumHungOffUseOperands(UnwindDest ? 2 : 1); 887 allocHungoffUses(ReservedSpace); 888 889 Op<0>() = ParentPad; 890 if (UnwindDest) { 891 setInstructionSubclassData(getSubclassDataFromInstruction() | 1); 892 setUnwindDest(UnwindDest); 893 } 894 } 895 896 /// growOperands - grow operands - This grows the operand list in response to a 897 /// push_back style of operation. This grows the number of ops by 2 times. 898 void CatchSwitchInst::growOperands(unsigned Size) { 899 unsigned NumOperands = getNumOperands(); 900 assert(NumOperands >= 1); 901 if (ReservedSpace >= NumOperands + Size) 902 return; 903 ReservedSpace = (NumOperands + Size / 2) * 2; 904 growHungoffUses(ReservedSpace); 905 } 906 907 void CatchSwitchInst::addHandler(BasicBlock *Handler) { 908 unsigned OpNo = getNumOperands(); 909 growOperands(1); 910 assert(OpNo < ReservedSpace && "Growing didn't work!"); 911 setNumHungOffUseOperands(getNumOperands() + 1); 912 getOperandList()[OpNo] = Handler; 913 } 914 915 void CatchSwitchInst::removeHandler(handler_iterator HI) { 916 // Move all subsequent handlers up one. 917 Use *EndDst = op_end() - 1; 918 for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst) 919 *CurDst = *(CurDst + 1); 920 // Null out the last handler use. 921 *EndDst = nullptr; 922 923 setNumHungOffUseOperands(getNumOperands() - 1); 924 } 925 926 //===----------------------------------------------------------------------===// 927 // FuncletPadInst Implementation 928 //===----------------------------------------------------------------------===// 929 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args, 930 const Twine &NameStr) { 931 assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?"); 932 llvm::copy(Args, op_begin()); 933 setParentPad(ParentPad); 934 setName(NameStr); 935 } 936 937 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI) 938 : Instruction(FPI.getType(), FPI.getOpcode(), 939 OperandTraits<FuncletPadInst>::op_end(this) - 940 FPI.getNumOperands(), 941 FPI.getNumOperands()) { 942 std::copy(FPI.op_begin(), FPI.op_end(), op_begin()); 943 setParentPad(FPI.getParentPad()); 944 } 945 946 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, 947 ArrayRef<Value *> Args, unsigned Values, 948 const Twine &NameStr, Instruction *InsertBefore) 949 : Instruction(ParentPad->getType(), Op, 950 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, 951 InsertBefore) { 952 init(ParentPad, Args, NameStr); 953 } 954 955 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, 956 ArrayRef<Value *> Args, unsigned Values, 957 const Twine &NameStr, BasicBlock *InsertAtEnd) 958 : Instruction(ParentPad->getType(), Op, 959 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, 960 InsertAtEnd) { 961 init(ParentPad, Args, NameStr); 962 } 963 964 //===----------------------------------------------------------------------===// 965 // UnreachableInst Implementation 966 //===----------------------------------------------------------------------===// 967 968 UnreachableInst::UnreachableInst(LLVMContext &Context, 969 Instruction *InsertBefore) 970 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr, 971 0, InsertBefore) {} 972 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 973 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr, 974 0, InsertAtEnd) {} 975 976 //===----------------------------------------------------------------------===// 977 // BranchInst Implementation 978 //===----------------------------------------------------------------------===// 979 980 void BranchInst::AssertOK() { 981 if (isConditional()) 982 assert(getCondition()->getType()->isIntegerTy(1) && 983 "May only branch on boolean predicates!"); 984 } 985 986 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore) 987 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 988 OperandTraits<BranchInst>::op_end(this) - 1, 1, 989 InsertBefore) { 990 assert(IfTrue && "Branch destination may not be null!"); 991 Op<-1>() = IfTrue; 992 } 993 994 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 995 Instruction *InsertBefore) 996 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 997 OperandTraits<BranchInst>::op_end(this) - 3, 3, 998 InsertBefore) { 999 Op<-1>() = IfTrue; 1000 Op<-2>() = IfFalse; 1001 Op<-3>() = Cond; 1002 #ifndef NDEBUG 1003 AssertOK(); 1004 #endif 1005 } 1006 1007 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) 1008 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1009 OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) { 1010 assert(IfTrue && "Branch destination may not be null!"); 1011 Op<-1>() = IfTrue; 1012 } 1013 1014 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 1015 BasicBlock *InsertAtEnd) 1016 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1017 OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) { 1018 Op<-1>() = IfTrue; 1019 Op<-2>() = IfFalse; 1020 Op<-3>() = Cond; 1021 #ifndef NDEBUG 1022 AssertOK(); 1023 #endif 1024 } 1025 1026 BranchInst::BranchInst(const BranchInst &BI) 1027 : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br, 1028 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(), 1029 BI.getNumOperands()) { 1030 Op<-1>() = BI.Op<-1>(); 1031 if (BI.getNumOperands() != 1) { 1032 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!"); 1033 Op<-3>() = BI.Op<-3>(); 1034 Op<-2>() = BI.Op<-2>(); 1035 } 1036 SubclassOptionalData = BI.SubclassOptionalData; 1037 } 1038 1039 void BranchInst::swapSuccessors() { 1040 assert(isConditional() && 1041 "Cannot swap successors of an unconditional branch"); 1042 Op<-1>().swap(Op<-2>()); 1043 1044 // Update profile metadata if present and it matches our structural 1045 // expectations. 1046 swapProfMetadata(); 1047 } 1048 1049 //===----------------------------------------------------------------------===// 1050 // AllocaInst Implementation 1051 //===----------------------------------------------------------------------===// 1052 1053 static Value *getAISize(LLVMContext &Context, Value *Amt) { 1054 if (!Amt) 1055 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1); 1056 else { 1057 assert(!isa<BasicBlock>(Amt) && 1058 "Passed basic block into allocation size parameter! Use other ctor"); 1059 assert(Amt->getType()->isIntegerTy() && 1060 "Allocation array size is not an integer!"); 1061 } 1062 return Amt; 1063 } 1064 1065 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, 1066 Instruction *InsertBefore) 1067 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {} 1068 1069 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, 1070 BasicBlock *InsertAtEnd) 1071 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {} 1072 1073 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1074 const Twine &Name, Instruction *InsertBefore) 1075 : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertBefore) {} 1076 1077 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1078 const Twine &Name, BasicBlock *InsertAtEnd) 1079 : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertAtEnd) {} 1080 1081 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1082 unsigned Align, const Twine &Name, 1083 Instruction *InsertBefore) 1084 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca, 1085 getAISize(Ty->getContext(), ArraySize), InsertBefore), 1086 AllocatedType(Ty) { 1087 setAlignment(Align); 1088 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 1089 setName(Name); 1090 } 1091 1092 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1093 unsigned Align, const Twine &Name, 1094 BasicBlock *InsertAtEnd) 1095 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca, 1096 getAISize(Ty->getContext(), ArraySize), InsertAtEnd), 1097 AllocatedType(Ty) { 1098 setAlignment(Align); 1099 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 1100 setName(Name); 1101 } 1102 1103 void AllocaInst::setAlignment(unsigned Align) { 1104 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 1105 assert(Align <= MaximumAlignment && 1106 "Alignment is greater than MaximumAlignment!"); 1107 setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) | 1108 (Log2_32(Align) + 1)); 1109 assert(getAlignment() == Align && "Alignment representation error!"); 1110 } 1111 1112 bool AllocaInst::isArrayAllocation() const { 1113 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0))) 1114 return !CI->isOne(); 1115 return true; 1116 } 1117 1118 /// isStaticAlloca - Return true if this alloca is in the entry block of the 1119 /// function and is a constant size. If so, the code generator will fold it 1120 /// into the prolog/epilog code, so it is basically free. 1121 bool AllocaInst::isStaticAlloca() const { 1122 // Must be constant size. 1123 if (!isa<ConstantInt>(getArraySize())) return false; 1124 1125 // Must be in the entry block. 1126 const BasicBlock *Parent = getParent(); 1127 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca(); 1128 } 1129 1130 //===----------------------------------------------------------------------===// 1131 // LoadInst Implementation 1132 //===----------------------------------------------------------------------===// 1133 1134 void LoadInst::AssertOK() { 1135 assert(getOperand(0)->getType()->isPointerTy() && 1136 "Ptr must have pointer type."); 1137 assert(!(isAtomic() && getAlignment() == 0) && 1138 "Alignment required for atomic load"); 1139 } 1140 1141 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, 1142 Instruction *InsertBef) 1143 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {} 1144 1145 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, 1146 BasicBlock *InsertAE) 1147 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {} 1148 1149 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1150 Instruction *InsertBef) 1151 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {} 1152 1153 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1154 BasicBlock *InsertAE) 1155 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {} 1156 1157 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1158 unsigned Align, Instruction *InsertBef) 1159 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, 1160 SyncScope::System, InsertBef) {} 1161 1162 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1163 unsigned Align, BasicBlock *InsertAE) 1164 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, 1165 SyncScope::System, InsertAE) {} 1166 1167 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1168 unsigned Align, AtomicOrdering Order, 1169 SyncScope::ID SSID, Instruction *InsertBef) 1170 : UnaryInstruction(Ty, Load, Ptr, InsertBef) { 1171 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType()); 1172 setVolatile(isVolatile); 1173 setAlignment(Align); 1174 setAtomic(Order, SSID); 1175 AssertOK(); 1176 setName(Name); 1177 } 1178 1179 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1180 unsigned Align, AtomicOrdering Order, SyncScope::ID SSID, 1181 BasicBlock *InsertAE) 1182 : UnaryInstruction(Ty, Load, Ptr, InsertAE) { 1183 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType()); 1184 setVolatile(isVolatile); 1185 setAlignment(Align); 1186 setAtomic(Order, SSID); 1187 AssertOK(); 1188 setName(Name); 1189 } 1190 1191 void LoadInst::setAlignment(unsigned Align) { 1192 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 1193 assert(Align <= MaximumAlignment && 1194 "Alignment is greater than MaximumAlignment!"); 1195 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | 1196 ((Log2_32(Align)+1)<<1)); 1197 assert(getAlignment() == Align && "Alignment representation error!"); 1198 } 1199 1200 //===----------------------------------------------------------------------===// 1201 // StoreInst Implementation 1202 //===----------------------------------------------------------------------===// 1203 1204 void StoreInst::AssertOK() { 1205 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!"); 1206 assert(getOperand(1)->getType()->isPointerTy() && 1207 "Ptr must have pointer type!"); 1208 assert(getOperand(0)->getType() == 1209 cast<PointerType>(getOperand(1)->getType())->getElementType() 1210 && "Ptr must be a pointer to Val type!"); 1211 assert(!(isAtomic() && getAlignment() == 0) && 1212 "Alignment required for atomic store"); 1213 } 1214 1215 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore) 1216 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {} 1217 1218 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd) 1219 : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {} 1220 1221 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1222 Instruction *InsertBefore) 1223 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {} 1224 1225 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1226 BasicBlock *InsertAtEnd) 1227 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {} 1228 1229 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, 1230 Instruction *InsertBefore) 1231 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, 1232 SyncScope::System, InsertBefore) {} 1233 1234 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, 1235 BasicBlock *InsertAtEnd) 1236 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, 1237 SyncScope::System, InsertAtEnd) {} 1238 1239 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1240 unsigned Align, AtomicOrdering Order, 1241 SyncScope::ID SSID, 1242 Instruction *InsertBefore) 1243 : Instruction(Type::getVoidTy(val->getContext()), Store, 1244 OperandTraits<StoreInst>::op_begin(this), 1245 OperandTraits<StoreInst>::operands(this), 1246 InsertBefore) { 1247 Op<0>() = val; 1248 Op<1>() = addr; 1249 setVolatile(isVolatile); 1250 setAlignment(Align); 1251 setAtomic(Order, SSID); 1252 AssertOK(); 1253 } 1254 1255 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1256 unsigned Align, AtomicOrdering Order, 1257 SyncScope::ID SSID, 1258 BasicBlock *InsertAtEnd) 1259 : Instruction(Type::getVoidTy(val->getContext()), Store, 1260 OperandTraits<StoreInst>::op_begin(this), 1261 OperandTraits<StoreInst>::operands(this), 1262 InsertAtEnd) { 1263 Op<0>() = val; 1264 Op<1>() = addr; 1265 setVolatile(isVolatile); 1266 setAlignment(Align); 1267 setAtomic(Order, SSID); 1268 AssertOK(); 1269 } 1270 1271 void StoreInst::setAlignment(unsigned Align) { 1272 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 1273 assert(Align <= MaximumAlignment && 1274 "Alignment is greater than MaximumAlignment!"); 1275 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | 1276 ((Log2_32(Align)+1) << 1)); 1277 assert(getAlignment() == Align && "Alignment representation error!"); 1278 } 1279 1280 //===----------------------------------------------------------------------===// 1281 // AtomicCmpXchgInst Implementation 1282 //===----------------------------------------------------------------------===// 1283 1284 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal, 1285 AtomicOrdering SuccessOrdering, 1286 AtomicOrdering FailureOrdering, 1287 SyncScope::ID SSID) { 1288 Op<0>() = Ptr; 1289 Op<1>() = Cmp; 1290 Op<2>() = NewVal; 1291 setSuccessOrdering(SuccessOrdering); 1292 setFailureOrdering(FailureOrdering); 1293 setSyncScopeID(SSID); 1294 1295 assert(getOperand(0) && getOperand(1) && getOperand(2) && 1296 "All operands must be non-null!"); 1297 assert(getOperand(0)->getType()->isPointerTy() && 1298 "Ptr must have pointer type!"); 1299 assert(getOperand(1)->getType() == 1300 cast<PointerType>(getOperand(0)->getType())->getElementType() 1301 && "Ptr must be a pointer to Cmp type!"); 1302 assert(getOperand(2)->getType() == 1303 cast<PointerType>(getOperand(0)->getType())->getElementType() 1304 && "Ptr must be a pointer to NewVal type!"); 1305 assert(SuccessOrdering != AtomicOrdering::NotAtomic && 1306 "AtomicCmpXchg instructions must be atomic!"); 1307 assert(FailureOrdering != AtomicOrdering::NotAtomic && 1308 "AtomicCmpXchg instructions must be atomic!"); 1309 assert(!isStrongerThan(FailureOrdering, SuccessOrdering) && 1310 "AtomicCmpXchg failure argument shall be no stronger than the success " 1311 "argument"); 1312 assert(FailureOrdering != AtomicOrdering::Release && 1313 FailureOrdering != AtomicOrdering::AcquireRelease && 1314 "AtomicCmpXchg failure ordering cannot include release semantics"); 1315 } 1316 1317 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1318 AtomicOrdering SuccessOrdering, 1319 AtomicOrdering FailureOrdering, 1320 SyncScope::ID SSID, 1321 Instruction *InsertBefore) 1322 : Instruction( 1323 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())), 1324 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1325 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) { 1326 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID); 1327 } 1328 1329 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1330 AtomicOrdering SuccessOrdering, 1331 AtomicOrdering FailureOrdering, 1332 SyncScope::ID SSID, 1333 BasicBlock *InsertAtEnd) 1334 : Instruction( 1335 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())), 1336 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1337 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) { 1338 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID); 1339 } 1340 1341 //===----------------------------------------------------------------------===// 1342 // AtomicRMWInst Implementation 1343 //===----------------------------------------------------------------------===// 1344 1345 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val, 1346 AtomicOrdering Ordering, 1347 SyncScope::ID SSID) { 1348 Op<0>() = Ptr; 1349 Op<1>() = Val; 1350 setOperation(Operation); 1351 setOrdering(Ordering); 1352 setSyncScopeID(SSID); 1353 1354 assert(getOperand(0) && getOperand(1) && 1355 "All operands must be non-null!"); 1356 assert(getOperand(0)->getType()->isPointerTy() && 1357 "Ptr must have pointer type!"); 1358 assert(getOperand(1)->getType() == 1359 cast<PointerType>(getOperand(0)->getType())->getElementType() 1360 && "Ptr must be a pointer to Val type!"); 1361 assert(Ordering != AtomicOrdering::NotAtomic && 1362 "AtomicRMW instructions must be atomic!"); 1363 } 1364 1365 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1366 AtomicOrdering Ordering, 1367 SyncScope::ID SSID, 1368 Instruction *InsertBefore) 1369 : Instruction(Val->getType(), AtomicRMW, 1370 OperandTraits<AtomicRMWInst>::op_begin(this), 1371 OperandTraits<AtomicRMWInst>::operands(this), 1372 InsertBefore) { 1373 Init(Operation, Ptr, Val, Ordering, SSID); 1374 } 1375 1376 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1377 AtomicOrdering Ordering, 1378 SyncScope::ID SSID, 1379 BasicBlock *InsertAtEnd) 1380 : Instruction(Val->getType(), AtomicRMW, 1381 OperandTraits<AtomicRMWInst>::op_begin(this), 1382 OperandTraits<AtomicRMWInst>::operands(this), 1383 InsertAtEnd) { 1384 Init(Operation, Ptr, Val, Ordering, SSID); 1385 } 1386 1387 StringRef AtomicRMWInst::getOperationName(BinOp Op) { 1388 switch (Op) { 1389 case AtomicRMWInst::Xchg: 1390 return "xchg"; 1391 case AtomicRMWInst::Add: 1392 return "add"; 1393 case AtomicRMWInst::Sub: 1394 return "sub"; 1395 case AtomicRMWInst::And: 1396 return "and"; 1397 case AtomicRMWInst::Nand: 1398 return "nand"; 1399 case AtomicRMWInst::Or: 1400 return "or"; 1401 case AtomicRMWInst::Xor: 1402 return "xor"; 1403 case AtomicRMWInst::Max: 1404 return "max"; 1405 case AtomicRMWInst::Min: 1406 return "min"; 1407 case AtomicRMWInst::UMax: 1408 return "umax"; 1409 case AtomicRMWInst::UMin: 1410 return "umin"; 1411 case AtomicRMWInst::BAD_BINOP: 1412 return "<invalid operation>"; 1413 } 1414 1415 llvm_unreachable("invalid atomicrmw operation"); 1416 } 1417 1418 //===----------------------------------------------------------------------===// 1419 // FenceInst Implementation 1420 //===----------------------------------------------------------------------===// 1421 1422 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1423 SyncScope::ID SSID, 1424 Instruction *InsertBefore) 1425 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) { 1426 setOrdering(Ordering); 1427 setSyncScopeID(SSID); 1428 } 1429 1430 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1431 SyncScope::ID SSID, 1432 BasicBlock *InsertAtEnd) 1433 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) { 1434 setOrdering(Ordering); 1435 setSyncScopeID(SSID); 1436 } 1437 1438 //===----------------------------------------------------------------------===// 1439 // GetElementPtrInst Implementation 1440 //===----------------------------------------------------------------------===// 1441 1442 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList, 1443 const Twine &Name) { 1444 assert(getNumOperands() == 1 + IdxList.size() && 1445 "NumOperands not initialized?"); 1446 Op<0>() = Ptr; 1447 llvm::copy(IdxList, op_begin() + 1); 1448 setName(Name); 1449 } 1450 1451 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI) 1452 : Instruction(GEPI.getType(), GetElementPtr, 1453 OperandTraits<GetElementPtrInst>::op_end(this) - 1454 GEPI.getNumOperands(), 1455 GEPI.getNumOperands()), 1456 SourceElementType(GEPI.SourceElementType), 1457 ResultElementType(GEPI.ResultElementType) { 1458 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin()); 1459 SubclassOptionalData = GEPI.SubclassOptionalData; 1460 } 1461 1462 /// getIndexedType - Returns the type of the element that would be accessed with 1463 /// a gep instruction with the specified parameters. 1464 /// 1465 /// The Idxs pointer should point to a continuous piece of memory containing the 1466 /// indices, either as Value* or uint64_t. 1467 /// 1468 /// A null type is returned if the indices are invalid for the specified 1469 /// pointer type. 1470 /// 1471 template <typename IndexTy> 1472 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) { 1473 // Handle the special case of the empty set index set, which is always valid. 1474 if (IdxList.empty()) 1475 return Agg; 1476 1477 // If there is at least one index, the top level type must be sized, otherwise 1478 // it cannot be 'stepped over'. 1479 if (!Agg->isSized()) 1480 return nullptr; 1481 1482 unsigned CurIdx = 1; 1483 for (; CurIdx != IdxList.size(); ++CurIdx) { 1484 CompositeType *CT = dyn_cast<CompositeType>(Agg); 1485 if (!CT || CT->isPointerTy()) return nullptr; 1486 IndexTy Index = IdxList[CurIdx]; 1487 if (!CT->indexValid(Index)) return nullptr; 1488 Agg = CT->getTypeAtIndex(Index); 1489 } 1490 return CurIdx == IdxList.size() ? Agg : nullptr; 1491 } 1492 1493 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) { 1494 return getIndexedTypeInternal(Ty, IdxList); 1495 } 1496 1497 Type *GetElementPtrInst::getIndexedType(Type *Ty, 1498 ArrayRef<Constant *> IdxList) { 1499 return getIndexedTypeInternal(Ty, IdxList); 1500 } 1501 1502 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) { 1503 return getIndexedTypeInternal(Ty, IdxList); 1504 } 1505 1506 /// hasAllZeroIndices - Return true if all of the indices of this GEP are 1507 /// zeros. If so, the result pointer and the first operand have the same 1508 /// value, just potentially different types. 1509 bool GetElementPtrInst::hasAllZeroIndices() const { 1510 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1511 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) { 1512 if (!CI->isZero()) return false; 1513 } else { 1514 return false; 1515 } 1516 } 1517 return true; 1518 } 1519 1520 /// hasAllConstantIndices - Return true if all of the indices of this GEP are 1521 /// constant integers. If so, the result pointer and the first operand have 1522 /// a constant offset between them. 1523 bool GetElementPtrInst::hasAllConstantIndices() const { 1524 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1525 if (!isa<ConstantInt>(getOperand(i))) 1526 return false; 1527 } 1528 return true; 1529 } 1530 1531 void GetElementPtrInst::setIsInBounds(bool B) { 1532 cast<GEPOperator>(this)->setIsInBounds(B); 1533 } 1534 1535 bool GetElementPtrInst::isInBounds() const { 1536 return cast<GEPOperator>(this)->isInBounds(); 1537 } 1538 1539 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL, 1540 APInt &Offset) const { 1541 // Delegate to the generic GEPOperator implementation. 1542 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset); 1543 } 1544 1545 //===----------------------------------------------------------------------===// 1546 // ExtractElementInst Implementation 1547 //===----------------------------------------------------------------------===// 1548 1549 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1550 const Twine &Name, 1551 Instruction *InsertBef) 1552 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1553 ExtractElement, 1554 OperandTraits<ExtractElementInst>::op_begin(this), 1555 2, InsertBef) { 1556 assert(isValidOperands(Val, Index) && 1557 "Invalid extractelement instruction operands!"); 1558 Op<0>() = Val; 1559 Op<1>() = Index; 1560 setName(Name); 1561 } 1562 1563 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1564 const Twine &Name, 1565 BasicBlock *InsertAE) 1566 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1567 ExtractElement, 1568 OperandTraits<ExtractElementInst>::op_begin(this), 1569 2, InsertAE) { 1570 assert(isValidOperands(Val, Index) && 1571 "Invalid extractelement instruction operands!"); 1572 1573 Op<0>() = Val; 1574 Op<1>() = Index; 1575 setName(Name); 1576 } 1577 1578 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) { 1579 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy()) 1580 return false; 1581 return true; 1582 } 1583 1584 //===----------------------------------------------------------------------===// 1585 // InsertElementInst Implementation 1586 //===----------------------------------------------------------------------===// 1587 1588 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1589 const Twine &Name, 1590 Instruction *InsertBef) 1591 : Instruction(Vec->getType(), InsertElement, 1592 OperandTraits<InsertElementInst>::op_begin(this), 1593 3, InsertBef) { 1594 assert(isValidOperands(Vec, Elt, Index) && 1595 "Invalid insertelement instruction operands!"); 1596 Op<0>() = Vec; 1597 Op<1>() = Elt; 1598 Op<2>() = Index; 1599 setName(Name); 1600 } 1601 1602 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1603 const Twine &Name, 1604 BasicBlock *InsertAE) 1605 : Instruction(Vec->getType(), InsertElement, 1606 OperandTraits<InsertElementInst>::op_begin(this), 1607 3, InsertAE) { 1608 assert(isValidOperands(Vec, Elt, Index) && 1609 "Invalid insertelement instruction operands!"); 1610 1611 Op<0>() = Vec; 1612 Op<1>() = Elt; 1613 Op<2>() = Index; 1614 setName(Name); 1615 } 1616 1617 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, 1618 const Value *Index) { 1619 if (!Vec->getType()->isVectorTy()) 1620 return false; // First operand of insertelement must be vector type. 1621 1622 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType()) 1623 return false;// Second operand of insertelement must be vector element type. 1624 1625 if (!Index->getType()->isIntegerTy()) 1626 return false; // Third operand of insertelement must be i32. 1627 return true; 1628 } 1629 1630 //===----------------------------------------------------------------------===// 1631 // ShuffleVectorInst Implementation 1632 //===----------------------------------------------------------------------===// 1633 1634 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1635 const Twine &Name, 1636 Instruction *InsertBefore) 1637 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1638 cast<VectorType>(Mask->getType())->getNumElements()), 1639 ShuffleVector, 1640 OperandTraits<ShuffleVectorInst>::op_begin(this), 1641 OperandTraits<ShuffleVectorInst>::operands(this), 1642 InsertBefore) { 1643 assert(isValidOperands(V1, V2, Mask) && 1644 "Invalid shuffle vector instruction operands!"); 1645 Op<0>() = V1; 1646 Op<1>() = V2; 1647 Op<2>() = Mask; 1648 setName(Name); 1649 } 1650 1651 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1652 const Twine &Name, 1653 BasicBlock *InsertAtEnd) 1654 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1655 cast<VectorType>(Mask->getType())->getNumElements()), 1656 ShuffleVector, 1657 OperandTraits<ShuffleVectorInst>::op_begin(this), 1658 OperandTraits<ShuffleVectorInst>::operands(this), 1659 InsertAtEnd) { 1660 assert(isValidOperands(V1, V2, Mask) && 1661 "Invalid shuffle vector instruction operands!"); 1662 1663 Op<0>() = V1; 1664 Op<1>() = V2; 1665 Op<2>() = Mask; 1666 setName(Name); 1667 } 1668 1669 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, 1670 const Value *Mask) { 1671 // V1 and V2 must be vectors of the same type. 1672 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType()) 1673 return false; 1674 1675 // Mask must be vector of i32. 1676 auto *MaskTy = dyn_cast<VectorType>(Mask->getType()); 1677 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32)) 1678 return false; 1679 1680 // Check to see if Mask is valid. 1681 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask)) 1682 return true; 1683 1684 if (const auto *MV = dyn_cast<ConstantVector>(Mask)) { 1685 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); 1686 for (Value *Op : MV->operands()) { 1687 if (auto *CI = dyn_cast<ConstantInt>(Op)) { 1688 if (CI->uge(V1Size*2)) 1689 return false; 1690 } else if (!isa<UndefValue>(Op)) { 1691 return false; 1692 } 1693 } 1694 return true; 1695 } 1696 1697 if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) { 1698 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); 1699 for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i) 1700 if (CDS->getElementAsInteger(i) >= V1Size*2) 1701 return false; 1702 return true; 1703 } 1704 1705 // The bitcode reader can create a place holder for a forward reference 1706 // used as the shuffle mask. When this occurs, the shuffle mask will 1707 // fall into this case and fail. To avoid this error, do this bit of 1708 // ugliness to allow such a mask pass. 1709 if (const auto *CE = dyn_cast<ConstantExpr>(Mask)) 1710 if (CE->getOpcode() == Instruction::UserOp1) 1711 return true; 1712 1713 return false; 1714 } 1715 1716 int ShuffleVectorInst::getMaskValue(const Constant *Mask, unsigned i) { 1717 assert(i < Mask->getType()->getVectorNumElements() && "Index out of range"); 1718 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) 1719 return CDS->getElementAsInteger(i); 1720 Constant *C = Mask->getAggregateElement(i); 1721 if (isa<UndefValue>(C)) 1722 return -1; 1723 return cast<ConstantInt>(C)->getZExtValue(); 1724 } 1725 1726 void ShuffleVectorInst::getShuffleMask(const Constant *Mask, 1727 SmallVectorImpl<int> &Result) { 1728 unsigned NumElts = Mask->getType()->getVectorNumElements(); 1729 1730 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) { 1731 for (unsigned i = 0; i != NumElts; ++i) 1732 Result.push_back(CDS->getElementAsInteger(i)); 1733 return; 1734 } 1735 for (unsigned i = 0; i != NumElts; ++i) { 1736 Constant *C = Mask->getAggregateElement(i); 1737 Result.push_back(isa<UndefValue>(C) ? -1 : 1738 cast<ConstantInt>(C)->getZExtValue()); 1739 } 1740 } 1741 1742 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) { 1743 assert(!Mask.empty() && "Shuffle mask must contain elements"); 1744 bool UsesLHS = false; 1745 bool UsesRHS = false; 1746 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) { 1747 if (Mask[i] == -1) 1748 continue; 1749 assert(Mask[i] >= 0 && Mask[i] < (NumOpElts * 2) && 1750 "Out-of-bounds shuffle mask element"); 1751 UsesLHS |= (Mask[i] < NumOpElts); 1752 UsesRHS |= (Mask[i] >= NumOpElts); 1753 if (UsesLHS && UsesRHS) 1754 return false; 1755 } 1756 assert((UsesLHS ^ UsesRHS) && "Should have selected from exactly 1 source"); 1757 return true; 1758 } 1759 1760 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) { 1761 // We don't have vector operand size information, so assume operands are the 1762 // same size as the mask. 1763 return isSingleSourceMaskImpl(Mask, Mask.size()); 1764 } 1765 1766 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) { 1767 if (!isSingleSourceMaskImpl(Mask, NumOpElts)) 1768 return false; 1769 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) { 1770 if (Mask[i] == -1) 1771 continue; 1772 if (Mask[i] != i && Mask[i] != (NumOpElts + i)) 1773 return false; 1774 } 1775 return true; 1776 } 1777 1778 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) { 1779 // We don't have vector operand size information, so assume operands are the 1780 // same size as the mask. 1781 return isIdentityMaskImpl(Mask, Mask.size()); 1782 } 1783 1784 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) { 1785 if (!isSingleSourceMask(Mask)) 1786 return false; 1787 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { 1788 if (Mask[i] == -1) 1789 continue; 1790 if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i)) 1791 return false; 1792 } 1793 return true; 1794 } 1795 1796 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) { 1797 if (!isSingleSourceMask(Mask)) 1798 return false; 1799 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { 1800 if (Mask[i] == -1) 1801 continue; 1802 if (Mask[i] != 0 && Mask[i] != NumElts) 1803 return false; 1804 } 1805 return true; 1806 } 1807 1808 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) { 1809 // Select is differentiated from identity. It requires using both sources. 1810 if (isSingleSourceMask(Mask)) 1811 return false; 1812 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { 1813 if (Mask[i] == -1) 1814 continue; 1815 if (Mask[i] != i && Mask[i] != (NumElts + i)) 1816 return false; 1817 } 1818 return true; 1819 } 1820 1821 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) { 1822 // Example masks that will return true: 1823 // v1 = <a, b, c, d> 1824 // v2 = <e, f, g, h> 1825 // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g> 1826 // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h> 1827 1828 // 1. The number of elements in the mask must be a power-of-2 and at least 2. 1829 int NumElts = Mask.size(); 1830 if (NumElts < 2 || !isPowerOf2_32(NumElts)) 1831 return false; 1832 1833 // 2. The first element of the mask must be either a 0 or a 1. 1834 if (Mask[0] != 0 && Mask[0] != 1) 1835 return false; 1836 1837 // 3. The difference between the first 2 elements must be equal to the 1838 // number of elements in the mask. 1839 if ((Mask[1] - Mask[0]) != NumElts) 1840 return false; 1841 1842 // 4. The difference between consecutive even-numbered and odd-numbered 1843 // elements must be equal to 2. 1844 for (int i = 2; i < NumElts; ++i) { 1845 int MaskEltVal = Mask[i]; 1846 if (MaskEltVal == -1) 1847 return false; 1848 int MaskEltPrevVal = Mask[i - 2]; 1849 if (MaskEltVal - MaskEltPrevVal != 2) 1850 return false; 1851 } 1852 return true; 1853 } 1854 1855 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask, 1856 int NumSrcElts, int &Index) { 1857 // Must extract from a single source. 1858 if (!isSingleSourceMaskImpl(Mask, NumSrcElts)) 1859 return false; 1860 1861 // Must be smaller (else this is an Identity shuffle). 1862 if (NumSrcElts <= (int)Mask.size()) 1863 return false; 1864 1865 // Find start of extraction, accounting that we may start with an UNDEF. 1866 int SubIndex = -1; 1867 for (int i = 0, e = Mask.size(); i != e; ++i) { 1868 int M = Mask[i]; 1869 if (M < 0) 1870 continue; 1871 int Offset = (M % NumSrcElts) - i; 1872 if (0 <= SubIndex && SubIndex != Offset) 1873 return false; 1874 SubIndex = Offset; 1875 } 1876 1877 if (0 <= SubIndex) { 1878 Index = SubIndex; 1879 return true; 1880 } 1881 return false; 1882 } 1883 1884 bool ShuffleVectorInst::isIdentityWithPadding() const { 1885 int NumOpElts = Op<0>()->getType()->getVectorNumElements(); 1886 int NumMaskElts = getType()->getVectorNumElements(); 1887 if (NumMaskElts <= NumOpElts) 1888 return false; 1889 1890 // The first part of the mask must choose elements from exactly 1 source op. 1891 SmallVector<int, 16> Mask = getShuffleMask(); 1892 if (!isIdentityMaskImpl(Mask, NumOpElts)) 1893 return false; 1894 1895 // All extending must be with undef elements. 1896 for (int i = NumOpElts; i < NumMaskElts; ++i) 1897 if (Mask[i] != -1) 1898 return false; 1899 1900 return true; 1901 } 1902 1903 bool ShuffleVectorInst::isIdentityWithExtract() const { 1904 int NumOpElts = Op<0>()->getType()->getVectorNumElements(); 1905 int NumMaskElts = getType()->getVectorNumElements(); 1906 if (NumMaskElts >= NumOpElts) 1907 return false; 1908 1909 return isIdentityMaskImpl(getShuffleMask(), NumOpElts); 1910 } 1911 1912 bool ShuffleVectorInst::isConcat() const { 1913 // Vector concatenation is differentiated from identity with padding. 1914 if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>())) 1915 return false; 1916 1917 int NumOpElts = Op<0>()->getType()->getVectorNumElements(); 1918 int NumMaskElts = getType()->getVectorNumElements(); 1919 if (NumMaskElts != NumOpElts * 2) 1920 return false; 1921 1922 // Use the mask length rather than the operands' vector lengths here. We 1923 // already know that the shuffle returns a vector twice as long as the inputs, 1924 // and neither of the inputs are undef vectors. If the mask picks consecutive 1925 // elements from both inputs, then this is a concatenation of the inputs. 1926 return isIdentityMaskImpl(getShuffleMask(), NumMaskElts); 1927 } 1928 1929 //===----------------------------------------------------------------------===// 1930 // InsertValueInst Class 1931 //===----------------------------------------------------------------------===// 1932 1933 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, 1934 const Twine &Name) { 1935 assert(getNumOperands() == 2 && "NumOperands not initialized?"); 1936 1937 // There's no fundamental reason why we require at least one index 1938 // (other than weirdness with &*IdxBegin being invalid; see 1939 // getelementptr's init routine for example). But there's no 1940 // present need to support it. 1941 assert(!Idxs.empty() && "InsertValueInst must have at least one index"); 1942 1943 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) == 1944 Val->getType() && "Inserted value must match indexed type!"); 1945 Op<0>() = Agg; 1946 Op<1>() = Val; 1947 1948 Indices.append(Idxs.begin(), Idxs.end()); 1949 setName(Name); 1950 } 1951 1952 InsertValueInst::InsertValueInst(const InsertValueInst &IVI) 1953 : Instruction(IVI.getType(), InsertValue, 1954 OperandTraits<InsertValueInst>::op_begin(this), 2), 1955 Indices(IVI.Indices) { 1956 Op<0>() = IVI.getOperand(0); 1957 Op<1>() = IVI.getOperand(1); 1958 SubclassOptionalData = IVI.SubclassOptionalData; 1959 } 1960 1961 //===----------------------------------------------------------------------===// 1962 // ExtractValueInst Class 1963 //===----------------------------------------------------------------------===// 1964 1965 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) { 1966 assert(getNumOperands() == 1 && "NumOperands not initialized?"); 1967 1968 // There's no fundamental reason why we require at least one index. 1969 // But there's no present need to support it. 1970 assert(!Idxs.empty() && "ExtractValueInst must have at least one index"); 1971 1972 Indices.append(Idxs.begin(), Idxs.end()); 1973 setName(Name); 1974 } 1975 1976 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI) 1977 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)), 1978 Indices(EVI.Indices) { 1979 SubclassOptionalData = EVI.SubclassOptionalData; 1980 } 1981 1982 // getIndexedType - Returns the type of the element that would be extracted 1983 // with an extractvalue instruction with the specified parameters. 1984 // 1985 // A null type is returned if the indices are invalid for the specified 1986 // pointer type. 1987 // 1988 Type *ExtractValueInst::getIndexedType(Type *Agg, 1989 ArrayRef<unsigned> Idxs) { 1990 for (unsigned Index : Idxs) { 1991 // We can't use CompositeType::indexValid(Index) here. 1992 // indexValid() always returns true for arrays because getelementptr allows 1993 // out-of-bounds indices. Since we don't allow those for extractvalue and 1994 // insertvalue we need to check array indexing manually. 1995 // Since the only other types we can index into are struct types it's just 1996 // as easy to check those manually as well. 1997 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) { 1998 if (Index >= AT->getNumElements()) 1999 return nullptr; 2000 } else if (StructType *ST = dyn_cast<StructType>(Agg)) { 2001 if (Index >= ST->getNumElements()) 2002 return nullptr; 2003 } else { 2004 // Not a valid type to index into. 2005 return nullptr; 2006 } 2007 2008 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index); 2009 } 2010 return const_cast<Type*>(Agg); 2011 } 2012 2013 //===----------------------------------------------------------------------===// 2014 // UnaryOperator Class 2015 //===----------------------------------------------------------------------===// 2016 2017 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S, 2018 Type *Ty, const Twine &Name, 2019 Instruction *InsertBefore) 2020 : UnaryInstruction(Ty, iType, S, InsertBefore) { 2021 Op<0>() = S; 2022 setName(Name); 2023 AssertOK(); 2024 } 2025 2026 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S, 2027 Type *Ty, const Twine &Name, 2028 BasicBlock *InsertAtEnd) 2029 : UnaryInstruction(Ty, iType, S, InsertAtEnd) { 2030 Op<0>() = S; 2031 setName(Name); 2032 AssertOK(); 2033 } 2034 2035 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S, 2036 const Twine &Name, 2037 Instruction *InsertBefore) { 2038 return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore); 2039 } 2040 2041 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S, 2042 const Twine &Name, 2043 BasicBlock *InsertAtEnd) { 2044 UnaryOperator *Res = Create(Op, S, Name); 2045 InsertAtEnd->getInstList().push_back(Res); 2046 return Res; 2047 } 2048 2049 void UnaryOperator::AssertOK() { 2050 Value *LHS = getOperand(0); 2051 (void)LHS; // Silence warnings. 2052 #ifndef NDEBUG 2053 switch (getOpcode()) { 2054 case FNeg: 2055 assert(getType() == LHS->getType() && 2056 "Unary operation should return same type as operand!"); 2057 assert(getType()->isFPOrFPVectorTy() && 2058 "Tried to create a floating-point operation on a " 2059 "non-floating-point type!"); 2060 break; 2061 default: llvm_unreachable("Invalid opcode provided"); 2062 } 2063 #endif 2064 } 2065 2066 //===----------------------------------------------------------------------===// 2067 // BinaryOperator Class 2068 //===----------------------------------------------------------------------===// 2069 2070 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 2071 Type *Ty, const Twine &Name, 2072 Instruction *InsertBefore) 2073 : Instruction(Ty, iType, 2074 OperandTraits<BinaryOperator>::op_begin(this), 2075 OperandTraits<BinaryOperator>::operands(this), 2076 InsertBefore) { 2077 Op<0>() = S1; 2078 Op<1>() = S2; 2079 setName(Name); 2080 AssertOK(); 2081 } 2082 2083 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 2084 Type *Ty, const Twine &Name, 2085 BasicBlock *InsertAtEnd) 2086 : Instruction(Ty, iType, 2087 OperandTraits<BinaryOperator>::op_begin(this), 2088 OperandTraits<BinaryOperator>::operands(this), 2089 InsertAtEnd) { 2090 Op<0>() = S1; 2091 Op<1>() = S2; 2092 setName(Name); 2093 AssertOK(); 2094 } 2095 2096 void BinaryOperator::AssertOK() { 2097 Value *LHS = getOperand(0), *RHS = getOperand(1); 2098 (void)LHS; (void)RHS; // Silence warnings. 2099 assert(LHS->getType() == RHS->getType() && 2100 "Binary operator operand types must match!"); 2101 #ifndef NDEBUG 2102 switch (getOpcode()) { 2103 case Add: case Sub: 2104 case Mul: 2105 assert(getType() == LHS->getType() && 2106 "Arithmetic operation should return same type as operands!"); 2107 assert(getType()->isIntOrIntVectorTy() && 2108 "Tried to create an integer operation on a non-integer type!"); 2109 break; 2110 case FAdd: case FSub: 2111 case FMul: 2112 assert(getType() == LHS->getType() && 2113 "Arithmetic operation should return same type as operands!"); 2114 assert(getType()->isFPOrFPVectorTy() && 2115 "Tried to create a floating-point operation on a " 2116 "non-floating-point type!"); 2117 break; 2118 case UDiv: 2119 case SDiv: 2120 assert(getType() == LHS->getType() && 2121 "Arithmetic operation should return same type as operands!"); 2122 assert(getType()->isIntOrIntVectorTy() && 2123 "Incorrect operand type (not integer) for S/UDIV"); 2124 break; 2125 case FDiv: 2126 assert(getType() == LHS->getType() && 2127 "Arithmetic operation should return same type as operands!"); 2128 assert(getType()->isFPOrFPVectorTy() && 2129 "Incorrect operand type (not floating point) for FDIV"); 2130 break; 2131 case URem: 2132 case SRem: 2133 assert(getType() == LHS->getType() && 2134 "Arithmetic operation should return same type as operands!"); 2135 assert(getType()->isIntOrIntVectorTy() && 2136 "Incorrect operand type (not integer) for S/UREM"); 2137 break; 2138 case FRem: 2139 assert(getType() == LHS->getType() && 2140 "Arithmetic operation should return same type as operands!"); 2141 assert(getType()->isFPOrFPVectorTy() && 2142 "Incorrect operand type (not floating point) for FREM"); 2143 break; 2144 case Shl: 2145 case LShr: 2146 case AShr: 2147 assert(getType() == LHS->getType() && 2148 "Shift operation should return same type as operands!"); 2149 assert(getType()->isIntOrIntVectorTy() && 2150 "Tried to create a shift operation on a non-integral type!"); 2151 break; 2152 case And: case Or: 2153 case Xor: 2154 assert(getType() == LHS->getType() && 2155 "Logical operation should return same type as operands!"); 2156 assert(getType()->isIntOrIntVectorTy() && 2157 "Tried to create a logical operation on a non-integral type!"); 2158 break; 2159 default: llvm_unreachable("Invalid opcode provided"); 2160 } 2161 #endif 2162 } 2163 2164 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 2165 const Twine &Name, 2166 Instruction *InsertBefore) { 2167 assert(S1->getType() == S2->getType() && 2168 "Cannot create binary operator with two operands of differing type!"); 2169 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore); 2170 } 2171 2172 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 2173 const Twine &Name, 2174 BasicBlock *InsertAtEnd) { 2175 BinaryOperator *Res = Create(Op, S1, S2, Name); 2176 InsertAtEnd->getInstList().push_back(Res); 2177 return Res; 2178 } 2179 2180 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 2181 Instruction *InsertBefore) { 2182 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2183 return new BinaryOperator(Instruction::Sub, 2184 zero, Op, 2185 Op->getType(), Name, InsertBefore); 2186 } 2187 2188 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 2189 BasicBlock *InsertAtEnd) { 2190 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2191 return new BinaryOperator(Instruction::Sub, 2192 zero, Op, 2193 Op->getType(), Name, InsertAtEnd); 2194 } 2195 2196 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 2197 Instruction *InsertBefore) { 2198 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2199 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore); 2200 } 2201 2202 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 2203 BasicBlock *InsertAtEnd) { 2204 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2205 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd); 2206 } 2207 2208 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 2209 Instruction *InsertBefore) { 2210 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2211 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore); 2212 } 2213 2214 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 2215 BasicBlock *InsertAtEnd) { 2216 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2217 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd); 2218 } 2219 2220 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, 2221 Instruction *InsertBefore) { 2222 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2223 return new BinaryOperator(Instruction::FSub, zero, Op, 2224 Op->getType(), Name, InsertBefore); 2225 } 2226 2227 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, 2228 BasicBlock *InsertAtEnd) { 2229 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2230 return new BinaryOperator(Instruction::FSub, zero, Op, 2231 Op->getType(), Name, InsertAtEnd); 2232 } 2233 2234 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 2235 Instruction *InsertBefore) { 2236 Constant *C = Constant::getAllOnesValue(Op->getType()); 2237 return new BinaryOperator(Instruction::Xor, Op, C, 2238 Op->getType(), Name, InsertBefore); 2239 } 2240 2241 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 2242 BasicBlock *InsertAtEnd) { 2243 Constant *AllOnes = Constant::getAllOnesValue(Op->getType()); 2244 return new BinaryOperator(Instruction::Xor, Op, AllOnes, 2245 Op->getType(), Name, InsertAtEnd); 2246 } 2247 2248 // Exchange the two operands to this instruction. This instruction is safe to 2249 // use on any binary instruction and does not modify the semantics of the 2250 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode 2251 // is changed. 2252 bool BinaryOperator::swapOperands() { 2253 if (!isCommutative()) 2254 return true; // Can't commute operands 2255 Op<0>().swap(Op<1>()); 2256 return false; 2257 } 2258 2259 //===----------------------------------------------------------------------===// 2260 // FPMathOperator Class 2261 //===----------------------------------------------------------------------===// 2262 2263 float FPMathOperator::getFPAccuracy() const { 2264 const MDNode *MD = 2265 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath); 2266 if (!MD) 2267 return 0.0; 2268 ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0)); 2269 return Accuracy->getValueAPF().convertToFloat(); 2270 } 2271 2272 //===----------------------------------------------------------------------===// 2273 // CastInst Class 2274 //===----------------------------------------------------------------------===// 2275 2276 // Just determine if this cast only deals with integral->integral conversion. 2277 bool CastInst::isIntegerCast() const { 2278 switch (getOpcode()) { 2279 default: return false; 2280 case Instruction::ZExt: 2281 case Instruction::SExt: 2282 case Instruction::Trunc: 2283 return true; 2284 case Instruction::BitCast: 2285 return getOperand(0)->getType()->isIntegerTy() && 2286 getType()->isIntegerTy(); 2287 } 2288 } 2289 2290 bool CastInst::isLosslessCast() const { 2291 // Only BitCast can be lossless, exit fast if we're not BitCast 2292 if (getOpcode() != Instruction::BitCast) 2293 return false; 2294 2295 // Identity cast is always lossless 2296 Type *SrcTy = getOperand(0)->getType(); 2297 Type *DstTy = getType(); 2298 if (SrcTy == DstTy) 2299 return true; 2300 2301 // Pointer to pointer is always lossless. 2302 if (SrcTy->isPointerTy()) 2303 return DstTy->isPointerTy(); 2304 return false; // Other types have no identity values 2305 } 2306 2307 /// This function determines if the CastInst does not require any bits to be 2308 /// changed in order to effect the cast. Essentially, it identifies cases where 2309 /// no code gen is necessary for the cast, hence the name no-op cast. For 2310 /// example, the following are all no-op casts: 2311 /// # bitcast i32* %x to i8* 2312 /// # bitcast <2 x i32> %x to <4 x i16> 2313 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only 2314 /// Determine if the described cast is a no-op. 2315 bool CastInst::isNoopCast(Instruction::CastOps Opcode, 2316 Type *SrcTy, 2317 Type *DestTy, 2318 const DataLayout &DL) { 2319 switch (Opcode) { 2320 default: llvm_unreachable("Invalid CastOp"); 2321 case Instruction::Trunc: 2322 case Instruction::ZExt: 2323 case Instruction::SExt: 2324 case Instruction::FPTrunc: 2325 case Instruction::FPExt: 2326 case Instruction::UIToFP: 2327 case Instruction::SIToFP: 2328 case Instruction::FPToUI: 2329 case Instruction::FPToSI: 2330 case Instruction::AddrSpaceCast: 2331 // TODO: Target informations may give a more accurate answer here. 2332 return false; 2333 case Instruction::BitCast: 2334 return true; // BitCast never modifies bits. 2335 case Instruction::PtrToInt: 2336 return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() == 2337 DestTy->getScalarSizeInBits(); 2338 case Instruction::IntToPtr: 2339 return DL.getIntPtrType(DestTy)->getScalarSizeInBits() == 2340 SrcTy->getScalarSizeInBits(); 2341 } 2342 } 2343 2344 bool CastInst::isNoopCast(const DataLayout &DL) const { 2345 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL); 2346 } 2347 2348 /// This function determines if a pair of casts can be eliminated and what 2349 /// opcode should be used in the elimination. This assumes that there are two 2350 /// instructions like this: 2351 /// * %F = firstOpcode SrcTy %x to MidTy 2352 /// * %S = secondOpcode MidTy %F to DstTy 2353 /// The function returns a resultOpcode so these two casts can be replaced with: 2354 /// * %Replacement = resultOpcode %SrcTy %x to DstTy 2355 /// If no such cast is permitted, the function returns 0. 2356 unsigned CastInst::isEliminableCastPair( 2357 Instruction::CastOps firstOp, Instruction::CastOps secondOp, 2358 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, 2359 Type *DstIntPtrTy) { 2360 // Define the 144 possibilities for these two cast instructions. The values 2361 // in this matrix determine what to do in a given situation and select the 2362 // case in the switch below. The rows correspond to firstOp, the columns 2363 // correspond to secondOp. In looking at the table below, keep in mind 2364 // the following cast properties: 2365 // 2366 // Size Compare Source Destination 2367 // Operator Src ? Size Type Sign Type Sign 2368 // -------- ------------ ------------------- --------------------- 2369 // TRUNC > Integer Any Integral Any 2370 // ZEXT < Integral Unsigned Integer Any 2371 // SEXT < Integral Signed Integer Any 2372 // FPTOUI n/a FloatPt n/a Integral Unsigned 2373 // FPTOSI n/a FloatPt n/a Integral Signed 2374 // UITOFP n/a Integral Unsigned FloatPt n/a 2375 // SITOFP n/a Integral Signed FloatPt n/a 2376 // FPTRUNC > FloatPt n/a FloatPt n/a 2377 // FPEXT < FloatPt n/a FloatPt n/a 2378 // PTRTOINT n/a Pointer n/a Integral Unsigned 2379 // INTTOPTR n/a Integral Unsigned Pointer n/a 2380 // BITCAST = FirstClass n/a FirstClass n/a 2381 // ADDRSPCST n/a Pointer n/a Pointer n/a 2382 // 2383 // NOTE: some transforms are safe, but we consider them to be non-profitable. 2384 // For example, we could merge "fptoui double to i32" + "zext i32 to i64", 2385 // into "fptoui double to i64", but this loses information about the range 2386 // of the produced value (we no longer know the top-part is all zeros). 2387 // Further this conversion is often much more expensive for typical hardware, 2388 // and causes issues when building libgcc. We disallow fptosi+sext for the 2389 // same reason. 2390 const unsigned numCastOps = 2391 Instruction::CastOpsEnd - Instruction::CastOpsBegin; 2392 static const uint8_t CastResults[numCastOps][numCastOps] = { 2393 // T F F U S F F P I B A -+ 2394 // R Z S P P I I T P 2 N T S | 2395 // U E E 2 2 2 2 R E I T C C +- secondOp 2396 // N X X U S F F N X N 2 V V | 2397 // C T T I I P P C T T P T T -+ 2398 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+ 2399 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt | 2400 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt | 2401 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI | 2402 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI | 2403 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp 2404 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP | 2405 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc | 2406 { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt | 2407 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt | 2408 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr | 2409 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast | 2410 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+ 2411 }; 2412 2413 // TODO: This logic could be encoded into the table above and handled in the 2414 // switch below. 2415 // If either of the casts are a bitcast from scalar to vector, disallow the 2416 // merging. However, any pair of bitcasts are allowed. 2417 bool IsFirstBitcast = (firstOp == Instruction::BitCast); 2418 bool IsSecondBitcast = (secondOp == Instruction::BitCast); 2419 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast; 2420 2421 // Check if any of the casts convert scalars <-> vectors. 2422 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) || 2423 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy))) 2424 if (!AreBothBitcasts) 2425 return 0; 2426 2427 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin] 2428 [secondOp-Instruction::CastOpsBegin]; 2429 switch (ElimCase) { 2430 case 0: 2431 // Categorically disallowed. 2432 return 0; 2433 case 1: 2434 // Allowed, use first cast's opcode. 2435 return firstOp; 2436 case 2: 2437 // Allowed, use second cast's opcode. 2438 return secondOp; 2439 case 3: 2440 // No-op cast in second op implies firstOp as long as the DestTy 2441 // is integer and we are not converting between a vector and a 2442 // non-vector type. 2443 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy()) 2444 return firstOp; 2445 return 0; 2446 case 4: 2447 // No-op cast in second op implies firstOp as long as the DestTy 2448 // is floating point. 2449 if (DstTy->isFloatingPointTy()) 2450 return firstOp; 2451 return 0; 2452 case 5: 2453 // No-op cast in first op implies secondOp as long as the SrcTy 2454 // is an integer. 2455 if (SrcTy->isIntegerTy()) 2456 return secondOp; 2457 return 0; 2458 case 6: 2459 // No-op cast in first op implies secondOp as long as the SrcTy 2460 // is a floating point. 2461 if (SrcTy->isFloatingPointTy()) 2462 return secondOp; 2463 return 0; 2464 case 7: { 2465 // Cannot simplify if address spaces are different! 2466 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) 2467 return 0; 2468 2469 unsigned MidSize = MidTy->getScalarSizeInBits(); 2470 // We can still fold this without knowing the actual sizes as long we 2471 // know that the intermediate pointer is the largest possible 2472 // pointer size. 2473 // FIXME: Is this always true? 2474 if (MidSize == 64) 2475 return Instruction::BitCast; 2476 2477 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size. 2478 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy) 2479 return 0; 2480 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits(); 2481 if (MidSize >= PtrSize) 2482 return Instruction::BitCast; 2483 return 0; 2484 } 2485 case 8: { 2486 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size 2487 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy) 2488 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy) 2489 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2490 unsigned DstSize = DstTy->getScalarSizeInBits(); 2491 if (SrcSize == DstSize) 2492 return Instruction::BitCast; 2493 else if (SrcSize < DstSize) 2494 return firstOp; 2495 return secondOp; 2496 } 2497 case 9: 2498 // zext, sext -> zext, because sext can't sign extend after zext 2499 return Instruction::ZExt; 2500 case 11: { 2501 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize 2502 if (!MidIntPtrTy) 2503 return 0; 2504 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits(); 2505 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2506 unsigned DstSize = DstTy->getScalarSizeInBits(); 2507 if (SrcSize <= PtrSize && SrcSize == DstSize) 2508 return Instruction::BitCast; 2509 return 0; 2510 } 2511 case 12: 2512 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS 2513 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS 2514 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) 2515 return Instruction::AddrSpaceCast; 2516 return Instruction::BitCast; 2517 case 13: 2518 // FIXME: this state can be merged with (1), but the following assert 2519 // is useful to check the correcteness of the sequence due to semantic 2520 // change of bitcast. 2521 assert( 2522 SrcTy->isPtrOrPtrVectorTy() && 2523 MidTy->isPtrOrPtrVectorTy() && 2524 DstTy->isPtrOrPtrVectorTy() && 2525 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() && 2526 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && 2527 "Illegal addrspacecast, bitcast sequence!"); 2528 // Allowed, use first cast's opcode 2529 return firstOp; 2530 case 14: 2531 // bitcast, addrspacecast -> addrspacecast if the element type of 2532 // bitcast's source is the same as that of addrspacecast's destination. 2533 if (SrcTy->getScalarType()->getPointerElementType() == 2534 DstTy->getScalarType()->getPointerElementType()) 2535 return Instruction::AddrSpaceCast; 2536 return 0; 2537 case 15: 2538 // FIXME: this state can be merged with (1), but the following assert 2539 // is useful to check the correcteness of the sequence due to semantic 2540 // change of bitcast. 2541 assert( 2542 SrcTy->isIntOrIntVectorTy() && 2543 MidTy->isPtrOrPtrVectorTy() && 2544 DstTy->isPtrOrPtrVectorTy() && 2545 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && 2546 "Illegal inttoptr, bitcast sequence!"); 2547 // Allowed, use first cast's opcode 2548 return firstOp; 2549 case 16: 2550 // FIXME: this state can be merged with (2), but the following assert 2551 // is useful to check the correcteness of the sequence due to semantic 2552 // change of bitcast. 2553 assert( 2554 SrcTy->isPtrOrPtrVectorTy() && 2555 MidTy->isPtrOrPtrVectorTy() && 2556 DstTy->isIntOrIntVectorTy() && 2557 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() && 2558 "Illegal bitcast, ptrtoint sequence!"); 2559 // Allowed, use second cast's opcode 2560 return secondOp; 2561 case 17: 2562 // (sitofp (zext x)) -> (uitofp x) 2563 return Instruction::UIToFP; 2564 case 99: 2565 // Cast combination can't happen (error in input). This is for all cases 2566 // where the MidTy is not the same for the two cast instructions. 2567 llvm_unreachable("Invalid Cast Combination"); 2568 default: 2569 llvm_unreachable("Error in CastResults table!!!"); 2570 } 2571 } 2572 2573 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 2574 const Twine &Name, Instruction *InsertBefore) { 2575 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 2576 // Construct and return the appropriate CastInst subclass 2577 switch (op) { 2578 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore); 2579 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore); 2580 case SExt: return new SExtInst (S, Ty, Name, InsertBefore); 2581 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore); 2582 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore); 2583 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore); 2584 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore); 2585 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore); 2586 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore); 2587 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore); 2588 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore); 2589 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore); 2590 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore); 2591 default: llvm_unreachable("Invalid opcode provided"); 2592 } 2593 } 2594 2595 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 2596 const Twine &Name, BasicBlock *InsertAtEnd) { 2597 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 2598 // Construct and return the appropriate CastInst subclass 2599 switch (op) { 2600 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd); 2601 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd); 2602 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd); 2603 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd); 2604 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd); 2605 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd); 2606 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd); 2607 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd); 2608 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd); 2609 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd); 2610 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd); 2611 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd); 2612 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd); 2613 default: llvm_unreachable("Invalid opcode provided"); 2614 } 2615 } 2616 2617 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 2618 const Twine &Name, 2619 Instruction *InsertBefore) { 2620 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2621 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2622 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore); 2623 } 2624 2625 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 2626 const Twine &Name, 2627 BasicBlock *InsertAtEnd) { 2628 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2629 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2630 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd); 2631 } 2632 2633 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 2634 const Twine &Name, 2635 Instruction *InsertBefore) { 2636 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2637 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2638 return Create(Instruction::SExt, S, Ty, Name, InsertBefore); 2639 } 2640 2641 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 2642 const Twine &Name, 2643 BasicBlock *InsertAtEnd) { 2644 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2645 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2646 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd); 2647 } 2648 2649 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 2650 const Twine &Name, 2651 Instruction *InsertBefore) { 2652 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2653 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2654 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore); 2655 } 2656 2657 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 2658 const Twine &Name, 2659 BasicBlock *InsertAtEnd) { 2660 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2661 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2662 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd); 2663 } 2664 2665 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 2666 const Twine &Name, 2667 BasicBlock *InsertAtEnd) { 2668 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2669 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 2670 "Invalid cast"); 2671 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); 2672 assert((!Ty->isVectorTy() || 2673 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) && 2674 "Invalid cast"); 2675 2676 if (Ty->isIntOrIntVectorTy()) 2677 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd); 2678 2679 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd); 2680 } 2681 2682 /// Create a BitCast or a PtrToInt cast instruction 2683 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 2684 const Twine &Name, 2685 Instruction *InsertBefore) { 2686 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2687 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 2688 "Invalid cast"); 2689 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); 2690 assert((!Ty->isVectorTy() || 2691 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) && 2692 "Invalid cast"); 2693 2694 if (Ty->isIntOrIntVectorTy()) 2695 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); 2696 2697 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore); 2698 } 2699 2700 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast( 2701 Value *S, Type *Ty, 2702 const Twine &Name, 2703 BasicBlock *InsertAtEnd) { 2704 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2705 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 2706 2707 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 2708 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd); 2709 2710 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2711 } 2712 2713 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast( 2714 Value *S, Type *Ty, 2715 const Twine &Name, 2716 Instruction *InsertBefore) { 2717 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2718 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 2719 2720 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 2721 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore); 2722 2723 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2724 } 2725 2726 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty, 2727 const Twine &Name, 2728 Instruction *InsertBefore) { 2729 if (S->getType()->isPointerTy() && Ty->isIntegerTy()) 2730 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); 2731 if (S->getType()->isIntegerTy() && Ty->isPointerTy()) 2732 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore); 2733 2734 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2735 } 2736 2737 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 2738 bool isSigned, const Twine &Name, 2739 Instruction *InsertBefore) { 2740 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 2741 "Invalid integer cast"); 2742 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2743 unsigned DstBits = Ty->getScalarSizeInBits(); 2744 Instruction::CastOps opcode = 2745 (SrcBits == DstBits ? Instruction::BitCast : 2746 (SrcBits > DstBits ? Instruction::Trunc : 2747 (isSigned ? Instruction::SExt : Instruction::ZExt))); 2748 return Create(opcode, C, Ty, Name, InsertBefore); 2749 } 2750 2751 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 2752 bool isSigned, const Twine &Name, 2753 BasicBlock *InsertAtEnd) { 2754 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 2755 "Invalid cast"); 2756 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2757 unsigned DstBits = Ty->getScalarSizeInBits(); 2758 Instruction::CastOps opcode = 2759 (SrcBits == DstBits ? Instruction::BitCast : 2760 (SrcBits > DstBits ? Instruction::Trunc : 2761 (isSigned ? Instruction::SExt : Instruction::ZExt))); 2762 return Create(opcode, C, Ty, Name, InsertAtEnd); 2763 } 2764 2765 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 2766 const Twine &Name, 2767 Instruction *InsertBefore) { 2768 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2769 "Invalid cast"); 2770 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2771 unsigned DstBits = Ty->getScalarSizeInBits(); 2772 Instruction::CastOps opcode = 2773 (SrcBits == DstBits ? Instruction::BitCast : 2774 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 2775 return Create(opcode, C, Ty, Name, InsertBefore); 2776 } 2777 2778 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 2779 const Twine &Name, 2780 BasicBlock *InsertAtEnd) { 2781 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2782 "Invalid cast"); 2783 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2784 unsigned DstBits = Ty->getScalarSizeInBits(); 2785 Instruction::CastOps opcode = 2786 (SrcBits == DstBits ? Instruction::BitCast : 2787 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 2788 return Create(opcode, C, Ty, Name, InsertAtEnd); 2789 } 2790 2791 // Check whether it is valid to call getCastOpcode for these types. 2792 // This routine must be kept in sync with getCastOpcode. 2793 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) { 2794 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) 2795 return false; 2796 2797 if (SrcTy == DestTy) 2798 return true; 2799 2800 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) 2801 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) 2802 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 2803 // An element by element cast. Valid if casting the elements is valid. 2804 SrcTy = SrcVecTy->getElementType(); 2805 DestTy = DestVecTy->getElementType(); 2806 } 2807 2808 // Get the bit sizes, we'll need these 2809 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 2810 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 2811 2812 // Run through the possibilities ... 2813 if (DestTy->isIntegerTy()) { // Casting to integral 2814 if (SrcTy->isIntegerTy()) // Casting from integral 2815 return true; 2816 if (SrcTy->isFloatingPointTy()) // Casting from floating pt 2817 return true; 2818 if (SrcTy->isVectorTy()) // Casting from vector 2819 return DestBits == SrcBits; 2820 // Casting from something else 2821 return SrcTy->isPointerTy(); 2822 } 2823 if (DestTy->isFloatingPointTy()) { // Casting to floating pt 2824 if (SrcTy->isIntegerTy()) // Casting from integral 2825 return true; 2826 if (SrcTy->isFloatingPointTy()) // Casting from floating pt 2827 return true; 2828 if (SrcTy->isVectorTy()) // Casting from vector 2829 return DestBits == SrcBits; 2830 // Casting from something else 2831 return false; 2832 } 2833 if (DestTy->isVectorTy()) // Casting to vector 2834 return DestBits == SrcBits; 2835 if (DestTy->isPointerTy()) { // Casting to pointer 2836 if (SrcTy->isPointerTy()) // Casting from pointer 2837 return true; 2838 return SrcTy->isIntegerTy(); // Casting from integral 2839 } 2840 if (DestTy->isX86_MMXTy()) { 2841 if (SrcTy->isVectorTy()) 2842 return DestBits == SrcBits; // 64-bit vector to MMX 2843 return false; 2844 } // Casting to something else 2845 return false; 2846 } 2847 2848 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) { 2849 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) 2850 return false; 2851 2852 if (SrcTy == DestTy) 2853 return true; 2854 2855 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { 2856 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) { 2857 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 2858 // An element by element cast. Valid if casting the elements is valid. 2859 SrcTy = SrcVecTy->getElementType(); 2860 DestTy = DestVecTy->getElementType(); 2861 } 2862 } 2863 } 2864 2865 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) { 2866 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) { 2867 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace(); 2868 } 2869 } 2870 2871 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 2872 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 2873 2874 // Could still have vectors of pointers if the number of elements doesn't 2875 // match 2876 if (SrcBits == 0 || DestBits == 0) 2877 return false; 2878 2879 if (SrcBits != DestBits) 2880 return false; 2881 2882 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy()) 2883 return false; 2884 2885 return true; 2886 } 2887 2888 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, 2889 const DataLayout &DL) { 2890 // ptrtoint and inttoptr are not allowed on non-integral pointers 2891 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy)) 2892 if (auto *IntTy = dyn_cast<IntegerType>(DestTy)) 2893 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) && 2894 !DL.isNonIntegralPointerType(PtrTy)); 2895 if (auto *PtrTy = dyn_cast<PointerType>(DestTy)) 2896 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy)) 2897 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) && 2898 !DL.isNonIntegralPointerType(PtrTy)); 2899 2900 return isBitCastable(SrcTy, DestTy); 2901 } 2902 2903 // Provide a way to get a "cast" where the cast opcode is inferred from the 2904 // types and size of the operand. This, basically, is a parallel of the 2905 // logic in the castIsValid function below. This axiom should hold: 2906 // castIsValid( getCastOpcode(Val, Ty), Val, Ty) 2907 // should not assert in castIsValid. In other words, this produces a "correct" 2908 // casting opcode for the arguments passed to it. 2909 // This routine must be kept in sync with isCastable. 2910 Instruction::CastOps 2911 CastInst::getCastOpcode( 2912 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) { 2913 Type *SrcTy = Src->getType(); 2914 2915 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() && 2916 "Only first class types are castable!"); 2917 2918 if (SrcTy == DestTy) 2919 return BitCast; 2920 2921 // FIXME: Check address space sizes here 2922 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) 2923 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) 2924 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 2925 // An element by element cast. Find the appropriate opcode based on the 2926 // element types. 2927 SrcTy = SrcVecTy->getElementType(); 2928 DestTy = DestVecTy->getElementType(); 2929 } 2930 2931 // Get the bit sizes, we'll need these 2932 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 2933 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 2934 2935 // Run through the possibilities ... 2936 if (DestTy->isIntegerTy()) { // Casting to integral 2937 if (SrcTy->isIntegerTy()) { // Casting from integral 2938 if (DestBits < SrcBits) 2939 return Trunc; // int -> smaller int 2940 else if (DestBits > SrcBits) { // its an extension 2941 if (SrcIsSigned) 2942 return SExt; // signed -> SEXT 2943 else 2944 return ZExt; // unsigned -> ZEXT 2945 } else { 2946 return BitCast; // Same size, No-op cast 2947 } 2948 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 2949 if (DestIsSigned) 2950 return FPToSI; // FP -> sint 2951 else 2952 return FPToUI; // FP -> uint 2953 } else if (SrcTy->isVectorTy()) { 2954 assert(DestBits == SrcBits && 2955 "Casting vector to integer of different width"); 2956 return BitCast; // Same size, no-op cast 2957 } else { 2958 assert(SrcTy->isPointerTy() && 2959 "Casting from a value that is not first-class type"); 2960 return PtrToInt; // ptr -> int 2961 } 2962 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt 2963 if (SrcTy->isIntegerTy()) { // Casting from integral 2964 if (SrcIsSigned) 2965 return SIToFP; // sint -> FP 2966 else 2967 return UIToFP; // uint -> FP 2968 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 2969 if (DestBits < SrcBits) { 2970 return FPTrunc; // FP -> smaller FP 2971 } else if (DestBits > SrcBits) { 2972 return FPExt; // FP -> larger FP 2973 } else { 2974 return BitCast; // same size, no-op cast 2975 } 2976 } else if (SrcTy->isVectorTy()) { 2977 assert(DestBits == SrcBits && 2978 "Casting vector to floating point of different width"); 2979 return BitCast; // same size, no-op cast 2980 } 2981 llvm_unreachable("Casting pointer or non-first class to float"); 2982 } else if (DestTy->isVectorTy()) { 2983 assert(DestBits == SrcBits && 2984 "Illegal cast to vector (wrong type or size)"); 2985 return BitCast; 2986 } else if (DestTy->isPointerTy()) { 2987 if (SrcTy->isPointerTy()) { 2988 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace()) 2989 return AddrSpaceCast; 2990 return BitCast; // ptr -> ptr 2991 } else if (SrcTy->isIntegerTy()) { 2992 return IntToPtr; // int -> ptr 2993 } 2994 llvm_unreachable("Casting pointer to other than pointer or int"); 2995 } else if (DestTy->isX86_MMXTy()) { 2996 if (SrcTy->isVectorTy()) { 2997 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX"); 2998 return BitCast; // 64-bit vector to MMX 2999 } 3000 llvm_unreachable("Illegal cast to X86_MMX"); 3001 } 3002 llvm_unreachable("Casting to type that is not first-class"); 3003 } 3004 3005 //===----------------------------------------------------------------------===// 3006 // CastInst SubClass Constructors 3007 //===----------------------------------------------------------------------===// 3008 3009 /// Check that the construction parameters for a CastInst are correct. This 3010 /// could be broken out into the separate constructors but it is useful to have 3011 /// it in one place and to eliminate the redundant code for getting the sizes 3012 /// of the types involved. 3013 bool 3014 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) { 3015 // Check for type sanity on the arguments 3016 Type *SrcTy = S->getType(); 3017 3018 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() || 3019 SrcTy->isAggregateType() || DstTy->isAggregateType()) 3020 return false; 3021 3022 // Get the size of the types in bits, we'll need this later 3023 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 3024 unsigned DstBitSize = DstTy->getScalarSizeInBits(); 3025 3026 // If these are vector types, get the lengths of the vectors (using zero for 3027 // scalar types means that checking that vector lengths match also checks that 3028 // scalars are not being converted to vectors or vectors to scalars). 3029 unsigned SrcLength = SrcTy->isVectorTy() ? 3030 cast<VectorType>(SrcTy)->getNumElements() : 0; 3031 unsigned DstLength = DstTy->isVectorTy() ? 3032 cast<VectorType>(DstTy)->getNumElements() : 0; 3033 3034 // Switch on the opcode provided 3035 switch (op) { 3036 default: return false; // This is an input error 3037 case Instruction::Trunc: 3038 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3039 SrcLength == DstLength && SrcBitSize > DstBitSize; 3040 case Instruction::ZExt: 3041 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3042 SrcLength == DstLength && SrcBitSize < DstBitSize; 3043 case Instruction::SExt: 3044 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3045 SrcLength == DstLength && SrcBitSize < DstBitSize; 3046 case Instruction::FPTrunc: 3047 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 3048 SrcLength == DstLength && SrcBitSize > DstBitSize; 3049 case Instruction::FPExt: 3050 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 3051 SrcLength == DstLength && SrcBitSize < DstBitSize; 3052 case Instruction::UIToFP: 3053 case Instruction::SIToFP: 3054 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() && 3055 SrcLength == DstLength; 3056 case Instruction::FPToUI: 3057 case Instruction::FPToSI: 3058 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() && 3059 SrcLength == DstLength; 3060 case Instruction::PtrToInt: 3061 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) 3062 return false; 3063 if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) 3064 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) 3065 return false; 3066 return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy(); 3067 case Instruction::IntToPtr: 3068 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) 3069 return false; 3070 if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) 3071 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) 3072 return false; 3073 return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy(); 3074 case Instruction::BitCast: { 3075 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); 3076 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); 3077 3078 // BitCast implies a no-op cast of type only. No bits change. 3079 // However, you can't cast pointers to anything but pointers. 3080 if (!SrcPtrTy != !DstPtrTy) 3081 return false; 3082 3083 // For non-pointer cases, the cast is okay if the source and destination bit 3084 // widths are identical. 3085 if (!SrcPtrTy) 3086 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits(); 3087 3088 // If both are pointers then the address spaces must match. 3089 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) 3090 return false; 3091 3092 // A vector of pointers must have the same number of elements. 3093 VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy); 3094 VectorType *DstVecTy = dyn_cast<VectorType>(DstTy); 3095 if (SrcVecTy && DstVecTy) 3096 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements()); 3097 if (SrcVecTy) 3098 return SrcVecTy->getNumElements() == 1; 3099 if (DstVecTy) 3100 return DstVecTy->getNumElements() == 1; 3101 3102 return true; 3103 } 3104 case Instruction::AddrSpaceCast: { 3105 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); 3106 if (!SrcPtrTy) 3107 return false; 3108 3109 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); 3110 if (!DstPtrTy) 3111 return false; 3112 3113 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) 3114 return false; 3115 3116 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { 3117 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy)) 3118 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements()); 3119 3120 return false; 3121 } 3122 3123 return true; 3124 } 3125 } 3126 } 3127 3128 TruncInst::TruncInst( 3129 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3130 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) { 3131 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 3132 } 3133 3134 TruncInst::TruncInst( 3135 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3136 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { 3137 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 3138 } 3139 3140 ZExtInst::ZExtInst( 3141 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3142 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) { 3143 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 3144 } 3145 3146 ZExtInst::ZExtInst( 3147 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3148 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { 3149 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 3150 } 3151 SExtInst::SExtInst( 3152 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3153 ) : CastInst(Ty, SExt, S, Name, InsertBefore) { 3154 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 3155 } 3156 3157 SExtInst::SExtInst( 3158 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3159 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) { 3160 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 3161 } 3162 3163 FPTruncInst::FPTruncInst( 3164 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3165 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { 3166 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 3167 } 3168 3169 FPTruncInst::FPTruncInst( 3170 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3171 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { 3172 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 3173 } 3174 3175 FPExtInst::FPExtInst( 3176 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3177 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) { 3178 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 3179 } 3180 3181 FPExtInst::FPExtInst( 3182 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3183 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { 3184 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 3185 } 3186 3187 UIToFPInst::UIToFPInst( 3188 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3189 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { 3190 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 3191 } 3192 3193 UIToFPInst::UIToFPInst( 3194 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3195 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { 3196 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 3197 } 3198 3199 SIToFPInst::SIToFPInst( 3200 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3201 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { 3202 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 3203 } 3204 3205 SIToFPInst::SIToFPInst( 3206 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3207 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { 3208 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 3209 } 3210 3211 FPToUIInst::FPToUIInst( 3212 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3213 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { 3214 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 3215 } 3216 3217 FPToUIInst::FPToUIInst( 3218 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3219 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { 3220 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 3221 } 3222 3223 FPToSIInst::FPToSIInst( 3224 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3225 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { 3226 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 3227 } 3228 3229 FPToSIInst::FPToSIInst( 3230 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3231 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { 3232 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 3233 } 3234 3235 PtrToIntInst::PtrToIntInst( 3236 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3237 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { 3238 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 3239 } 3240 3241 PtrToIntInst::PtrToIntInst( 3242 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3243 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { 3244 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 3245 } 3246 3247 IntToPtrInst::IntToPtrInst( 3248 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3249 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { 3250 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 3251 } 3252 3253 IntToPtrInst::IntToPtrInst( 3254 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3255 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { 3256 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 3257 } 3258 3259 BitCastInst::BitCastInst( 3260 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3261 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) { 3262 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 3263 } 3264 3265 BitCastInst::BitCastInst( 3266 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3267 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { 3268 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 3269 } 3270 3271 AddrSpaceCastInst::AddrSpaceCastInst( 3272 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3273 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) { 3274 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); 3275 } 3276 3277 AddrSpaceCastInst::AddrSpaceCastInst( 3278 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3279 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) { 3280 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); 3281 } 3282 3283 //===----------------------------------------------------------------------===// 3284 // CmpInst Classes 3285 //===----------------------------------------------------------------------===// 3286 3287 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS, 3288 Value *RHS, const Twine &Name, Instruction *InsertBefore, 3289 Instruction *FlagsSource) 3290 : Instruction(ty, op, 3291 OperandTraits<CmpInst>::op_begin(this), 3292 OperandTraits<CmpInst>::operands(this), 3293 InsertBefore) { 3294 Op<0>() = LHS; 3295 Op<1>() = RHS; 3296 setPredicate((Predicate)predicate); 3297 setName(Name); 3298 if (FlagsSource) 3299 copyIRFlags(FlagsSource); 3300 } 3301 3302 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS, 3303 Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd) 3304 : Instruction(ty, op, 3305 OperandTraits<CmpInst>::op_begin(this), 3306 OperandTraits<CmpInst>::operands(this), 3307 InsertAtEnd) { 3308 Op<0>() = LHS; 3309 Op<1>() = RHS; 3310 setPredicate((Predicate)predicate); 3311 setName(Name); 3312 } 3313 3314 CmpInst * 3315 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, 3316 const Twine &Name, Instruction *InsertBefore) { 3317 if (Op == Instruction::ICmp) { 3318 if (InsertBefore) 3319 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate), 3320 S1, S2, Name); 3321 else 3322 return new ICmpInst(CmpInst::Predicate(predicate), 3323 S1, S2, Name); 3324 } 3325 3326 if (InsertBefore) 3327 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate), 3328 S1, S2, Name); 3329 else 3330 return new FCmpInst(CmpInst::Predicate(predicate), 3331 S1, S2, Name); 3332 } 3333 3334 CmpInst * 3335 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, 3336 const Twine &Name, BasicBlock *InsertAtEnd) { 3337 if (Op == Instruction::ICmp) { 3338 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 3339 S1, S2, Name); 3340 } 3341 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 3342 S1, S2, Name); 3343 } 3344 3345 void CmpInst::swapOperands() { 3346 if (ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3347 IC->swapOperands(); 3348 else 3349 cast<FCmpInst>(this)->swapOperands(); 3350 } 3351 3352 bool CmpInst::isCommutative() const { 3353 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3354 return IC->isCommutative(); 3355 return cast<FCmpInst>(this)->isCommutative(); 3356 } 3357 3358 bool CmpInst::isEquality() const { 3359 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3360 return IC->isEquality(); 3361 return cast<FCmpInst>(this)->isEquality(); 3362 } 3363 3364 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) { 3365 switch (pred) { 3366 default: llvm_unreachable("Unknown cmp predicate!"); 3367 case ICMP_EQ: return ICMP_NE; 3368 case ICMP_NE: return ICMP_EQ; 3369 case ICMP_UGT: return ICMP_ULE; 3370 case ICMP_ULT: return ICMP_UGE; 3371 case ICMP_UGE: return ICMP_ULT; 3372 case ICMP_ULE: return ICMP_UGT; 3373 case ICMP_SGT: return ICMP_SLE; 3374 case ICMP_SLT: return ICMP_SGE; 3375 case ICMP_SGE: return ICMP_SLT; 3376 case ICMP_SLE: return ICMP_SGT; 3377 3378 case FCMP_OEQ: return FCMP_UNE; 3379 case FCMP_ONE: return FCMP_UEQ; 3380 case FCMP_OGT: return FCMP_ULE; 3381 case FCMP_OLT: return FCMP_UGE; 3382 case FCMP_OGE: return FCMP_ULT; 3383 case FCMP_OLE: return FCMP_UGT; 3384 case FCMP_UEQ: return FCMP_ONE; 3385 case FCMP_UNE: return FCMP_OEQ; 3386 case FCMP_UGT: return FCMP_OLE; 3387 case FCMP_ULT: return FCMP_OGE; 3388 case FCMP_UGE: return FCMP_OLT; 3389 case FCMP_ULE: return FCMP_OGT; 3390 case FCMP_ORD: return FCMP_UNO; 3391 case FCMP_UNO: return FCMP_ORD; 3392 case FCMP_TRUE: return FCMP_FALSE; 3393 case FCMP_FALSE: return FCMP_TRUE; 3394 } 3395 } 3396 3397 StringRef CmpInst::getPredicateName(Predicate Pred) { 3398 switch (Pred) { 3399 default: return "unknown"; 3400 case FCmpInst::FCMP_FALSE: return "false"; 3401 case FCmpInst::FCMP_OEQ: return "oeq"; 3402 case FCmpInst::FCMP_OGT: return "ogt"; 3403 case FCmpInst::FCMP_OGE: return "oge"; 3404 case FCmpInst::FCMP_OLT: return "olt"; 3405 case FCmpInst::FCMP_OLE: return "ole"; 3406 case FCmpInst::FCMP_ONE: return "one"; 3407 case FCmpInst::FCMP_ORD: return "ord"; 3408 case FCmpInst::FCMP_UNO: return "uno"; 3409 case FCmpInst::FCMP_UEQ: return "ueq"; 3410 case FCmpInst::FCMP_UGT: return "ugt"; 3411 case FCmpInst::FCMP_UGE: return "uge"; 3412 case FCmpInst::FCMP_ULT: return "ult"; 3413 case FCmpInst::FCMP_ULE: return "ule"; 3414 case FCmpInst::FCMP_UNE: return "une"; 3415 case FCmpInst::FCMP_TRUE: return "true"; 3416 case ICmpInst::ICMP_EQ: return "eq"; 3417 case ICmpInst::ICMP_NE: return "ne"; 3418 case ICmpInst::ICMP_SGT: return "sgt"; 3419 case ICmpInst::ICMP_SGE: return "sge"; 3420 case ICmpInst::ICMP_SLT: return "slt"; 3421 case ICmpInst::ICMP_SLE: return "sle"; 3422 case ICmpInst::ICMP_UGT: return "ugt"; 3423 case ICmpInst::ICMP_UGE: return "uge"; 3424 case ICmpInst::ICMP_ULT: return "ult"; 3425 case ICmpInst::ICMP_ULE: return "ule"; 3426 } 3427 } 3428 3429 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) { 3430 switch (pred) { 3431 default: llvm_unreachable("Unknown icmp predicate!"); 3432 case ICMP_EQ: case ICMP_NE: 3433 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: 3434 return pred; 3435 case ICMP_UGT: return ICMP_SGT; 3436 case ICMP_ULT: return ICMP_SLT; 3437 case ICMP_UGE: return ICMP_SGE; 3438 case ICMP_ULE: return ICMP_SLE; 3439 } 3440 } 3441 3442 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) { 3443 switch (pred) { 3444 default: llvm_unreachable("Unknown icmp predicate!"); 3445 case ICMP_EQ: case ICMP_NE: 3446 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: 3447 return pred; 3448 case ICMP_SGT: return ICMP_UGT; 3449 case ICMP_SLT: return ICMP_ULT; 3450 case ICMP_SGE: return ICMP_UGE; 3451 case ICMP_SLE: return ICMP_ULE; 3452 } 3453 } 3454 3455 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) { 3456 switch (pred) { 3457 default: llvm_unreachable("Unknown or unsupported cmp predicate!"); 3458 case ICMP_SGT: return ICMP_SGE; 3459 case ICMP_SLT: return ICMP_SLE; 3460 case ICMP_SGE: return ICMP_SGT; 3461 case ICMP_SLE: return ICMP_SLT; 3462 case ICMP_UGT: return ICMP_UGE; 3463 case ICMP_ULT: return ICMP_ULE; 3464 case ICMP_UGE: return ICMP_UGT; 3465 case ICMP_ULE: return ICMP_ULT; 3466 3467 case FCMP_OGT: return FCMP_OGE; 3468 case FCMP_OLT: return FCMP_OLE; 3469 case FCMP_OGE: return FCMP_OGT; 3470 case FCMP_OLE: return FCMP_OLT; 3471 case FCMP_UGT: return FCMP_UGE; 3472 case FCMP_ULT: return FCMP_ULE; 3473 case FCMP_UGE: return FCMP_UGT; 3474 case FCMP_ULE: return FCMP_ULT; 3475 } 3476 } 3477 3478 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) { 3479 switch (pred) { 3480 default: llvm_unreachable("Unknown cmp predicate!"); 3481 case ICMP_EQ: case ICMP_NE: 3482 return pred; 3483 case ICMP_SGT: return ICMP_SLT; 3484 case ICMP_SLT: return ICMP_SGT; 3485 case ICMP_SGE: return ICMP_SLE; 3486 case ICMP_SLE: return ICMP_SGE; 3487 case ICMP_UGT: return ICMP_ULT; 3488 case ICMP_ULT: return ICMP_UGT; 3489 case ICMP_UGE: return ICMP_ULE; 3490 case ICMP_ULE: return ICMP_UGE; 3491 3492 case FCMP_FALSE: case FCMP_TRUE: 3493 case FCMP_OEQ: case FCMP_ONE: 3494 case FCMP_UEQ: case FCMP_UNE: 3495 case FCMP_ORD: case FCMP_UNO: 3496 return pred; 3497 case FCMP_OGT: return FCMP_OLT; 3498 case FCMP_OLT: return FCMP_OGT; 3499 case FCMP_OGE: return FCMP_OLE; 3500 case FCMP_OLE: return FCMP_OGE; 3501 case FCMP_UGT: return FCMP_ULT; 3502 case FCMP_ULT: return FCMP_UGT; 3503 case FCMP_UGE: return FCMP_ULE; 3504 case FCMP_ULE: return FCMP_UGE; 3505 } 3506 } 3507 3508 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) { 3509 switch (pred) { 3510 case ICMP_SGT: return ICMP_SGE; 3511 case ICMP_SLT: return ICMP_SLE; 3512 case ICMP_UGT: return ICMP_UGE; 3513 case ICMP_ULT: return ICMP_ULE; 3514 case FCMP_OGT: return FCMP_OGE; 3515 case FCMP_OLT: return FCMP_OLE; 3516 case FCMP_UGT: return FCMP_UGE; 3517 case FCMP_ULT: return FCMP_ULE; 3518 default: return pred; 3519 } 3520 } 3521 3522 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) { 3523 assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!"); 3524 3525 switch (pred) { 3526 default: 3527 llvm_unreachable("Unknown predicate!"); 3528 case CmpInst::ICMP_ULT: 3529 return CmpInst::ICMP_SLT; 3530 case CmpInst::ICMP_ULE: 3531 return CmpInst::ICMP_SLE; 3532 case CmpInst::ICMP_UGT: 3533 return CmpInst::ICMP_SGT; 3534 case CmpInst::ICMP_UGE: 3535 return CmpInst::ICMP_SGE; 3536 } 3537 } 3538 3539 bool CmpInst::isUnsigned(Predicate predicate) { 3540 switch (predicate) { 3541 default: return false; 3542 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: 3543 case ICmpInst::ICMP_UGE: return true; 3544 } 3545 } 3546 3547 bool CmpInst::isSigned(Predicate predicate) { 3548 switch (predicate) { 3549 default: return false; 3550 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: 3551 case ICmpInst::ICMP_SGE: return true; 3552 } 3553 } 3554 3555 bool CmpInst::isOrdered(Predicate predicate) { 3556 switch (predicate) { 3557 default: return false; 3558 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: 3559 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: 3560 case FCmpInst::FCMP_ORD: return true; 3561 } 3562 } 3563 3564 bool CmpInst::isUnordered(Predicate predicate) { 3565 switch (predicate) { 3566 default: return false; 3567 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: 3568 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: 3569 case FCmpInst::FCMP_UNO: return true; 3570 } 3571 } 3572 3573 bool CmpInst::isTrueWhenEqual(Predicate predicate) { 3574 switch(predicate) { 3575 default: return false; 3576 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE: 3577 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true; 3578 } 3579 } 3580 3581 bool CmpInst::isFalseWhenEqual(Predicate predicate) { 3582 switch(predicate) { 3583 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT: 3584 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true; 3585 default: return false; 3586 } 3587 } 3588 3589 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) { 3590 // If the predicates match, then we know the first condition implies the 3591 // second is true. 3592 if (Pred1 == Pred2) 3593 return true; 3594 3595 switch (Pred1) { 3596 default: 3597 break; 3598 case ICMP_EQ: 3599 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true. 3600 return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE || 3601 Pred2 == ICMP_SLE; 3602 case ICMP_UGT: // A >u B implies A != B and A >=u B are true. 3603 return Pred2 == ICMP_NE || Pred2 == ICMP_UGE; 3604 case ICMP_ULT: // A <u B implies A != B and A <=u B are true. 3605 return Pred2 == ICMP_NE || Pred2 == ICMP_ULE; 3606 case ICMP_SGT: // A >s B implies A != B and A >=s B are true. 3607 return Pred2 == ICMP_NE || Pred2 == ICMP_SGE; 3608 case ICMP_SLT: // A <s B implies A != B and A <=s B are true. 3609 return Pred2 == ICMP_NE || Pred2 == ICMP_SLE; 3610 } 3611 return false; 3612 } 3613 3614 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) { 3615 return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2)); 3616 } 3617 3618 //===----------------------------------------------------------------------===// 3619 // SwitchInst Implementation 3620 //===----------------------------------------------------------------------===// 3621 3622 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) { 3623 assert(Value && Default && NumReserved); 3624 ReservedSpace = NumReserved; 3625 setNumHungOffUseOperands(2); 3626 allocHungoffUses(ReservedSpace); 3627 3628 Op<0>() = Value; 3629 Op<1>() = Default; 3630 } 3631 3632 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 3633 /// switch on and a default destination. The number of additional cases can 3634 /// be specified here to make memory allocation more efficient. This 3635 /// constructor can also autoinsert before another instruction. 3636 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 3637 Instruction *InsertBefore) 3638 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch, 3639 nullptr, 0, InsertBefore) { 3640 init(Value, Default, 2+NumCases*2); 3641 } 3642 3643 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 3644 /// switch on and a default destination. The number of additional cases can 3645 /// be specified here to make memory allocation more efficient. This 3646 /// constructor also autoinserts at the end of the specified BasicBlock. 3647 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 3648 BasicBlock *InsertAtEnd) 3649 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch, 3650 nullptr, 0, InsertAtEnd) { 3651 init(Value, Default, 2+NumCases*2); 3652 } 3653 3654 SwitchInst::SwitchInst(const SwitchInst &SI) 3655 : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) { 3656 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands()); 3657 setNumHungOffUseOperands(SI.getNumOperands()); 3658 Use *OL = getOperandList(); 3659 const Use *InOL = SI.getOperandList(); 3660 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) { 3661 OL[i] = InOL[i]; 3662 OL[i+1] = InOL[i+1]; 3663 } 3664 SubclassOptionalData = SI.SubclassOptionalData; 3665 } 3666 3667 /// addCase - Add an entry to the switch instruction... 3668 /// 3669 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) { 3670 unsigned NewCaseIdx = getNumCases(); 3671 unsigned OpNo = getNumOperands(); 3672 if (OpNo+2 > ReservedSpace) 3673 growOperands(); // Get more space! 3674 // Initialize some new operands. 3675 assert(OpNo+1 < ReservedSpace && "Growing didn't work!"); 3676 setNumHungOffUseOperands(OpNo+2); 3677 CaseHandle Case(this, NewCaseIdx); 3678 Case.setValue(OnVal); 3679 Case.setSuccessor(Dest); 3680 } 3681 3682 /// removeCase - This method removes the specified case and its successor 3683 /// from the switch instruction. 3684 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) { 3685 unsigned idx = I->getCaseIndex(); 3686 3687 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!"); 3688 3689 unsigned NumOps = getNumOperands(); 3690 Use *OL = getOperandList(); 3691 3692 // Overwrite this case with the end of the list. 3693 if (2 + (idx + 1) * 2 != NumOps) { 3694 OL[2 + idx * 2] = OL[NumOps - 2]; 3695 OL[2 + idx * 2 + 1] = OL[NumOps - 1]; 3696 } 3697 3698 // Nuke the last value. 3699 OL[NumOps-2].set(nullptr); 3700 OL[NumOps-2+1].set(nullptr); 3701 setNumHungOffUseOperands(NumOps-2); 3702 3703 return CaseIt(this, idx); 3704 } 3705 3706 /// growOperands - grow operands - This grows the operand list in response 3707 /// to a push_back style of operation. This grows the number of ops by 3 times. 3708 /// 3709 void SwitchInst::growOperands() { 3710 unsigned e = getNumOperands(); 3711 unsigned NumOps = e*3; 3712 3713 ReservedSpace = NumOps; 3714 growHungoffUses(ReservedSpace); 3715 } 3716 3717 //===----------------------------------------------------------------------===// 3718 // IndirectBrInst Implementation 3719 //===----------------------------------------------------------------------===// 3720 3721 void IndirectBrInst::init(Value *Address, unsigned NumDests) { 3722 assert(Address && Address->getType()->isPointerTy() && 3723 "Address of indirectbr must be a pointer"); 3724 ReservedSpace = 1+NumDests; 3725 setNumHungOffUseOperands(1); 3726 allocHungoffUses(ReservedSpace); 3727 3728 Op<0>() = Address; 3729 } 3730 3731 3732 /// growOperands - grow operands - This grows the operand list in response 3733 /// to a push_back style of operation. This grows the number of ops by 2 times. 3734 /// 3735 void IndirectBrInst::growOperands() { 3736 unsigned e = getNumOperands(); 3737 unsigned NumOps = e*2; 3738 3739 ReservedSpace = NumOps; 3740 growHungoffUses(ReservedSpace); 3741 } 3742 3743 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 3744 Instruction *InsertBefore) 3745 : Instruction(Type::getVoidTy(Address->getContext()), 3746 Instruction::IndirectBr, nullptr, 0, InsertBefore) { 3747 init(Address, NumCases); 3748 } 3749 3750 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 3751 BasicBlock *InsertAtEnd) 3752 : Instruction(Type::getVoidTy(Address->getContext()), 3753 Instruction::IndirectBr, nullptr, 0, InsertAtEnd) { 3754 init(Address, NumCases); 3755 } 3756 3757 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI) 3758 : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr, 3759 nullptr, IBI.getNumOperands()) { 3760 allocHungoffUses(IBI.getNumOperands()); 3761 Use *OL = getOperandList(); 3762 const Use *InOL = IBI.getOperandList(); 3763 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i) 3764 OL[i] = InOL[i]; 3765 SubclassOptionalData = IBI.SubclassOptionalData; 3766 } 3767 3768 /// addDestination - Add a destination. 3769 /// 3770 void IndirectBrInst::addDestination(BasicBlock *DestBB) { 3771 unsigned OpNo = getNumOperands(); 3772 if (OpNo+1 > ReservedSpace) 3773 growOperands(); // Get more space! 3774 // Initialize some new operands. 3775 assert(OpNo < ReservedSpace && "Growing didn't work!"); 3776 setNumHungOffUseOperands(OpNo+1); 3777 getOperandList()[OpNo] = DestBB; 3778 } 3779 3780 /// removeDestination - This method removes the specified successor from the 3781 /// indirectbr instruction. 3782 void IndirectBrInst::removeDestination(unsigned idx) { 3783 assert(idx < getNumOperands()-1 && "Successor index out of range!"); 3784 3785 unsigned NumOps = getNumOperands(); 3786 Use *OL = getOperandList(); 3787 3788 // Replace this value with the last one. 3789 OL[idx+1] = OL[NumOps-1]; 3790 3791 // Nuke the last value. 3792 OL[NumOps-1].set(nullptr); 3793 setNumHungOffUseOperands(NumOps-1); 3794 } 3795 3796 //===----------------------------------------------------------------------===// 3797 // cloneImpl() implementations 3798 //===----------------------------------------------------------------------===// 3799 3800 // Define these methods here so vtables don't get emitted into every translation 3801 // unit that uses these classes. 3802 3803 GetElementPtrInst *GetElementPtrInst::cloneImpl() const { 3804 return new (getNumOperands()) GetElementPtrInst(*this); 3805 } 3806 3807 UnaryOperator *UnaryOperator::cloneImpl() const { 3808 return Create(getOpcode(), Op<0>()); 3809 } 3810 3811 BinaryOperator *BinaryOperator::cloneImpl() const { 3812 return Create(getOpcode(), Op<0>(), Op<1>()); 3813 } 3814 3815 FCmpInst *FCmpInst::cloneImpl() const { 3816 return new FCmpInst(getPredicate(), Op<0>(), Op<1>()); 3817 } 3818 3819 ICmpInst *ICmpInst::cloneImpl() const { 3820 return new ICmpInst(getPredicate(), Op<0>(), Op<1>()); 3821 } 3822 3823 ExtractValueInst *ExtractValueInst::cloneImpl() const { 3824 return new ExtractValueInst(*this); 3825 } 3826 3827 InsertValueInst *InsertValueInst::cloneImpl() const { 3828 return new InsertValueInst(*this); 3829 } 3830 3831 AllocaInst *AllocaInst::cloneImpl() const { 3832 AllocaInst *Result = new AllocaInst(getAllocatedType(), 3833 getType()->getAddressSpace(), 3834 (Value *)getOperand(0), getAlignment()); 3835 Result->setUsedWithInAlloca(isUsedWithInAlloca()); 3836 Result->setSwiftError(isSwiftError()); 3837 return Result; 3838 } 3839 3840 LoadInst *LoadInst::cloneImpl() const { 3841 return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(), 3842 getAlignment(), getOrdering(), getSyncScopeID()); 3843 } 3844 3845 StoreInst *StoreInst::cloneImpl() const { 3846 return new StoreInst(getOperand(0), getOperand(1), isVolatile(), 3847 getAlignment(), getOrdering(), getSyncScopeID()); 3848 3849 } 3850 3851 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const { 3852 AtomicCmpXchgInst *Result = 3853 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2), 3854 getSuccessOrdering(), getFailureOrdering(), 3855 getSyncScopeID()); 3856 Result->setVolatile(isVolatile()); 3857 Result->setWeak(isWeak()); 3858 return Result; 3859 } 3860 3861 AtomicRMWInst *AtomicRMWInst::cloneImpl() const { 3862 AtomicRMWInst *Result = 3863 new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1), 3864 getOrdering(), getSyncScopeID()); 3865 Result->setVolatile(isVolatile()); 3866 return Result; 3867 } 3868 3869 FenceInst *FenceInst::cloneImpl() const { 3870 return new FenceInst(getContext(), getOrdering(), getSyncScopeID()); 3871 } 3872 3873 TruncInst *TruncInst::cloneImpl() const { 3874 return new TruncInst(getOperand(0), getType()); 3875 } 3876 3877 ZExtInst *ZExtInst::cloneImpl() const { 3878 return new ZExtInst(getOperand(0), getType()); 3879 } 3880 3881 SExtInst *SExtInst::cloneImpl() const { 3882 return new SExtInst(getOperand(0), getType()); 3883 } 3884 3885 FPTruncInst *FPTruncInst::cloneImpl() const { 3886 return new FPTruncInst(getOperand(0), getType()); 3887 } 3888 3889 FPExtInst *FPExtInst::cloneImpl() const { 3890 return new FPExtInst(getOperand(0), getType()); 3891 } 3892 3893 UIToFPInst *UIToFPInst::cloneImpl() const { 3894 return new UIToFPInst(getOperand(0), getType()); 3895 } 3896 3897 SIToFPInst *SIToFPInst::cloneImpl() const { 3898 return new SIToFPInst(getOperand(0), getType()); 3899 } 3900 3901 FPToUIInst *FPToUIInst::cloneImpl() const { 3902 return new FPToUIInst(getOperand(0), getType()); 3903 } 3904 3905 FPToSIInst *FPToSIInst::cloneImpl() const { 3906 return new FPToSIInst(getOperand(0), getType()); 3907 } 3908 3909 PtrToIntInst *PtrToIntInst::cloneImpl() const { 3910 return new PtrToIntInst(getOperand(0), getType()); 3911 } 3912 3913 IntToPtrInst *IntToPtrInst::cloneImpl() const { 3914 return new IntToPtrInst(getOperand(0), getType()); 3915 } 3916 3917 BitCastInst *BitCastInst::cloneImpl() const { 3918 return new BitCastInst(getOperand(0), getType()); 3919 } 3920 3921 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const { 3922 return new AddrSpaceCastInst(getOperand(0), getType()); 3923 } 3924 3925 CallInst *CallInst::cloneImpl() const { 3926 if (hasOperandBundles()) { 3927 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 3928 return new(getNumOperands(), DescriptorBytes) CallInst(*this); 3929 } 3930 return new(getNumOperands()) CallInst(*this); 3931 } 3932 3933 SelectInst *SelectInst::cloneImpl() const { 3934 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2)); 3935 } 3936 3937 VAArgInst *VAArgInst::cloneImpl() const { 3938 return new VAArgInst(getOperand(0), getType()); 3939 } 3940 3941 ExtractElementInst *ExtractElementInst::cloneImpl() const { 3942 return ExtractElementInst::Create(getOperand(0), getOperand(1)); 3943 } 3944 3945 InsertElementInst *InsertElementInst::cloneImpl() const { 3946 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2)); 3947 } 3948 3949 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const { 3950 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2)); 3951 } 3952 3953 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); } 3954 3955 LandingPadInst *LandingPadInst::cloneImpl() const { 3956 return new LandingPadInst(*this); 3957 } 3958 3959 ReturnInst *ReturnInst::cloneImpl() const { 3960 return new(getNumOperands()) ReturnInst(*this); 3961 } 3962 3963 BranchInst *BranchInst::cloneImpl() const { 3964 return new(getNumOperands()) BranchInst(*this); 3965 } 3966 3967 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); } 3968 3969 IndirectBrInst *IndirectBrInst::cloneImpl() const { 3970 return new IndirectBrInst(*this); 3971 } 3972 3973 InvokeInst *InvokeInst::cloneImpl() const { 3974 if (hasOperandBundles()) { 3975 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 3976 return new(getNumOperands(), DescriptorBytes) InvokeInst(*this); 3977 } 3978 return new(getNumOperands()) InvokeInst(*this); 3979 } 3980 3981 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); } 3982 3983 CleanupReturnInst *CleanupReturnInst::cloneImpl() const { 3984 return new (getNumOperands()) CleanupReturnInst(*this); 3985 } 3986 3987 CatchReturnInst *CatchReturnInst::cloneImpl() const { 3988 return new (getNumOperands()) CatchReturnInst(*this); 3989 } 3990 3991 CatchSwitchInst *CatchSwitchInst::cloneImpl() const { 3992 return new CatchSwitchInst(*this); 3993 } 3994 3995 FuncletPadInst *FuncletPadInst::cloneImpl() const { 3996 return new (getNumOperands()) FuncletPadInst(*this); 3997 } 3998 3999 UnreachableInst *UnreachableInst::cloneImpl() const { 4000 LLVMContext &Context = getContext(); 4001 return new UnreachableInst(Context); 4002 } 4003