1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TwoAddress instruction pass which is used 11 // by most register allocators. Two-Address instructions are rewritten 12 // from: 13 // 14 // A = B op C 15 // 16 // to: 17 // 18 // A = B 19 // A op= C 20 // 21 // Note that if a register allocator chooses to use this pass, that it 22 // has to be capable of handling the non-SSA nature of these rewritten 23 // virtual registers. 24 // 25 // It is also worth noting that the duplicate operand of the two 26 // address instruction is removed. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/CodeGen/LiveInterval.h" 38 #include "llvm/CodeGen/LiveIntervals.h" 39 #include "llvm/CodeGen/LiveVariables.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineFunctionPass.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/Passes.h" 48 #include "llvm/CodeGen/SlotIndexes.h" 49 #include "llvm/CodeGen/TargetInstrInfo.h" 50 #include "llvm/CodeGen/TargetOpcodes.h" 51 #include "llvm/CodeGen/TargetRegisterInfo.h" 52 #include "llvm/CodeGen/TargetSubtargetInfo.h" 53 #include "llvm/MC/MCInstrDesc.h" 54 #include "llvm/MC/MCInstrItineraries.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/CodeGen.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Target/TargetMachine.h" 62 #include <cassert> 63 #include <iterator> 64 #include <utility> 65 66 using namespace llvm; 67 68 #define DEBUG_TYPE "twoaddressinstruction" 69 70 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 71 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 72 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 73 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 74 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk"); 75 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 76 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 77 78 // Temporary flag to disable rescheduling. 79 static cl::opt<bool> 80 EnableRescheduling("twoaddr-reschedule", 81 cl::desc("Coalesce copies by rescheduling (default=true)"), 82 cl::init(true), cl::Hidden); 83 84 // Limit the number of dataflow edges to traverse when evaluating the benefit 85 // of commuting operands. 86 static cl::opt<unsigned> MaxDataFlowEdge( 87 "dataflow-edge-limit", cl::Hidden, cl::init(3), 88 cl::desc("Maximum number of dataflow edges to traverse when evaluating " 89 "the benefit of commuting operands")); 90 91 namespace { 92 93 class TwoAddressInstructionPass : public MachineFunctionPass { 94 MachineFunction *MF; 95 const TargetInstrInfo *TII; 96 const TargetRegisterInfo *TRI; 97 const InstrItineraryData *InstrItins; 98 MachineRegisterInfo *MRI; 99 LiveVariables *LV; 100 LiveIntervals *LIS; 101 AliasAnalysis *AA; 102 CodeGenOpt::Level OptLevel; 103 104 // The current basic block being processed. 105 MachineBasicBlock *MBB; 106 107 // Keep track the distance of a MI from the start of the current basic block. 108 DenseMap<MachineInstr*, unsigned> DistanceMap; 109 110 // Set of already processed instructions in the current block. 111 SmallPtrSet<MachineInstr*, 8> Processed; 112 113 // Set of instructions converted to three-address by target and then sunk 114 // down current basic block. 115 SmallPtrSet<MachineInstr*, 8> SunkInstrs; 116 117 // A map from virtual registers to physical registers which are likely targets 118 // to be coalesced to due to copies from physical registers to virtual 119 // registers. e.g. v1024 = move r0. 120 DenseMap<unsigned, unsigned> SrcRegMap; 121 122 // A map from virtual registers to physical registers which are likely targets 123 // to be coalesced to due to copies to physical registers from virtual 124 // registers. e.g. r1 = move v1024. 125 DenseMap<unsigned, unsigned> DstRegMap; 126 127 bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg, 128 MachineBasicBlock::iterator OldPos); 129 130 bool isRevCopyChain(unsigned FromReg, unsigned ToReg, int Maxlen); 131 132 bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef); 133 134 bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 135 MachineInstr *MI, unsigned Dist); 136 137 bool commuteInstruction(MachineInstr *MI, unsigned DstIdx, 138 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); 139 140 bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB); 141 142 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 143 MachineBasicBlock::iterator &nmi, 144 unsigned RegA, unsigned RegB, unsigned Dist); 145 146 bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI); 147 148 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 149 MachineBasicBlock::iterator &nmi, 150 unsigned Reg); 151 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 152 MachineBasicBlock::iterator &nmi, 153 unsigned Reg); 154 155 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 156 MachineBasicBlock::iterator &nmi, 157 unsigned SrcIdx, unsigned DstIdx, 158 unsigned Dist, bool shouldOnlyCommute); 159 160 bool tryInstructionCommute(MachineInstr *MI, 161 unsigned DstOpIdx, 162 unsigned BaseOpIdx, 163 bool BaseOpKilled, 164 unsigned Dist); 165 void scanUses(unsigned DstReg); 166 167 void processCopy(MachineInstr *MI); 168 169 using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>; 170 using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>; 171 172 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 173 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 174 void eliminateRegSequence(MachineBasicBlock::iterator&); 175 176 public: 177 static char ID; // Pass identification, replacement for typeid 178 179 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 180 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 181 } 182 183 void getAnalysisUsage(AnalysisUsage &AU) const override { 184 AU.setPreservesCFG(); 185 AU.addUsedIfAvailable<AAResultsWrapperPass>(); 186 AU.addUsedIfAvailable<LiveVariables>(); 187 AU.addPreserved<LiveVariables>(); 188 AU.addPreserved<SlotIndexes>(); 189 AU.addPreserved<LiveIntervals>(); 190 AU.addPreservedID(MachineLoopInfoID); 191 AU.addPreservedID(MachineDominatorsID); 192 MachineFunctionPass::getAnalysisUsage(AU); 193 } 194 195 /// Pass entry point. 196 bool runOnMachineFunction(MachineFunction&) override; 197 }; 198 199 } // end anonymous namespace 200 201 char TwoAddressInstructionPass::ID = 0; 202 203 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 204 205 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE, 206 "Two-Address instruction pass", false, false) 207 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 208 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE, 209 "Two-Address instruction pass", false, false) 210 211 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS); 212 213 /// A two-address instruction has been converted to a three-address instruction 214 /// to avoid clobbering a register. Try to sink it past the instruction that 215 /// would kill the above mentioned register to reduce register pressure. 216 bool TwoAddressInstructionPass:: 217 sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg, 218 MachineBasicBlock::iterator OldPos) { 219 // FIXME: Shouldn't we be trying to do this before we three-addressify the 220 // instruction? After this transformation is done, we no longer need 221 // the instruction to be in three-address form. 222 223 // Check if it's safe to move this instruction. 224 bool SeenStore = true; // Be conservative. 225 if (!MI->isSafeToMove(AA, SeenStore)) 226 return false; 227 228 unsigned DefReg = 0; 229 SmallSet<unsigned, 4> UseRegs; 230 231 for (const MachineOperand &MO : MI->operands()) { 232 if (!MO.isReg()) 233 continue; 234 unsigned MOReg = MO.getReg(); 235 if (!MOReg) 236 continue; 237 if (MO.isUse() && MOReg != SavedReg) 238 UseRegs.insert(MO.getReg()); 239 if (!MO.isDef()) 240 continue; 241 if (MO.isImplicit()) 242 // Don't try to move it if it implicitly defines a register. 243 return false; 244 if (DefReg) 245 // For now, don't move any instructions that define multiple registers. 246 return false; 247 DefReg = MO.getReg(); 248 } 249 250 // Find the instruction that kills SavedReg. 251 MachineInstr *KillMI = nullptr; 252 if (LIS) { 253 LiveInterval &LI = LIS->getInterval(SavedReg); 254 assert(LI.end() != LI.begin() && 255 "Reg should not have empty live interval."); 256 257 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 258 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 259 if (I != LI.end() && I->start < MBBEndIdx) 260 return false; 261 262 --I; 263 KillMI = LIS->getInstructionFromIndex(I->end); 264 } 265 if (!KillMI) { 266 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SavedReg)) { 267 if (!UseMO.isKill()) 268 continue; 269 KillMI = UseMO.getParent(); 270 break; 271 } 272 } 273 274 // If we find the instruction that kills SavedReg, and it is in an 275 // appropriate location, we can try to sink the current instruction 276 // past it. 277 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI || 278 MachineBasicBlock::iterator(KillMI) == OldPos || KillMI->isTerminator()) 279 return false; 280 281 // If any of the definitions are used by another instruction between the 282 // position and the kill use, then it's not safe to sink it. 283 // 284 // FIXME: This can be sped up if there is an easy way to query whether an 285 // instruction is before or after another instruction. Then we can use 286 // MachineRegisterInfo def / use instead. 287 MachineOperand *KillMO = nullptr; 288 MachineBasicBlock::iterator KillPos = KillMI; 289 ++KillPos; 290 291 unsigned NumVisited = 0; 292 for (MachineInstr &OtherMI : make_range(std::next(OldPos), KillPos)) { 293 // Debug instructions cannot be counted against the limit. 294 if (OtherMI.isDebugInstr()) 295 continue; 296 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost. 297 return false; 298 ++NumVisited; 299 for (unsigned i = 0, e = OtherMI.getNumOperands(); i != e; ++i) { 300 MachineOperand &MO = OtherMI.getOperand(i); 301 if (!MO.isReg()) 302 continue; 303 unsigned MOReg = MO.getReg(); 304 if (!MOReg) 305 continue; 306 if (DefReg == MOReg) 307 return false; 308 309 if (MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS))) { 310 if (&OtherMI == KillMI && MOReg == SavedReg) 311 // Save the operand that kills the register. We want to unset the kill 312 // marker if we can sink MI past it. 313 KillMO = &MO; 314 else if (UseRegs.count(MOReg)) 315 // One of the uses is killed before the destination. 316 return false; 317 } 318 } 319 } 320 assert(KillMO && "Didn't find kill"); 321 322 if (!LIS) { 323 // Update kill and LV information. 324 KillMO->setIsKill(false); 325 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI); 326 KillMO->setIsKill(true); 327 328 if (LV) 329 LV->replaceKillInstruction(SavedReg, *KillMI, *MI); 330 } 331 332 // Move instruction to its destination. 333 MBB->remove(MI); 334 MBB->insert(KillPos, MI); 335 336 if (LIS) 337 LIS->handleMove(*MI); 338 339 ++Num3AddrSunk; 340 return true; 341 } 342 343 /// Return the MachineInstr* if it is the single def of the Reg in current BB. 344 static MachineInstr *getSingleDef(unsigned Reg, MachineBasicBlock *BB, 345 const MachineRegisterInfo *MRI) { 346 MachineInstr *Ret = nullptr; 347 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 348 if (DefMI.getParent() != BB || DefMI.isDebugValue()) 349 continue; 350 if (!Ret) 351 Ret = &DefMI; 352 else if (Ret != &DefMI) 353 return nullptr; 354 } 355 return Ret; 356 } 357 358 /// Check if there is a reversed copy chain from FromReg to ToReg: 359 /// %Tmp1 = copy %Tmp2; 360 /// %FromReg = copy %Tmp1; 361 /// %ToReg = add %FromReg ... 362 /// %Tmp2 = copy %ToReg; 363 /// MaxLen specifies the maximum length of the copy chain the func 364 /// can walk through. 365 bool TwoAddressInstructionPass::isRevCopyChain(unsigned FromReg, unsigned ToReg, 366 int Maxlen) { 367 unsigned TmpReg = FromReg; 368 for (int i = 0; i < Maxlen; i++) { 369 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI); 370 if (!Def || !Def->isCopy()) 371 return false; 372 373 TmpReg = Def->getOperand(1).getReg(); 374 375 if (TmpReg == ToReg) 376 return true; 377 } 378 return false; 379 } 380 381 /// Return true if there are no intervening uses between the last instruction 382 /// in the MBB that defines the specified register and the two-address 383 /// instruction which is being processed. It also returns the last def location 384 /// by reference. 385 bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist, 386 unsigned &LastDef) { 387 LastDef = 0; 388 unsigned LastUse = Dist; 389 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 390 MachineInstr *MI = MO.getParent(); 391 if (MI->getParent() != MBB || MI->isDebugValue()) 392 continue; 393 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 394 if (DI == DistanceMap.end()) 395 continue; 396 if (MO.isUse() && DI->second < LastUse) 397 LastUse = DI->second; 398 if (MO.isDef() && DI->second > LastDef) 399 LastDef = DI->second; 400 } 401 402 return !(LastUse > LastDef && LastUse < Dist); 403 } 404 405 /// Return true if the specified MI is a copy instruction or an extract_subreg 406 /// instruction. It also returns the source and destination registers and 407 /// whether they are physical registers by reference. 408 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 409 unsigned &SrcReg, unsigned &DstReg, 410 bool &IsSrcPhys, bool &IsDstPhys) { 411 SrcReg = 0; 412 DstReg = 0; 413 if (MI.isCopy()) { 414 DstReg = MI.getOperand(0).getReg(); 415 SrcReg = MI.getOperand(1).getReg(); 416 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 417 DstReg = MI.getOperand(0).getReg(); 418 SrcReg = MI.getOperand(2).getReg(); 419 } else 420 return false; 421 422 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); 423 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 424 return true; 425 } 426 427 /// Test if the given register value, which is used by the 428 /// given instruction, is killed by the given instruction. 429 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, 430 LiveIntervals *LIS) { 431 if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) && 432 !LIS->isNotInMIMap(*MI)) { 433 // FIXME: Sometimes tryInstructionTransform() will add instructions and 434 // test whether they can be folded before keeping them. In this case it 435 // sets a kill before recursively calling tryInstructionTransform() again. 436 // If there is no interval available, we assume that this instruction is 437 // one of those. A kill flag is manually inserted on the operand so the 438 // check below will handle it. 439 LiveInterval &LI = LIS->getInterval(Reg); 440 // This is to match the kill flag version where undefs don't have kill 441 // flags. 442 if (!LI.hasAtLeastOneValue()) 443 return false; 444 445 SlotIndex useIdx = LIS->getInstructionIndex(*MI); 446 LiveInterval::const_iterator I = LI.find(useIdx); 447 assert(I != LI.end() && "Reg must be live-in to use."); 448 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 449 } 450 451 return MI->killsRegister(Reg); 452 } 453 454 /// Test if the given register value, which is used by the given 455 /// instruction, is killed by the given instruction. This looks through 456 /// coalescable copies to see if the original value is potentially not killed. 457 /// 458 /// For example, in this code: 459 /// 460 /// %reg1034 = copy %reg1024 461 /// %reg1035 = copy killed %reg1025 462 /// %reg1036 = add killed %reg1034, killed %reg1035 463 /// 464 /// %reg1034 is not considered to be killed, since it is copied from a 465 /// register which is not killed. Treating it as not killed lets the 466 /// normal heuristics commute the (two-address) add, which lets 467 /// coalescing eliminate the extra copy. 468 /// 469 /// If allowFalsePositives is true then likely kills are treated as kills even 470 /// if it can't be proven that they are kills. 471 static bool isKilled(MachineInstr &MI, unsigned Reg, 472 const MachineRegisterInfo *MRI, 473 const TargetInstrInfo *TII, 474 LiveIntervals *LIS, 475 bool allowFalsePositives) { 476 MachineInstr *DefMI = &MI; 477 while (true) { 478 // All uses of physical registers are likely to be kills. 479 if (TargetRegisterInfo::isPhysicalRegister(Reg) && 480 (allowFalsePositives || MRI->hasOneUse(Reg))) 481 return true; 482 if (!isPlainlyKilled(DefMI, Reg, LIS)) 483 return false; 484 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 485 return true; 486 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 487 // If there are multiple defs, we can't do a simple analysis, so just 488 // go with what the kill flag says. 489 if (std::next(Begin) != MRI->def_end()) 490 return true; 491 DefMI = Begin->getParent(); 492 bool IsSrcPhys, IsDstPhys; 493 unsigned SrcReg, DstReg; 494 // If the def is something other than a copy, then it isn't going to 495 // be coalesced, so follow the kill flag. 496 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 497 return true; 498 Reg = SrcReg; 499 } 500 } 501 502 /// Return true if the specified MI uses the specified register as a two-address 503 /// use. If so, return the destination register by reference. 504 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) { 505 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 506 const MachineOperand &MO = MI.getOperand(i); 507 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 508 continue; 509 unsigned ti; 510 if (MI.isRegTiedToDefOperand(i, &ti)) { 511 DstReg = MI.getOperand(ti).getReg(); 512 return true; 513 } 514 } 515 return false; 516 } 517 518 /// Given a register, if has a single in-basic block use, return the use 519 /// instruction if it's a copy or a two-address use. 520 static 521 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB, 522 MachineRegisterInfo *MRI, 523 const TargetInstrInfo *TII, 524 bool &IsCopy, 525 unsigned &DstReg, bool &IsDstPhys) { 526 if (!MRI->hasOneNonDBGUse(Reg)) 527 // None or more than one use. 528 return nullptr; 529 MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg); 530 if (UseMI.getParent() != MBB) 531 return nullptr; 532 unsigned SrcReg; 533 bool IsSrcPhys; 534 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 535 IsCopy = true; 536 return &UseMI; 537 } 538 IsDstPhys = false; 539 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 540 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 541 return &UseMI; 542 } 543 return nullptr; 544 } 545 546 /// Return the physical register the specified virtual register might be mapped 547 /// to. 548 static unsigned 549 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) { 550 while (TargetRegisterInfo::isVirtualRegister(Reg)) { 551 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg); 552 if (SI == RegMap.end()) 553 return 0; 554 Reg = SI->second; 555 } 556 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 557 return Reg; 558 return 0; 559 } 560 561 /// Return true if the two registers are equal or aliased. 562 static bool 563 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) { 564 if (RegA == RegB) 565 return true; 566 if (!RegA || !RegB) 567 return false; 568 return TRI->regsOverlap(RegA, RegB); 569 } 570 571 // Returns true if Reg is equal or aliased to at least one register in Set. 572 static bool regOverlapsSet(const SmallVectorImpl<unsigned> &Set, unsigned Reg, 573 const TargetRegisterInfo *TRI) { 574 for (unsigned R : Set) 575 if (TRI->regsOverlap(R, Reg)) 576 return true; 577 578 return false; 579 } 580 581 /// Return true if it's potentially profitable to commute the two-address 582 /// instruction that's being processed. 583 bool 584 TwoAddressInstructionPass:: 585 isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 586 MachineInstr *MI, unsigned Dist) { 587 if (OptLevel == CodeGenOpt::None) 588 return false; 589 590 // Determine if it's profitable to commute this two address instruction. In 591 // general, we want no uses between this instruction and the definition of 592 // the two-address register. 593 // e.g. 594 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 595 // %reg1029 = COPY %reg1028 596 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 597 // insert => %reg1030 = COPY %reg1028 598 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 599 // In this case, it might not be possible to coalesce the second COPY 600 // instruction if the first one is coalesced. So it would be profitable to 601 // commute it: 602 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 603 // %reg1029 = COPY %reg1028 604 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 605 // insert => %reg1030 = COPY %reg1029 606 // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags 607 608 if (!isPlainlyKilled(MI, regC, LIS)) 609 return false; 610 611 // Ok, we have something like: 612 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 613 // let's see if it's worth commuting it. 614 615 // Look for situations like this: 616 // %reg1024 = MOV r1 617 // %reg1025 = MOV r0 618 // %reg1026 = ADD %reg1024, %reg1025 619 // r0 = MOV %reg1026 620 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 621 unsigned ToRegA = getMappedReg(regA, DstRegMap); 622 if (ToRegA) { 623 unsigned FromRegB = getMappedReg(regB, SrcRegMap); 624 unsigned FromRegC = getMappedReg(regC, SrcRegMap); 625 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI); 626 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI); 627 628 // Compute if any of the following are true: 629 // -RegB is not tied to a register and RegC is compatible with RegA. 630 // -RegB is tied to the wrong physical register, but RegC is. 631 // -RegB is tied to the wrong physical register, and RegC isn't tied. 632 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) 633 return true; 634 // Don't compute if any of the following are true: 635 // -RegC is not tied to a register and RegB is compatible with RegA. 636 // -RegC is tied to the wrong physical register, but RegB is. 637 // -RegC is tied to the wrong physical register, and RegB isn't tied. 638 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) 639 return false; 640 } 641 642 // If there is a use of regC between its last def (could be livein) and this 643 // instruction, then bail. 644 unsigned LastDefC = 0; 645 if (!noUseAfterLastDef(regC, Dist, LastDefC)) 646 return false; 647 648 // If there is a use of regB between its last def (could be livein) and this 649 // instruction, then go ahead and make this transformation. 650 unsigned LastDefB = 0; 651 if (!noUseAfterLastDef(regB, Dist, LastDefB)) 652 return true; 653 654 // Look for situation like this: 655 // %reg101 = MOV %reg100 656 // %reg102 = ... 657 // %reg103 = ADD %reg102, %reg101 658 // ... = %reg103 ... 659 // %reg100 = MOV %reg103 660 // If there is a reversed copy chain from reg101 to reg103, commute the ADD 661 // to eliminate an otherwise unavoidable copy. 662 // FIXME: 663 // We can extend the logic further: If an pair of operands in an insn has 664 // been merged, the insn could be regarded as a virtual copy, and the virtual 665 // copy could also be used to construct a copy chain. 666 // To more generally minimize register copies, ideally the logic of two addr 667 // instruction pass should be integrated with register allocation pass where 668 // interference graph is available. 669 if (isRevCopyChain(regC, regA, MaxDataFlowEdge)) 670 return true; 671 672 if (isRevCopyChain(regB, regA, MaxDataFlowEdge)) 673 return false; 674 675 // Since there are no intervening uses for both registers, then commute 676 // if the def of regC is closer. Its live interval is shorter. 677 return LastDefB && LastDefC && LastDefC > LastDefB; 678 } 679 680 /// Commute a two-address instruction and update the basic block, distance map, 681 /// and live variables if needed. Return true if it is successful. 682 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, 683 unsigned DstIdx, 684 unsigned RegBIdx, 685 unsigned RegCIdx, 686 unsigned Dist) { 687 unsigned RegC = MI->getOperand(RegCIdx).getReg(); 688 LLVM_DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 689 MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx); 690 691 if (NewMI == nullptr) { 692 LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 693 return false; 694 } 695 696 LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 697 assert(NewMI == MI && 698 "TargetInstrInfo::commuteInstruction() should not return a new " 699 "instruction unless it was requested."); 700 701 // Update source register map. 702 unsigned FromRegC = getMappedReg(RegC, SrcRegMap); 703 if (FromRegC) { 704 unsigned RegA = MI->getOperand(DstIdx).getReg(); 705 SrcRegMap[RegA] = FromRegC; 706 } 707 708 return true; 709 } 710 711 /// Return true if it is profitable to convert the given 2-address instruction 712 /// to a 3-address one. 713 bool 714 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){ 715 // Look for situations like this: 716 // %reg1024 = MOV r1 717 // %reg1025 = MOV r0 718 // %reg1026 = ADD %reg1024, %reg1025 719 // r2 = MOV %reg1026 720 // Turn ADD into a 3-address instruction to avoid a copy. 721 unsigned FromRegB = getMappedReg(RegB, SrcRegMap); 722 if (!FromRegB) 723 return false; 724 unsigned ToRegA = getMappedReg(RegA, DstRegMap); 725 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 726 } 727 728 /// Convert the specified two-address instruction into a three address one. 729 /// Return true if this transformation was successful. 730 bool 731 TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi, 732 MachineBasicBlock::iterator &nmi, 733 unsigned RegA, unsigned RegB, 734 unsigned Dist) { 735 // FIXME: Why does convertToThreeAddress() need an iterator reference? 736 MachineFunction::iterator MFI = MBB->getIterator(); 737 MachineInstr *NewMI = TII->convertToThreeAddress(MFI, *mi, LV); 738 assert(MBB->getIterator() == MFI && 739 "convertToThreeAddress changed iterator reference"); 740 if (!NewMI) 741 return false; 742 743 LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 744 LLVM_DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 745 bool Sunk = false; 746 747 if (LIS) 748 LIS->ReplaceMachineInstrInMaps(*mi, *NewMI); 749 750 if (NewMI->findRegisterUseOperand(RegB, false, TRI)) 751 // FIXME: Temporary workaround. If the new instruction doesn't 752 // uses RegB, convertToThreeAddress must have created more 753 // then one instruction. 754 Sunk = sink3AddrInstruction(NewMI, RegB, mi); 755 756 MBB->erase(mi); // Nuke the old inst. 757 758 if (!Sunk) { 759 DistanceMap.insert(std::make_pair(NewMI, Dist)); 760 mi = NewMI; 761 nmi = std::next(mi); 762 } 763 else 764 SunkInstrs.insert(NewMI); 765 766 // Update source and destination register maps. 767 SrcRegMap.erase(RegA); 768 DstRegMap.erase(RegB); 769 return true; 770 } 771 772 /// Scan forward recursively for only uses, update maps if the use is a copy or 773 /// a two-address instruction. 774 void 775 TwoAddressInstructionPass::scanUses(unsigned DstReg) { 776 SmallVector<unsigned, 4> VirtRegPairs; 777 bool IsDstPhys; 778 bool IsCopy = false; 779 unsigned NewReg = 0; 780 unsigned Reg = DstReg; 781 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 782 NewReg, IsDstPhys)) { 783 if (IsCopy && !Processed.insert(UseMI).second) 784 break; 785 786 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 787 if (DI != DistanceMap.end()) 788 // Earlier in the same MBB.Reached via a back edge. 789 break; 790 791 if (IsDstPhys) { 792 VirtRegPairs.push_back(NewReg); 793 break; 794 } 795 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second; 796 if (!isNew) 797 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!"); 798 VirtRegPairs.push_back(NewReg); 799 Reg = NewReg; 800 } 801 802 if (!VirtRegPairs.empty()) { 803 unsigned ToReg = VirtRegPairs.back(); 804 VirtRegPairs.pop_back(); 805 while (!VirtRegPairs.empty()) { 806 unsigned FromReg = VirtRegPairs.back(); 807 VirtRegPairs.pop_back(); 808 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 809 if (!isNew) 810 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 811 ToReg = FromReg; 812 } 813 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 814 if (!isNew) 815 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 816 } 817 } 818 819 /// If the specified instruction is not yet processed, process it if it's a 820 /// copy. For a copy instruction, we find the physical registers the 821 /// source and destination registers might be mapped to. These are kept in 822 /// point-to maps used to determine future optimizations. e.g. 823 /// v1024 = mov r0 824 /// v1025 = mov r1 825 /// v1026 = add v1024, v1025 826 /// r1 = mov r1026 827 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 828 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 829 /// potentially joined with r1 on the output side. It's worthwhile to commute 830 /// 'add' to eliminate a copy. 831 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 832 if (Processed.count(MI)) 833 return; 834 835 bool IsSrcPhys, IsDstPhys; 836 unsigned SrcReg, DstReg; 837 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 838 return; 839 840 if (IsDstPhys && !IsSrcPhys) 841 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 842 else if (!IsDstPhys && IsSrcPhys) { 843 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 844 if (!isNew) 845 assert(SrcRegMap[DstReg] == SrcReg && 846 "Can't map to two src physical registers!"); 847 848 scanUses(DstReg); 849 } 850 851 Processed.insert(MI); 852 } 853 854 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 855 /// consider moving the instruction below the kill instruction in order to 856 /// eliminate the need for the copy. 857 bool TwoAddressInstructionPass:: 858 rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 859 MachineBasicBlock::iterator &nmi, 860 unsigned Reg) { 861 // Bail immediately if we don't have LV or LIS available. We use them to find 862 // kills efficiently. 863 if (!LV && !LIS) 864 return false; 865 866 MachineInstr *MI = &*mi; 867 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 868 if (DI == DistanceMap.end()) 869 // Must be created from unfolded load. Don't waste time trying this. 870 return false; 871 872 MachineInstr *KillMI = nullptr; 873 if (LIS) { 874 LiveInterval &LI = LIS->getInterval(Reg); 875 assert(LI.end() != LI.begin() && 876 "Reg should not have empty live interval."); 877 878 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 879 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 880 if (I != LI.end() && I->start < MBBEndIdx) 881 return false; 882 883 --I; 884 KillMI = LIS->getInstructionFromIndex(I->end); 885 } else { 886 KillMI = LV->getVarInfo(Reg).findKill(MBB); 887 } 888 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 889 // Don't mess with copies, they may be coalesced later. 890 return false; 891 892 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 893 KillMI->isBranch() || KillMI->isTerminator()) 894 // Don't move pass calls, etc. 895 return false; 896 897 unsigned DstReg; 898 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 899 return false; 900 901 bool SeenStore = true; 902 if (!MI->isSafeToMove(AA, SeenStore)) 903 return false; 904 905 if (TII->getInstrLatency(InstrItins, *MI) > 1) 906 // FIXME: Needs more sophisticated heuristics. 907 return false; 908 909 SmallVector<unsigned, 2> Uses; 910 SmallVector<unsigned, 2> Kills; 911 SmallVector<unsigned, 2> Defs; 912 for (const MachineOperand &MO : MI->operands()) { 913 if (!MO.isReg()) 914 continue; 915 unsigned MOReg = MO.getReg(); 916 if (!MOReg) 917 continue; 918 if (MO.isDef()) 919 Defs.push_back(MOReg); 920 else { 921 Uses.push_back(MOReg); 922 if (MOReg != Reg && (MO.isKill() || 923 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 924 Kills.push_back(MOReg); 925 } 926 } 927 928 // Move the copies connected to MI down as well. 929 MachineBasicBlock::iterator Begin = MI; 930 MachineBasicBlock::iterator AfterMI = std::next(Begin); 931 MachineBasicBlock::iterator End = AfterMI; 932 while (End != MBB->end()) { 933 End = skipDebugInstructionsForward(End, MBB->end()); 934 if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI)) 935 Defs.push_back(End->getOperand(0).getReg()); 936 else 937 break; 938 ++End; 939 } 940 941 // Check if the reschedule will not break dependencies. 942 unsigned NumVisited = 0; 943 MachineBasicBlock::iterator KillPos = KillMI; 944 ++KillPos; 945 for (MachineInstr &OtherMI : make_range(End, KillPos)) { 946 // Debug instructions cannot be counted against the limit. 947 if (OtherMI.isDebugInstr()) 948 continue; 949 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 950 return false; 951 ++NumVisited; 952 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 953 OtherMI.isBranch() || OtherMI.isTerminator()) 954 // Don't move pass calls, etc. 955 return false; 956 for (const MachineOperand &MO : OtherMI.operands()) { 957 if (!MO.isReg()) 958 continue; 959 unsigned MOReg = MO.getReg(); 960 if (!MOReg) 961 continue; 962 if (MO.isDef()) { 963 if (regOverlapsSet(Uses, MOReg, TRI)) 964 // Physical register use would be clobbered. 965 return false; 966 if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI)) 967 // May clobber a physical register def. 968 // FIXME: This may be too conservative. It's ok if the instruction 969 // is sunken completely below the use. 970 return false; 971 } else { 972 if (regOverlapsSet(Defs, MOReg, TRI)) 973 return false; 974 bool isKill = 975 MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)); 976 if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) || 977 regOverlapsSet(Kills, MOReg, TRI))) 978 // Don't want to extend other live ranges and update kills. 979 return false; 980 if (MOReg == Reg && !isKill) 981 // We can't schedule across a use of the register in question. 982 return false; 983 // Ensure that if this is register in question, its the kill we expect. 984 assert((MOReg != Reg || &OtherMI == KillMI) && 985 "Found multiple kills of a register in a basic block"); 986 } 987 } 988 } 989 990 // Move debug info as well. 991 while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr()) 992 --Begin; 993 994 nmi = End; 995 MachineBasicBlock::iterator InsertPos = KillPos; 996 if (LIS) { 997 // We have to move the copies first so that the MBB is still well-formed 998 // when calling handleMove(). 999 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 1000 auto CopyMI = MBBI++; 1001 MBB->splice(InsertPos, MBB, CopyMI); 1002 LIS->handleMove(*CopyMI); 1003 InsertPos = CopyMI; 1004 } 1005 End = std::next(MachineBasicBlock::iterator(MI)); 1006 } 1007 1008 // Copies following MI may have been moved as well. 1009 MBB->splice(InsertPos, MBB, Begin, End); 1010 DistanceMap.erase(DI); 1011 1012 // Update live variables 1013 if (LIS) { 1014 LIS->handleMove(*MI); 1015 } else { 1016 LV->removeVirtualRegisterKilled(Reg, *KillMI); 1017 LV->addVirtualRegisterKilled(Reg, *MI); 1018 } 1019 1020 LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 1021 return true; 1022 } 1023 1024 /// Return true if the re-scheduling will put the given instruction too close 1025 /// to the defs of its register dependencies. 1026 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist, 1027 MachineInstr *MI) { 1028 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 1029 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 1030 continue; 1031 if (&DefMI == MI) 1032 return true; // MI is defining something KillMI uses 1033 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 1034 if (DDI == DistanceMap.end()) 1035 return true; // Below MI 1036 unsigned DefDist = DDI->second; 1037 assert(Dist > DefDist && "Visited def already?"); 1038 if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist)) 1039 return true; 1040 } 1041 return false; 1042 } 1043 1044 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 1045 /// consider moving the kill instruction above the current two-address 1046 /// instruction in order to eliminate the need for the copy. 1047 bool TwoAddressInstructionPass:: 1048 rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 1049 MachineBasicBlock::iterator &nmi, 1050 unsigned Reg) { 1051 // Bail immediately if we don't have LV or LIS available. We use them to find 1052 // kills efficiently. 1053 if (!LV && !LIS) 1054 return false; 1055 1056 MachineInstr *MI = &*mi; 1057 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 1058 if (DI == DistanceMap.end()) 1059 // Must be created from unfolded load. Don't waste time trying this. 1060 return false; 1061 1062 MachineInstr *KillMI = nullptr; 1063 if (LIS) { 1064 LiveInterval &LI = LIS->getInterval(Reg); 1065 assert(LI.end() != LI.begin() && 1066 "Reg should not have empty live interval."); 1067 1068 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 1069 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 1070 if (I != LI.end() && I->start < MBBEndIdx) 1071 return false; 1072 1073 --I; 1074 KillMI = LIS->getInstructionFromIndex(I->end); 1075 } else { 1076 KillMI = LV->getVarInfo(Reg).findKill(MBB); 1077 } 1078 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 1079 // Don't mess with copies, they may be coalesced later. 1080 return false; 1081 1082 unsigned DstReg; 1083 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 1084 return false; 1085 1086 bool SeenStore = true; 1087 if (!KillMI->isSafeToMove(AA, SeenStore)) 1088 return false; 1089 1090 SmallSet<unsigned, 2> Uses; 1091 SmallSet<unsigned, 2> Kills; 1092 SmallSet<unsigned, 2> Defs; 1093 SmallSet<unsigned, 2> LiveDefs; 1094 for (const MachineOperand &MO : KillMI->operands()) { 1095 if (!MO.isReg()) 1096 continue; 1097 unsigned MOReg = MO.getReg(); 1098 if (MO.isUse()) { 1099 if (!MOReg) 1100 continue; 1101 if (isDefTooClose(MOReg, DI->second, MI)) 1102 return false; 1103 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 1104 if (MOReg == Reg && !isKill) 1105 return false; 1106 Uses.insert(MOReg); 1107 if (isKill && MOReg != Reg) 1108 Kills.insert(MOReg); 1109 } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1110 Defs.insert(MOReg); 1111 if (!MO.isDead()) 1112 LiveDefs.insert(MOReg); 1113 } 1114 } 1115 1116 // Check if the reschedule will not break depedencies. 1117 unsigned NumVisited = 0; 1118 for (MachineInstr &OtherMI : 1119 make_range(mi, MachineBasicBlock::iterator(KillMI))) { 1120 // Debug instructions cannot be counted against the limit. 1121 if (OtherMI.isDebugInstr()) 1122 continue; 1123 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 1124 return false; 1125 ++NumVisited; 1126 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 1127 OtherMI.isBranch() || OtherMI.isTerminator()) 1128 // Don't move pass calls, etc. 1129 return false; 1130 SmallVector<unsigned, 2> OtherDefs; 1131 for (const MachineOperand &MO : OtherMI.operands()) { 1132 if (!MO.isReg()) 1133 continue; 1134 unsigned MOReg = MO.getReg(); 1135 if (!MOReg) 1136 continue; 1137 if (MO.isUse()) { 1138 if (Defs.count(MOReg)) 1139 // Moving KillMI can clobber the physical register if the def has 1140 // not been seen. 1141 return false; 1142 if (Kills.count(MOReg)) 1143 // Don't want to extend other live ranges and update kills. 1144 return false; 1145 if (&OtherMI != MI && MOReg == Reg && 1146 !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)))) 1147 // We can't schedule across a use of the register in question. 1148 return false; 1149 } else { 1150 OtherDefs.push_back(MOReg); 1151 } 1152 } 1153 1154 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1155 unsigned MOReg = OtherDefs[i]; 1156 if (Uses.count(MOReg)) 1157 return false; 1158 if (TargetRegisterInfo::isPhysicalRegister(MOReg) && 1159 LiveDefs.count(MOReg)) 1160 return false; 1161 // Physical register def is seen. 1162 Defs.erase(MOReg); 1163 } 1164 } 1165 1166 // Move the old kill above MI, don't forget to move debug info as well. 1167 MachineBasicBlock::iterator InsertPos = mi; 1168 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr()) 1169 --InsertPos; 1170 MachineBasicBlock::iterator From = KillMI; 1171 MachineBasicBlock::iterator To = std::next(From); 1172 while (std::prev(From)->isDebugInstr()) 1173 --From; 1174 MBB->splice(InsertPos, MBB, From, To); 1175 1176 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1177 DistanceMap.erase(DI); 1178 1179 // Update live variables 1180 if (LIS) { 1181 LIS->handleMove(*KillMI); 1182 } else { 1183 LV->removeVirtualRegisterKilled(Reg, *KillMI); 1184 LV->addVirtualRegisterKilled(Reg, *MI); 1185 } 1186 1187 LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1188 return true; 1189 } 1190 1191 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the 1192 /// given machine instruction to improve opportunities for coalescing and 1193 /// elimination of a register to register copy. 1194 /// 1195 /// 'DstOpIdx' specifies the index of MI def operand. 1196 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' 1197 /// operand is killed by the given instruction. 1198 /// The 'Dist' arguments provides the distance of MI from the start of the 1199 /// current basic block and it is used to determine if it is profitable 1200 /// to commute operands in the instruction. 1201 /// 1202 /// Returns true if the transformation happened. Otherwise, returns false. 1203 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, 1204 unsigned DstOpIdx, 1205 unsigned BaseOpIdx, 1206 bool BaseOpKilled, 1207 unsigned Dist) { 1208 if (!MI->isCommutable()) 1209 return false; 1210 1211 bool MadeChange = false; 1212 unsigned DstOpReg = MI->getOperand(DstOpIdx).getReg(); 1213 unsigned BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); 1214 unsigned OpsNum = MI->getDesc().getNumOperands(); 1215 unsigned OtherOpIdx = MI->getDesc().getNumDefs(); 1216 for (; OtherOpIdx < OpsNum; OtherOpIdx++) { 1217 // The call of findCommutedOpIndices below only checks if BaseOpIdx 1218 // and OtherOpIdx are commutable, it does not really search for 1219 // other commutable operands and does not change the values of passed 1220 // variables. 1221 if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() || 1222 !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx)) 1223 continue; 1224 1225 unsigned OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); 1226 bool AggressiveCommute = false; 1227 1228 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp 1229 // operands. This makes the live ranges of DstOp and OtherOp joinable. 1230 bool OtherOpKilled = isKilled(*MI, OtherOpReg, MRI, TII, LIS, false); 1231 bool DoCommute = !BaseOpKilled && OtherOpKilled; 1232 1233 if (!DoCommute && 1234 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { 1235 DoCommute = true; 1236 AggressiveCommute = true; 1237 } 1238 1239 // If it's profitable to commute, try to do so. 1240 if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx, 1241 Dist)) { 1242 MadeChange = true; 1243 ++NumCommuted; 1244 if (AggressiveCommute) { 1245 ++NumAggrCommuted; 1246 // There might be more than two commutable operands, update BaseOp and 1247 // continue scanning. 1248 BaseOpReg = OtherOpReg; 1249 BaseOpKilled = OtherOpKilled; 1250 continue; 1251 } 1252 // If this was a commute based on kill, we won't do better continuing. 1253 return MadeChange; 1254 } 1255 } 1256 return MadeChange; 1257 } 1258 1259 /// For the case where an instruction has a single pair of tied register 1260 /// operands, attempt some transformations that may either eliminate the tied 1261 /// operands or improve the opportunities for coalescing away the register copy. 1262 /// Returns true if no copy needs to be inserted to untie mi's operands 1263 /// (either because they were untied, or because mi was rescheduled, and will 1264 /// be visited again later). If the shouldOnlyCommute flag is true, only 1265 /// instruction commutation is attempted. 1266 bool TwoAddressInstructionPass:: 1267 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1268 MachineBasicBlock::iterator &nmi, 1269 unsigned SrcIdx, unsigned DstIdx, 1270 unsigned Dist, bool shouldOnlyCommute) { 1271 if (OptLevel == CodeGenOpt::None) 1272 return false; 1273 1274 MachineInstr &MI = *mi; 1275 unsigned regA = MI.getOperand(DstIdx).getReg(); 1276 unsigned regB = MI.getOperand(SrcIdx).getReg(); 1277 1278 assert(TargetRegisterInfo::isVirtualRegister(regB) && 1279 "cannot make instruction into two-address form"); 1280 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1281 1282 if (TargetRegisterInfo::isVirtualRegister(regA)) 1283 scanUses(regA); 1284 1285 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); 1286 1287 // If the instruction is convertible to 3 Addr, instead 1288 // of returning try 3 Addr transformation aggresively and 1289 // use this variable to check later. Because it might be better. 1290 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` 1291 // instead of the following code. 1292 // addl %esi, %edi 1293 // movl %edi, %eax 1294 // ret 1295 if (Commuted && !MI.isConvertibleTo3Addr()) 1296 return false; 1297 1298 if (shouldOnlyCommute) 1299 return false; 1300 1301 // If there is one more use of regB later in the same MBB, consider 1302 // re-schedule this MI below it. 1303 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1304 ++NumReSchedDowns; 1305 return true; 1306 } 1307 1308 // If we commuted, regB may have changed so we should re-sample it to avoid 1309 // confusing the three address conversion below. 1310 if (Commuted) { 1311 regB = MI.getOperand(SrcIdx).getReg(); 1312 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1313 } 1314 1315 if (MI.isConvertibleTo3Addr()) { 1316 // This instruction is potentially convertible to a true 1317 // three-address instruction. Check if it is profitable. 1318 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1319 // Try to convert it. 1320 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1321 ++NumConvertedTo3Addr; 1322 return true; // Done with this instruction. 1323 } 1324 } 1325 } 1326 1327 // Return if it is commuted but 3 addr conversion is failed. 1328 if (Commuted) 1329 return false; 1330 1331 // If there is one more use of regB later in the same MBB, consider 1332 // re-schedule it before this MI if it's legal. 1333 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1334 ++NumReSchedUps; 1335 return true; 1336 } 1337 1338 // If this is an instruction with a load folded into it, try unfolding 1339 // the load, e.g. avoid this: 1340 // movq %rdx, %rcx 1341 // addq (%rax), %rcx 1342 // in favor of this: 1343 // movq (%rax), %rcx 1344 // addq %rdx, %rcx 1345 // because it's preferable to schedule a load than a register copy. 1346 if (MI.mayLoad() && !regBKilled) { 1347 // Determine if a load can be unfolded. 1348 unsigned LoadRegIndex; 1349 unsigned NewOpc = 1350 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1351 /*UnfoldLoad=*/true, 1352 /*UnfoldStore=*/false, 1353 &LoadRegIndex); 1354 if (NewOpc != 0) { 1355 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1356 if (UnfoldMCID.getNumDefs() == 1) { 1357 // Unfold the load. 1358 LLVM_DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1359 const TargetRegisterClass *RC = 1360 TRI->getAllocatableClass( 1361 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1362 unsigned Reg = MRI->createVirtualRegister(RC); 1363 SmallVector<MachineInstr *, 2> NewMIs; 1364 if (!TII->unfoldMemoryOperand(*MF, MI, Reg, 1365 /*UnfoldLoad=*/true, 1366 /*UnfoldStore=*/false, NewMIs)) { 1367 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1368 return false; 1369 } 1370 assert(NewMIs.size() == 2 && 1371 "Unfolded a load into multiple instructions!"); 1372 // The load was previously folded, so this is the only use. 1373 NewMIs[1]->addRegisterKilled(Reg, TRI); 1374 1375 // Tentatively insert the instructions into the block so that they 1376 // look "normal" to the transformation logic. 1377 MBB->insert(mi, NewMIs[0]); 1378 MBB->insert(mi, NewMIs[1]); 1379 1380 LLVM_DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1381 << "2addr: NEW INST: " << *NewMIs[1]); 1382 1383 // Transform the instruction, now that it no longer has a load. 1384 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1385 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1386 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1387 bool TransformResult = 1388 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1389 (void)TransformResult; 1390 assert(!TransformResult && 1391 "tryInstructionTransform() should return false."); 1392 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1393 // Success, or at least we made an improvement. Keep the unfolded 1394 // instructions and discard the original. 1395 if (LV) { 1396 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1397 MachineOperand &MO = MI.getOperand(i); 1398 if (MO.isReg() && 1399 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 1400 if (MO.isUse()) { 1401 if (MO.isKill()) { 1402 if (NewMIs[0]->killsRegister(MO.getReg())) 1403 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]); 1404 else { 1405 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1406 "Kill missing after load unfold!"); 1407 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]); 1408 } 1409 } 1410 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) { 1411 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1412 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]); 1413 else { 1414 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1415 "Dead flag missing after load unfold!"); 1416 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]); 1417 } 1418 } 1419 } 1420 } 1421 LV->addVirtualRegisterKilled(Reg, *NewMIs[1]); 1422 } 1423 1424 SmallVector<unsigned, 4> OrigRegs; 1425 if (LIS) { 1426 for (const MachineOperand &MO : MI.operands()) { 1427 if (MO.isReg()) 1428 OrigRegs.push_back(MO.getReg()); 1429 } 1430 } 1431 1432 MI.eraseFromParent(); 1433 1434 // Update LiveIntervals. 1435 if (LIS) { 1436 MachineBasicBlock::iterator Begin(NewMIs[0]); 1437 MachineBasicBlock::iterator End(NewMIs[1]); 1438 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1439 } 1440 1441 mi = NewMIs[1]; 1442 } else { 1443 // Transforming didn't eliminate the tie and didn't lead to an 1444 // improvement. Clean up the unfolded instructions and keep the 1445 // original. 1446 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1447 NewMIs[0]->eraseFromParent(); 1448 NewMIs[1]->eraseFromParent(); 1449 } 1450 } 1451 } 1452 } 1453 1454 return false; 1455 } 1456 1457 // Collect tied operands of MI that need to be handled. 1458 // Rewrite trivial cases immediately. 1459 // Return true if any tied operands where found, including the trivial ones. 1460 bool TwoAddressInstructionPass:: 1461 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1462 const MCInstrDesc &MCID = MI->getDesc(); 1463 bool AnyOps = false; 1464 unsigned NumOps = MI->getNumOperands(); 1465 1466 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1467 unsigned DstIdx = 0; 1468 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1469 continue; 1470 AnyOps = true; 1471 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1472 MachineOperand &DstMO = MI->getOperand(DstIdx); 1473 unsigned SrcReg = SrcMO.getReg(); 1474 unsigned DstReg = DstMO.getReg(); 1475 // Tied constraint already satisfied? 1476 if (SrcReg == DstReg) 1477 continue; 1478 1479 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1480 1481 // Deal with undef uses immediately - simply rewrite the src operand. 1482 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1483 // Constrain the DstReg register class if required. 1484 if (TargetRegisterInfo::isVirtualRegister(DstReg)) 1485 if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx, 1486 TRI, *MF)) 1487 MRI->constrainRegClass(DstReg, RC); 1488 SrcMO.setReg(DstReg); 1489 SrcMO.setSubReg(0); 1490 LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1491 continue; 1492 } 1493 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1494 } 1495 return AnyOps; 1496 } 1497 1498 // Process a list of tied MI operands that all use the same source register. 1499 // The tied pairs are of the form (SrcIdx, DstIdx). 1500 void 1501 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1502 TiedPairList &TiedPairs, 1503 unsigned &Dist) { 1504 bool IsEarlyClobber = false; 1505 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1506 const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second); 1507 IsEarlyClobber |= DstMO.isEarlyClobber(); 1508 } 1509 1510 bool RemovedKillFlag = false; 1511 bool AllUsesCopied = true; 1512 unsigned LastCopiedReg = 0; 1513 SlotIndex LastCopyIdx; 1514 unsigned RegB = 0; 1515 unsigned SubRegB = 0; 1516 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1517 unsigned SrcIdx = TiedPairs[tpi].first; 1518 unsigned DstIdx = TiedPairs[tpi].second; 1519 1520 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1521 unsigned RegA = DstMO.getReg(); 1522 1523 // Grab RegB from the instruction because it may have changed if the 1524 // instruction was commuted. 1525 RegB = MI->getOperand(SrcIdx).getReg(); 1526 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1527 1528 if (RegA == RegB) { 1529 // The register is tied to multiple destinations (or else we would 1530 // not have continued this far), but this use of the register 1531 // already matches the tied destination. Leave it. 1532 AllUsesCopied = false; 1533 continue; 1534 } 1535 LastCopiedReg = RegA; 1536 1537 assert(TargetRegisterInfo::isVirtualRegister(RegB) && 1538 "cannot make instruction into two-address form"); 1539 1540 #ifndef NDEBUG 1541 // First, verify that we don't have a use of "a" in the instruction 1542 // (a = b + a for example) because our transformation will not 1543 // work. This should never occur because we are in SSA form. 1544 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1545 assert(i == DstIdx || 1546 !MI->getOperand(i).isReg() || 1547 MI->getOperand(i).getReg() != RegA); 1548 #endif 1549 1550 // Emit a copy. 1551 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1552 TII->get(TargetOpcode::COPY), RegA); 1553 // If this operand is folding a truncation, the truncation now moves to the 1554 // copy so that the register classes remain valid for the operands. 1555 MIB.addReg(RegB, 0, SubRegB); 1556 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1557 if (SubRegB) { 1558 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 1559 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1560 SubRegB) && 1561 "tied subregister must be a truncation"); 1562 // The superreg class will not be used to constrain the subreg class. 1563 RC = nullptr; 1564 } 1565 else { 1566 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1567 && "tied subregister must be a truncation"); 1568 } 1569 } 1570 1571 // Update DistanceMap. 1572 MachineBasicBlock::iterator PrevMI = MI; 1573 --PrevMI; 1574 DistanceMap.insert(std::make_pair(&*PrevMI, Dist)); 1575 DistanceMap[MI] = ++Dist; 1576 1577 if (LIS) { 1578 LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot(); 1579 1580 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 1581 LiveInterval &LI = LIS->getInterval(RegA); 1582 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1583 SlotIndex endIdx = 1584 LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber); 1585 LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI)); 1586 } 1587 } 1588 1589 LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1590 1591 MachineOperand &MO = MI->getOperand(SrcIdx); 1592 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1593 "inconsistent operand info for 2-reg pass"); 1594 if (MO.isKill()) { 1595 MO.setIsKill(false); 1596 RemovedKillFlag = true; 1597 } 1598 1599 // Make sure regA is a legal regclass for the SrcIdx operand. 1600 if (TargetRegisterInfo::isVirtualRegister(RegA) && 1601 TargetRegisterInfo::isVirtualRegister(RegB)) 1602 MRI->constrainRegClass(RegA, RC); 1603 MO.setReg(RegA); 1604 // The getMatchingSuper asserts guarantee that the register class projected 1605 // by SubRegB is compatible with RegA with no subregister. So regardless of 1606 // whether the dest oper writes a subreg, the source oper should not. 1607 MO.setSubReg(0); 1608 1609 // Propagate SrcRegMap. 1610 SrcRegMap[RegA] = RegB; 1611 } 1612 1613 if (AllUsesCopied) { 1614 bool ReplacedAllUntiedUses = true; 1615 if (!IsEarlyClobber) { 1616 // Replace other (un-tied) uses of regB with LastCopiedReg. 1617 for (MachineOperand &MO : MI->operands()) { 1618 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1619 if (MO.getSubReg() == SubRegB) { 1620 if (MO.isKill()) { 1621 MO.setIsKill(false); 1622 RemovedKillFlag = true; 1623 } 1624 MO.setReg(LastCopiedReg); 1625 MO.setSubReg(0); 1626 } else { 1627 ReplacedAllUntiedUses = false; 1628 } 1629 } 1630 } 1631 } 1632 1633 // Update live variables for regB. 1634 if (RemovedKillFlag && ReplacedAllUntiedUses && 1635 LV && LV->getVarInfo(RegB).removeKill(*MI)) { 1636 MachineBasicBlock::iterator PrevMI = MI; 1637 --PrevMI; 1638 LV->addVirtualRegisterKilled(RegB, *PrevMI); 1639 } 1640 1641 // Update LiveIntervals. 1642 if (LIS) { 1643 LiveInterval &LI = LIS->getInterval(RegB); 1644 SlotIndex MIIdx = LIS->getInstructionIndex(*MI); 1645 LiveInterval::const_iterator I = LI.find(MIIdx); 1646 assert(I != LI.end() && "RegB must be live-in to use."); 1647 1648 SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber); 1649 if (I->end == UseIdx) 1650 LI.removeSegment(LastCopyIdx, UseIdx); 1651 } 1652 } else if (RemovedKillFlag) { 1653 // Some tied uses of regB matched their destination registers, so 1654 // regB is still used in this instruction, but a kill flag was 1655 // removed from a different tied use of regB, so now we need to add 1656 // a kill flag to one of the remaining uses of regB. 1657 for (MachineOperand &MO : MI->operands()) { 1658 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1659 MO.setIsKill(true); 1660 break; 1661 } 1662 } 1663 } 1664 } 1665 1666 /// Reduce two-address instructions to two operands. 1667 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1668 MF = &Func; 1669 const TargetMachine &TM = MF->getTarget(); 1670 MRI = &MF->getRegInfo(); 1671 TII = MF->getSubtarget().getInstrInfo(); 1672 TRI = MF->getSubtarget().getRegisterInfo(); 1673 InstrItins = MF->getSubtarget().getInstrItineraryData(); 1674 LV = getAnalysisIfAvailable<LiveVariables>(); 1675 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1676 if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>()) 1677 AA = &AAPass->getAAResults(); 1678 else 1679 AA = nullptr; 1680 OptLevel = TM.getOptLevel(); 1681 // Disable optimizations if requested. We cannot skip the whole pass as some 1682 // fixups are necessary for correctness. 1683 if (skipFunction(Func.getFunction())) 1684 OptLevel = CodeGenOpt::None; 1685 1686 bool MadeChange = false; 1687 1688 LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1689 LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n'); 1690 1691 // This pass takes the function out of SSA form. 1692 MRI->leaveSSA(); 1693 1694 TiedOperandMap TiedOperands; 1695 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); 1696 MBBI != MBBE; ++MBBI) { 1697 MBB = &*MBBI; 1698 unsigned Dist = 0; 1699 DistanceMap.clear(); 1700 SrcRegMap.clear(); 1701 DstRegMap.clear(); 1702 Processed.clear(); 1703 SunkInstrs.clear(); 1704 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1705 mi != me; ) { 1706 MachineBasicBlock::iterator nmi = std::next(mi); 1707 // Don't revisit an instruction previously converted by target. It may 1708 // contain undef register operands (%noreg), which are not handled. 1709 if (mi->isDebugInstr() || SunkInstrs.count(&*mi)) { 1710 mi = nmi; 1711 continue; 1712 } 1713 1714 // Expand REG_SEQUENCE instructions. This will position mi at the first 1715 // expanded instruction. 1716 if (mi->isRegSequence()) 1717 eliminateRegSequence(mi); 1718 1719 DistanceMap.insert(std::make_pair(&*mi, ++Dist)); 1720 1721 processCopy(&*mi); 1722 1723 // First scan through all the tied register uses in this instruction 1724 // and record a list of pairs of tied operands for each register. 1725 if (!collectTiedOperands(&*mi, TiedOperands)) { 1726 mi = nmi; 1727 continue; 1728 } 1729 1730 ++NumTwoAddressInstrs; 1731 MadeChange = true; 1732 LLVM_DEBUG(dbgs() << '\t' << *mi); 1733 1734 // If the instruction has a single pair of tied operands, try some 1735 // transformations that may either eliminate the tied operands or 1736 // improve the opportunities for coalescing away the register copy. 1737 if (TiedOperands.size() == 1) { 1738 SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs 1739 = TiedOperands.begin()->second; 1740 if (TiedPairs.size() == 1) { 1741 unsigned SrcIdx = TiedPairs[0].first; 1742 unsigned DstIdx = TiedPairs[0].second; 1743 unsigned SrcReg = mi->getOperand(SrcIdx).getReg(); 1744 unsigned DstReg = mi->getOperand(DstIdx).getReg(); 1745 if (SrcReg != DstReg && 1746 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1747 // The tied operands have been eliminated or shifted further down 1748 // the block to ease elimination. Continue processing with 'nmi'. 1749 TiedOperands.clear(); 1750 mi = nmi; 1751 continue; 1752 } 1753 } 1754 } 1755 1756 // Now iterate over the information collected above. 1757 for (auto &TO : TiedOperands) { 1758 processTiedPairs(&*mi, TO.second, Dist); 1759 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1760 } 1761 1762 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1763 if (mi->isInsertSubreg()) { 1764 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1765 // To %reg:subidx = COPY %subreg 1766 unsigned SubIdx = mi->getOperand(3).getImm(); 1767 mi->RemoveOperand(3); 1768 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1769 mi->getOperand(0).setSubReg(SubIdx); 1770 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1771 mi->RemoveOperand(1); 1772 mi->setDesc(TII->get(TargetOpcode::COPY)); 1773 LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1774 } 1775 1776 // Clear TiedOperands here instead of at the top of the loop 1777 // since most instructions do not have tied operands. 1778 TiedOperands.clear(); 1779 mi = nmi; 1780 } 1781 } 1782 1783 if (LIS) 1784 MF->verify(this, "After two-address instruction pass"); 1785 1786 return MadeChange; 1787 } 1788 1789 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1790 /// 1791 /// The instruction is turned into a sequence of sub-register copies: 1792 /// 1793 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1794 /// 1795 /// Becomes: 1796 /// 1797 /// undef %dst:ssub0 = COPY %v1 1798 /// %dst:ssub1 = COPY %v2 1799 void TwoAddressInstructionPass:: 1800 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1801 MachineInstr &MI = *MBBI; 1802 unsigned DstReg = MI.getOperand(0).getReg(); 1803 if (MI.getOperand(0).getSubReg() || 1804 TargetRegisterInfo::isPhysicalRegister(DstReg) || 1805 !(MI.getNumOperands() & 1)) { 1806 LLVM_DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI); 1807 llvm_unreachable(nullptr); 1808 } 1809 1810 SmallVector<unsigned, 4> OrigRegs; 1811 if (LIS) { 1812 OrigRegs.push_back(MI.getOperand(0).getReg()); 1813 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) 1814 OrigRegs.push_back(MI.getOperand(i).getReg()); 1815 } 1816 1817 bool DefEmitted = false; 1818 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) { 1819 MachineOperand &UseMO = MI.getOperand(i); 1820 unsigned SrcReg = UseMO.getReg(); 1821 unsigned SubIdx = MI.getOperand(i+1).getImm(); 1822 // Nothing needs to be inserted for undef operands. 1823 if (UseMO.isUndef()) 1824 continue; 1825 1826 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1827 // might insert a COPY that uses SrcReg after is was killed. 1828 bool isKill = UseMO.isKill(); 1829 if (isKill) 1830 for (unsigned j = i + 2; j < e; j += 2) 1831 if (MI.getOperand(j).getReg() == SrcReg) { 1832 MI.getOperand(j).setIsKill(); 1833 UseMO.setIsKill(false); 1834 isKill = false; 1835 break; 1836 } 1837 1838 // Insert the sub-register copy. 1839 MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1840 TII->get(TargetOpcode::COPY)) 1841 .addReg(DstReg, RegState::Define, SubIdx) 1842 .add(UseMO); 1843 1844 // The first def needs an undef flag because there is no live register 1845 // before it. 1846 if (!DefEmitted) { 1847 CopyMI->getOperand(0).setIsUndef(true); 1848 // Return an iterator pointing to the first inserted instr. 1849 MBBI = CopyMI; 1850 } 1851 DefEmitted = true; 1852 1853 // Update LiveVariables' kill info. 1854 if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg)) 1855 LV->replaceKillInstruction(SrcReg, MI, *CopyMI); 1856 1857 LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI); 1858 } 1859 1860 MachineBasicBlock::iterator EndMBBI = 1861 std::next(MachineBasicBlock::iterator(MI)); 1862 1863 if (!DefEmitted) { 1864 LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF"); 1865 MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1866 for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j) 1867 MI.RemoveOperand(j); 1868 } else { 1869 LLVM_DEBUG(dbgs() << "Eliminated: " << MI); 1870 MI.eraseFromParent(); 1871 } 1872 1873 // Udpate LiveIntervals. 1874 if (LIS) 1875 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1876 } 1877