1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BasicBlock class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/BasicBlock.h" 15 #include "SymbolTableListTraitsImpl.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/IR/CFG.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/IR/IntrinsicInst.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Type.h" 23 #include <algorithm> 24 using namespace llvm; 25 26 ValueSymbolTable *BasicBlock::getValueSymbolTable() { 27 if (Function *F = getParent()) 28 return &F->getValueSymbolTable(); 29 return nullptr; 30 } 31 32 LLVMContext &BasicBlock::getContext() const { 33 return getType()->getContext(); 34 } 35 36 // Explicit instantiation of SymbolTableListTraits since some of the methods 37 // are not in the public header file... 38 template class llvm::SymbolTableListTraits<Instruction, BasicBlock>; 39 40 41 BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent, 42 BasicBlock *InsertBefore) 43 : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) { 44 45 if (NewParent) 46 insertInto(NewParent, InsertBefore); 47 else 48 assert(!InsertBefore && 49 "Cannot insert block before another block with no function!"); 50 51 setName(Name); 52 } 53 54 void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) { 55 assert(NewParent && "Expected a parent"); 56 assert(!Parent && "Already has a parent"); 57 58 if (InsertBefore) 59 NewParent->getBasicBlockList().insert(InsertBefore, this); 60 else 61 NewParent->getBasicBlockList().push_back(this); 62 } 63 64 BasicBlock::~BasicBlock() { 65 // If the address of the block is taken and it is being deleted (e.g. because 66 // it is dead), this means that there is either a dangling constant expr 67 // hanging off the block, or an undefined use of the block (source code 68 // expecting the address of a label to keep the block alive even though there 69 // is no indirect branch). Handle these cases by zapping the BlockAddress 70 // nodes. There are no other possible uses at this point. 71 if (hasAddressTaken()) { 72 assert(!use_empty() && "There should be at least one blockaddress!"); 73 Constant *Replacement = 74 ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1); 75 while (!use_empty()) { 76 BlockAddress *BA = cast<BlockAddress>(user_back()); 77 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 78 BA->getType())); 79 BA->destroyConstant(); 80 } 81 } 82 83 assert(getParent() == nullptr && "BasicBlock still linked into the program!"); 84 dropAllReferences(); 85 InstList.clear(); 86 } 87 88 void BasicBlock::setParent(Function *parent) { 89 // Set Parent=parent, updating instruction symtab entries as appropriate. 90 InstList.setSymTabObject(&Parent, parent); 91 } 92 93 void BasicBlock::removeFromParent() { 94 getParent()->getBasicBlockList().remove(this); 95 } 96 97 iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() { 98 return getParent()->getBasicBlockList().erase(this); 99 } 100 101 /// Unlink this basic block from its current function and 102 /// insert it into the function that MovePos lives in, right before MovePos. 103 void BasicBlock::moveBefore(BasicBlock *MovePos) { 104 MovePos->getParent()->getBasicBlockList().splice(MovePos, 105 getParent()->getBasicBlockList(), this); 106 } 107 108 /// Unlink this basic block from its current function and 109 /// insert it into the function that MovePos lives in, right after MovePos. 110 void BasicBlock::moveAfter(BasicBlock *MovePos) { 111 Function::iterator I = MovePos; 112 MovePos->getParent()->getBasicBlockList().splice(++I, 113 getParent()->getBasicBlockList(), this); 114 } 115 116 const Module *BasicBlock::getModule() const { 117 return getParent()->getParent(); 118 } 119 120 Module *BasicBlock::getModule() { 121 return getParent()->getParent(); 122 } 123 124 TerminatorInst *BasicBlock::getTerminator() { 125 if (InstList.empty()) return nullptr; 126 return dyn_cast<TerminatorInst>(&InstList.back()); 127 } 128 129 const TerminatorInst *BasicBlock::getTerminator() const { 130 if (InstList.empty()) return nullptr; 131 return dyn_cast<TerminatorInst>(&InstList.back()); 132 } 133 134 CallInst *BasicBlock::getTerminatingMustTailCall() { 135 if (InstList.empty()) 136 return nullptr; 137 ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back()); 138 if (!RI || RI == &InstList.front()) 139 return nullptr; 140 141 Instruction *Prev = RI->getPrevNode(); 142 if (!Prev) 143 return nullptr; 144 145 if (Value *RV = RI->getReturnValue()) { 146 if (RV != Prev) 147 return nullptr; 148 149 // Look through the optional bitcast. 150 if (auto *BI = dyn_cast<BitCastInst>(Prev)) { 151 RV = BI->getOperand(0); 152 Prev = BI->getPrevNode(); 153 if (!Prev || RV != Prev) 154 return nullptr; 155 } 156 } 157 158 if (auto *CI = dyn_cast<CallInst>(Prev)) { 159 if (CI->isMustTailCall()) 160 return CI; 161 } 162 return nullptr; 163 } 164 165 Instruction* BasicBlock::getFirstNonPHI() { 166 BasicBlock::iterator i = begin(); 167 // All valid basic blocks should have a terminator, 168 // which is not a PHINode. If we have an invalid basic 169 // block we'll get an assertion failure when dereferencing 170 // a past-the-end iterator. 171 while (isa<PHINode>(i)) ++i; 172 return &*i; 173 } 174 175 Instruction* BasicBlock::getFirstNonPHIOrDbg() { 176 BasicBlock::iterator i = begin(); 177 // All valid basic blocks should have a terminator, 178 // which is not a PHINode. If we have an invalid basic 179 // block we'll get an assertion failure when dereferencing 180 // a past-the-end iterator. 181 while (isa<PHINode>(i) || isa<DbgInfoIntrinsic>(i)) ++i; 182 return &*i; 183 } 184 185 Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() { 186 // All valid basic blocks should have a terminator, 187 // which is not a PHINode. If we have an invalid basic 188 // block we'll get an assertion failure when dereferencing 189 // a past-the-end iterator. 190 BasicBlock::iterator i = begin(); 191 for (;; ++i) { 192 if (isa<PHINode>(i) || isa<DbgInfoIntrinsic>(i)) 193 continue; 194 195 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(i); 196 if (!II) 197 break; 198 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 199 II->getIntrinsicID() != Intrinsic::lifetime_end) 200 break; 201 } 202 return &*i; 203 } 204 205 BasicBlock::iterator BasicBlock::getFirstInsertionPt() { 206 iterator InsertPt = getFirstNonPHI(); 207 if (isa<LandingPadInst>(InsertPt)) ++InsertPt; 208 return InsertPt; 209 } 210 211 void BasicBlock::dropAllReferences() { 212 for(iterator I = begin(), E = end(); I != E; ++I) 213 I->dropAllReferences(); 214 } 215 216 /// If this basic block has a single predecessor block, 217 /// return the block, otherwise return a null pointer. 218 BasicBlock *BasicBlock::getSinglePredecessor() { 219 pred_iterator PI = pred_begin(this), E = pred_end(this); 220 if (PI == E) return nullptr; // No preds. 221 BasicBlock *ThePred = *PI; 222 ++PI; 223 return (PI == E) ? ThePred : nullptr /*multiple preds*/; 224 } 225 226 /// If this basic block has a unique predecessor block, 227 /// return the block, otherwise return a null pointer. 228 /// Note that unique predecessor doesn't mean single edge, there can be 229 /// multiple edges from the unique predecessor to this block (for example 230 /// a switch statement with multiple cases having the same destination). 231 BasicBlock *BasicBlock::getUniquePredecessor() { 232 pred_iterator PI = pred_begin(this), E = pred_end(this); 233 if (PI == E) return nullptr; // No preds. 234 BasicBlock *PredBB = *PI; 235 ++PI; 236 for (;PI != E; ++PI) { 237 if (*PI != PredBB) 238 return nullptr; 239 // The same predecessor appears multiple times in the predecessor list. 240 // This is OK. 241 } 242 return PredBB; 243 } 244 245 BasicBlock *BasicBlock::getSingleSuccessor() { 246 succ_iterator SI = succ_begin(this), E = succ_end(this); 247 if (SI == E) return nullptr; // no successors 248 BasicBlock *TheSucc = *SI; 249 ++SI; 250 return (SI == E) ? TheSucc : nullptr /* multiple successors */; 251 } 252 253 BasicBlock *BasicBlock::getUniqueSuccessor() { 254 succ_iterator SI = succ_begin(this), E = succ_end(this); 255 if (SI == E) return NULL; // No successors 256 BasicBlock *SuccBB = *SI; 257 ++SI; 258 for (;SI != E; ++SI) { 259 if (*SI != SuccBB) 260 return NULL; 261 // The same successor appears multiple times in the successor list. 262 // This is OK. 263 } 264 return SuccBB; 265 } 266 267 /// This method is used to notify a BasicBlock that the 268 /// specified Predecessor of the block is no longer able to reach it. This is 269 /// actually not used to update the Predecessor list, but is actually used to 270 /// update the PHI nodes that reside in the block. Note that this should be 271 /// called while the predecessor still refers to this block. 272 /// 273 void BasicBlock::removePredecessor(BasicBlock *Pred, 274 bool DontDeleteUselessPHIs) { 275 assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs. 276 find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) && 277 "removePredecessor: BB is not a predecessor!"); 278 279 if (InstList.empty()) return; 280 PHINode *APN = dyn_cast<PHINode>(&front()); 281 if (!APN) return; // Quick exit. 282 283 // If there are exactly two predecessors, then we want to nuke the PHI nodes 284 // altogether. However, we cannot do this, if this in this case: 285 // 286 // Loop: 287 // %x = phi [X, Loop] 288 // %x2 = add %x, 1 ;; This would become %x2 = add %x2, 1 289 // br Loop ;; %x2 does not dominate all uses 290 // 291 // This is because the PHI node input is actually taken from the predecessor 292 // basic block. The only case this can happen is with a self loop, so we 293 // check for this case explicitly now. 294 // 295 unsigned max_idx = APN->getNumIncomingValues(); 296 assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!"); 297 if (max_idx == 2) { 298 BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred); 299 300 // Disable PHI elimination! 301 if (this == Other) max_idx = 3; 302 } 303 304 // <= Two predecessors BEFORE I remove one? 305 if (max_idx <= 2 && !DontDeleteUselessPHIs) { 306 // Yup, loop through and nuke the PHI nodes 307 while (PHINode *PN = dyn_cast<PHINode>(&front())) { 308 // Remove the predecessor first. 309 PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs); 310 311 // If the PHI _HAD_ two uses, replace PHI node with its now *single* value 312 if (max_idx == 2) { 313 if (PN->getIncomingValue(0) != PN) 314 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 315 else 316 // We are left with an infinite loop with no entries: kill the PHI. 317 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 318 getInstList().pop_front(); // Remove the PHI node 319 } 320 321 // If the PHI node already only had one entry, it got deleted by 322 // removeIncomingValue. 323 } 324 } else { 325 // Okay, now we know that we need to remove predecessor #pred_idx from all 326 // PHI nodes. Iterate over each PHI node fixing them up 327 PHINode *PN; 328 for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) { 329 ++II; 330 PN->removeIncomingValue(Pred, false); 331 // If all incoming values to the Phi are the same, we can replace the Phi 332 // with that value. 333 Value* PNV = nullptr; 334 if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue())) 335 if (PNV != PN) { 336 PN->replaceAllUsesWith(PNV); 337 PN->eraseFromParent(); 338 } 339 } 340 } 341 } 342 343 344 /// This splits a basic block into two at the specified 345 /// instruction. Note that all instructions BEFORE the specified iterator stay 346 /// as part of the original basic block, an unconditional branch is added to 347 /// the new BB, and the rest of the instructions in the BB are moved to the new 348 /// BB, including the old terminator. This invalidates the iterator. 349 /// 350 /// Note that this only works on well formed basic blocks (must have a 351 /// terminator), and 'I' must not be the end of instruction list (which would 352 /// cause a degenerate basic block to be formed, having a terminator inside of 353 /// the basic block). 354 /// 355 BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) { 356 assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!"); 357 assert(I != InstList.end() && 358 "Trying to get me to create degenerate basic block!"); 359 360 BasicBlock *InsertBefore = std::next(Function::iterator(this)) 361 .getNodePtrUnchecked(); 362 BasicBlock *New = BasicBlock::Create(getContext(), BBName, 363 getParent(), InsertBefore); 364 365 // Move all of the specified instructions from the original basic block into 366 // the new basic block. 367 New->getInstList().splice(New->end(), this->getInstList(), I, end()); 368 369 // Add a branch instruction to the newly formed basic block. 370 BranchInst::Create(New, this); 371 372 // Now we must loop through all of the successors of the New block (which 373 // _were_ the successors of the 'this' block), and update any PHI nodes in 374 // successors. If there were PHI nodes in the successors, then they need to 375 // know that incoming branches will be from New, not from Old. 376 // 377 for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) { 378 // Loop over any phi nodes in the basic block, updating the BB field of 379 // incoming values... 380 BasicBlock *Successor = *I; 381 PHINode *PN; 382 for (BasicBlock::iterator II = Successor->begin(); 383 (PN = dyn_cast<PHINode>(II)); ++II) { 384 int IDX = PN->getBasicBlockIndex(this); 385 while (IDX != -1) { 386 PN->setIncomingBlock((unsigned)IDX, New); 387 IDX = PN->getBasicBlockIndex(this); 388 } 389 } 390 } 391 return New; 392 } 393 394 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) { 395 TerminatorInst *TI = getTerminator(); 396 if (!TI) 397 // Cope with being called on a BasicBlock that doesn't have a terminator 398 // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this. 399 return; 400 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 401 BasicBlock *Succ = TI->getSuccessor(i); 402 // N.B. Succ might not be a complete BasicBlock, so don't assume 403 // that it ends with a non-phi instruction. 404 for (iterator II = Succ->begin(), IE = Succ->end(); II != IE; ++II) { 405 PHINode *PN = dyn_cast<PHINode>(II); 406 if (!PN) 407 break; 408 int i; 409 while ((i = PN->getBasicBlockIndex(this)) >= 0) 410 PN->setIncomingBlock(i, New); 411 } 412 } 413 } 414 415 /// Return true if this basic block is a landing pad. I.e., it's 416 /// the destination of the 'unwind' edge of an invoke instruction. 417 bool BasicBlock::isLandingPad() const { 418 return isa<LandingPadInst>(getFirstNonPHI()); 419 } 420 421 /// Return the landingpad instruction associated with the landing pad. 422 LandingPadInst *BasicBlock::getLandingPadInst() { 423 return dyn_cast<LandingPadInst>(getFirstNonPHI()); 424 } 425 const LandingPadInst *BasicBlock::getLandingPadInst() const { 426 return dyn_cast<LandingPadInst>(getFirstNonPHI()); 427 } 428