1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TwoAddress instruction pass which is used 11 // by most register allocators. Two-Address instructions are rewritten 12 // from: 13 // 14 // A = B op C 15 // 16 // to: 17 // 18 // A = B 19 // A op= C 20 // 21 // Note that if a register allocator chooses to use this pass, that it 22 // has to be capable of handling the non-SSA nature of these rewritten 23 // virtual registers. 24 // 25 // It is also worth noting that the duplicate operand of the two 26 // address instruction is removed. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/CodeGen/LiveInterval.h" 38 #include "llvm/CodeGen/LiveIntervals.h" 39 #include "llvm/CodeGen/LiveVariables.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineFunctionPass.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/Passes.h" 48 #include "llvm/CodeGen/SlotIndexes.h" 49 #include "llvm/CodeGen/TargetInstrInfo.h" 50 #include "llvm/CodeGen/TargetOpcodes.h" 51 #include "llvm/CodeGen/TargetRegisterInfo.h" 52 #include "llvm/CodeGen/TargetSubtargetInfo.h" 53 #include "llvm/MC/MCInstrDesc.h" 54 #include "llvm/MC/MCInstrItineraries.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/CodeGen.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Target/TargetMachine.h" 62 #include <cassert> 63 #include <iterator> 64 #include <utility> 65 66 using namespace llvm; 67 68 #define DEBUG_TYPE "twoaddressinstruction" 69 70 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 71 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 72 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 73 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 74 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk"); 75 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 76 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 77 78 // Temporary flag to disable rescheduling. 79 static cl::opt<bool> 80 EnableRescheduling("twoaddr-reschedule", 81 cl::desc("Coalesce copies by rescheduling (default=true)"), 82 cl::init(true), cl::Hidden); 83 84 // Limit the number of dataflow edges to traverse when evaluating the benefit 85 // of commuting operands. 86 static cl::opt<unsigned> MaxDataFlowEdge( 87 "dataflow-edge-limit", cl::Hidden, cl::init(3), 88 cl::desc("Maximum number of dataflow edges to traverse when evaluating " 89 "the benefit of commuting operands")); 90 91 namespace { 92 93 class TwoAddressInstructionPass : public MachineFunctionPass { 94 MachineFunction *MF; 95 const TargetInstrInfo *TII; 96 const TargetRegisterInfo *TRI; 97 const InstrItineraryData *InstrItins; 98 MachineRegisterInfo *MRI; 99 LiveVariables *LV; 100 LiveIntervals *LIS; 101 AliasAnalysis *AA; 102 CodeGenOpt::Level OptLevel; 103 104 // The current basic block being processed. 105 MachineBasicBlock *MBB; 106 107 // Keep track the distance of a MI from the start of the current basic block. 108 DenseMap<MachineInstr*, unsigned> DistanceMap; 109 110 // Set of already processed instructions in the current block. 111 SmallPtrSet<MachineInstr*, 8> Processed; 112 113 // Set of instructions converted to three-address by target and then sunk 114 // down current basic block. 115 SmallPtrSet<MachineInstr*, 8> SunkInstrs; 116 117 // A map from virtual registers to physical registers which are likely targets 118 // to be coalesced to due to copies from physical registers to virtual 119 // registers. e.g. v1024 = move r0. 120 DenseMap<unsigned, unsigned> SrcRegMap; 121 122 // A map from virtual registers to physical registers which are likely targets 123 // to be coalesced to due to copies to physical registers from virtual 124 // registers. e.g. r1 = move v1024. 125 DenseMap<unsigned, unsigned> DstRegMap; 126 127 bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg, 128 MachineBasicBlock::iterator OldPos); 129 130 bool isRevCopyChain(unsigned FromReg, unsigned ToReg, int Maxlen); 131 132 bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef); 133 134 bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 135 MachineInstr *MI, unsigned Dist); 136 137 bool commuteInstruction(MachineInstr *MI, unsigned DstIdx, 138 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); 139 140 bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB); 141 142 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 143 MachineBasicBlock::iterator &nmi, 144 unsigned RegA, unsigned RegB, unsigned Dist); 145 146 bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI); 147 148 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 149 MachineBasicBlock::iterator &nmi, 150 unsigned Reg); 151 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 152 MachineBasicBlock::iterator &nmi, 153 unsigned Reg); 154 155 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 156 MachineBasicBlock::iterator &nmi, 157 unsigned SrcIdx, unsigned DstIdx, 158 unsigned Dist, bool shouldOnlyCommute); 159 160 bool tryInstructionCommute(MachineInstr *MI, 161 unsigned DstOpIdx, 162 unsigned BaseOpIdx, 163 bool BaseOpKilled, 164 unsigned Dist); 165 void scanUses(unsigned DstReg); 166 167 void processCopy(MachineInstr *MI); 168 169 using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>; 170 using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>; 171 172 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 173 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 174 void eliminateRegSequence(MachineBasicBlock::iterator&); 175 176 public: 177 static char ID; // Pass identification, replacement for typeid 178 179 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 180 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 181 } 182 183 void getAnalysisUsage(AnalysisUsage &AU) const override { 184 AU.setPreservesCFG(); 185 AU.addUsedIfAvailable<AAResultsWrapperPass>(); 186 AU.addUsedIfAvailable<LiveVariables>(); 187 AU.addPreserved<LiveVariables>(); 188 AU.addPreserved<SlotIndexes>(); 189 AU.addPreserved<LiveIntervals>(); 190 AU.addPreservedID(MachineLoopInfoID); 191 AU.addPreservedID(MachineDominatorsID); 192 MachineFunctionPass::getAnalysisUsage(AU); 193 } 194 195 /// Pass entry point. 196 bool runOnMachineFunction(MachineFunction&) override; 197 }; 198 199 } // end anonymous namespace 200 201 char TwoAddressInstructionPass::ID = 0; 202 203 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 204 205 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE, 206 "Two-Address instruction pass", false, false) 207 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 208 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE, 209 "Two-Address instruction pass", false, false) 210 211 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS); 212 213 /// A two-address instruction has been converted to a three-address instruction 214 /// to avoid clobbering a register. Try to sink it past the instruction that 215 /// would kill the above mentioned register to reduce register pressure. 216 bool TwoAddressInstructionPass:: 217 sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg, 218 MachineBasicBlock::iterator OldPos) { 219 // FIXME: Shouldn't we be trying to do this before we three-addressify the 220 // instruction? After this transformation is done, we no longer need 221 // the instruction to be in three-address form. 222 223 // Check if it's safe to move this instruction. 224 bool SeenStore = true; // Be conservative. 225 if (!MI->isSafeToMove(AA, SeenStore)) 226 return false; 227 228 unsigned DefReg = 0; 229 SmallSet<unsigned, 4> UseRegs; 230 231 for (const MachineOperand &MO : MI->operands()) { 232 if (!MO.isReg()) 233 continue; 234 unsigned MOReg = MO.getReg(); 235 if (!MOReg) 236 continue; 237 if (MO.isUse() && MOReg != SavedReg) 238 UseRegs.insert(MO.getReg()); 239 if (!MO.isDef()) 240 continue; 241 if (MO.isImplicit()) 242 // Don't try to move it if it implicitly defines a register. 243 return false; 244 if (DefReg) 245 // For now, don't move any instructions that define multiple registers. 246 return false; 247 DefReg = MO.getReg(); 248 } 249 250 // Find the instruction that kills SavedReg. 251 MachineInstr *KillMI = nullptr; 252 if (LIS) { 253 LiveInterval &LI = LIS->getInterval(SavedReg); 254 assert(LI.end() != LI.begin() && 255 "Reg should not have empty live interval."); 256 257 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 258 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 259 if (I != LI.end() && I->start < MBBEndIdx) 260 return false; 261 262 --I; 263 KillMI = LIS->getInstructionFromIndex(I->end); 264 } 265 if (!KillMI) { 266 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SavedReg)) { 267 if (!UseMO.isKill()) 268 continue; 269 KillMI = UseMO.getParent(); 270 break; 271 } 272 } 273 274 // If we find the instruction that kills SavedReg, and it is in an 275 // appropriate location, we can try to sink the current instruction 276 // past it. 277 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI || 278 MachineBasicBlock::iterator(KillMI) == OldPos || KillMI->isTerminator()) 279 return false; 280 281 // If any of the definitions are used by another instruction between the 282 // position and the kill use, then it's not safe to sink it. 283 // 284 // FIXME: This can be sped up if there is an easy way to query whether an 285 // instruction is before or after another instruction. Then we can use 286 // MachineRegisterInfo def / use instead. 287 MachineOperand *KillMO = nullptr; 288 MachineBasicBlock::iterator KillPos = KillMI; 289 ++KillPos; 290 291 unsigned NumVisited = 0; 292 for (MachineInstr &OtherMI : make_range(std::next(OldPos), KillPos)) { 293 // DBG_VALUE cannot be counted against the limit. 294 if (OtherMI.isDebugValue()) 295 continue; 296 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost. 297 return false; 298 ++NumVisited; 299 for (unsigned i = 0, e = OtherMI.getNumOperands(); i != e; ++i) { 300 MachineOperand &MO = OtherMI.getOperand(i); 301 if (!MO.isReg()) 302 continue; 303 unsigned MOReg = MO.getReg(); 304 if (!MOReg) 305 continue; 306 if (DefReg == MOReg) 307 return false; 308 309 if (MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS))) { 310 if (&OtherMI == KillMI && MOReg == SavedReg) 311 // Save the operand that kills the register. We want to unset the kill 312 // marker if we can sink MI past it. 313 KillMO = &MO; 314 else if (UseRegs.count(MOReg)) 315 // One of the uses is killed before the destination. 316 return false; 317 } 318 } 319 } 320 assert(KillMO && "Didn't find kill"); 321 322 if (!LIS) { 323 // Update kill and LV information. 324 KillMO->setIsKill(false); 325 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI); 326 KillMO->setIsKill(true); 327 328 if (LV) 329 LV->replaceKillInstruction(SavedReg, *KillMI, *MI); 330 } 331 332 // Move instruction to its destination. 333 MBB->remove(MI); 334 MBB->insert(KillPos, MI); 335 336 if (LIS) 337 LIS->handleMove(*MI); 338 339 ++Num3AddrSunk; 340 return true; 341 } 342 343 /// Return the MachineInstr* if it is the single def of the Reg in current BB. 344 static MachineInstr *getSingleDef(unsigned Reg, MachineBasicBlock *BB, 345 const MachineRegisterInfo *MRI) { 346 MachineInstr *Ret = nullptr; 347 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 348 if (DefMI.getParent() != BB || DefMI.isDebugValue()) 349 continue; 350 if (!Ret) 351 Ret = &DefMI; 352 else if (Ret != &DefMI) 353 return nullptr; 354 } 355 return Ret; 356 } 357 358 /// Check if there is a reversed copy chain from FromReg to ToReg: 359 /// %Tmp1 = copy %Tmp2; 360 /// %FromReg = copy %Tmp1; 361 /// %ToReg = add %FromReg ... 362 /// %Tmp2 = copy %ToReg; 363 /// MaxLen specifies the maximum length of the copy chain the func 364 /// can walk through. 365 bool TwoAddressInstructionPass::isRevCopyChain(unsigned FromReg, unsigned ToReg, 366 int Maxlen) { 367 unsigned TmpReg = FromReg; 368 for (int i = 0; i < Maxlen; i++) { 369 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI); 370 if (!Def || !Def->isCopy()) 371 return false; 372 373 TmpReg = Def->getOperand(1).getReg(); 374 375 if (TmpReg == ToReg) 376 return true; 377 } 378 return false; 379 } 380 381 /// Return true if there are no intervening uses between the last instruction 382 /// in the MBB that defines the specified register and the two-address 383 /// instruction which is being processed. It also returns the last def location 384 /// by reference. 385 bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist, 386 unsigned &LastDef) { 387 LastDef = 0; 388 unsigned LastUse = Dist; 389 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 390 MachineInstr *MI = MO.getParent(); 391 if (MI->getParent() != MBB || MI->isDebugValue()) 392 continue; 393 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 394 if (DI == DistanceMap.end()) 395 continue; 396 if (MO.isUse() && DI->second < LastUse) 397 LastUse = DI->second; 398 if (MO.isDef() && DI->second > LastDef) 399 LastDef = DI->second; 400 } 401 402 return !(LastUse > LastDef && LastUse < Dist); 403 } 404 405 /// Return true if the specified MI is a copy instruction or an extract_subreg 406 /// instruction. It also returns the source and destination registers and 407 /// whether they are physical registers by reference. 408 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 409 unsigned &SrcReg, unsigned &DstReg, 410 bool &IsSrcPhys, bool &IsDstPhys) { 411 SrcReg = 0; 412 DstReg = 0; 413 if (MI.isCopy()) { 414 DstReg = MI.getOperand(0).getReg(); 415 SrcReg = MI.getOperand(1).getReg(); 416 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 417 DstReg = MI.getOperand(0).getReg(); 418 SrcReg = MI.getOperand(2).getReg(); 419 } else 420 return false; 421 422 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); 423 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 424 return true; 425 } 426 427 /// Test if the given register value, which is used by the 428 /// given instruction, is killed by the given instruction. 429 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, 430 LiveIntervals *LIS) { 431 if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) && 432 !LIS->isNotInMIMap(*MI)) { 433 // FIXME: Sometimes tryInstructionTransform() will add instructions and 434 // test whether they can be folded before keeping them. In this case it 435 // sets a kill before recursively calling tryInstructionTransform() again. 436 // If there is no interval available, we assume that this instruction is 437 // one of those. A kill flag is manually inserted on the operand so the 438 // check below will handle it. 439 LiveInterval &LI = LIS->getInterval(Reg); 440 // This is to match the kill flag version where undefs don't have kill 441 // flags. 442 if (!LI.hasAtLeastOneValue()) 443 return false; 444 445 SlotIndex useIdx = LIS->getInstructionIndex(*MI); 446 LiveInterval::const_iterator I = LI.find(useIdx); 447 assert(I != LI.end() && "Reg must be live-in to use."); 448 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 449 } 450 451 return MI->killsRegister(Reg); 452 } 453 454 /// Test if the given register value, which is used by the given 455 /// instruction, is killed by the given instruction. This looks through 456 /// coalescable copies to see if the original value is potentially not killed. 457 /// 458 /// For example, in this code: 459 /// 460 /// %reg1034 = copy %reg1024 461 /// %reg1035 = copy killed %reg1025 462 /// %reg1036 = add killed %reg1034, killed %reg1035 463 /// 464 /// %reg1034 is not considered to be killed, since it is copied from a 465 /// register which is not killed. Treating it as not killed lets the 466 /// normal heuristics commute the (two-address) add, which lets 467 /// coalescing eliminate the extra copy. 468 /// 469 /// If allowFalsePositives is true then likely kills are treated as kills even 470 /// if it can't be proven that they are kills. 471 static bool isKilled(MachineInstr &MI, unsigned Reg, 472 const MachineRegisterInfo *MRI, 473 const TargetInstrInfo *TII, 474 LiveIntervals *LIS, 475 bool allowFalsePositives) { 476 MachineInstr *DefMI = &MI; 477 while (true) { 478 // All uses of physical registers are likely to be kills. 479 if (TargetRegisterInfo::isPhysicalRegister(Reg) && 480 (allowFalsePositives || MRI->hasOneUse(Reg))) 481 return true; 482 if (!isPlainlyKilled(DefMI, Reg, LIS)) 483 return false; 484 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 485 return true; 486 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 487 // If there are multiple defs, we can't do a simple analysis, so just 488 // go with what the kill flag says. 489 if (std::next(Begin) != MRI->def_end()) 490 return true; 491 DefMI = Begin->getParent(); 492 bool IsSrcPhys, IsDstPhys; 493 unsigned SrcReg, DstReg; 494 // If the def is something other than a copy, then it isn't going to 495 // be coalesced, so follow the kill flag. 496 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 497 return true; 498 Reg = SrcReg; 499 } 500 } 501 502 /// Return true if the specified MI uses the specified register as a two-address 503 /// use. If so, return the destination register by reference. 504 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) { 505 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 506 const MachineOperand &MO = MI.getOperand(i); 507 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 508 continue; 509 unsigned ti; 510 if (MI.isRegTiedToDefOperand(i, &ti)) { 511 DstReg = MI.getOperand(ti).getReg(); 512 return true; 513 } 514 } 515 return false; 516 } 517 518 /// Given a register, if has a single in-basic block use, return the use 519 /// instruction if it's a copy or a two-address use. 520 static 521 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB, 522 MachineRegisterInfo *MRI, 523 const TargetInstrInfo *TII, 524 bool &IsCopy, 525 unsigned &DstReg, bool &IsDstPhys) { 526 if (!MRI->hasOneNonDBGUse(Reg)) 527 // None or more than one use. 528 return nullptr; 529 MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg); 530 if (UseMI.getParent() != MBB) 531 return nullptr; 532 unsigned SrcReg; 533 bool IsSrcPhys; 534 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 535 IsCopy = true; 536 return &UseMI; 537 } 538 IsDstPhys = false; 539 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 540 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 541 return &UseMI; 542 } 543 return nullptr; 544 } 545 546 /// Return the physical register the specified virtual register might be mapped 547 /// to. 548 static unsigned 549 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) { 550 while (TargetRegisterInfo::isVirtualRegister(Reg)) { 551 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg); 552 if (SI == RegMap.end()) 553 return 0; 554 Reg = SI->second; 555 } 556 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 557 return Reg; 558 return 0; 559 } 560 561 /// Return true if the two registers are equal or aliased. 562 static bool 563 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) { 564 if (RegA == RegB) 565 return true; 566 if (!RegA || !RegB) 567 return false; 568 return TRI->regsOverlap(RegA, RegB); 569 } 570 571 // Returns true if Reg is equal or aliased to at least one register in Set. 572 static bool regOverlapsSet(const SmallVectorImpl<unsigned> &Set, unsigned Reg, 573 const TargetRegisterInfo *TRI) { 574 for (unsigned R : Set) 575 if (TRI->regsOverlap(R, Reg)) 576 return true; 577 578 return false; 579 } 580 581 /// Return true if it's potentially profitable to commute the two-address 582 /// instruction that's being processed. 583 bool 584 TwoAddressInstructionPass:: 585 isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 586 MachineInstr *MI, unsigned Dist) { 587 if (OptLevel == CodeGenOpt::None) 588 return false; 589 590 // Determine if it's profitable to commute this two address instruction. In 591 // general, we want no uses between this instruction and the definition of 592 // the two-address register. 593 // e.g. 594 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 595 // %reg1029 = MOV8rr %reg1028 596 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 597 // insert => %reg1030 = MOV8rr %reg1028 598 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 599 // In this case, it might not be possible to coalesce the second MOV8rr 600 // instruction if the first one is coalesced. So it would be profitable to 601 // commute it: 602 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 603 // %reg1029 = MOV8rr %reg1028 604 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 605 // insert => %reg1030 = MOV8rr %reg1029 606 // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags 607 608 if (!isPlainlyKilled(MI, regC, LIS)) 609 return false; 610 611 // Ok, we have something like: 612 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 613 // let's see if it's worth commuting it. 614 615 // Look for situations like this: 616 // %reg1024 = MOV r1 617 // %reg1025 = MOV r0 618 // %reg1026 = ADD %reg1024, %reg1025 619 // r0 = MOV %reg1026 620 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 621 unsigned ToRegA = getMappedReg(regA, DstRegMap); 622 if (ToRegA) { 623 unsigned FromRegB = getMappedReg(regB, SrcRegMap); 624 unsigned FromRegC = getMappedReg(regC, SrcRegMap); 625 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI); 626 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI); 627 628 // Compute if any of the following are true: 629 // -RegB is not tied to a register and RegC is compatible with RegA. 630 // -RegB is tied to the wrong physical register, but RegC is. 631 // -RegB is tied to the wrong physical register, and RegC isn't tied. 632 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) 633 return true; 634 // Don't compute if any of the following are true: 635 // -RegC is not tied to a register and RegB is compatible with RegA. 636 // -RegC is tied to the wrong physical register, but RegB is. 637 // -RegC is tied to the wrong physical register, and RegB isn't tied. 638 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) 639 return false; 640 } 641 642 // If there is a use of regC between its last def (could be livein) and this 643 // instruction, then bail. 644 unsigned LastDefC = 0; 645 if (!noUseAfterLastDef(regC, Dist, LastDefC)) 646 return false; 647 648 // If there is a use of regB between its last def (could be livein) and this 649 // instruction, then go ahead and make this transformation. 650 unsigned LastDefB = 0; 651 if (!noUseAfterLastDef(regB, Dist, LastDefB)) 652 return true; 653 654 // Look for situation like this: 655 // %reg101 = MOV %reg100 656 // %reg102 = ... 657 // %reg103 = ADD %reg102, %reg101 658 // ... = %reg103 ... 659 // %reg100 = MOV %reg103 660 // If there is a reversed copy chain from reg101 to reg103, commute the ADD 661 // to eliminate an otherwise unavoidable copy. 662 // FIXME: 663 // We can extend the logic further: If an pair of operands in an insn has 664 // been merged, the insn could be regarded as a virtual copy, and the virtual 665 // copy could also be used to construct a copy chain. 666 // To more generally minimize register copies, ideally the logic of two addr 667 // instruction pass should be integrated with register allocation pass where 668 // interference graph is available. 669 if (isRevCopyChain(regC, regA, MaxDataFlowEdge)) 670 return true; 671 672 if (isRevCopyChain(regB, regA, MaxDataFlowEdge)) 673 return false; 674 675 // Since there are no intervening uses for both registers, then commute 676 // if the def of regC is closer. Its live interval is shorter. 677 return LastDefB && LastDefC && LastDefC > LastDefB; 678 } 679 680 /// Commute a two-address instruction and update the basic block, distance map, 681 /// and live variables if needed. Return true if it is successful. 682 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, 683 unsigned DstIdx, 684 unsigned RegBIdx, 685 unsigned RegCIdx, 686 unsigned Dist) { 687 unsigned RegC = MI->getOperand(RegCIdx).getReg(); 688 DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 689 MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx); 690 691 if (NewMI == nullptr) { 692 DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 693 return false; 694 } 695 696 DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 697 assert(NewMI == MI && 698 "TargetInstrInfo::commuteInstruction() should not return a new " 699 "instruction unless it was requested."); 700 701 // Update source register map. 702 unsigned FromRegC = getMappedReg(RegC, SrcRegMap); 703 if (FromRegC) { 704 unsigned RegA = MI->getOperand(DstIdx).getReg(); 705 SrcRegMap[RegA] = FromRegC; 706 } 707 708 return true; 709 } 710 711 /// Return true if it is profitable to convert the given 2-address instruction 712 /// to a 3-address one. 713 bool 714 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){ 715 // Look for situations like this: 716 // %reg1024 = MOV r1 717 // %reg1025 = MOV r0 718 // %reg1026 = ADD %reg1024, %reg1025 719 // r2 = MOV %reg1026 720 // Turn ADD into a 3-address instruction to avoid a copy. 721 unsigned FromRegB = getMappedReg(RegB, SrcRegMap); 722 if (!FromRegB) 723 return false; 724 unsigned ToRegA = getMappedReg(RegA, DstRegMap); 725 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 726 } 727 728 /// Convert the specified two-address instruction into a three address one. 729 /// Return true if this transformation was successful. 730 bool 731 TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi, 732 MachineBasicBlock::iterator &nmi, 733 unsigned RegA, unsigned RegB, 734 unsigned Dist) { 735 // FIXME: Why does convertToThreeAddress() need an iterator reference? 736 MachineFunction::iterator MFI = MBB->getIterator(); 737 MachineInstr *NewMI = TII->convertToThreeAddress(MFI, *mi, LV); 738 assert(MBB->getIterator() == MFI && 739 "convertToThreeAddress changed iterator reference"); 740 if (!NewMI) 741 return false; 742 743 DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 744 DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 745 bool Sunk = false; 746 747 if (LIS) 748 LIS->ReplaceMachineInstrInMaps(*mi, *NewMI); 749 750 if (NewMI->findRegisterUseOperand(RegB, false, TRI)) 751 // FIXME: Temporary workaround. If the new instruction doesn't 752 // uses RegB, convertToThreeAddress must have created more 753 // then one instruction. 754 Sunk = sink3AddrInstruction(NewMI, RegB, mi); 755 756 MBB->erase(mi); // Nuke the old inst. 757 758 if (!Sunk) { 759 DistanceMap.insert(std::make_pair(NewMI, Dist)); 760 mi = NewMI; 761 nmi = std::next(mi); 762 } 763 else 764 SunkInstrs.insert(NewMI); 765 766 // Update source and destination register maps. 767 SrcRegMap.erase(RegA); 768 DstRegMap.erase(RegB); 769 return true; 770 } 771 772 /// Scan forward recursively for only uses, update maps if the use is a copy or 773 /// a two-address instruction. 774 void 775 TwoAddressInstructionPass::scanUses(unsigned DstReg) { 776 SmallVector<unsigned, 4> VirtRegPairs; 777 bool IsDstPhys; 778 bool IsCopy = false; 779 unsigned NewReg = 0; 780 unsigned Reg = DstReg; 781 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 782 NewReg, IsDstPhys)) { 783 if (IsCopy && !Processed.insert(UseMI).second) 784 break; 785 786 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 787 if (DI != DistanceMap.end()) 788 // Earlier in the same MBB.Reached via a back edge. 789 break; 790 791 if (IsDstPhys) { 792 VirtRegPairs.push_back(NewReg); 793 break; 794 } 795 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second; 796 if (!isNew) 797 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!"); 798 VirtRegPairs.push_back(NewReg); 799 Reg = NewReg; 800 } 801 802 if (!VirtRegPairs.empty()) { 803 unsigned ToReg = VirtRegPairs.back(); 804 VirtRegPairs.pop_back(); 805 while (!VirtRegPairs.empty()) { 806 unsigned FromReg = VirtRegPairs.back(); 807 VirtRegPairs.pop_back(); 808 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 809 if (!isNew) 810 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 811 ToReg = FromReg; 812 } 813 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 814 if (!isNew) 815 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 816 } 817 } 818 819 /// If the specified instruction is not yet processed, process it if it's a 820 /// copy. For a copy instruction, we find the physical registers the 821 /// source and destination registers might be mapped to. These are kept in 822 /// point-to maps used to determine future optimizations. e.g. 823 /// v1024 = mov r0 824 /// v1025 = mov r1 825 /// v1026 = add v1024, v1025 826 /// r1 = mov r1026 827 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 828 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 829 /// potentially joined with r1 on the output side. It's worthwhile to commute 830 /// 'add' to eliminate a copy. 831 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 832 if (Processed.count(MI)) 833 return; 834 835 bool IsSrcPhys, IsDstPhys; 836 unsigned SrcReg, DstReg; 837 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 838 return; 839 840 if (IsDstPhys && !IsSrcPhys) 841 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 842 else if (!IsDstPhys && IsSrcPhys) { 843 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 844 if (!isNew) 845 assert(SrcRegMap[DstReg] == SrcReg && 846 "Can't map to two src physical registers!"); 847 848 scanUses(DstReg); 849 } 850 851 Processed.insert(MI); 852 } 853 854 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 855 /// consider moving the instruction below the kill instruction in order to 856 /// eliminate the need for the copy. 857 bool TwoAddressInstructionPass:: 858 rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 859 MachineBasicBlock::iterator &nmi, 860 unsigned Reg) { 861 // Bail immediately if we don't have LV or LIS available. We use them to find 862 // kills efficiently. 863 if (!LV && !LIS) 864 return false; 865 866 MachineInstr *MI = &*mi; 867 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 868 if (DI == DistanceMap.end()) 869 // Must be created from unfolded load. Don't waste time trying this. 870 return false; 871 872 MachineInstr *KillMI = nullptr; 873 if (LIS) { 874 LiveInterval &LI = LIS->getInterval(Reg); 875 assert(LI.end() != LI.begin() && 876 "Reg should not have empty live interval."); 877 878 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 879 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 880 if (I != LI.end() && I->start < MBBEndIdx) 881 return false; 882 883 --I; 884 KillMI = LIS->getInstructionFromIndex(I->end); 885 } else { 886 KillMI = LV->getVarInfo(Reg).findKill(MBB); 887 } 888 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 889 // Don't mess with copies, they may be coalesced later. 890 return false; 891 892 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 893 KillMI->isBranch() || KillMI->isTerminator()) 894 // Don't move pass calls, etc. 895 return false; 896 897 unsigned DstReg; 898 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 899 return false; 900 901 bool SeenStore = true; 902 if (!MI->isSafeToMove(AA, SeenStore)) 903 return false; 904 905 if (TII->getInstrLatency(InstrItins, *MI) > 1) 906 // FIXME: Needs more sophisticated heuristics. 907 return false; 908 909 SmallVector<unsigned, 2> Uses; 910 SmallVector<unsigned, 2> Kills; 911 SmallVector<unsigned, 2> Defs; 912 for (const MachineOperand &MO : MI->operands()) { 913 if (!MO.isReg()) 914 continue; 915 unsigned MOReg = MO.getReg(); 916 if (!MOReg) 917 continue; 918 if (MO.isDef()) 919 Defs.push_back(MOReg); 920 else { 921 Uses.push_back(MOReg); 922 if (MOReg != Reg && (MO.isKill() || 923 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 924 Kills.push_back(MOReg); 925 } 926 } 927 928 // Move the copies connected to MI down as well. 929 MachineBasicBlock::iterator Begin = MI; 930 MachineBasicBlock::iterator AfterMI = std::next(Begin); 931 MachineBasicBlock::iterator End = AfterMI; 932 while (End->isCopy() && 933 regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI)) { 934 Defs.push_back(End->getOperand(0).getReg()); 935 ++End; 936 } 937 938 // Check if the reschedule will not break dependencies. 939 unsigned NumVisited = 0; 940 MachineBasicBlock::iterator KillPos = KillMI; 941 ++KillPos; 942 for (MachineInstr &OtherMI : make_range(End, KillPos)) { 943 // DBG_VALUE cannot be counted against the limit. 944 if (OtherMI.isDebugValue()) 945 continue; 946 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 947 return false; 948 ++NumVisited; 949 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 950 OtherMI.isBranch() || OtherMI.isTerminator()) 951 // Don't move pass calls, etc. 952 return false; 953 for (const MachineOperand &MO : OtherMI.operands()) { 954 if (!MO.isReg()) 955 continue; 956 unsigned MOReg = MO.getReg(); 957 if (!MOReg) 958 continue; 959 if (MO.isDef()) { 960 if (regOverlapsSet(Uses, MOReg, TRI)) 961 // Physical register use would be clobbered. 962 return false; 963 if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI)) 964 // May clobber a physical register def. 965 // FIXME: This may be too conservative. It's ok if the instruction 966 // is sunken completely below the use. 967 return false; 968 } else { 969 if (regOverlapsSet(Defs, MOReg, TRI)) 970 return false; 971 bool isKill = 972 MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)); 973 if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) || 974 regOverlapsSet(Kills, MOReg, TRI))) 975 // Don't want to extend other live ranges and update kills. 976 return false; 977 if (MOReg == Reg && !isKill) 978 // We can't schedule across a use of the register in question. 979 return false; 980 // Ensure that if this is register in question, its the kill we expect. 981 assert((MOReg != Reg || &OtherMI == KillMI) && 982 "Found multiple kills of a register in a basic block"); 983 } 984 } 985 } 986 987 // Move debug info as well. 988 while (Begin != MBB->begin() && std::prev(Begin)->isDebugValue()) 989 --Begin; 990 991 nmi = End; 992 MachineBasicBlock::iterator InsertPos = KillPos; 993 if (LIS) { 994 // We have to move the copies first so that the MBB is still well-formed 995 // when calling handleMove(). 996 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 997 auto CopyMI = MBBI++; 998 MBB->splice(InsertPos, MBB, CopyMI); 999 LIS->handleMove(*CopyMI); 1000 InsertPos = CopyMI; 1001 } 1002 End = std::next(MachineBasicBlock::iterator(MI)); 1003 } 1004 1005 // Copies following MI may have been moved as well. 1006 MBB->splice(InsertPos, MBB, Begin, End); 1007 DistanceMap.erase(DI); 1008 1009 // Update live variables 1010 if (LIS) { 1011 LIS->handleMove(*MI); 1012 } else { 1013 LV->removeVirtualRegisterKilled(Reg, *KillMI); 1014 LV->addVirtualRegisterKilled(Reg, *MI); 1015 } 1016 1017 DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 1018 return true; 1019 } 1020 1021 /// Return true if the re-scheduling will put the given instruction too close 1022 /// to the defs of its register dependencies. 1023 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist, 1024 MachineInstr *MI) { 1025 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 1026 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 1027 continue; 1028 if (&DefMI == MI) 1029 return true; // MI is defining something KillMI uses 1030 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 1031 if (DDI == DistanceMap.end()) 1032 return true; // Below MI 1033 unsigned DefDist = DDI->second; 1034 assert(Dist > DefDist && "Visited def already?"); 1035 if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist)) 1036 return true; 1037 } 1038 return false; 1039 } 1040 1041 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 1042 /// consider moving the kill instruction above the current two-address 1043 /// instruction in order to eliminate the need for the copy. 1044 bool TwoAddressInstructionPass:: 1045 rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 1046 MachineBasicBlock::iterator &nmi, 1047 unsigned Reg) { 1048 // Bail immediately if we don't have LV or LIS available. We use them to find 1049 // kills efficiently. 1050 if (!LV && !LIS) 1051 return false; 1052 1053 MachineInstr *MI = &*mi; 1054 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 1055 if (DI == DistanceMap.end()) 1056 // Must be created from unfolded load. Don't waste time trying this. 1057 return false; 1058 1059 MachineInstr *KillMI = nullptr; 1060 if (LIS) { 1061 LiveInterval &LI = LIS->getInterval(Reg); 1062 assert(LI.end() != LI.begin() && 1063 "Reg should not have empty live interval."); 1064 1065 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 1066 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 1067 if (I != LI.end() && I->start < MBBEndIdx) 1068 return false; 1069 1070 --I; 1071 KillMI = LIS->getInstructionFromIndex(I->end); 1072 } else { 1073 KillMI = LV->getVarInfo(Reg).findKill(MBB); 1074 } 1075 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 1076 // Don't mess with copies, they may be coalesced later. 1077 return false; 1078 1079 unsigned DstReg; 1080 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 1081 return false; 1082 1083 bool SeenStore = true; 1084 if (!KillMI->isSafeToMove(AA, SeenStore)) 1085 return false; 1086 1087 SmallSet<unsigned, 2> Uses; 1088 SmallSet<unsigned, 2> Kills; 1089 SmallSet<unsigned, 2> Defs; 1090 SmallSet<unsigned, 2> LiveDefs; 1091 for (const MachineOperand &MO : KillMI->operands()) { 1092 if (!MO.isReg()) 1093 continue; 1094 unsigned MOReg = MO.getReg(); 1095 if (MO.isUse()) { 1096 if (!MOReg) 1097 continue; 1098 if (isDefTooClose(MOReg, DI->second, MI)) 1099 return false; 1100 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 1101 if (MOReg == Reg && !isKill) 1102 return false; 1103 Uses.insert(MOReg); 1104 if (isKill && MOReg != Reg) 1105 Kills.insert(MOReg); 1106 } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1107 Defs.insert(MOReg); 1108 if (!MO.isDead()) 1109 LiveDefs.insert(MOReg); 1110 } 1111 } 1112 1113 // Check if the reschedule will not break depedencies. 1114 unsigned NumVisited = 0; 1115 for (MachineInstr &OtherMI : 1116 make_range(mi, MachineBasicBlock::iterator(KillMI))) { 1117 // DBG_VALUE cannot be counted against the limit. 1118 if (OtherMI.isDebugValue()) 1119 continue; 1120 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 1121 return false; 1122 ++NumVisited; 1123 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 1124 OtherMI.isBranch() || OtherMI.isTerminator()) 1125 // Don't move pass calls, etc. 1126 return false; 1127 SmallVector<unsigned, 2> OtherDefs; 1128 for (const MachineOperand &MO : OtherMI.operands()) { 1129 if (!MO.isReg()) 1130 continue; 1131 unsigned MOReg = MO.getReg(); 1132 if (!MOReg) 1133 continue; 1134 if (MO.isUse()) { 1135 if (Defs.count(MOReg)) 1136 // Moving KillMI can clobber the physical register if the def has 1137 // not been seen. 1138 return false; 1139 if (Kills.count(MOReg)) 1140 // Don't want to extend other live ranges and update kills. 1141 return false; 1142 if (&OtherMI != MI && MOReg == Reg && 1143 !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)))) 1144 // We can't schedule across a use of the register in question. 1145 return false; 1146 } else { 1147 OtherDefs.push_back(MOReg); 1148 } 1149 } 1150 1151 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1152 unsigned MOReg = OtherDefs[i]; 1153 if (Uses.count(MOReg)) 1154 return false; 1155 if (TargetRegisterInfo::isPhysicalRegister(MOReg) && 1156 LiveDefs.count(MOReg)) 1157 return false; 1158 // Physical register def is seen. 1159 Defs.erase(MOReg); 1160 } 1161 } 1162 1163 // Move the old kill above MI, don't forget to move debug info as well. 1164 MachineBasicBlock::iterator InsertPos = mi; 1165 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugValue()) 1166 --InsertPos; 1167 MachineBasicBlock::iterator From = KillMI; 1168 MachineBasicBlock::iterator To = std::next(From); 1169 while (std::prev(From)->isDebugValue()) 1170 --From; 1171 MBB->splice(InsertPos, MBB, From, To); 1172 1173 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1174 DistanceMap.erase(DI); 1175 1176 // Update live variables 1177 if (LIS) { 1178 LIS->handleMove(*KillMI); 1179 } else { 1180 LV->removeVirtualRegisterKilled(Reg, *KillMI); 1181 LV->addVirtualRegisterKilled(Reg, *MI); 1182 } 1183 1184 DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1185 return true; 1186 } 1187 1188 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the 1189 /// given machine instruction to improve opportunities for coalescing and 1190 /// elimination of a register to register copy. 1191 /// 1192 /// 'DstOpIdx' specifies the index of MI def operand. 1193 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' 1194 /// operand is killed by the given instruction. 1195 /// The 'Dist' arguments provides the distance of MI from the start of the 1196 /// current basic block and it is used to determine if it is profitable 1197 /// to commute operands in the instruction. 1198 /// 1199 /// Returns true if the transformation happened. Otherwise, returns false. 1200 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, 1201 unsigned DstOpIdx, 1202 unsigned BaseOpIdx, 1203 bool BaseOpKilled, 1204 unsigned Dist) { 1205 if (!MI->isCommutable()) 1206 return false; 1207 1208 unsigned DstOpReg = MI->getOperand(DstOpIdx).getReg(); 1209 unsigned BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); 1210 unsigned OpsNum = MI->getDesc().getNumOperands(); 1211 unsigned OtherOpIdx = MI->getDesc().getNumDefs(); 1212 for (; OtherOpIdx < OpsNum; OtherOpIdx++) { 1213 // The call of findCommutedOpIndices below only checks if BaseOpIdx 1214 // and OtherOpIdx are commutable, it does not really search for 1215 // other commutable operands and does not change the values of passed 1216 // variables. 1217 if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() || 1218 !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx)) 1219 continue; 1220 1221 unsigned OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); 1222 bool AggressiveCommute = false; 1223 1224 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp 1225 // operands. This makes the live ranges of DstOp and OtherOp joinable. 1226 bool DoCommute = 1227 !BaseOpKilled && isKilled(*MI, OtherOpReg, MRI, TII, LIS, false); 1228 1229 if (!DoCommute && 1230 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { 1231 DoCommute = true; 1232 AggressiveCommute = true; 1233 } 1234 1235 // If it's profitable to commute, try to do so. 1236 if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx, 1237 Dist)) { 1238 ++NumCommuted; 1239 if (AggressiveCommute) 1240 ++NumAggrCommuted; 1241 return true; 1242 } 1243 } 1244 return false; 1245 } 1246 1247 /// For the case where an instruction has a single pair of tied register 1248 /// operands, attempt some transformations that may either eliminate the tied 1249 /// operands or improve the opportunities for coalescing away the register copy. 1250 /// Returns true if no copy needs to be inserted to untie mi's operands 1251 /// (either because they were untied, or because mi was rescheduled, and will 1252 /// be visited again later). If the shouldOnlyCommute flag is true, only 1253 /// instruction commutation is attempted. 1254 bool TwoAddressInstructionPass:: 1255 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1256 MachineBasicBlock::iterator &nmi, 1257 unsigned SrcIdx, unsigned DstIdx, 1258 unsigned Dist, bool shouldOnlyCommute) { 1259 if (OptLevel == CodeGenOpt::None) 1260 return false; 1261 1262 MachineInstr &MI = *mi; 1263 unsigned regA = MI.getOperand(DstIdx).getReg(); 1264 unsigned regB = MI.getOperand(SrcIdx).getReg(); 1265 1266 assert(TargetRegisterInfo::isVirtualRegister(regB) && 1267 "cannot make instruction into two-address form"); 1268 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1269 1270 if (TargetRegisterInfo::isVirtualRegister(regA)) 1271 scanUses(regA); 1272 1273 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); 1274 1275 // If the instruction is convertible to 3 Addr, instead 1276 // of returning try 3 Addr transformation aggresively and 1277 // use this variable to check later. Because it might be better. 1278 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` 1279 // instead of the following code. 1280 // addl %esi, %edi 1281 // movl %edi, %eax 1282 // ret 1283 if (Commuted && !MI.isConvertibleTo3Addr()) 1284 return false; 1285 1286 if (shouldOnlyCommute) 1287 return false; 1288 1289 // If there is one more use of regB later in the same MBB, consider 1290 // re-schedule this MI below it. 1291 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1292 ++NumReSchedDowns; 1293 return true; 1294 } 1295 1296 // If we commuted, regB may have changed so we should re-sample it to avoid 1297 // confusing the three address conversion below. 1298 if (Commuted) { 1299 regB = MI.getOperand(SrcIdx).getReg(); 1300 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1301 } 1302 1303 if (MI.isConvertibleTo3Addr()) { 1304 // This instruction is potentially convertible to a true 1305 // three-address instruction. Check if it is profitable. 1306 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1307 // Try to convert it. 1308 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1309 ++NumConvertedTo3Addr; 1310 return true; // Done with this instruction. 1311 } 1312 } 1313 } 1314 1315 // Return if it is commuted but 3 addr conversion is failed. 1316 if (Commuted) 1317 return false; 1318 1319 // If there is one more use of regB later in the same MBB, consider 1320 // re-schedule it before this MI if it's legal. 1321 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1322 ++NumReSchedUps; 1323 return true; 1324 } 1325 1326 // If this is an instruction with a load folded into it, try unfolding 1327 // the load, e.g. avoid this: 1328 // movq %rdx, %rcx 1329 // addq (%rax), %rcx 1330 // in favor of this: 1331 // movq (%rax), %rcx 1332 // addq %rdx, %rcx 1333 // because it's preferable to schedule a load than a register copy. 1334 if (MI.mayLoad() && !regBKilled) { 1335 // Determine if a load can be unfolded. 1336 unsigned LoadRegIndex; 1337 unsigned NewOpc = 1338 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1339 /*UnfoldLoad=*/true, 1340 /*UnfoldStore=*/false, 1341 &LoadRegIndex); 1342 if (NewOpc != 0) { 1343 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1344 if (UnfoldMCID.getNumDefs() == 1) { 1345 // Unfold the load. 1346 DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1347 const TargetRegisterClass *RC = 1348 TRI->getAllocatableClass( 1349 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1350 unsigned Reg = MRI->createVirtualRegister(RC); 1351 SmallVector<MachineInstr *, 2> NewMIs; 1352 if (!TII->unfoldMemoryOperand(*MF, MI, Reg, 1353 /*UnfoldLoad=*/true, 1354 /*UnfoldStore=*/false, NewMIs)) { 1355 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1356 return false; 1357 } 1358 assert(NewMIs.size() == 2 && 1359 "Unfolded a load into multiple instructions!"); 1360 // The load was previously folded, so this is the only use. 1361 NewMIs[1]->addRegisterKilled(Reg, TRI); 1362 1363 // Tentatively insert the instructions into the block so that they 1364 // look "normal" to the transformation logic. 1365 MBB->insert(mi, NewMIs[0]); 1366 MBB->insert(mi, NewMIs[1]); 1367 1368 DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1369 << "2addr: NEW INST: " << *NewMIs[1]); 1370 1371 // Transform the instruction, now that it no longer has a load. 1372 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1373 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1374 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1375 bool TransformResult = 1376 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1377 (void)TransformResult; 1378 assert(!TransformResult && 1379 "tryInstructionTransform() should return false."); 1380 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1381 // Success, or at least we made an improvement. Keep the unfolded 1382 // instructions and discard the original. 1383 if (LV) { 1384 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1385 MachineOperand &MO = MI.getOperand(i); 1386 if (MO.isReg() && 1387 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 1388 if (MO.isUse()) { 1389 if (MO.isKill()) { 1390 if (NewMIs[0]->killsRegister(MO.getReg())) 1391 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]); 1392 else { 1393 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1394 "Kill missing after load unfold!"); 1395 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]); 1396 } 1397 } 1398 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) { 1399 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1400 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]); 1401 else { 1402 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1403 "Dead flag missing after load unfold!"); 1404 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]); 1405 } 1406 } 1407 } 1408 } 1409 LV->addVirtualRegisterKilled(Reg, *NewMIs[1]); 1410 } 1411 1412 SmallVector<unsigned, 4> OrigRegs; 1413 if (LIS) { 1414 for (const MachineOperand &MO : MI.operands()) { 1415 if (MO.isReg()) 1416 OrigRegs.push_back(MO.getReg()); 1417 } 1418 } 1419 1420 MI.eraseFromParent(); 1421 1422 // Update LiveIntervals. 1423 if (LIS) { 1424 MachineBasicBlock::iterator Begin(NewMIs[0]); 1425 MachineBasicBlock::iterator End(NewMIs[1]); 1426 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1427 } 1428 1429 mi = NewMIs[1]; 1430 } else { 1431 // Transforming didn't eliminate the tie and didn't lead to an 1432 // improvement. Clean up the unfolded instructions and keep the 1433 // original. 1434 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1435 NewMIs[0]->eraseFromParent(); 1436 NewMIs[1]->eraseFromParent(); 1437 } 1438 } 1439 } 1440 } 1441 1442 return false; 1443 } 1444 1445 // Collect tied operands of MI that need to be handled. 1446 // Rewrite trivial cases immediately. 1447 // Return true if any tied operands where found, including the trivial ones. 1448 bool TwoAddressInstructionPass:: 1449 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1450 const MCInstrDesc &MCID = MI->getDesc(); 1451 bool AnyOps = false; 1452 unsigned NumOps = MI->getNumOperands(); 1453 1454 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1455 unsigned DstIdx = 0; 1456 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1457 continue; 1458 AnyOps = true; 1459 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1460 MachineOperand &DstMO = MI->getOperand(DstIdx); 1461 unsigned SrcReg = SrcMO.getReg(); 1462 unsigned DstReg = DstMO.getReg(); 1463 // Tied constraint already satisfied? 1464 if (SrcReg == DstReg) 1465 continue; 1466 1467 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1468 1469 // Deal with undef uses immediately - simply rewrite the src operand. 1470 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1471 // Constrain the DstReg register class if required. 1472 if (TargetRegisterInfo::isVirtualRegister(DstReg)) 1473 if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx, 1474 TRI, *MF)) 1475 MRI->constrainRegClass(DstReg, RC); 1476 SrcMO.setReg(DstReg); 1477 SrcMO.setSubReg(0); 1478 DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1479 continue; 1480 } 1481 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1482 } 1483 return AnyOps; 1484 } 1485 1486 // Process a list of tied MI operands that all use the same source register. 1487 // The tied pairs are of the form (SrcIdx, DstIdx). 1488 void 1489 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1490 TiedPairList &TiedPairs, 1491 unsigned &Dist) { 1492 bool IsEarlyClobber = false; 1493 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1494 const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second); 1495 IsEarlyClobber |= DstMO.isEarlyClobber(); 1496 } 1497 1498 bool RemovedKillFlag = false; 1499 bool AllUsesCopied = true; 1500 unsigned LastCopiedReg = 0; 1501 SlotIndex LastCopyIdx; 1502 unsigned RegB = 0; 1503 unsigned SubRegB = 0; 1504 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1505 unsigned SrcIdx = TiedPairs[tpi].first; 1506 unsigned DstIdx = TiedPairs[tpi].second; 1507 1508 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1509 unsigned RegA = DstMO.getReg(); 1510 1511 // Grab RegB from the instruction because it may have changed if the 1512 // instruction was commuted. 1513 RegB = MI->getOperand(SrcIdx).getReg(); 1514 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1515 1516 if (RegA == RegB) { 1517 // The register is tied to multiple destinations (or else we would 1518 // not have continued this far), but this use of the register 1519 // already matches the tied destination. Leave it. 1520 AllUsesCopied = false; 1521 continue; 1522 } 1523 LastCopiedReg = RegA; 1524 1525 assert(TargetRegisterInfo::isVirtualRegister(RegB) && 1526 "cannot make instruction into two-address form"); 1527 1528 #ifndef NDEBUG 1529 // First, verify that we don't have a use of "a" in the instruction 1530 // (a = b + a for example) because our transformation will not 1531 // work. This should never occur because we are in SSA form. 1532 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1533 assert(i == DstIdx || 1534 !MI->getOperand(i).isReg() || 1535 MI->getOperand(i).getReg() != RegA); 1536 #endif 1537 1538 // Emit a copy. 1539 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1540 TII->get(TargetOpcode::COPY), RegA); 1541 // If this operand is folding a truncation, the truncation now moves to the 1542 // copy so that the register classes remain valid for the operands. 1543 MIB.addReg(RegB, 0, SubRegB); 1544 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1545 if (SubRegB) { 1546 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 1547 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1548 SubRegB) && 1549 "tied subregister must be a truncation"); 1550 // The superreg class will not be used to constrain the subreg class. 1551 RC = nullptr; 1552 } 1553 else { 1554 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1555 && "tied subregister must be a truncation"); 1556 } 1557 } 1558 1559 // Update DistanceMap. 1560 MachineBasicBlock::iterator PrevMI = MI; 1561 --PrevMI; 1562 DistanceMap.insert(std::make_pair(&*PrevMI, Dist)); 1563 DistanceMap[MI] = ++Dist; 1564 1565 if (LIS) { 1566 LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot(); 1567 1568 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 1569 LiveInterval &LI = LIS->getInterval(RegA); 1570 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1571 SlotIndex endIdx = 1572 LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber); 1573 LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI)); 1574 } 1575 } 1576 1577 DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1578 1579 MachineOperand &MO = MI->getOperand(SrcIdx); 1580 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1581 "inconsistent operand info for 2-reg pass"); 1582 if (MO.isKill()) { 1583 MO.setIsKill(false); 1584 RemovedKillFlag = true; 1585 } 1586 1587 // Make sure regA is a legal regclass for the SrcIdx operand. 1588 if (TargetRegisterInfo::isVirtualRegister(RegA) && 1589 TargetRegisterInfo::isVirtualRegister(RegB)) 1590 MRI->constrainRegClass(RegA, RC); 1591 MO.setReg(RegA); 1592 // The getMatchingSuper asserts guarantee that the register class projected 1593 // by SubRegB is compatible with RegA with no subregister. So regardless of 1594 // whether the dest oper writes a subreg, the source oper should not. 1595 MO.setSubReg(0); 1596 1597 // Propagate SrcRegMap. 1598 SrcRegMap[RegA] = RegB; 1599 } 1600 1601 if (AllUsesCopied) { 1602 if (!IsEarlyClobber) { 1603 // Replace other (un-tied) uses of regB with LastCopiedReg. 1604 for (MachineOperand &MO : MI->operands()) { 1605 if (MO.isReg() && MO.getReg() == RegB && 1606 MO.isUse()) { 1607 if (MO.isKill()) { 1608 MO.setIsKill(false); 1609 RemovedKillFlag = true; 1610 } 1611 MO.setReg(LastCopiedReg); 1612 MO.setSubReg(MO.getSubReg()); 1613 } 1614 } 1615 } 1616 1617 // Update live variables for regB. 1618 if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(*MI)) { 1619 MachineBasicBlock::iterator PrevMI = MI; 1620 --PrevMI; 1621 LV->addVirtualRegisterKilled(RegB, *PrevMI); 1622 } 1623 1624 // Update LiveIntervals. 1625 if (LIS) { 1626 LiveInterval &LI = LIS->getInterval(RegB); 1627 SlotIndex MIIdx = LIS->getInstructionIndex(*MI); 1628 LiveInterval::const_iterator I = LI.find(MIIdx); 1629 assert(I != LI.end() && "RegB must be live-in to use."); 1630 1631 SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber); 1632 if (I->end == UseIdx) 1633 LI.removeSegment(LastCopyIdx, UseIdx); 1634 } 1635 } else if (RemovedKillFlag) { 1636 // Some tied uses of regB matched their destination registers, so 1637 // regB is still used in this instruction, but a kill flag was 1638 // removed from a different tied use of regB, so now we need to add 1639 // a kill flag to one of the remaining uses of regB. 1640 for (MachineOperand &MO : MI->operands()) { 1641 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1642 MO.setIsKill(true); 1643 break; 1644 } 1645 } 1646 } 1647 } 1648 1649 /// Reduce two-address instructions to two operands. 1650 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1651 MF = &Func; 1652 const TargetMachine &TM = MF->getTarget(); 1653 MRI = &MF->getRegInfo(); 1654 TII = MF->getSubtarget().getInstrInfo(); 1655 TRI = MF->getSubtarget().getRegisterInfo(); 1656 InstrItins = MF->getSubtarget().getInstrItineraryData(); 1657 LV = getAnalysisIfAvailable<LiveVariables>(); 1658 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1659 if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>()) 1660 AA = &AAPass->getAAResults(); 1661 else 1662 AA = nullptr; 1663 OptLevel = TM.getOptLevel(); 1664 // Disable optimizations if requested. We cannot skip the whole pass as some 1665 // fixups are necessary for correctness. 1666 if (skipFunction(Func.getFunction())) 1667 OptLevel = CodeGenOpt::None; 1668 1669 bool MadeChange = false; 1670 1671 DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1672 DEBUG(dbgs() << "********** Function: " 1673 << MF->getName() << '\n'); 1674 1675 // This pass takes the function out of SSA form. 1676 MRI->leaveSSA(); 1677 1678 TiedOperandMap TiedOperands; 1679 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); 1680 MBBI != MBBE; ++MBBI) { 1681 MBB = &*MBBI; 1682 unsigned Dist = 0; 1683 DistanceMap.clear(); 1684 SrcRegMap.clear(); 1685 DstRegMap.clear(); 1686 Processed.clear(); 1687 SunkInstrs.clear(); 1688 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1689 mi != me; ) { 1690 MachineBasicBlock::iterator nmi = std::next(mi); 1691 // Don't revisit an instruction previously converted by target. It may 1692 // contain undef register operands (%noreg), which are not handled. 1693 if (mi->isDebugValue() || SunkInstrs.count(&*mi)) { 1694 mi = nmi; 1695 continue; 1696 } 1697 1698 // Expand REG_SEQUENCE instructions. This will position mi at the first 1699 // expanded instruction. 1700 if (mi->isRegSequence()) 1701 eliminateRegSequence(mi); 1702 1703 DistanceMap.insert(std::make_pair(&*mi, ++Dist)); 1704 1705 processCopy(&*mi); 1706 1707 // First scan through all the tied register uses in this instruction 1708 // and record a list of pairs of tied operands for each register. 1709 if (!collectTiedOperands(&*mi, TiedOperands)) { 1710 mi = nmi; 1711 continue; 1712 } 1713 1714 ++NumTwoAddressInstrs; 1715 MadeChange = true; 1716 DEBUG(dbgs() << '\t' << *mi); 1717 1718 // If the instruction has a single pair of tied operands, try some 1719 // transformations that may either eliminate the tied operands or 1720 // improve the opportunities for coalescing away the register copy. 1721 if (TiedOperands.size() == 1) { 1722 SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs 1723 = TiedOperands.begin()->second; 1724 if (TiedPairs.size() == 1) { 1725 unsigned SrcIdx = TiedPairs[0].first; 1726 unsigned DstIdx = TiedPairs[0].second; 1727 unsigned SrcReg = mi->getOperand(SrcIdx).getReg(); 1728 unsigned DstReg = mi->getOperand(DstIdx).getReg(); 1729 if (SrcReg != DstReg && 1730 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1731 // The tied operands have been eliminated or shifted further down 1732 // the block to ease elimination. Continue processing with 'nmi'. 1733 TiedOperands.clear(); 1734 mi = nmi; 1735 continue; 1736 } 1737 } 1738 } 1739 1740 // Now iterate over the information collected above. 1741 for (auto &TO : TiedOperands) { 1742 processTiedPairs(&*mi, TO.second, Dist); 1743 DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1744 } 1745 1746 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1747 if (mi->isInsertSubreg()) { 1748 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1749 // To %reg:subidx = COPY %subreg 1750 unsigned SubIdx = mi->getOperand(3).getImm(); 1751 mi->RemoveOperand(3); 1752 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1753 mi->getOperand(0).setSubReg(SubIdx); 1754 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1755 mi->RemoveOperand(1); 1756 mi->setDesc(TII->get(TargetOpcode::COPY)); 1757 DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1758 } 1759 1760 // Clear TiedOperands here instead of at the top of the loop 1761 // since most instructions do not have tied operands. 1762 TiedOperands.clear(); 1763 mi = nmi; 1764 } 1765 } 1766 1767 if (LIS) 1768 MF->verify(this, "After two-address instruction pass"); 1769 1770 return MadeChange; 1771 } 1772 1773 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1774 /// 1775 /// The instruction is turned into a sequence of sub-register copies: 1776 /// 1777 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1778 /// 1779 /// Becomes: 1780 /// 1781 /// undef %dst:ssub0 = COPY %v1 1782 /// %dst:ssub1 = COPY %v2 1783 void TwoAddressInstructionPass:: 1784 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1785 MachineInstr &MI = *MBBI; 1786 unsigned DstReg = MI.getOperand(0).getReg(); 1787 if (MI.getOperand(0).getSubReg() || 1788 TargetRegisterInfo::isPhysicalRegister(DstReg) || 1789 !(MI.getNumOperands() & 1)) { 1790 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI); 1791 llvm_unreachable(nullptr); 1792 } 1793 1794 SmallVector<unsigned, 4> OrigRegs; 1795 if (LIS) { 1796 OrigRegs.push_back(MI.getOperand(0).getReg()); 1797 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) 1798 OrigRegs.push_back(MI.getOperand(i).getReg()); 1799 } 1800 1801 bool DefEmitted = false; 1802 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) { 1803 MachineOperand &UseMO = MI.getOperand(i); 1804 unsigned SrcReg = UseMO.getReg(); 1805 unsigned SubIdx = MI.getOperand(i+1).getImm(); 1806 // Nothing needs to be inserted for undef operands. 1807 if (UseMO.isUndef()) 1808 continue; 1809 1810 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1811 // might insert a COPY that uses SrcReg after is was killed. 1812 bool isKill = UseMO.isKill(); 1813 if (isKill) 1814 for (unsigned j = i + 2; j < e; j += 2) 1815 if (MI.getOperand(j).getReg() == SrcReg) { 1816 MI.getOperand(j).setIsKill(); 1817 UseMO.setIsKill(false); 1818 isKill = false; 1819 break; 1820 } 1821 1822 // Insert the sub-register copy. 1823 MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1824 TII->get(TargetOpcode::COPY)) 1825 .addReg(DstReg, RegState::Define, SubIdx) 1826 .add(UseMO); 1827 1828 // The first def needs an undef flag because there is no live register 1829 // before it. 1830 if (!DefEmitted) { 1831 CopyMI->getOperand(0).setIsUndef(true); 1832 // Return an iterator pointing to the first inserted instr. 1833 MBBI = CopyMI; 1834 } 1835 DefEmitted = true; 1836 1837 // Update LiveVariables' kill info. 1838 if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg)) 1839 LV->replaceKillInstruction(SrcReg, MI, *CopyMI); 1840 1841 DEBUG(dbgs() << "Inserted: " << *CopyMI); 1842 } 1843 1844 MachineBasicBlock::iterator EndMBBI = 1845 std::next(MachineBasicBlock::iterator(MI)); 1846 1847 if (!DefEmitted) { 1848 DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF"); 1849 MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1850 for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j) 1851 MI.RemoveOperand(j); 1852 } else { 1853 DEBUG(dbgs() << "Eliminated: " << MI); 1854 MI.eraseFromParent(); 1855 } 1856 1857 // Udpate LiveIntervals. 1858 if (LIS) 1859 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1860 } 1861