1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of ELF support for the MC-JIT runtime dynamic linker. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RuntimeDyldELF.h" 15 #include "RuntimeDyldCheckerImpl.h" 16 #include "Targets/RuntimeDyldELFMips.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/BinaryFormat/ELF.h" 21 #include "llvm/Object/ELFObjectFile.h" 22 #include "llvm/Object/ObjectFile.h" 23 #include "llvm/Support/Endian.h" 24 #include "llvm/Support/MemoryBuffer.h" 25 26 using namespace llvm; 27 using namespace llvm::object; 28 using namespace llvm::support::endian; 29 30 #define DEBUG_TYPE "dyld" 31 32 static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); } 33 34 static void or32AArch64Imm(void *L, uint64_t Imm) { 35 or32le(L, (Imm & 0xFFF) << 10); 36 } 37 38 template <class T> static void write(bool isBE, void *P, T V) { 39 isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V); 40 } 41 42 static void write32AArch64Addr(void *L, uint64_t Imm) { 43 uint32_t ImmLo = (Imm & 0x3) << 29; 44 uint32_t ImmHi = (Imm & 0x1FFFFC) << 3; 45 uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3); 46 write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi); 47 } 48 49 // Return the bits [Start, End] from Val shifted Start bits. 50 // For instance, getBits(0xF0, 4, 8) returns 0xF. 51 static uint64_t getBits(uint64_t Val, int Start, int End) { 52 uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1; 53 return (Val >> Start) & Mask; 54 } 55 56 namespace { 57 58 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> { 59 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 60 61 typedef Elf_Shdr_Impl<ELFT> Elf_Shdr; 62 typedef Elf_Sym_Impl<ELFT> Elf_Sym; 63 typedef Elf_Rel_Impl<ELFT, false> Elf_Rel; 64 typedef Elf_Rel_Impl<ELFT, true> Elf_Rela; 65 66 typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr; 67 68 typedef typename ELFT::uint addr_type; 69 70 DyldELFObject(ELFObjectFile<ELFT> &&Obj); 71 72 public: 73 static Expected<std::unique_ptr<DyldELFObject>> 74 create(MemoryBufferRef Wrapper); 75 76 void updateSectionAddress(const SectionRef &Sec, uint64_t Addr); 77 78 void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr); 79 80 // Methods for type inquiry through isa, cast and dyn_cast 81 static bool classof(const Binary *v) { 82 return (isa<ELFObjectFile<ELFT>>(v) && 83 classof(cast<ELFObjectFile<ELFT>>(v))); 84 } 85 static bool classof(const ELFObjectFile<ELFT> *v) { 86 return v->isDyldType(); 87 } 88 }; 89 90 91 92 // The MemoryBuffer passed into this constructor is just a wrapper around the 93 // actual memory. Ultimately, the Binary parent class will take ownership of 94 // this MemoryBuffer object but not the underlying memory. 95 template <class ELFT> 96 DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj) 97 : ELFObjectFile<ELFT>(std::move(Obj)) { 98 this->isDyldELFObject = true; 99 } 100 101 template <class ELFT> 102 Expected<std::unique_ptr<DyldELFObject<ELFT>>> 103 DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) { 104 auto Obj = ELFObjectFile<ELFT>::create(Wrapper); 105 if (auto E = Obj.takeError()) 106 return std::move(E); 107 std::unique_ptr<DyldELFObject<ELFT>> Ret( 108 new DyldELFObject<ELFT>(std::move(*Obj))); 109 return std::move(Ret); 110 } 111 112 template <class ELFT> 113 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec, 114 uint64_t Addr) { 115 DataRefImpl ShdrRef = Sec.getRawDataRefImpl(); 116 Elf_Shdr *shdr = 117 const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p)); 118 119 // This assumes the address passed in matches the target address bitness 120 // The template-based type cast handles everything else. 121 shdr->sh_addr = static_cast<addr_type>(Addr); 122 } 123 124 template <class ELFT> 125 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef, 126 uint64_t Addr) { 127 128 Elf_Sym *sym = const_cast<Elf_Sym *>( 129 ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl())); 130 131 // This assumes the address passed in matches the target address bitness 132 // The template-based type cast handles everything else. 133 sym->st_value = static_cast<addr_type>(Addr); 134 } 135 136 class LoadedELFObjectInfo final 137 : public LoadedObjectInfoHelper<LoadedELFObjectInfo, 138 RuntimeDyld::LoadedObjectInfo> { 139 public: 140 LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap) 141 : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {} 142 143 OwningBinary<ObjectFile> 144 getObjectForDebug(const ObjectFile &Obj) const override; 145 }; 146 147 template <typename ELFT> 148 static Expected<std::unique_ptr<DyldELFObject<ELFT>>> 149 createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject, 150 const LoadedELFObjectInfo &L) { 151 typedef typename ELFT::Shdr Elf_Shdr; 152 typedef typename ELFT::uint addr_type; 153 154 Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr = 155 DyldELFObject<ELFT>::create(Buffer); 156 if (Error E = ObjOrErr.takeError()) 157 return std::move(E); 158 159 std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr); 160 161 // Iterate over all sections in the object. 162 auto SI = SourceObject.section_begin(); 163 for (const auto &Sec : Obj->sections()) { 164 StringRef SectionName; 165 Sec.getName(SectionName); 166 if (SectionName != "") { 167 DataRefImpl ShdrRef = Sec.getRawDataRefImpl(); 168 Elf_Shdr *shdr = const_cast<Elf_Shdr *>( 169 reinterpret_cast<const Elf_Shdr *>(ShdrRef.p)); 170 171 if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) { 172 // This assumes that the address passed in matches the target address 173 // bitness. The template-based type cast handles everything else. 174 shdr->sh_addr = static_cast<addr_type>(SecLoadAddr); 175 } 176 } 177 ++SI; 178 } 179 180 return std::move(Obj); 181 } 182 183 static OwningBinary<ObjectFile> 184 createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) { 185 assert(Obj.isELF() && "Not an ELF object file."); 186 187 std::unique_ptr<MemoryBuffer> Buffer = 188 MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName()); 189 190 Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr); 191 handleAllErrors(DebugObj.takeError()); 192 if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) 193 DebugObj = 194 createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L); 195 else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) 196 DebugObj = 197 createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L); 198 else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) 199 DebugObj = 200 createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L); 201 else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) 202 DebugObj = 203 createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L); 204 else 205 llvm_unreachable("Unexpected ELF format"); 206 207 handleAllErrors(DebugObj.takeError()); 208 return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer)); 209 } 210 211 OwningBinary<ObjectFile> 212 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const { 213 return createELFDebugObject(Obj, *this); 214 } 215 216 } // anonymous namespace 217 218 namespace llvm { 219 220 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr, 221 JITSymbolResolver &Resolver) 222 : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {} 223 RuntimeDyldELF::~RuntimeDyldELF() {} 224 225 void RuntimeDyldELF::registerEHFrames() { 226 for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) { 227 SID EHFrameSID = UnregisteredEHFrameSections[i]; 228 uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress(); 229 uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress(); 230 size_t EHFrameSize = Sections[EHFrameSID].getSize(); 231 MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize); 232 } 233 UnregisteredEHFrameSections.clear(); 234 } 235 236 std::unique_ptr<RuntimeDyldELF> 237 llvm::RuntimeDyldELF::create(Triple::ArchType Arch, 238 RuntimeDyld::MemoryManager &MemMgr, 239 JITSymbolResolver &Resolver) { 240 switch (Arch) { 241 default: 242 return make_unique<RuntimeDyldELF>(MemMgr, Resolver); 243 case Triple::mips: 244 case Triple::mipsel: 245 case Triple::mips64: 246 case Triple::mips64el: 247 return make_unique<RuntimeDyldELFMips>(MemMgr, Resolver); 248 } 249 } 250 251 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> 252 RuntimeDyldELF::loadObject(const object::ObjectFile &O) { 253 if (auto ObjSectionToIDOrErr = loadObjectImpl(O)) 254 return llvm::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr); 255 else { 256 HasError = true; 257 raw_string_ostream ErrStream(ErrorStr); 258 logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream); 259 return nullptr; 260 } 261 } 262 263 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section, 264 uint64_t Offset, uint64_t Value, 265 uint32_t Type, int64_t Addend, 266 uint64_t SymOffset) { 267 switch (Type) { 268 default: 269 llvm_unreachable("Relocation type not implemented yet!"); 270 break; 271 case ELF::R_X86_64_NONE: 272 break; 273 case ELF::R_X86_64_64: { 274 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = 275 Value + Addend; 276 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at " 277 << format("%p\n", Section.getAddressWithOffset(Offset))); 278 break; 279 } 280 case ELF::R_X86_64_32: 281 case ELF::R_X86_64_32S: { 282 Value += Addend; 283 assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) || 284 (Type == ELF::R_X86_64_32S && 285 ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN))); 286 uint32_t TruncatedAddr = (Value & 0xFFFFFFFF); 287 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) = 288 TruncatedAddr; 289 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at " 290 << format("%p\n", Section.getAddressWithOffset(Offset))); 291 break; 292 } 293 case ELF::R_X86_64_PC8: { 294 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 295 int64_t RealOffset = Value + Addend - FinalAddress; 296 assert(isInt<8>(RealOffset)); 297 int8_t TruncOffset = (RealOffset & 0xFF); 298 Section.getAddress()[Offset] = TruncOffset; 299 break; 300 } 301 case ELF::R_X86_64_PC32: { 302 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 303 int64_t RealOffset = Value + Addend - FinalAddress; 304 assert(isInt<32>(RealOffset)); 305 int32_t TruncOffset = (RealOffset & 0xFFFFFFFF); 306 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) = 307 TruncOffset; 308 break; 309 } 310 case ELF::R_X86_64_PC64: { 311 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 312 int64_t RealOffset = Value + Addend - FinalAddress; 313 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = 314 RealOffset; 315 LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset) << " at " 316 << format("%p\n", FinalAddress)); 317 break; 318 } 319 case ELF::R_X86_64_GOTOFF64: { 320 // Compute Value - GOTBase. 321 uint64_t GOTBase = 0; 322 for (const auto &Section : Sections) { 323 if (Section.getName() == ".got") { 324 GOTBase = Section.getLoadAddressWithOffset(0); 325 break; 326 } 327 } 328 assert(GOTBase != 0 && "missing GOT"); 329 int64_t GOTOffset = Value - GOTBase + Addend; 330 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = GOTOffset; 331 break; 332 } 333 } 334 } 335 336 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section, 337 uint64_t Offset, uint32_t Value, 338 uint32_t Type, int32_t Addend) { 339 switch (Type) { 340 case ELF::R_386_32: { 341 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) = 342 Value + Addend; 343 break; 344 } 345 // Handle R_386_PLT32 like R_386_PC32 since it should be able to 346 // reach any 32 bit address. 347 case ELF::R_386_PLT32: 348 case ELF::R_386_PC32: { 349 uint32_t FinalAddress = 350 Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF; 351 uint32_t RealOffset = Value + Addend - FinalAddress; 352 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) = 353 RealOffset; 354 break; 355 } 356 default: 357 // There are other relocation types, but it appears these are the 358 // only ones currently used by the LLVM ELF object writer 359 llvm_unreachable("Relocation type not implemented yet!"); 360 break; 361 } 362 } 363 364 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section, 365 uint64_t Offset, uint64_t Value, 366 uint32_t Type, int64_t Addend) { 367 uint32_t *TargetPtr = 368 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset)); 369 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 370 // Data should use target endian. Code should always use little endian. 371 bool isBE = Arch == Triple::aarch64_be; 372 373 LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x" 374 << format("%llx", Section.getAddressWithOffset(Offset)) 375 << " FinalAddress: 0x" << format("%llx", FinalAddress) 376 << " Value: 0x" << format("%llx", Value) << " Type: 0x" 377 << format("%x", Type) << " Addend: 0x" 378 << format("%llx", Addend) << "\n"); 379 380 switch (Type) { 381 default: 382 llvm_unreachable("Relocation type not implemented yet!"); 383 break; 384 case ELF::R_AARCH64_ABS16: { 385 uint64_t Result = Value + Addend; 386 assert(static_cast<int64_t>(Result) >= INT16_MIN && Result < UINT16_MAX); 387 write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU)); 388 break; 389 } 390 case ELF::R_AARCH64_ABS32: { 391 uint64_t Result = Value + Addend; 392 assert(static_cast<int64_t>(Result) >= INT32_MIN && Result < UINT32_MAX); 393 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU)); 394 break; 395 } 396 case ELF::R_AARCH64_ABS64: 397 write(isBE, TargetPtr, Value + Addend); 398 break; 399 case ELF::R_AARCH64_PREL32: { 400 uint64_t Result = Value + Addend - FinalAddress; 401 assert(static_cast<int64_t>(Result) >= INT32_MIN && 402 static_cast<int64_t>(Result) <= UINT32_MAX); 403 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU)); 404 break; 405 } 406 case ELF::R_AARCH64_PREL64: 407 write(isBE, TargetPtr, Value + Addend - FinalAddress); 408 break; 409 case ELF::R_AARCH64_CALL26: // fallthrough 410 case ELF::R_AARCH64_JUMP26: { 411 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the 412 // calculation. 413 uint64_t BranchImm = Value + Addend - FinalAddress; 414 415 // "Check that -2^27 <= result < 2^27". 416 assert(isInt<28>(BranchImm)); 417 or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2); 418 break; 419 } 420 case ELF::R_AARCH64_MOVW_UABS_G3: 421 or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43); 422 break; 423 case ELF::R_AARCH64_MOVW_UABS_G2_NC: 424 or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27); 425 break; 426 case ELF::R_AARCH64_MOVW_UABS_G1_NC: 427 or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11); 428 break; 429 case ELF::R_AARCH64_MOVW_UABS_G0_NC: 430 or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5); 431 break; 432 case ELF::R_AARCH64_ADR_PREL_PG_HI21: { 433 // Operation: Page(S+A) - Page(P) 434 uint64_t Result = 435 ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL); 436 437 // Check that -2^32 <= X < 2^32 438 assert(isInt<33>(Result) && "overflow check failed for relocation"); 439 440 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken 441 // from bits 32:12 of X. 442 write32AArch64Addr(TargetPtr, Result >> 12); 443 break; 444 } 445 case ELF::R_AARCH64_ADD_ABS_LO12_NC: 446 // Operation: S + A 447 // Immediate goes in bits 21:10 of LD/ST instruction, taken 448 // from bits 11:0 of X 449 or32AArch64Imm(TargetPtr, Value + Addend); 450 break; 451 case ELF::R_AARCH64_LDST8_ABS_LO12_NC: 452 // Operation: S + A 453 // Immediate goes in bits 21:10 of LD/ST instruction, taken 454 // from bits 11:0 of X 455 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11)); 456 break; 457 case ELF::R_AARCH64_LDST16_ABS_LO12_NC: 458 // Operation: S + A 459 // Immediate goes in bits 21:10 of LD/ST instruction, taken 460 // from bits 11:1 of X 461 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11)); 462 break; 463 case ELF::R_AARCH64_LDST32_ABS_LO12_NC: 464 // Operation: S + A 465 // Immediate goes in bits 21:10 of LD/ST instruction, taken 466 // from bits 11:2 of X 467 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11)); 468 break; 469 case ELF::R_AARCH64_LDST64_ABS_LO12_NC: 470 // Operation: S + A 471 // Immediate goes in bits 21:10 of LD/ST instruction, taken 472 // from bits 11:3 of X 473 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11)); 474 break; 475 case ELF::R_AARCH64_LDST128_ABS_LO12_NC: 476 // Operation: S + A 477 // Immediate goes in bits 21:10 of LD/ST instruction, taken 478 // from bits 11:4 of X 479 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11)); 480 break; 481 } 482 } 483 484 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section, 485 uint64_t Offset, uint32_t Value, 486 uint32_t Type, int32_t Addend) { 487 // TODO: Add Thumb relocations. 488 uint32_t *TargetPtr = 489 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset)); 490 uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF; 491 Value += Addend; 492 493 LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: " 494 << Section.getAddressWithOffset(Offset) 495 << " FinalAddress: " << format("%p", FinalAddress) 496 << " Value: " << format("%x", Value) 497 << " Type: " << format("%x", Type) 498 << " Addend: " << format("%x", Addend) << "\n"); 499 500 switch (Type) { 501 default: 502 llvm_unreachable("Not implemented relocation type!"); 503 504 case ELF::R_ARM_NONE: 505 break; 506 // Write a 31bit signed offset 507 case ELF::R_ARM_PREL31: 508 support::ulittle32_t::ref{TargetPtr} = 509 (support::ulittle32_t::ref{TargetPtr} & 0x80000000) | 510 ((Value - FinalAddress) & ~0x80000000); 511 break; 512 case ELF::R_ARM_TARGET1: 513 case ELF::R_ARM_ABS32: 514 support::ulittle32_t::ref{TargetPtr} = Value; 515 break; 516 // Write first 16 bit of 32 bit value to the mov instruction. 517 // Last 4 bit should be shifted. 518 case ELF::R_ARM_MOVW_ABS_NC: 519 case ELF::R_ARM_MOVT_ABS: 520 if (Type == ELF::R_ARM_MOVW_ABS_NC) 521 Value = Value & 0xFFFF; 522 else if (Type == ELF::R_ARM_MOVT_ABS) 523 Value = (Value >> 16) & 0xFFFF; 524 support::ulittle32_t::ref{TargetPtr} = 525 (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) | 526 (((Value >> 12) & 0xF) << 16); 527 break; 528 // Write 24 bit relative value to the branch instruction. 529 case ELF::R_ARM_PC24: // Fall through. 530 case ELF::R_ARM_CALL: // Fall through. 531 case ELF::R_ARM_JUMP24: 532 int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8); 533 RelValue = (RelValue & 0x03FFFFFC) >> 2; 534 assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE); 535 support::ulittle32_t::ref{TargetPtr} = 536 (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue; 537 break; 538 } 539 } 540 541 void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) { 542 if (Arch == Triple::UnknownArch || 543 !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) { 544 IsMipsO32ABI = false; 545 IsMipsN32ABI = false; 546 IsMipsN64ABI = false; 547 return; 548 } 549 if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) { 550 unsigned AbiVariant = E->getPlatformFlags(); 551 IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32; 552 IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2; 553 } 554 IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips"); 555 } 556 557 // Return the .TOC. section and offset. 558 Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj, 559 ObjSectionToIDMap &LocalSections, 560 RelocationValueRef &Rel) { 561 // Set a default SectionID in case we do not find a TOC section below. 562 // This may happen for references to TOC base base (sym@toc, .odp 563 // relocation) without a .toc directive. In this case just use the 564 // first section (which is usually the .odp) since the code won't 565 // reference the .toc base directly. 566 Rel.SymbolName = nullptr; 567 Rel.SectionID = 0; 568 569 // The TOC consists of sections .got, .toc, .tocbss, .plt in that 570 // order. The TOC starts where the first of these sections starts. 571 for (auto &Section: Obj.sections()) { 572 StringRef SectionName; 573 if (auto EC = Section.getName(SectionName)) 574 return errorCodeToError(EC); 575 576 if (SectionName == ".got" 577 || SectionName == ".toc" 578 || SectionName == ".tocbss" 579 || SectionName == ".plt") { 580 if (auto SectionIDOrErr = 581 findOrEmitSection(Obj, Section, false, LocalSections)) 582 Rel.SectionID = *SectionIDOrErr; 583 else 584 return SectionIDOrErr.takeError(); 585 break; 586 } 587 } 588 589 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 590 // thus permitting a full 64 Kbytes segment. 591 Rel.Addend = 0x8000; 592 593 return Error::success(); 594 } 595 596 // Returns the sections and offset associated with the ODP entry referenced 597 // by Symbol. 598 Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj, 599 ObjSectionToIDMap &LocalSections, 600 RelocationValueRef &Rel) { 601 // Get the ELF symbol value (st_value) to compare with Relocation offset in 602 // .opd entries 603 for (section_iterator si = Obj.section_begin(), se = Obj.section_end(); 604 si != se; ++si) { 605 section_iterator RelSecI = si->getRelocatedSection(); 606 if (RelSecI == Obj.section_end()) 607 continue; 608 609 StringRef RelSectionName; 610 if (auto EC = RelSecI->getName(RelSectionName)) 611 return errorCodeToError(EC); 612 613 if (RelSectionName != ".opd") 614 continue; 615 616 for (elf_relocation_iterator i = si->relocation_begin(), 617 e = si->relocation_end(); 618 i != e;) { 619 // The R_PPC64_ADDR64 relocation indicates the first field 620 // of a .opd entry 621 uint64_t TypeFunc = i->getType(); 622 if (TypeFunc != ELF::R_PPC64_ADDR64) { 623 ++i; 624 continue; 625 } 626 627 uint64_t TargetSymbolOffset = i->getOffset(); 628 symbol_iterator TargetSymbol = i->getSymbol(); 629 int64_t Addend; 630 if (auto AddendOrErr = i->getAddend()) 631 Addend = *AddendOrErr; 632 else 633 return AddendOrErr.takeError(); 634 635 ++i; 636 if (i == e) 637 break; 638 639 // Just check if following relocation is a R_PPC64_TOC 640 uint64_t TypeTOC = i->getType(); 641 if (TypeTOC != ELF::R_PPC64_TOC) 642 continue; 643 644 // Finally compares the Symbol value and the target symbol offset 645 // to check if this .opd entry refers to the symbol the relocation 646 // points to. 647 if (Rel.Addend != (int64_t)TargetSymbolOffset) 648 continue; 649 650 section_iterator TSI = Obj.section_end(); 651 if (auto TSIOrErr = TargetSymbol->getSection()) 652 TSI = *TSIOrErr; 653 else 654 return TSIOrErr.takeError(); 655 assert(TSI != Obj.section_end() && "TSI should refer to a valid section"); 656 657 bool IsCode = TSI->isText(); 658 if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode, 659 LocalSections)) 660 Rel.SectionID = *SectionIDOrErr; 661 else 662 return SectionIDOrErr.takeError(); 663 Rel.Addend = (intptr_t)Addend; 664 return Error::success(); 665 } 666 } 667 llvm_unreachable("Attempting to get address of ODP entry!"); 668 } 669 670 // Relocation masks following the #lo(value), #hi(value), #ha(value), 671 // #higher(value), #highera(value), #highest(value), and #highesta(value) 672 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi 673 // document. 674 675 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; } 676 677 static inline uint16_t applyPPChi(uint64_t value) { 678 return (value >> 16) & 0xffff; 679 } 680 681 static inline uint16_t applyPPCha (uint64_t value) { 682 return ((value + 0x8000) >> 16) & 0xffff; 683 } 684 685 static inline uint16_t applyPPChigher(uint64_t value) { 686 return (value >> 32) & 0xffff; 687 } 688 689 static inline uint16_t applyPPChighera (uint64_t value) { 690 return ((value + 0x8000) >> 32) & 0xffff; 691 } 692 693 static inline uint16_t applyPPChighest(uint64_t value) { 694 return (value >> 48) & 0xffff; 695 } 696 697 static inline uint16_t applyPPChighesta (uint64_t value) { 698 return ((value + 0x8000) >> 48) & 0xffff; 699 } 700 701 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section, 702 uint64_t Offset, uint64_t Value, 703 uint32_t Type, int64_t Addend) { 704 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset); 705 switch (Type) { 706 default: 707 llvm_unreachable("Relocation type not implemented yet!"); 708 break; 709 case ELF::R_PPC_ADDR16_LO: 710 writeInt16BE(LocalAddress, applyPPClo(Value + Addend)); 711 break; 712 case ELF::R_PPC_ADDR16_HI: 713 writeInt16BE(LocalAddress, applyPPChi(Value + Addend)); 714 break; 715 case ELF::R_PPC_ADDR16_HA: 716 writeInt16BE(LocalAddress, applyPPCha(Value + Addend)); 717 break; 718 } 719 } 720 721 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section, 722 uint64_t Offset, uint64_t Value, 723 uint32_t Type, int64_t Addend) { 724 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset); 725 switch (Type) { 726 default: 727 llvm_unreachable("Relocation type not implemented yet!"); 728 break; 729 case ELF::R_PPC64_ADDR16: 730 writeInt16BE(LocalAddress, applyPPClo(Value + Addend)); 731 break; 732 case ELF::R_PPC64_ADDR16_DS: 733 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3); 734 break; 735 case ELF::R_PPC64_ADDR16_LO: 736 writeInt16BE(LocalAddress, applyPPClo(Value + Addend)); 737 break; 738 case ELF::R_PPC64_ADDR16_LO_DS: 739 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3); 740 break; 741 case ELF::R_PPC64_ADDR16_HI: 742 case ELF::R_PPC64_ADDR16_HIGH: 743 writeInt16BE(LocalAddress, applyPPChi(Value + Addend)); 744 break; 745 case ELF::R_PPC64_ADDR16_HA: 746 case ELF::R_PPC64_ADDR16_HIGHA: 747 writeInt16BE(LocalAddress, applyPPCha(Value + Addend)); 748 break; 749 case ELF::R_PPC64_ADDR16_HIGHER: 750 writeInt16BE(LocalAddress, applyPPChigher(Value + Addend)); 751 break; 752 case ELF::R_PPC64_ADDR16_HIGHERA: 753 writeInt16BE(LocalAddress, applyPPChighera(Value + Addend)); 754 break; 755 case ELF::R_PPC64_ADDR16_HIGHEST: 756 writeInt16BE(LocalAddress, applyPPChighest(Value + Addend)); 757 break; 758 case ELF::R_PPC64_ADDR16_HIGHESTA: 759 writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend)); 760 break; 761 case ELF::R_PPC64_ADDR14: { 762 assert(((Value + Addend) & 3) == 0); 763 // Preserve the AA/LK bits in the branch instruction 764 uint8_t aalk = *(LocalAddress + 3); 765 writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc)); 766 } break; 767 case ELF::R_PPC64_REL16_LO: { 768 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 769 uint64_t Delta = Value - FinalAddress + Addend; 770 writeInt16BE(LocalAddress, applyPPClo(Delta)); 771 } break; 772 case ELF::R_PPC64_REL16_HI: { 773 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 774 uint64_t Delta = Value - FinalAddress + Addend; 775 writeInt16BE(LocalAddress, applyPPChi(Delta)); 776 } break; 777 case ELF::R_PPC64_REL16_HA: { 778 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 779 uint64_t Delta = Value - FinalAddress + Addend; 780 writeInt16BE(LocalAddress, applyPPCha(Delta)); 781 } break; 782 case ELF::R_PPC64_ADDR32: { 783 int64_t Result = static_cast<int64_t>(Value + Addend); 784 if (SignExtend64<32>(Result) != Result) 785 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow"); 786 writeInt32BE(LocalAddress, Result); 787 } break; 788 case ELF::R_PPC64_REL24: { 789 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 790 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend); 791 if (SignExtend64<26>(delta) != delta) 792 llvm_unreachable("Relocation R_PPC64_REL24 overflow"); 793 // We preserve bits other than LI field, i.e. PO and AA/LK fields. 794 uint32_t Inst = readBytesUnaligned(LocalAddress, 4); 795 writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC)); 796 } break; 797 case ELF::R_PPC64_REL32: { 798 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 799 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend); 800 if (SignExtend64<32>(delta) != delta) 801 llvm_unreachable("Relocation R_PPC64_REL32 overflow"); 802 writeInt32BE(LocalAddress, delta); 803 } break; 804 case ELF::R_PPC64_REL64: { 805 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 806 uint64_t Delta = Value - FinalAddress + Addend; 807 writeInt64BE(LocalAddress, Delta); 808 } break; 809 case ELF::R_PPC64_ADDR64: 810 writeInt64BE(LocalAddress, Value + Addend); 811 break; 812 } 813 } 814 815 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section, 816 uint64_t Offset, uint64_t Value, 817 uint32_t Type, int64_t Addend) { 818 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset); 819 switch (Type) { 820 default: 821 llvm_unreachable("Relocation type not implemented yet!"); 822 break; 823 case ELF::R_390_PC16DBL: 824 case ELF::R_390_PLT16DBL: { 825 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); 826 assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow"); 827 writeInt16BE(LocalAddress, Delta / 2); 828 break; 829 } 830 case ELF::R_390_PC32DBL: 831 case ELF::R_390_PLT32DBL: { 832 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); 833 assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow"); 834 writeInt32BE(LocalAddress, Delta / 2); 835 break; 836 } 837 case ELF::R_390_PC16: { 838 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); 839 assert(int16_t(Delta) == Delta && "R_390_PC16 overflow"); 840 writeInt16BE(LocalAddress, Delta); 841 break; 842 } 843 case ELF::R_390_PC32: { 844 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); 845 assert(int32_t(Delta) == Delta && "R_390_PC32 overflow"); 846 writeInt32BE(LocalAddress, Delta); 847 break; 848 } 849 case ELF::R_390_PC64: { 850 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); 851 writeInt64BE(LocalAddress, Delta); 852 break; 853 } 854 case ELF::R_390_8: 855 *LocalAddress = (uint8_t)(Value + Addend); 856 break; 857 case ELF::R_390_16: 858 writeInt16BE(LocalAddress, Value + Addend); 859 break; 860 case ELF::R_390_32: 861 writeInt32BE(LocalAddress, Value + Addend); 862 break; 863 case ELF::R_390_64: 864 writeInt64BE(LocalAddress, Value + Addend); 865 break; 866 } 867 } 868 869 void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section, 870 uint64_t Offset, uint64_t Value, 871 uint32_t Type, int64_t Addend) { 872 bool isBE = Arch == Triple::bpfeb; 873 874 switch (Type) { 875 default: 876 llvm_unreachable("Relocation type not implemented yet!"); 877 break; 878 case ELF::R_BPF_NONE: 879 break; 880 case ELF::R_BPF_64_64: { 881 write(isBE, Section.getAddressWithOffset(Offset), Value + Addend); 882 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at " 883 << format("%p\n", Section.getAddressWithOffset(Offset))); 884 break; 885 } 886 case ELF::R_BPF_64_32: { 887 Value += Addend; 888 assert(Value <= UINT32_MAX); 889 write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value)); 890 LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at " 891 << format("%p\n", Section.getAddressWithOffset(Offset))); 892 break; 893 } 894 } 895 } 896 897 // The target location for the relocation is described by RE.SectionID and 898 // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each 899 // SectionEntry has three members describing its location. 900 // SectionEntry::Address is the address at which the section has been loaded 901 // into memory in the current (host) process. SectionEntry::LoadAddress is the 902 // address that the section will have in the target process. 903 // SectionEntry::ObjAddress is the address of the bits for this section in the 904 // original emitted object image (also in the current address space). 905 // 906 // Relocations will be applied as if the section were loaded at 907 // SectionEntry::LoadAddress, but they will be applied at an address based 908 // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to 909 // Target memory contents if they are required for value calculations. 910 // 911 // The Value parameter here is the load address of the symbol for the 912 // relocation to be applied. For relocations which refer to symbols in the 913 // current object Value will be the LoadAddress of the section in which 914 // the symbol resides (RE.Addend provides additional information about the 915 // symbol location). For external symbols, Value will be the address of the 916 // symbol in the target address space. 917 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE, 918 uint64_t Value) { 919 const SectionEntry &Section = Sections[RE.SectionID]; 920 return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend, 921 RE.SymOffset, RE.SectionID); 922 } 923 924 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section, 925 uint64_t Offset, uint64_t Value, 926 uint32_t Type, int64_t Addend, 927 uint64_t SymOffset, SID SectionID) { 928 switch (Arch) { 929 case Triple::x86_64: 930 resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset); 931 break; 932 case Triple::x86: 933 resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type, 934 (uint32_t)(Addend & 0xffffffffL)); 935 break; 936 case Triple::aarch64: 937 case Triple::aarch64_be: 938 resolveAArch64Relocation(Section, Offset, Value, Type, Addend); 939 break; 940 case Triple::arm: // Fall through. 941 case Triple::armeb: 942 case Triple::thumb: 943 case Triple::thumbeb: 944 resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type, 945 (uint32_t)(Addend & 0xffffffffL)); 946 break; 947 case Triple::ppc: 948 resolvePPC32Relocation(Section, Offset, Value, Type, Addend); 949 break; 950 case Triple::ppc64: // Fall through. 951 case Triple::ppc64le: 952 resolvePPC64Relocation(Section, Offset, Value, Type, Addend); 953 break; 954 case Triple::systemz: 955 resolveSystemZRelocation(Section, Offset, Value, Type, Addend); 956 break; 957 case Triple::bpfel: 958 case Triple::bpfeb: 959 resolveBPFRelocation(Section, Offset, Value, Type, Addend); 960 break; 961 default: 962 llvm_unreachable("Unsupported CPU type!"); 963 } 964 } 965 966 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const { 967 return (void *)(Sections[SectionID].getObjAddress() + Offset); 968 } 969 970 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) { 971 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset); 972 if (Value.SymbolName) 973 addRelocationForSymbol(RE, Value.SymbolName); 974 else 975 addRelocationForSection(RE, Value.SectionID); 976 } 977 978 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType, 979 bool IsLocal) const { 980 switch (RelType) { 981 case ELF::R_MICROMIPS_GOT16: 982 if (IsLocal) 983 return ELF::R_MICROMIPS_LO16; 984 break; 985 case ELF::R_MICROMIPS_HI16: 986 return ELF::R_MICROMIPS_LO16; 987 case ELF::R_MIPS_GOT16: 988 if (IsLocal) 989 return ELF::R_MIPS_LO16; 990 break; 991 case ELF::R_MIPS_HI16: 992 return ELF::R_MIPS_LO16; 993 case ELF::R_MIPS_PCHI16: 994 return ELF::R_MIPS_PCLO16; 995 default: 996 break; 997 } 998 return ELF::R_MIPS_NONE; 999 } 1000 1001 // Sometimes we don't need to create thunk for a branch. 1002 // This typically happens when branch target is located 1003 // in the same object file. In such case target is either 1004 // a weak symbol or symbol in a different executable section. 1005 // This function checks if branch target is located in the 1006 // same object file and if distance between source and target 1007 // fits R_AARCH64_CALL26 relocation. If both conditions are 1008 // met, it emits direct jump to the target and returns true. 1009 // Otherwise false is returned and thunk is created. 1010 bool RuntimeDyldELF::resolveAArch64ShortBranch( 1011 unsigned SectionID, relocation_iterator RelI, 1012 const RelocationValueRef &Value) { 1013 uint64_t Address; 1014 if (Value.SymbolName) { 1015 auto Loc = GlobalSymbolTable.find(Value.SymbolName); 1016 1017 // Don't create direct branch for external symbols. 1018 if (Loc == GlobalSymbolTable.end()) 1019 return false; 1020 1021 const auto &SymInfo = Loc->second; 1022 Address = 1023 uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset( 1024 SymInfo.getOffset())); 1025 } else { 1026 Address = uint64_t(Sections[Value.SectionID].getLoadAddress()); 1027 } 1028 uint64_t Offset = RelI->getOffset(); 1029 uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset); 1030 1031 // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27 1032 // If distance between source and target is out of range then we should 1033 // create thunk. 1034 if (!isInt<28>(Address + Value.Addend - SourceAddress)) 1035 return false; 1036 1037 resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(), 1038 Value.Addend); 1039 1040 return true; 1041 } 1042 1043 void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID, 1044 const RelocationValueRef &Value, 1045 relocation_iterator RelI, 1046 StubMap &Stubs) { 1047 1048 LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation."); 1049 SectionEntry &Section = Sections[SectionID]; 1050 1051 uint64_t Offset = RelI->getOffset(); 1052 unsigned RelType = RelI->getType(); 1053 // Look for an existing stub. 1054 StubMap::const_iterator i = Stubs.find(Value); 1055 if (i != Stubs.end()) { 1056 resolveRelocation(Section, Offset, 1057 (uint64_t)Section.getAddressWithOffset(i->second), 1058 RelType, 0); 1059 LLVM_DEBUG(dbgs() << " Stub function found\n"); 1060 } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) { 1061 // Create a new stub function. 1062 LLVM_DEBUG(dbgs() << " Create a new stub function\n"); 1063 Stubs[Value] = Section.getStubOffset(); 1064 uint8_t *StubTargetAddr = createStubFunction( 1065 Section.getAddressWithOffset(Section.getStubOffset())); 1066 1067 RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(), 1068 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend); 1069 RelocationEntry REmovk_g2(SectionID, 1070 StubTargetAddr - Section.getAddress() + 4, 1071 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend); 1072 RelocationEntry REmovk_g1(SectionID, 1073 StubTargetAddr - Section.getAddress() + 8, 1074 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend); 1075 RelocationEntry REmovk_g0(SectionID, 1076 StubTargetAddr - Section.getAddress() + 12, 1077 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend); 1078 1079 if (Value.SymbolName) { 1080 addRelocationForSymbol(REmovz_g3, Value.SymbolName); 1081 addRelocationForSymbol(REmovk_g2, Value.SymbolName); 1082 addRelocationForSymbol(REmovk_g1, Value.SymbolName); 1083 addRelocationForSymbol(REmovk_g0, Value.SymbolName); 1084 } else { 1085 addRelocationForSection(REmovz_g3, Value.SectionID); 1086 addRelocationForSection(REmovk_g2, Value.SectionID); 1087 addRelocationForSection(REmovk_g1, Value.SectionID); 1088 addRelocationForSection(REmovk_g0, Value.SectionID); 1089 } 1090 resolveRelocation(Section, Offset, 1091 reinterpret_cast<uint64_t>(Section.getAddressWithOffset( 1092 Section.getStubOffset())), 1093 RelType, 0); 1094 Section.advanceStubOffset(getMaxStubSize()); 1095 } 1096 } 1097 1098 Expected<relocation_iterator> 1099 RuntimeDyldELF::processRelocationRef( 1100 unsigned SectionID, relocation_iterator RelI, const ObjectFile &O, 1101 ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) { 1102 const auto &Obj = cast<ELFObjectFileBase>(O); 1103 uint64_t RelType = RelI->getType(); 1104 int64_t Addend = 0; 1105 if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend()) 1106 Addend = *AddendOrErr; 1107 else 1108 consumeError(AddendOrErr.takeError()); 1109 elf_symbol_iterator Symbol = RelI->getSymbol(); 1110 1111 // Obtain the symbol name which is referenced in the relocation 1112 StringRef TargetName; 1113 if (Symbol != Obj.symbol_end()) { 1114 if (auto TargetNameOrErr = Symbol->getName()) 1115 TargetName = *TargetNameOrErr; 1116 else 1117 return TargetNameOrErr.takeError(); 1118 } 1119 LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend 1120 << " TargetName: " << TargetName << "\n"); 1121 RelocationValueRef Value; 1122 // First search for the symbol in the local symbol table 1123 SymbolRef::Type SymType = SymbolRef::ST_Unknown; 1124 1125 // Search for the symbol in the global symbol table 1126 RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end(); 1127 if (Symbol != Obj.symbol_end()) { 1128 gsi = GlobalSymbolTable.find(TargetName.data()); 1129 Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType(); 1130 if (!SymTypeOrErr) { 1131 std::string Buf; 1132 raw_string_ostream OS(Buf); 1133 logAllUnhandledErrors(SymTypeOrErr.takeError(), OS); 1134 OS.flush(); 1135 report_fatal_error(Buf); 1136 } 1137 SymType = *SymTypeOrErr; 1138 } 1139 if (gsi != GlobalSymbolTable.end()) { 1140 const auto &SymInfo = gsi->second; 1141 Value.SectionID = SymInfo.getSectionID(); 1142 Value.Offset = SymInfo.getOffset(); 1143 Value.Addend = SymInfo.getOffset() + Addend; 1144 } else { 1145 switch (SymType) { 1146 case SymbolRef::ST_Debug: { 1147 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously 1148 // and can be changed by another developers. Maybe best way is add 1149 // a new symbol type ST_Section to SymbolRef and use it. 1150 auto SectionOrErr = Symbol->getSection(); 1151 if (!SectionOrErr) { 1152 std::string Buf; 1153 raw_string_ostream OS(Buf); 1154 logAllUnhandledErrors(SectionOrErr.takeError(), OS); 1155 OS.flush(); 1156 report_fatal_error(Buf); 1157 } 1158 section_iterator si = *SectionOrErr; 1159 if (si == Obj.section_end()) 1160 llvm_unreachable("Symbol section not found, bad object file format!"); 1161 LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n"); 1162 bool isCode = si->isText(); 1163 if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode, 1164 ObjSectionToID)) 1165 Value.SectionID = *SectionIDOrErr; 1166 else 1167 return SectionIDOrErr.takeError(); 1168 Value.Addend = Addend; 1169 break; 1170 } 1171 case SymbolRef::ST_Data: 1172 case SymbolRef::ST_Function: 1173 case SymbolRef::ST_Unknown: { 1174 Value.SymbolName = TargetName.data(); 1175 Value.Addend = Addend; 1176 1177 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which 1178 // will manifest here as a NULL symbol name. 1179 // We can set this as a valid (but empty) symbol name, and rely 1180 // on addRelocationForSymbol to handle this. 1181 if (!Value.SymbolName) 1182 Value.SymbolName = ""; 1183 break; 1184 } 1185 default: 1186 llvm_unreachable("Unresolved symbol type!"); 1187 break; 1188 } 1189 } 1190 1191 uint64_t Offset = RelI->getOffset(); 1192 1193 LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset 1194 << "\n"); 1195 if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) { 1196 if (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26) { 1197 resolveAArch64Branch(SectionID, Value, RelI, Stubs); 1198 } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) { 1199 // Craete new GOT entry or find existing one. If GOT entry is 1200 // to be created, then we also emit ABS64 relocation for it. 1201 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64); 1202 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend, 1203 ELF::R_AARCH64_ADR_PREL_PG_HI21); 1204 1205 } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) { 1206 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64); 1207 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend, 1208 ELF::R_AARCH64_LDST64_ABS_LO12_NC); 1209 } else { 1210 processSimpleRelocation(SectionID, Offset, RelType, Value); 1211 } 1212 } else if (Arch == Triple::arm) { 1213 if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL || 1214 RelType == ELF::R_ARM_JUMP24) { 1215 // This is an ARM branch relocation, need to use a stub function. 1216 LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n"); 1217 SectionEntry &Section = Sections[SectionID]; 1218 1219 // Look for an existing stub. 1220 StubMap::const_iterator i = Stubs.find(Value); 1221 if (i != Stubs.end()) { 1222 resolveRelocation( 1223 Section, Offset, 1224 reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)), 1225 RelType, 0); 1226 LLVM_DEBUG(dbgs() << " Stub function found\n"); 1227 } else { 1228 // Create a new stub function. 1229 LLVM_DEBUG(dbgs() << " Create a new stub function\n"); 1230 Stubs[Value] = Section.getStubOffset(); 1231 uint8_t *StubTargetAddr = createStubFunction( 1232 Section.getAddressWithOffset(Section.getStubOffset())); 1233 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(), 1234 ELF::R_ARM_ABS32, Value.Addend); 1235 if (Value.SymbolName) 1236 addRelocationForSymbol(RE, Value.SymbolName); 1237 else 1238 addRelocationForSection(RE, Value.SectionID); 1239 1240 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>( 1241 Section.getAddressWithOffset( 1242 Section.getStubOffset())), 1243 RelType, 0); 1244 Section.advanceStubOffset(getMaxStubSize()); 1245 } 1246 } else { 1247 uint32_t *Placeholder = 1248 reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset)); 1249 if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 || 1250 RelType == ELF::R_ARM_ABS32) { 1251 Value.Addend += *Placeholder; 1252 } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) { 1253 // See ELF for ARM documentation 1254 Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12)); 1255 } 1256 processSimpleRelocation(SectionID, Offset, RelType, Value); 1257 } 1258 } else if (IsMipsO32ABI) { 1259 uint8_t *Placeholder = reinterpret_cast<uint8_t *>( 1260 computePlaceholderAddress(SectionID, Offset)); 1261 uint32_t Opcode = readBytesUnaligned(Placeholder, 4); 1262 if (RelType == ELF::R_MIPS_26) { 1263 // This is an Mips branch relocation, need to use a stub function. 1264 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation."); 1265 SectionEntry &Section = Sections[SectionID]; 1266 1267 // Extract the addend from the instruction. 1268 // We shift up by two since the Value will be down shifted again 1269 // when applying the relocation. 1270 uint32_t Addend = (Opcode & 0x03ffffff) << 2; 1271 1272 Value.Addend += Addend; 1273 1274 // Look up for existing stub. 1275 StubMap::const_iterator i = Stubs.find(Value); 1276 if (i != Stubs.end()) { 1277 RelocationEntry RE(SectionID, Offset, RelType, i->second); 1278 addRelocationForSection(RE, SectionID); 1279 LLVM_DEBUG(dbgs() << " Stub function found\n"); 1280 } else { 1281 // Create a new stub function. 1282 LLVM_DEBUG(dbgs() << " Create a new stub function\n"); 1283 Stubs[Value] = Section.getStubOffset(); 1284 1285 unsigned AbiVariant = Obj.getPlatformFlags(); 1286 1287 uint8_t *StubTargetAddr = createStubFunction( 1288 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant); 1289 1290 // Creating Hi and Lo relocations for the filled stub instructions. 1291 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(), 1292 ELF::R_MIPS_HI16, Value.Addend); 1293 RelocationEntry RELo(SectionID, 1294 StubTargetAddr - Section.getAddress() + 4, 1295 ELF::R_MIPS_LO16, Value.Addend); 1296 1297 if (Value.SymbolName) { 1298 addRelocationForSymbol(REHi, Value.SymbolName); 1299 addRelocationForSymbol(RELo, Value.SymbolName); 1300 } else { 1301 addRelocationForSection(REHi, Value.SectionID); 1302 addRelocationForSection(RELo, Value.SectionID); 1303 } 1304 1305 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset()); 1306 addRelocationForSection(RE, SectionID); 1307 Section.advanceStubOffset(getMaxStubSize()); 1308 } 1309 } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) { 1310 int64_t Addend = (Opcode & 0x0000ffff) << 16; 1311 RelocationEntry RE(SectionID, Offset, RelType, Addend); 1312 PendingRelocs.push_back(std::make_pair(Value, RE)); 1313 } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) { 1314 int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff); 1315 for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) { 1316 const RelocationValueRef &MatchingValue = I->first; 1317 RelocationEntry &Reloc = I->second; 1318 if (MatchingValue == Value && 1319 RelType == getMatchingLoRelocation(Reloc.RelType) && 1320 SectionID == Reloc.SectionID) { 1321 Reloc.Addend += Addend; 1322 if (Value.SymbolName) 1323 addRelocationForSymbol(Reloc, Value.SymbolName); 1324 else 1325 addRelocationForSection(Reloc, Value.SectionID); 1326 I = PendingRelocs.erase(I); 1327 } else 1328 ++I; 1329 } 1330 RelocationEntry RE(SectionID, Offset, RelType, Addend); 1331 if (Value.SymbolName) 1332 addRelocationForSymbol(RE, Value.SymbolName); 1333 else 1334 addRelocationForSection(RE, Value.SectionID); 1335 } else { 1336 if (RelType == ELF::R_MIPS_32) 1337 Value.Addend += Opcode; 1338 else if (RelType == ELF::R_MIPS_PC16) 1339 Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2); 1340 else if (RelType == ELF::R_MIPS_PC19_S2) 1341 Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2); 1342 else if (RelType == ELF::R_MIPS_PC21_S2) 1343 Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2); 1344 else if (RelType == ELF::R_MIPS_PC26_S2) 1345 Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2); 1346 processSimpleRelocation(SectionID, Offset, RelType, Value); 1347 } 1348 } else if (IsMipsN32ABI || IsMipsN64ABI) { 1349 uint32_t r_type = RelType & 0xff; 1350 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); 1351 if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE 1352 || r_type == ELF::R_MIPS_GOT_DISP) { 1353 StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName); 1354 if (i != GOTSymbolOffsets.end()) 1355 RE.SymOffset = i->second; 1356 else { 1357 RE.SymOffset = allocateGOTEntries(1); 1358 GOTSymbolOffsets[TargetName] = RE.SymOffset; 1359 } 1360 if (Value.SymbolName) 1361 addRelocationForSymbol(RE, Value.SymbolName); 1362 else 1363 addRelocationForSection(RE, Value.SectionID); 1364 } else if (RelType == ELF::R_MIPS_26) { 1365 // This is an Mips branch relocation, need to use a stub function. 1366 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation."); 1367 SectionEntry &Section = Sections[SectionID]; 1368 1369 // Look up for existing stub. 1370 StubMap::const_iterator i = Stubs.find(Value); 1371 if (i != Stubs.end()) { 1372 RelocationEntry RE(SectionID, Offset, RelType, i->second); 1373 addRelocationForSection(RE, SectionID); 1374 LLVM_DEBUG(dbgs() << " Stub function found\n"); 1375 } else { 1376 // Create a new stub function. 1377 LLVM_DEBUG(dbgs() << " Create a new stub function\n"); 1378 Stubs[Value] = Section.getStubOffset(); 1379 1380 unsigned AbiVariant = Obj.getPlatformFlags(); 1381 1382 uint8_t *StubTargetAddr = createStubFunction( 1383 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant); 1384 1385 if (IsMipsN32ABI) { 1386 // Creating Hi and Lo relocations for the filled stub instructions. 1387 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(), 1388 ELF::R_MIPS_HI16, Value.Addend); 1389 RelocationEntry RELo(SectionID, 1390 StubTargetAddr - Section.getAddress() + 4, 1391 ELF::R_MIPS_LO16, Value.Addend); 1392 if (Value.SymbolName) { 1393 addRelocationForSymbol(REHi, Value.SymbolName); 1394 addRelocationForSymbol(RELo, Value.SymbolName); 1395 } else { 1396 addRelocationForSection(REHi, Value.SectionID); 1397 addRelocationForSection(RELo, Value.SectionID); 1398 } 1399 } else { 1400 // Creating Highest, Higher, Hi and Lo relocations for the filled stub 1401 // instructions. 1402 RelocationEntry REHighest(SectionID, 1403 StubTargetAddr - Section.getAddress(), 1404 ELF::R_MIPS_HIGHEST, Value.Addend); 1405 RelocationEntry REHigher(SectionID, 1406 StubTargetAddr - Section.getAddress() + 4, 1407 ELF::R_MIPS_HIGHER, Value.Addend); 1408 RelocationEntry REHi(SectionID, 1409 StubTargetAddr - Section.getAddress() + 12, 1410 ELF::R_MIPS_HI16, Value.Addend); 1411 RelocationEntry RELo(SectionID, 1412 StubTargetAddr - Section.getAddress() + 20, 1413 ELF::R_MIPS_LO16, Value.Addend); 1414 if (Value.SymbolName) { 1415 addRelocationForSymbol(REHighest, Value.SymbolName); 1416 addRelocationForSymbol(REHigher, Value.SymbolName); 1417 addRelocationForSymbol(REHi, Value.SymbolName); 1418 addRelocationForSymbol(RELo, Value.SymbolName); 1419 } else { 1420 addRelocationForSection(REHighest, Value.SectionID); 1421 addRelocationForSection(REHigher, Value.SectionID); 1422 addRelocationForSection(REHi, Value.SectionID); 1423 addRelocationForSection(RELo, Value.SectionID); 1424 } 1425 } 1426 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset()); 1427 addRelocationForSection(RE, SectionID); 1428 Section.advanceStubOffset(getMaxStubSize()); 1429 } 1430 } else { 1431 processSimpleRelocation(SectionID, Offset, RelType, Value); 1432 } 1433 1434 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { 1435 if (RelType == ELF::R_PPC64_REL24) { 1436 // Determine ABI variant in use for this object. 1437 unsigned AbiVariant = Obj.getPlatformFlags(); 1438 AbiVariant &= ELF::EF_PPC64_ABI; 1439 // A PPC branch relocation will need a stub function if the target is 1440 // an external symbol (either Value.SymbolName is set, or SymType is 1441 // Symbol::ST_Unknown) or if the target address is not within the 1442 // signed 24-bits branch address. 1443 SectionEntry &Section = Sections[SectionID]; 1444 uint8_t *Target = Section.getAddressWithOffset(Offset); 1445 bool RangeOverflow = false; 1446 bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown; 1447 if (!IsExtern) { 1448 if (AbiVariant != 2) { 1449 // In the ELFv1 ABI, a function call may point to the .opd entry, 1450 // so the final symbol value is calculated based on the relocation 1451 // values in the .opd section. 1452 if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value)) 1453 return std::move(Err); 1454 } else { 1455 // In the ELFv2 ABI, a function symbol may provide a local entry 1456 // point, which must be used for direct calls. 1457 if (Value.SectionID == SectionID){ 1458 uint8_t SymOther = Symbol->getOther(); 1459 Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther); 1460 } 1461 } 1462 uint8_t *RelocTarget = 1463 Sections[Value.SectionID].getAddressWithOffset(Value.Addend); 1464 int64_t delta = static_cast<int64_t>(Target - RelocTarget); 1465 // If it is within 26-bits branch range, just set the branch target 1466 if (SignExtend64<26>(delta) != delta) { 1467 RangeOverflow = true; 1468 } else if ((AbiVariant != 2) || 1469 (AbiVariant == 2 && Value.SectionID == SectionID)) { 1470 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); 1471 addRelocationForSection(RE, Value.SectionID); 1472 } 1473 } 1474 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) || 1475 RangeOverflow) { 1476 // It is an external symbol (either Value.SymbolName is set, or 1477 // SymType is SymbolRef::ST_Unknown) or out of range. 1478 StubMap::const_iterator i = Stubs.find(Value); 1479 if (i != Stubs.end()) { 1480 // Symbol function stub already created, just relocate to it 1481 resolveRelocation(Section, Offset, 1482 reinterpret_cast<uint64_t>( 1483 Section.getAddressWithOffset(i->second)), 1484 RelType, 0); 1485 LLVM_DEBUG(dbgs() << " Stub function found\n"); 1486 } else { 1487 // Create a new stub function. 1488 LLVM_DEBUG(dbgs() << " Create a new stub function\n"); 1489 Stubs[Value] = Section.getStubOffset(); 1490 uint8_t *StubTargetAddr = createStubFunction( 1491 Section.getAddressWithOffset(Section.getStubOffset()), 1492 AbiVariant); 1493 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(), 1494 ELF::R_PPC64_ADDR64, Value.Addend); 1495 1496 // Generates the 64-bits address loads as exemplified in section 1497 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to 1498 // apply to the low part of the instructions, so we have to update 1499 // the offset according to the target endianness. 1500 uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress(); 1501 if (!IsTargetLittleEndian) 1502 StubRelocOffset += 2; 1503 1504 RelocationEntry REhst(SectionID, StubRelocOffset + 0, 1505 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend); 1506 RelocationEntry REhr(SectionID, StubRelocOffset + 4, 1507 ELF::R_PPC64_ADDR16_HIGHER, Value.Addend); 1508 RelocationEntry REh(SectionID, StubRelocOffset + 12, 1509 ELF::R_PPC64_ADDR16_HI, Value.Addend); 1510 RelocationEntry REl(SectionID, StubRelocOffset + 16, 1511 ELF::R_PPC64_ADDR16_LO, Value.Addend); 1512 1513 if (Value.SymbolName) { 1514 addRelocationForSymbol(REhst, Value.SymbolName); 1515 addRelocationForSymbol(REhr, Value.SymbolName); 1516 addRelocationForSymbol(REh, Value.SymbolName); 1517 addRelocationForSymbol(REl, Value.SymbolName); 1518 } else { 1519 addRelocationForSection(REhst, Value.SectionID); 1520 addRelocationForSection(REhr, Value.SectionID); 1521 addRelocationForSection(REh, Value.SectionID); 1522 addRelocationForSection(REl, Value.SectionID); 1523 } 1524 1525 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>( 1526 Section.getAddressWithOffset( 1527 Section.getStubOffset())), 1528 RelType, 0); 1529 Section.advanceStubOffset(getMaxStubSize()); 1530 } 1531 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) { 1532 // Restore the TOC for external calls 1533 if (AbiVariant == 2) 1534 writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1) 1535 else 1536 writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1) 1537 } 1538 } 1539 } else if (RelType == ELF::R_PPC64_TOC16 || 1540 RelType == ELF::R_PPC64_TOC16_DS || 1541 RelType == ELF::R_PPC64_TOC16_LO || 1542 RelType == ELF::R_PPC64_TOC16_LO_DS || 1543 RelType == ELF::R_PPC64_TOC16_HI || 1544 RelType == ELF::R_PPC64_TOC16_HA) { 1545 // These relocations are supposed to subtract the TOC address from 1546 // the final value. This does not fit cleanly into the RuntimeDyld 1547 // scheme, since there may be *two* sections involved in determining 1548 // the relocation value (the section of the symbol referred to by the 1549 // relocation, and the TOC section associated with the current module). 1550 // 1551 // Fortunately, these relocations are currently only ever generated 1552 // referring to symbols that themselves reside in the TOC, which means 1553 // that the two sections are actually the same. Thus they cancel out 1554 // and we can immediately resolve the relocation right now. 1555 switch (RelType) { 1556 case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break; 1557 case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break; 1558 case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break; 1559 case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break; 1560 case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break; 1561 case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break; 1562 default: llvm_unreachable("Wrong relocation type."); 1563 } 1564 1565 RelocationValueRef TOCValue; 1566 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue)) 1567 return std::move(Err); 1568 if (Value.SymbolName || Value.SectionID != TOCValue.SectionID) 1569 llvm_unreachable("Unsupported TOC relocation."); 1570 Value.Addend -= TOCValue.Addend; 1571 resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0); 1572 } else { 1573 // There are two ways to refer to the TOC address directly: either 1574 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are 1575 // ignored), or via any relocation that refers to the magic ".TOC." 1576 // symbols (in which case the addend is respected). 1577 if (RelType == ELF::R_PPC64_TOC) { 1578 RelType = ELF::R_PPC64_ADDR64; 1579 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value)) 1580 return std::move(Err); 1581 } else if (TargetName == ".TOC.") { 1582 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value)) 1583 return std::move(Err); 1584 Value.Addend += Addend; 1585 } 1586 1587 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); 1588 1589 if (Value.SymbolName) 1590 addRelocationForSymbol(RE, Value.SymbolName); 1591 else 1592 addRelocationForSection(RE, Value.SectionID); 1593 } 1594 } else if (Arch == Triple::systemz && 1595 (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) { 1596 // Create function stubs for both PLT and GOT references, regardless of 1597 // whether the GOT reference is to data or code. The stub contains the 1598 // full address of the symbol, as needed by GOT references, and the 1599 // executable part only adds an overhead of 8 bytes. 1600 // 1601 // We could try to conserve space by allocating the code and data 1602 // parts of the stub separately. However, as things stand, we allocate 1603 // a stub for every relocation, so using a GOT in JIT code should be 1604 // no less space efficient than using an explicit constant pool. 1605 LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation."); 1606 SectionEntry &Section = Sections[SectionID]; 1607 1608 // Look for an existing stub. 1609 StubMap::const_iterator i = Stubs.find(Value); 1610 uintptr_t StubAddress; 1611 if (i != Stubs.end()) { 1612 StubAddress = uintptr_t(Section.getAddressWithOffset(i->second)); 1613 LLVM_DEBUG(dbgs() << " Stub function found\n"); 1614 } else { 1615 // Create a new stub function. 1616 LLVM_DEBUG(dbgs() << " Create a new stub function\n"); 1617 1618 uintptr_t BaseAddress = uintptr_t(Section.getAddress()); 1619 uintptr_t StubAlignment = getStubAlignment(); 1620 StubAddress = 1621 (BaseAddress + Section.getStubOffset() + StubAlignment - 1) & 1622 -StubAlignment; 1623 unsigned StubOffset = StubAddress - BaseAddress; 1624 1625 Stubs[Value] = StubOffset; 1626 createStubFunction((uint8_t *)StubAddress); 1627 RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64, 1628 Value.Offset); 1629 if (Value.SymbolName) 1630 addRelocationForSymbol(RE, Value.SymbolName); 1631 else 1632 addRelocationForSection(RE, Value.SectionID); 1633 Section.advanceStubOffset(getMaxStubSize()); 1634 } 1635 1636 if (RelType == ELF::R_390_GOTENT) 1637 resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL, 1638 Addend); 1639 else 1640 resolveRelocation(Section, Offset, StubAddress, RelType, Addend); 1641 } else if (Arch == Triple::x86_64) { 1642 if (RelType == ELF::R_X86_64_PLT32) { 1643 // The way the PLT relocations normally work is that the linker allocates 1644 // the 1645 // PLT and this relocation makes a PC-relative call into the PLT. The PLT 1646 // entry will then jump to an address provided by the GOT. On first call, 1647 // the 1648 // GOT address will point back into PLT code that resolves the symbol. After 1649 // the first call, the GOT entry points to the actual function. 1650 // 1651 // For local functions we're ignoring all of that here and just replacing 1652 // the PLT32 relocation type with PC32, which will translate the relocation 1653 // into a PC-relative call directly to the function. For external symbols we 1654 // can't be sure the function will be within 2^32 bytes of the call site, so 1655 // we need to create a stub, which calls into the GOT. This case is 1656 // equivalent to the usual PLT implementation except that we use the stub 1657 // mechanism in RuntimeDyld (which puts stubs at the end of the section) 1658 // rather than allocating a PLT section. 1659 if (Value.SymbolName) { 1660 // This is a call to an external function. 1661 // Look for an existing stub. 1662 SectionEntry &Section = Sections[SectionID]; 1663 StubMap::const_iterator i = Stubs.find(Value); 1664 uintptr_t StubAddress; 1665 if (i != Stubs.end()) { 1666 StubAddress = uintptr_t(Section.getAddress()) + i->second; 1667 LLVM_DEBUG(dbgs() << " Stub function found\n"); 1668 } else { 1669 // Create a new stub function (equivalent to a PLT entry). 1670 LLVM_DEBUG(dbgs() << " Create a new stub function\n"); 1671 1672 uintptr_t BaseAddress = uintptr_t(Section.getAddress()); 1673 uintptr_t StubAlignment = getStubAlignment(); 1674 StubAddress = 1675 (BaseAddress + Section.getStubOffset() + StubAlignment - 1) & 1676 -StubAlignment; 1677 unsigned StubOffset = StubAddress - BaseAddress; 1678 Stubs[Value] = StubOffset; 1679 createStubFunction((uint8_t *)StubAddress); 1680 1681 // Bump our stub offset counter 1682 Section.advanceStubOffset(getMaxStubSize()); 1683 1684 // Allocate a GOT Entry 1685 uint64_t GOTOffset = allocateGOTEntries(1); 1686 1687 // The load of the GOT address has an addend of -4 1688 resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4, 1689 ELF::R_X86_64_PC32); 1690 1691 // Fill in the value of the symbol we're targeting into the GOT 1692 addRelocationForSymbol( 1693 computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64), 1694 Value.SymbolName); 1695 } 1696 1697 // Make the target call a call into the stub table. 1698 resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32, 1699 Addend); 1700 } else { 1701 RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend, 1702 Value.Offset); 1703 addRelocationForSection(RE, Value.SectionID); 1704 } 1705 } else if (RelType == ELF::R_X86_64_GOTPCREL || 1706 RelType == ELF::R_X86_64_GOTPCRELX || 1707 RelType == ELF::R_X86_64_REX_GOTPCRELX) { 1708 uint64_t GOTOffset = allocateGOTEntries(1); 1709 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend, 1710 ELF::R_X86_64_PC32); 1711 1712 // Fill in the value of the symbol we're targeting into the GOT 1713 RelocationEntry RE = 1714 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64); 1715 if (Value.SymbolName) 1716 addRelocationForSymbol(RE, Value.SymbolName); 1717 else 1718 addRelocationForSection(RE, Value.SectionID); 1719 } else if (RelType == ELF::R_X86_64_GOT64) { 1720 // Fill in a 64-bit GOT offset. 1721 uint64_t GOTOffset = allocateGOTEntries(1); 1722 resolveRelocation(Sections[SectionID], Offset, GOTOffset, 1723 ELF::R_X86_64_64, 0); 1724 1725 // Fill in the value of the symbol we're targeting into the GOT 1726 RelocationEntry RE = 1727 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64); 1728 if (Value.SymbolName) 1729 addRelocationForSymbol(RE, Value.SymbolName); 1730 else 1731 addRelocationForSection(RE, Value.SectionID); 1732 } else if (RelType == ELF::R_X86_64_GOTPC64) { 1733 // Materialize the address of the base of the GOT relative to the PC. 1734 // This doesn't create a GOT entry, but it does mean we need a GOT 1735 // section. 1736 (void)allocateGOTEntries(0); 1737 resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC64); 1738 } else if (RelType == ELF::R_X86_64_GOTOFF64) { 1739 // GOTOFF relocations ultimately require a section difference relocation. 1740 (void)allocateGOTEntries(0); 1741 processSimpleRelocation(SectionID, Offset, RelType, Value); 1742 } else if (RelType == ELF::R_X86_64_PC32) { 1743 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset)); 1744 processSimpleRelocation(SectionID, Offset, RelType, Value); 1745 } else if (RelType == ELF::R_X86_64_PC64) { 1746 Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset)); 1747 processSimpleRelocation(SectionID, Offset, RelType, Value); 1748 } else { 1749 processSimpleRelocation(SectionID, Offset, RelType, Value); 1750 } 1751 } else { 1752 if (Arch == Triple::x86) { 1753 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset)); 1754 } 1755 processSimpleRelocation(SectionID, Offset, RelType, Value); 1756 } 1757 return ++RelI; 1758 } 1759 1760 size_t RuntimeDyldELF::getGOTEntrySize() { 1761 // We don't use the GOT in all of these cases, but it's essentially free 1762 // to put them all here. 1763 size_t Result = 0; 1764 switch (Arch) { 1765 case Triple::x86_64: 1766 case Triple::aarch64: 1767 case Triple::aarch64_be: 1768 case Triple::ppc64: 1769 case Triple::ppc64le: 1770 case Triple::systemz: 1771 Result = sizeof(uint64_t); 1772 break; 1773 case Triple::x86: 1774 case Triple::arm: 1775 case Triple::thumb: 1776 Result = sizeof(uint32_t); 1777 break; 1778 case Triple::mips: 1779 case Triple::mipsel: 1780 case Triple::mips64: 1781 case Triple::mips64el: 1782 if (IsMipsO32ABI || IsMipsN32ABI) 1783 Result = sizeof(uint32_t); 1784 else if (IsMipsN64ABI) 1785 Result = sizeof(uint64_t); 1786 else 1787 llvm_unreachable("Mips ABI not handled"); 1788 break; 1789 default: 1790 llvm_unreachable("Unsupported CPU type!"); 1791 } 1792 return Result; 1793 } 1794 1795 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) { 1796 if (GOTSectionID == 0) { 1797 GOTSectionID = Sections.size(); 1798 // Reserve a section id. We'll allocate the section later 1799 // once we know the total size 1800 Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0)); 1801 } 1802 uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize(); 1803 CurrentGOTIndex += no; 1804 return StartOffset; 1805 } 1806 1807 uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value, 1808 unsigned GOTRelType) { 1809 auto E = GOTOffsetMap.insert({Value, 0}); 1810 if (E.second) { 1811 uint64_t GOTOffset = allocateGOTEntries(1); 1812 1813 // Create relocation for newly created GOT entry 1814 RelocationEntry RE = 1815 computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType); 1816 if (Value.SymbolName) 1817 addRelocationForSymbol(RE, Value.SymbolName); 1818 else 1819 addRelocationForSection(RE, Value.SectionID); 1820 1821 E.first->second = GOTOffset; 1822 } 1823 1824 return E.first->second; 1825 } 1826 1827 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID, 1828 uint64_t Offset, 1829 uint64_t GOTOffset, 1830 uint32_t Type) { 1831 // Fill in the relative address of the GOT Entry into the stub 1832 RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset); 1833 addRelocationForSection(GOTRE, GOTSectionID); 1834 } 1835 1836 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset, 1837 uint64_t SymbolOffset, 1838 uint32_t Type) { 1839 return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset); 1840 } 1841 1842 Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj, 1843 ObjSectionToIDMap &SectionMap) { 1844 if (IsMipsO32ABI) 1845 if (!PendingRelocs.empty()) 1846 return make_error<RuntimeDyldError>("Can't find matching LO16 reloc"); 1847 1848 // If necessary, allocate the global offset table 1849 if (GOTSectionID != 0) { 1850 // Allocate memory for the section 1851 size_t TotalSize = CurrentGOTIndex * getGOTEntrySize(); 1852 uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(), 1853 GOTSectionID, ".got", false); 1854 if (!Addr) 1855 return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!"); 1856 1857 Sections[GOTSectionID] = 1858 SectionEntry(".got", Addr, TotalSize, TotalSize, 0); 1859 1860 if (Checker) 1861 Checker->registerSection(Obj.getFileName(), GOTSectionID); 1862 1863 // For now, initialize all GOT entries to zero. We'll fill them in as 1864 // needed when GOT-based relocations are applied. 1865 memset(Addr, 0, TotalSize); 1866 if (IsMipsN32ABI || IsMipsN64ABI) { 1867 // To correctly resolve Mips GOT relocations, we need a mapping from 1868 // object's sections to GOTs. 1869 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 1870 SI != SE; ++SI) { 1871 if (SI->relocation_begin() != SI->relocation_end()) { 1872 section_iterator RelocatedSection = SI->getRelocatedSection(); 1873 ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection); 1874 assert (i != SectionMap.end()); 1875 SectionToGOTMap[i->second] = GOTSectionID; 1876 } 1877 } 1878 GOTSymbolOffsets.clear(); 1879 } 1880 } 1881 1882 // Look for and record the EH frame section. 1883 ObjSectionToIDMap::iterator i, e; 1884 for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) { 1885 const SectionRef &Section = i->first; 1886 StringRef Name; 1887 Section.getName(Name); 1888 if (Name == ".eh_frame") { 1889 UnregisteredEHFrameSections.push_back(i->second); 1890 break; 1891 } 1892 } 1893 1894 GOTSectionID = 0; 1895 CurrentGOTIndex = 0; 1896 1897 return Error::success(); 1898 } 1899 1900 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const { 1901 return Obj.isELF(); 1902 } 1903 1904 bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const { 1905 unsigned RelTy = R.getType(); 1906 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) 1907 return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE || 1908 RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC; 1909 1910 if (Arch == Triple::x86_64) 1911 return RelTy == ELF::R_X86_64_GOTPCREL || 1912 RelTy == ELF::R_X86_64_GOTPCRELX || 1913 RelTy == ELF::R_X86_64_GOT64 || 1914 RelTy == ELF::R_X86_64_REX_GOTPCRELX; 1915 return false; 1916 } 1917 1918 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const { 1919 if (Arch != Triple::x86_64) 1920 return true; // Conservative answer 1921 1922 switch (R.getType()) { 1923 default: 1924 return true; // Conservative answer 1925 1926 1927 case ELF::R_X86_64_GOTPCREL: 1928 case ELF::R_X86_64_GOTPCRELX: 1929 case ELF::R_X86_64_REX_GOTPCRELX: 1930 case ELF::R_X86_64_GOTPC64: 1931 case ELF::R_X86_64_GOT64: 1932 case ELF::R_X86_64_GOTOFF64: 1933 case ELF::R_X86_64_PC32: 1934 case ELF::R_X86_64_PC64: 1935 case ELF::R_X86_64_64: 1936 // We know that these reloation types won't need a stub function. This list 1937 // can be extended as needed. 1938 return false; 1939 } 1940 } 1941 1942 } // namespace llvm 1943