1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ExecutionEngine/ExecutionEngine.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ExecutionEngine/GenericValue.h" 20 #include "llvm/ExecutionEngine/JITEventListener.h" 21 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Mangler.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/Operator.h" 28 #include "llvm/IR/ValueHandle.h" 29 #include "llvm/Object/Archive.h" 30 #include "llvm/Object/ObjectFile.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/DynamicLibrary.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/Host.h" 35 #include "llvm/Support/MutexGuard.h" 36 #include "llvm/Support/TargetRegistry.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include <cmath> 40 #include <cstring> 41 using namespace llvm; 42 43 #define DEBUG_TYPE "jit" 44 45 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 46 STATISTIC(NumGlobals , "Number of global vars initialized"); 47 48 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 49 std::unique_ptr<Module> M, std::string *ErrorStr, 50 std::shared_ptr<MCJITMemoryManager> MemMgr, 51 std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver, 52 std::unique_ptr<TargetMachine> TM) = nullptr; 53 54 ExecutionEngine *(*ExecutionEngine::OrcMCJITReplacementCtor)( 55 std::string *ErrorStr, std::shared_ptr<MCJITMemoryManager> MemMgr, 56 std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver, 57 std::unique_ptr<TargetMachine> TM) = nullptr; 58 59 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, 60 std::string *ErrorStr) =nullptr; 61 62 void JITEventListener::anchor() {} 63 64 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) 65 : LazyFunctionCreator(nullptr) { 66 CompilingLazily = false; 67 GVCompilationDisabled = false; 68 SymbolSearchingDisabled = false; 69 70 // IR module verification is enabled by default in debug builds, and disabled 71 // by default in release builds. 72 #ifndef NDEBUG 73 VerifyModules = true; 74 #else 75 VerifyModules = false; 76 #endif 77 78 assert(M && "Module is null?"); 79 Modules.push_back(std::move(M)); 80 } 81 82 ExecutionEngine::~ExecutionEngine() { 83 clearAllGlobalMappings(); 84 } 85 86 namespace { 87 /// \brief Helper class which uses a value handler to automatically deletes the 88 /// memory block when the GlobalVariable is destroyed. 89 class GVMemoryBlock : public CallbackVH { 90 GVMemoryBlock(const GlobalVariable *GV) 91 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 92 93 public: 94 /// \brief Returns the address the GlobalVariable should be written into. The 95 /// GVMemoryBlock object prefixes that. 96 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 97 Type *ElTy = GV->getType()->getElementType(); 98 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 99 void *RawMemory = ::operator new( 100 RoundUpToAlignment(sizeof(GVMemoryBlock), 101 TD.getPreferredAlignment(GV)) 102 + GVSize); 103 new(RawMemory) GVMemoryBlock(GV); 104 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 105 } 106 107 void deleted() override { 108 // We allocated with operator new and with some extra memory hanging off the 109 // end, so don't just delete this. I'm not sure if this is actually 110 // required. 111 this->~GVMemoryBlock(); 112 ::operator delete(this); 113 } 114 }; 115 } // anonymous namespace 116 117 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 118 return GVMemoryBlock::Create(GV, *getDataLayout()); 119 } 120 121 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 122 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 123 } 124 125 void 126 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { 127 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 128 } 129 130 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { 131 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); 132 } 133 134 bool ExecutionEngine::removeModule(Module *M) { 135 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { 136 Module *Found = I->get(); 137 if (Found == M) { 138 I->release(); 139 Modules.erase(I); 140 clearGlobalMappingsFromModule(M); 141 return true; 142 } 143 } 144 return false; 145 } 146 147 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 148 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 149 Function *F = Modules[i]->getFunction(FnName); 150 if (F && !F->isDeclaration()) 151 return F; 152 } 153 return nullptr; 154 } 155 156 GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(const char *Name, bool AllowInternal) { 157 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 158 GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal); 159 if (GV && !GV->isDeclaration()) 160 return GV; 161 } 162 return nullptr; 163 } 164 165 uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) { 166 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name); 167 uint64_t OldVal; 168 169 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 170 // GlobalAddressMap. 171 if (I == GlobalAddressMap.end()) 172 OldVal = 0; 173 else { 174 GlobalAddressReverseMap.erase(I->second); 175 OldVal = I->second; 176 GlobalAddressMap.erase(I); 177 } 178 179 return OldVal; 180 } 181 182 std::string ExecutionEngine::getMangledName(const GlobalValue *GV) { 183 assert(GV->hasName() && "Global must have name."); 184 185 MutexGuard locked(lock); 186 SmallString<128> FullName; 187 188 const DataLayout &DL = 189 GV->getParent()->getDataLayout().isDefault() 190 ? *getDataLayout() 191 : GV->getParent()->getDataLayout(); 192 193 Mangler::getNameWithPrefix(FullName, GV->getName(), DL); 194 return FullName.str(); 195 } 196 197 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 198 MutexGuard locked(lock); 199 addGlobalMapping(getMangledName(GV), (uint64_t) Addr); 200 } 201 202 void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) { 203 MutexGuard locked(lock); 204 205 assert(!Name.empty() && "Empty GlobalMapping symbol name!"); 206 207 DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";); 208 uint64_t &CurVal = EEState.getGlobalAddressMap()[Name]; 209 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 210 CurVal = Addr; 211 212 // If we are using the reverse mapping, add it too. 213 if (!EEState.getGlobalAddressReverseMap().empty()) { 214 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; 215 assert((!V.empty() || !Name.empty()) && 216 "GlobalMapping already established!"); 217 V = Name; 218 } 219 } 220 221 void ExecutionEngine::clearAllGlobalMappings() { 222 MutexGuard locked(lock); 223 224 EEState.getGlobalAddressMap().clear(); 225 EEState.getGlobalAddressReverseMap().clear(); 226 } 227 228 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 229 MutexGuard locked(lock); 230 231 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 232 EEState.RemoveMapping(getMangledName(FI)); 233 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 234 GI != GE; ++GI) 235 EEState.RemoveMapping(getMangledName(GI)); 236 } 237 238 uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, 239 void *Addr) { 240 MutexGuard locked(lock); 241 return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr); 242 } 243 244 uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) { 245 MutexGuard locked(lock); 246 247 ExecutionEngineState::GlobalAddressMapTy &Map = 248 EEState.getGlobalAddressMap(); 249 250 // Deleting from the mapping? 251 if (!Addr) 252 return EEState.RemoveMapping(Name); 253 254 uint64_t &CurVal = Map[Name]; 255 uint64_t OldVal = CurVal; 256 257 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 258 EEState.getGlobalAddressReverseMap().erase(CurVal); 259 CurVal = Addr; 260 261 // If we are using the reverse mapping, add it too. 262 if (!EEState.getGlobalAddressReverseMap().empty()) { 263 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; 264 assert((!V.empty() || !Name.empty()) && 265 "GlobalMapping already established!"); 266 V = Name; 267 } 268 return OldVal; 269 } 270 271 uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) { 272 MutexGuard locked(lock); 273 uint64_t Address = 0; 274 ExecutionEngineState::GlobalAddressMapTy::iterator I = 275 EEState.getGlobalAddressMap().find(S); 276 if (I != EEState.getGlobalAddressMap().end()) 277 Address = I->second; 278 return Address; 279 } 280 281 282 void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) { 283 MutexGuard locked(lock); 284 if (void* Address = (void *) getAddressToGlobalIfAvailable(S)) 285 return Address; 286 return nullptr; 287 } 288 289 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 290 MutexGuard locked(lock); 291 return getPointerToGlobalIfAvailable(getMangledName(GV)); 292 } 293 294 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 295 MutexGuard locked(lock); 296 297 // If we haven't computed the reverse mapping yet, do so first. 298 if (EEState.getGlobalAddressReverseMap().empty()) { 299 for (ExecutionEngineState::GlobalAddressMapTy::iterator 300 I = EEState.getGlobalAddressMap().begin(), 301 E = EEState.getGlobalAddressMap().end(); I != E; ++I) { 302 StringRef Name = I->first(); 303 uint64_t Addr = I->second; 304 EEState.getGlobalAddressReverseMap().insert(std::make_pair( 305 Addr, Name)); 306 } 307 } 308 309 std::map<uint64_t, std::string>::iterator I = 310 EEState.getGlobalAddressReverseMap().find((uint64_t) Addr); 311 312 if (I != EEState.getGlobalAddressReverseMap().end()) { 313 StringRef Name = I->second; 314 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 315 if (GlobalValue *GV = Modules[i]->getNamedValue(Name)) 316 return GV; 317 } 318 return nullptr; 319 } 320 321 namespace { 322 class ArgvArray { 323 std::unique_ptr<char[]> Array; 324 std::vector<std::unique_ptr<char[]>> Values; 325 public: 326 /// Turn a vector of strings into a nice argv style array of pointers to null 327 /// terminated strings. 328 void *reset(LLVMContext &C, ExecutionEngine *EE, 329 const std::vector<std::string> &InputArgv); 330 }; 331 } // anonymous namespace 332 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 333 const std::vector<std::string> &InputArgv) { 334 Values.clear(); // Free the old contents. 335 Values.reserve(InputArgv.size()); 336 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 337 Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize); 338 339 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array.get() << "\n"); 340 Type *SBytePtr = Type::getInt8PtrTy(C); 341 342 for (unsigned i = 0; i != InputArgv.size(); ++i) { 343 unsigned Size = InputArgv[i].size()+1; 344 auto Dest = make_unique<char[]>(Size); 345 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest.get() << "\n"); 346 347 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); 348 Dest[Size-1] = 0; 349 350 // Endian safe: Array[i] = (PointerTy)Dest; 351 EE->StoreValueToMemory(PTOGV(Dest.get()), 352 (GenericValue*)(&Array[i*PtrSize]), SBytePtr); 353 Values.push_back(std::move(Dest)); 354 } 355 356 // Null terminate it 357 EE->StoreValueToMemory(PTOGV(nullptr), 358 (GenericValue*)(&Array[InputArgv.size()*PtrSize]), 359 SBytePtr); 360 return Array.get(); 361 } 362 363 void ExecutionEngine::runStaticConstructorsDestructors(Module &module, 364 bool isDtors) { 365 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 366 GlobalVariable *GV = module.getNamedGlobal(Name); 367 368 // If this global has internal linkage, or if it has a use, then it must be 369 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 370 // this is the case, don't execute any of the global ctors, __main will do 371 // it. 372 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 373 374 // Should be an array of '{ i32, void ()* }' structs. The first value is 375 // the init priority, which we ignore. 376 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 377 if (!InitList) 378 return; 379 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 380 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 381 if (!CS) continue; 382 383 Constant *FP = CS->getOperand(1); 384 if (FP->isNullValue()) 385 continue; // Found a sentinal value, ignore. 386 387 // Strip off constant expression casts. 388 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 389 if (CE->isCast()) 390 FP = CE->getOperand(0); 391 392 // Execute the ctor/dtor function! 393 if (Function *F = dyn_cast<Function>(FP)) 394 runFunction(F, None); 395 396 // FIXME: It is marginally lame that we just do nothing here if we see an 397 // entry we don't recognize. It might not be unreasonable for the verifier 398 // to not even allow this and just assert here. 399 } 400 } 401 402 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 403 // Execute global ctors/dtors for each module in the program. 404 for (std::unique_ptr<Module> &M : Modules) 405 runStaticConstructorsDestructors(*M, isDtors); 406 } 407 408 #ifndef NDEBUG 409 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 410 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 411 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 412 for (unsigned i = 0; i < PtrSize; ++i) 413 if (*(i + (uint8_t*)Loc)) 414 return false; 415 return true; 416 } 417 #endif 418 419 int ExecutionEngine::runFunctionAsMain(Function *Fn, 420 const std::vector<std::string> &argv, 421 const char * const * envp) { 422 std::vector<GenericValue> GVArgs; 423 GenericValue GVArgc; 424 GVArgc.IntVal = APInt(32, argv.size()); 425 426 // Check main() type 427 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 428 FunctionType *FTy = Fn->getFunctionType(); 429 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 430 431 // Check the argument types. 432 if (NumArgs > 3) 433 report_fatal_error("Invalid number of arguments of main() supplied"); 434 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 435 report_fatal_error("Invalid type for third argument of main() supplied"); 436 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 437 report_fatal_error("Invalid type for second argument of main() supplied"); 438 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 439 report_fatal_error("Invalid type for first argument of main() supplied"); 440 if (!FTy->getReturnType()->isIntegerTy() && 441 !FTy->getReturnType()->isVoidTy()) 442 report_fatal_error("Invalid return type of main() supplied"); 443 444 ArgvArray CArgv; 445 ArgvArray CEnv; 446 if (NumArgs) { 447 GVArgs.push_back(GVArgc); // Arg #0 = argc. 448 if (NumArgs > 1) { 449 // Arg #1 = argv. 450 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 451 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 452 "argv[0] was null after CreateArgv"); 453 if (NumArgs > 2) { 454 std::vector<std::string> EnvVars; 455 for (unsigned i = 0; envp[i]; ++i) 456 EnvVars.emplace_back(envp[i]); 457 // Arg #2 = envp. 458 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 459 } 460 } 461 } 462 463 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 464 } 465 466 EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {} 467 468 EngineBuilder::EngineBuilder(std::unique_ptr<Module> M) 469 : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr), 470 OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr), 471 RelocModel(Reloc::Default), CMModel(CodeModel::JITDefault), 472 UseOrcMCJITReplacement(false) { 473 // IR module verification is enabled by default in debug builds, and disabled 474 // by default in release builds. 475 #ifndef NDEBUG 476 VerifyModules = true; 477 #else 478 VerifyModules = false; 479 #endif 480 } 481 482 EngineBuilder::~EngineBuilder() = default; 483 484 EngineBuilder &EngineBuilder::setMCJITMemoryManager( 485 std::unique_ptr<RTDyldMemoryManager> mcjmm) { 486 auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm)); 487 MemMgr = SharedMM; 488 Resolver = SharedMM; 489 return *this; 490 } 491 492 EngineBuilder& 493 EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) { 494 MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM)); 495 return *this; 496 } 497 498 EngineBuilder& 499 EngineBuilder::setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR) { 500 Resolver = std::shared_ptr<RuntimeDyld::SymbolResolver>(std::move(SR)); 501 return *this; 502 } 503 504 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 505 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 506 507 // Make sure we can resolve symbols in the program as well. The zero arg 508 // to the function tells DynamicLibrary to load the program, not a library. 509 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 510 return nullptr; 511 512 // If the user specified a memory manager but didn't specify which engine to 513 // create, we assume they only want the JIT, and we fail if they only want 514 // the interpreter. 515 if (MemMgr) { 516 if (WhichEngine & EngineKind::JIT) 517 WhichEngine = EngineKind::JIT; 518 else { 519 if (ErrorStr) 520 *ErrorStr = "Cannot create an interpreter with a memory manager."; 521 return nullptr; 522 } 523 } 524 525 // Unless the interpreter was explicitly selected or the JIT is not linked, 526 // try making a JIT. 527 if ((WhichEngine & EngineKind::JIT) && TheTM) { 528 Triple TT(M->getTargetTriple()); 529 if (!TM->getTarget().hasJIT()) { 530 errs() << "WARNING: This target JIT is not designed for the host" 531 << " you are running. If bad things happen, please choose" 532 << " a different -march switch.\n"; 533 } 534 535 ExecutionEngine *EE = nullptr; 536 if (ExecutionEngine::OrcMCJITReplacementCtor && UseOrcMCJITReplacement) { 537 EE = ExecutionEngine::OrcMCJITReplacementCtor(ErrorStr, std::move(MemMgr), 538 std::move(Resolver), 539 std::move(TheTM)); 540 EE->addModule(std::move(M)); 541 } else if (ExecutionEngine::MCJITCtor) 542 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr), 543 std::move(Resolver), std::move(TheTM)); 544 545 if (EE) { 546 EE->setVerifyModules(VerifyModules); 547 return EE; 548 } 549 } 550 551 // If we can't make a JIT and we didn't request one specifically, try making 552 // an interpreter instead. 553 if (WhichEngine & EngineKind::Interpreter) { 554 if (ExecutionEngine::InterpCtor) 555 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); 556 if (ErrorStr) 557 *ErrorStr = "Interpreter has not been linked in."; 558 return nullptr; 559 } 560 561 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { 562 if (ErrorStr) 563 *ErrorStr = "JIT has not been linked in."; 564 } 565 566 return nullptr; 567 } 568 569 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 570 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 571 return getPointerToFunction(F); 572 573 MutexGuard locked(lock); 574 if (void* P = getPointerToGlobalIfAvailable(GV)) 575 return P; 576 577 // Global variable might have been added since interpreter started. 578 if (GlobalVariable *GVar = 579 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 580 EmitGlobalVariable(GVar); 581 else 582 llvm_unreachable("Global hasn't had an address allocated yet!"); 583 584 return getPointerToGlobalIfAvailable(GV); 585 } 586 587 /// \brief Converts a Constant* into a GenericValue, including handling of 588 /// ConstantExpr values. 589 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 590 // If its undefined, return the garbage. 591 if (isa<UndefValue>(C)) { 592 GenericValue Result; 593 switch (C->getType()->getTypeID()) { 594 default: 595 break; 596 case Type::IntegerTyID: 597 case Type::X86_FP80TyID: 598 case Type::FP128TyID: 599 case Type::PPC_FP128TyID: 600 // Although the value is undefined, we still have to construct an APInt 601 // with the correct bit width. 602 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 603 break; 604 case Type::StructTyID: { 605 // if the whole struct is 'undef' just reserve memory for the value. 606 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 607 unsigned int elemNum = STy->getNumElements(); 608 Result.AggregateVal.resize(elemNum); 609 for (unsigned int i = 0; i < elemNum; ++i) { 610 Type *ElemTy = STy->getElementType(i); 611 if (ElemTy->isIntegerTy()) 612 Result.AggregateVal[i].IntVal = 613 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 614 else if (ElemTy->isAggregateType()) { 615 const Constant *ElemUndef = UndefValue::get(ElemTy); 616 Result.AggregateVal[i] = getConstantValue(ElemUndef); 617 } 618 } 619 } 620 } 621 break; 622 case Type::VectorTyID: 623 // if the whole vector is 'undef' just reserve memory for the value. 624 const VectorType* VTy = dyn_cast<VectorType>(C->getType()); 625 const Type *ElemTy = VTy->getElementType(); 626 unsigned int elemNum = VTy->getNumElements(); 627 Result.AggregateVal.resize(elemNum); 628 if (ElemTy->isIntegerTy()) 629 for (unsigned int i = 0; i < elemNum; ++i) 630 Result.AggregateVal[i].IntVal = 631 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 632 break; 633 } 634 return Result; 635 } 636 637 // Otherwise, if the value is a ConstantExpr... 638 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 639 Constant *Op0 = CE->getOperand(0); 640 switch (CE->getOpcode()) { 641 case Instruction::GetElementPtr: { 642 // Compute the index 643 GenericValue Result = getConstantValue(Op0); 644 APInt Offset(DL->getPointerSizeInBits(), 0); 645 cast<GEPOperator>(CE)->accumulateConstantOffset(*DL, Offset); 646 647 char* tmp = (char*) Result.PointerVal; 648 Result = PTOGV(tmp + Offset.getSExtValue()); 649 return Result; 650 } 651 case Instruction::Trunc: { 652 GenericValue GV = getConstantValue(Op0); 653 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 654 GV.IntVal = GV.IntVal.trunc(BitWidth); 655 return GV; 656 } 657 case Instruction::ZExt: { 658 GenericValue GV = getConstantValue(Op0); 659 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 660 GV.IntVal = GV.IntVal.zext(BitWidth); 661 return GV; 662 } 663 case Instruction::SExt: { 664 GenericValue GV = getConstantValue(Op0); 665 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 666 GV.IntVal = GV.IntVal.sext(BitWidth); 667 return GV; 668 } 669 case Instruction::FPTrunc: { 670 // FIXME long double 671 GenericValue GV = getConstantValue(Op0); 672 GV.FloatVal = float(GV.DoubleVal); 673 return GV; 674 } 675 case Instruction::FPExt:{ 676 // FIXME long double 677 GenericValue GV = getConstantValue(Op0); 678 GV.DoubleVal = double(GV.FloatVal); 679 return GV; 680 } 681 case Instruction::UIToFP: { 682 GenericValue GV = getConstantValue(Op0); 683 if (CE->getType()->isFloatTy()) 684 GV.FloatVal = float(GV.IntVal.roundToDouble()); 685 else if (CE->getType()->isDoubleTy()) 686 GV.DoubleVal = GV.IntVal.roundToDouble(); 687 else if (CE->getType()->isX86_FP80Ty()) { 688 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 689 (void)apf.convertFromAPInt(GV.IntVal, 690 false, 691 APFloat::rmNearestTiesToEven); 692 GV.IntVal = apf.bitcastToAPInt(); 693 } 694 return GV; 695 } 696 case Instruction::SIToFP: { 697 GenericValue GV = getConstantValue(Op0); 698 if (CE->getType()->isFloatTy()) 699 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 700 else if (CE->getType()->isDoubleTy()) 701 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 702 else if (CE->getType()->isX86_FP80Ty()) { 703 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 704 (void)apf.convertFromAPInt(GV.IntVal, 705 true, 706 APFloat::rmNearestTiesToEven); 707 GV.IntVal = apf.bitcastToAPInt(); 708 } 709 return GV; 710 } 711 case Instruction::FPToUI: // double->APInt conversion handles sign 712 case Instruction::FPToSI: { 713 GenericValue GV = getConstantValue(Op0); 714 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 715 if (Op0->getType()->isFloatTy()) 716 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 717 else if (Op0->getType()->isDoubleTy()) 718 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 719 else if (Op0->getType()->isX86_FP80Ty()) { 720 APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); 721 uint64_t v; 722 bool ignored; 723 (void)apf.convertToInteger(&v, BitWidth, 724 CE->getOpcode()==Instruction::FPToSI, 725 APFloat::rmTowardZero, &ignored); 726 GV.IntVal = v; // endian? 727 } 728 return GV; 729 } 730 case Instruction::PtrToInt: { 731 GenericValue GV = getConstantValue(Op0); 732 uint32_t PtrWidth = DL->getTypeSizeInBits(Op0->getType()); 733 assert(PtrWidth <= 64 && "Bad pointer width"); 734 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 735 uint32_t IntWidth = DL->getTypeSizeInBits(CE->getType()); 736 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 737 return GV; 738 } 739 case Instruction::IntToPtr: { 740 GenericValue GV = getConstantValue(Op0); 741 uint32_t PtrWidth = DL->getTypeSizeInBits(CE->getType()); 742 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 743 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 744 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 745 return GV; 746 } 747 case Instruction::BitCast: { 748 GenericValue GV = getConstantValue(Op0); 749 Type* DestTy = CE->getType(); 750 switch (Op0->getType()->getTypeID()) { 751 default: llvm_unreachable("Invalid bitcast operand"); 752 case Type::IntegerTyID: 753 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 754 if (DestTy->isFloatTy()) 755 GV.FloatVal = GV.IntVal.bitsToFloat(); 756 else if (DestTy->isDoubleTy()) 757 GV.DoubleVal = GV.IntVal.bitsToDouble(); 758 break; 759 case Type::FloatTyID: 760 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 761 GV.IntVal = APInt::floatToBits(GV.FloatVal); 762 break; 763 case Type::DoubleTyID: 764 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 765 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 766 break; 767 case Type::PointerTyID: 768 assert(DestTy->isPointerTy() && "Invalid bitcast"); 769 break; // getConstantValue(Op0) above already converted it 770 } 771 return GV; 772 } 773 case Instruction::Add: 774 case Instruction::FAdd: 775 case Instruction::Sub: 776 case Instruction::FSub: 777 case Instruction::Mul: 778 case Instruction::FMul: 779 case Instruction::UDiv: 780 case Instruction::SDiv: 781 case Instruction::URem: 782 case Instruction::SRem: 783 case Instruction::And: 784 case Instruction::Or: 785 case Instruction::Xor: { 786 GenericValue LHS = getConstantValue(Op0); 787 GenericValue RHS = getConstantValue(CE->getOperand(1)); 788 GenericValue GV; 789 switch (CE->getOperand(0)->getType()->getTypeID()) { 790 default: llvm_unreachable("Bad add type!"); 791 case Type::IntegerTyID: 792 switch (CE->getOpcode()) { 793 default: llvm_unreachable("Invalid integer opcode"); 794 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 795 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 796 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 797 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 798 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 799 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 800 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 801 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 802 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 803 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 804 } 805 break; 806 case Type::FloatTyID: 807 switch (CE->getOpcode()) { 808 default: llvm_unreachable("Invalid float opcode"); 809 case Instruction::FAdd: 810 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 811 case Instruction::FSub: 812 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 813 case Instruction::FMul: 814 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 815 case Instruction::FDiv: 816 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 817 case Instruction::FRem: 818 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 819 } 820 break; 821 case Type::DoubleTyID: 822 switch (CE->getOpcode()) { 823 default: llvm_unreachable("Invalid double opcode"); 824 case Instruction::FAdd: 825 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 826 case Instruction::FSub: 827 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 828 case Instruction::FMul: 829 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 830 case Instruction::FDiv: 831 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 832 case Instruction::FRem: 833 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 834 } 835 break; 836 case Type::X86_FP80TyID: 837 case Type::PPC_FP128TyID: 838 case Type::FP128TyID: { 839 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 840 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 841 switch (CE->getOpcode()) { 842 default: llvm_unreachable("Invalid long double opcode"); 843 case Instruction::FAdd: 844 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 845 GV.IntVal = apfLHS.bitcastToAPInt(); 846 break; 847 case Instruction::FSub: 848 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 849 APFloat::rmNearestTiesToEven); 850 GV.IntVal = apfLHS.bitcastToAPInt(); 851 break; 852 case Instruction::FMul: 853 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 854 APFloat::rmNearestTiesToEven); 855 GV.IntVal = apfLHS.bitcastToAPInt(); 856 break; 857 case Instruction::FDiv: 858 apfLHS.divide(APFloat(Sem, RHS.IntVal), 859 APFloat::rmNearestTiesToEven); 860 GV.IntVal = apfLHS.bitcastToAPInt(); 861 break; 862 case Instruction::FRem: 863 apfLHS.mod(APFloat(Sem, RHS.IntVal), 864 APFloat::rmNearestTiesToEven); 865 GV.IntVal = apfLHS.bitcastToAPInt(); 866 break; 867 } 868 } 869 break; 870 } 871 return GV; 872 } 873 default: 874 break; 875 } 876 877 SmallString<256> Msg; 878 raw_svector_ostream OS(Msg); 879 OS << "ConstantExpr not handled: " << *CE; 880 report_fatal_error(OS.str()); 881 } 882 883 // Otherwise, we have a simple constant. 884 GenericValue Result; 885 switch (C->getType()->getTypeID()) { 886 case Type::FloatTyID: 887 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 888 break; 889 case Type::DoubleTyID: 890 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 891 break; 892 case Type::X86_FP80TyID: 893 case Type::FP128TyID: 894 case Type::PPC_FP128TyID: 895 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 896 break; 897 case Type::IntegerTyID: 898 Result.IntVal = cast<ConstantInt>(C)->getValue(); 899 break; 900 case Type::PointerTyID: 901 if (isa<ConstantPointerNull>(C)) 902 Result.PointerVal = nullptr; 903 else if (const Function *F = dyn_cast<Function>(C)) 904 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 905 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 906 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 907 else 908 llvm_unreachable("Unknown constant pointer type!"); 909 break; 910 case Type::VectorTyID: { 911 unsigned elemNum; 912 Type* ElemTy; 913 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 914 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 915 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 916 917 if (CDV) { 918 elemNum = CDV->getNumElements(); 919 ElemTy = CDV->getElementType(); 920 } else if (CV || CAZ) { 921 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 922 elemNum = VTy->getNumElements(); 923 ElemTy = VTy->getElementType(); 924 } else { 925 llvm_unreachable("Unknown constant vector type!"); 926 } 927 928 Result.AggregateVal.resize(elemNum); 929 // Check if vector holds floats. 930 if(ElemTy->isFloatTy()) { 931 if (CAZ) { 932 GenericValue floatZero; 933 floatZero.FloatVal = 0.f; 934 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 935 floatZero); 936 break; 937 } 938 if(CV) { 939 for (unsigned i = 0; i < elemNum; ++i) 940 if (!isa<UndefValue>(CV->getOperand(i))) 941 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 942 CV->getOperand(i))->getValueAPF().convertToFloat(); 943 break; 944 } 945 if(CDV) 946 for (unsigned i = 0; i < elemNum; ++i) 947 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 948 949 break; 950 } 951 // Check if vector holds doubles. 952 if (ElemTy->isDoubleTy()) { 953 if (CAZ) { 954 GenericValue doubleZero; 955 doubleZero.DoubleVal = 0.0; 956 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 957 doubleZero); 958 break; 959 } 960 if(CV) { 961 for (unsigned i = 0; i < elemNum; ++i) 962 if (!isa<UndefValue>(CV->getOperand(i))) 963 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 964 CV->getOperand(i))->getValueAPF().convertToDouble(); 965 break; 966 } 967 if(CDV) 968 for (unsigned i = 0; i < elemNum; ++i) 969 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 970 971 break; 972 } 973 // Check if vector holds integers. 974 if (ElemTy->isIntegerTy()) { 975 if (CAZ) { 976 GenericValue intZero; 977 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 978 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 979 intZero); 980 break; 981 } 982 if(CV) { 983 for (unsigned i = 0; i < elemNum; ++i) 984 if (!isa<UndefValue>(CV->getOperand(i))) 985 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 986 CV->getOperand(i))->getValue(); 987 else { 988 Result.AggregateVal[i].IntVal = 989 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 990 } 991 break; 992 } 993 if(CDV) 994 for (unsigned i = 0; i < elemNum; ++i) 995 Result.AggregateVal[i].IntVal = APInt( 996 CDV->getElementType()->getPrimitiveSizeInBits(), 997 CDV->getElementAsInteger(i)); 998 999 break; 1000 } 1001 llvm_unreachable("Unknown constant pointer type!"); 1002 } 1003 break; 1004 1005 default: 1006 SmallString<256> Msg; 1007 raw_svector_ostream OS(Msg); 1008 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 1009 report_fatal_error(OS.str()); 1010 } 1011 1012 return Result; 1013 } 1014 1015 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 1016 /// with the integer held in IntVal. 1017 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 1018 unsigned StoreBytes) { 1019 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 1020 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 1021 1022 if (sys::IsLittleEndianHost) { 1023 // Little-endian host - the source is ordered from LSB to MSB. Order the 1024 // destination from LSB to MSB: Do a straight copy. 1025 memcpy(Dst, Src, StoreBytes); 1026 } else { 1027 // Big-endian host - the source is an array of 64 bit words ordered from 1028 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 1029 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 1030 while (StoreBytes > sizeof(uint64_t)) { 1031 StoreBytes -= sizeof(uint64_t); 1032 // May not be aligned so use memcpy. 1033 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 1034 Src += sizeof(uint64_t); 1035 } 1036 1037 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 1038 } 1039 } 1040 1041 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 1042 GenericValue *Ptr, Type *Ty) { 1043 const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty); 1044 1045 switch (Ty->getTypeID()) { 1046 default: 1047 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 1048 break; 1049 case Type::IntegerTyID: 1050 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 1051 break; 1052 case Type::FloatTyID: 1053 *((float*)Ptr) = Val.FloatVal; 1054 break; 1055 case Type::DoubleTyID: 1056 *((double*)Ptr) = Val.DoubleVal; 1057 break; 1058 case Type::X86_FP80TyID: 1059 memcpy(Ptr, Val.IntVal.getRawData(), 10); 1060 break; 1061 case Type::PointerTyID: 1062 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 1063 if (StoreBytes != sizeof(PointerTy)) 1064 memset(&(Ptr->PointerVal), 0, StoreBytes); 1065 1066 *((PointerTy*)Ptr) = Val.PointerVal; 1067 break; 1068 case Type::VectorTyID: 1069 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 1070 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 1071 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 1072 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 1073 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 1074 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 1075 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 1076 StoreIntToMemory(Val.AggregateVal[i].IntVal, 1077 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 1078 } 1079 } 1080 break; 1081 } 1082 1083 if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian()) 1084 // Host and target are different endian - reverse the stored bytes. 1085 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 1086 } 1087 1088 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 1089 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 1090 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 1091 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 1092 uint8_t *Dst = reinterpret_cast<uint8_t *>( 1093 const_cast<uint64_t *>(IntVal.getRawData())); 1094 1095 if (sys::IsLittleEndianHost) 1096 // Little-endian host - the destination must be ordered from LSB to MSB. 1097 // The source is ordered from LSB to MSB: Do a straight copy. 1098 memcpy(Dst, Src, LoadBytes); 1099 else { 1100 // Big-endian - the destination is an array of 64 bit words ordered from 1101 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1102 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1103 // a word. 1104 while (LoadBytes > sizeof(uint64_t)) { 1105 LoadBytes -= sizeof(uint64_t); 1106 // May not be aligned so use memcpy. 1107 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1108 Dst += sizeof(uint64_t); 1109 } 1110 1111 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1112 } 1113 } 1114 1115 /// FIXME: document 1116 /// 1117 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1118 GenericValue *Ptr, 1119 Type *Ty) { 1120 const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty); 1121 1122 switch (Ty->getTypeID()) { 1123 case Type::IntegerTyID: 1124 // An APInt with all words initially zero. 1125 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1126 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1127 break; 1128 case Type::FloatTyID: 1129 Result.FloatVal = *((float*)Ptr); 1130 break; 1131 case Type::DoubleTyID: 1132 Result.DoubleVal = *((double*)Ptr); 1133 break; 1134 case Type::PointerTyID: 1135 Result.PointerVal = *((PointerTy*)Ptr); 1136 break; 1137 case Type::X86_FP80TyID: { 1138 // This is endian dependent, but it will only work on x86 anyway. 1139 // FIXME: Will not trap if loading a signaling NaN. 1140 uint64_t y[2]; 1141 memcpy(y, Ptr, 10); 1142 Result.IntVal = APInt(80, y); 1143 break; 1144 } 1145 case Type::VectorTyID: { 1146 const VectorType *VT = cast<VectorType>(Ty); 1147 const Type *ElemT = VT->getElementType(); 1148 const unsigned numElems = VT->getNumElements(); 1149 if (ElemT->isFloatTy()) { 1150 Result.AggregateVal.resize(numElems); 1151 for (unsigned i = 0; i < numElems; ++i) 1152 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1153 } 1154 if (ElemT->isDoubleTy()) { 1155 Result.AggregateVal.resize(numElems); 1156 for (unsigned i = 0; i < numElems; ++i) 1157 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1158 } 1159 if (ElemT->isIntegerTy()) { 1160 GenericValue intZero; 1161 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1162 intZero.IntVal = APInt(elemBitWidth, 0); 1163 Result.AggregateVal.resize(numElems, intZero); 1164 for (unsigned i = 0; i < numElems; ++i) 1165 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1166 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1167 } 1168 break; 1169 } 1170 default: 1171 SmallString<256> Msg; 1172 raw_svector_ostream OS(Msg); 1173 OS << "Cannot load value of type " << *Ty << "!"; 1174 report_fatal_error(OS.str()); 1175 } 1176 } 1177 1178 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1179 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1180 DEBUG(Init->dump()); 1181 if (isa<UndefValue>(Init)) 1182 return; 1183 1184 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1185 unsigned ElementSize = 1186 getDataLayout()->getTypeAllocSize(CP->getType()->getElementType()); 1187 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1188 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1189 return; 1190 } 1191 1192 if (isa<ConstantAggregateZero>(Init)) { 1193 memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType())); 1194 return; 1195 } 1196 1197 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1198 unsigned ElementSize = 1199 getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType()); 1200 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1201 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1202 return; 1203 } 1204 1205 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1206 const StructLayout *SL = 1207 getDataLayout()->getStructLayout(cast<StructType>(CPS->getType())); 1208 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1209 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1210 return; 1211 } 1212 1213 if (const ConstantDataSequential *CDS = 1214 dyn_cast<ConstantDataSequential>(Init)) { 1215 // CDS is already laid out in host memory order. 1216 StringRef Data = CDS->getRawDataValues(); 1217 memcpy(Addr, Data.data(), Data.size()); 1218 return; 1219 } 1220 1221 if (Init->getType()->isFirstClassType()) { 1222 GenericValue Val = getConstantValue(Init); 1223 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1224 return; 1225 } 1226 1227 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1228 llvm_unreachable("Unknown constant type to initialize memory with!"); 1229 } 1230 1231 /// EmitGlobals - Emit all of the global variables to memory, storing their 1232 /// addresses into GlobalAddress. This must make sure to copy the contents of 1233 /// their initializers into the memory. 1234 void ExecutionEngine::emitGlobals() { 1235 // Loop over all of the global variables in the program, allocating the memory 1236 // to hold them. If there is more than one module, do a prepass over globals 1237 // to figure out how the different modules should link together. 1238 std::map<std::pair<std::string, Type*>, 1239 const GlobalValue*> LinkedGlobalsMap; 1240 1241 if (Modules.size() != 1) { 1242 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1243 Module &M = *Modules[m]; 1244 for (const auto &GV : M.globals()) { 1245 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1246 GV.hasAppendingLinkage() || !GV.hasName()) 1247 continue;// Ignore external globals and globals with internal linkage. 1248 1249 const GlobalValue *&GVEntry = 1250 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; 1251 1252 // If this is the first time we've seen this global, it is the canonical 1253 // version. 1254 if (!GVEntry) { 1255 GVEntry = &GV; 1256 continue; 1257 } 1258 1259 // If the existing global is strong, never replace it. 1260 if (GVEntry->hasExternalLinkage()) 1261 continue; 1262 1263 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1264 // symbol. FIXME is this right for common? 1265 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1266 GVEntry = &GV; 1267 } 1268 } 1269 } 1270 1271 std::vector<const GlobalValue*> NonCanonicalGlobals; 1272 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1273 Module &M = *Modules[m]; 1274 for (const auto &GV : M.globals()) { 1275 // In the multi-module case, see what this global maps to. 1276 if (!LinkedGlobalsMap.empty()) { 1277 if (const GlobalValue *GVEntry = 1278 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { 1279 // If something else is the canonical global, ignore this one. 1280 if (GVEntry != &GV) { 1281 NonCanonicalGlobals.push_back(&GV); 1282 continue; 1283 } 1284 } 1285 } 1286 1287 if (!GV.isDeclaration()) { 1288 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1289 } else { 1290 // External variable reference. Try to use the dynamic loader to 1291 // get a pointer to it. 1292 if (void *SymAddr = 1293 sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) 1294 addGlobalMapping(&GV, SymAddr); 1295 else { 1296 report_fatal_error("Could not resolve external global address: " 1297 +GV.getName()); 1298 } 1299 } 1300 } 1301 1302 // If there are multiple modules, map the non-canonical globals to their 1303 // canonical location. 1304 if (!NonCanonicalGlobals.empty()) { 1305 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1306 const GlobalValue *GV = NonCanonicalGlobals[i]; 1307 const GlobalValue *CGV = 1308 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1309 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1310 assert(Ptr && "Canonical global wasn't codegen'd!"); 1311 addGlobalMapping(GV, Ptr); 1312 } 1313 } 1314 1315 // Now that all of the globals are set up in memory, loop through them all 1316 // and initialize their contents. 1317 for (const auto &GV : M.globals()) { 1318 if (!GV.isDeclaration()) { 1319 if (!LinkedGlobalsMap.empty()) { 1320 if (const GlobalValue *GVEntry = 1321 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) 1322 if (GVEntry != &GV) // Not the canonical variable. 1323 continue; 1324 } 1325 EmitGlobalVariable(&GV); 1326 } 1327 } 1328 } 1329 } 1330 1331 // EmitGlobalVariable - This method emits the specified global variable to the 1332 // address specified in GlobalAddresses, or allocates new memory if it's not 1333 // already in the map. 1334 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1335 void *GA = getPointerToGlobalIfAvailable(GV); 1336 1337 if (!GA) { 1338 // If it's not already specified, allocate memory for the global. 1339 GA = getMemoryForGV(GV); 1340 1341 // If we failed to allocate memory for this global, return. 1342 if (!GA) return; 1343 1344 addGlobalMapping(GV, GA); 1345 } 1346 1347 // Don't initialize if it's thread local, let the client do it. 1348 if (!GV->isThreadLocal()) 1349 InitializeMemory(GV->getInitializer(), GA); 1350 1351 Type *ElTy = GV->getType()->getElementType(); 1352 size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy); 1353 NumInitBytes += (unsigned)GVSize; 1354 ++NumGlobals; 1355 } 1356