1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TwoAddress instruction pass which is used 11 // by most register allocators. Two-Address instructions are rewritten 12 // from: 13 // 14 // A = B op C 15 // 16 // to: 17 // 18 // A = B 19 // A op= C 20 // 21 // Note that if a register allocator chooses to use this pass, that it 22 // has to be capable of handling the non-SSA nature of these rewritten 23 // virtual registers. 24 // 25 // It is also worth noting that the duplicate operand of the two 26 // address instruction is removed. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/Analysis/AliasAnalysis.h" 35 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 36 #include "llvm/CodeGen/LiveVariables.h" 37 #include "llvm/CodeGen/MachineFunctionPass.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/Passes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/MC/MCInstrItineraries.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetInstrInfo.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include "llvm/Target/TargetRegisterInfo.h" 51 #include "llvm/Target/TargetSubtargetInfo.h" 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "twoaddrinstr" 56 57 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 58 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 59 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 60 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 61 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk"); 62 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 63 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 64 65 // Temporary flag to disable rescheduling. 66 static cl::opt<bool> 67 EnableRescheduling("twoaddr-reschedule", 68 cl::desc("Coalesce copies by rescheduling (default=true)"), 69 cl::init(true), cl::Hidden); 70 71 namespace { 72 class TwoAddressInstructionPass : public MachineFunctionPass { 73 MachineFunction *MF; 74 const TargetInstrInfo *TII; 75 const TargetRegisterInfo *TRI; 76 const InstrItineraryData *InstrItins; 77 MachineRegisterInfo *MRI; 78 LiveVariables *LV; 79 LiveIntervals *LIS; 80 AliasAnalysis *AA; 81 CodeGenOpt::Level OptLevel; 82 83 // The current basic block being processed. 84 MachineBasicBlock *MBB; 85 86 // Keep track the distance of a MI from the start of the current basic block. 87 DenseMap<MachineInstr*, unsigned> DistanceMap; 88 89 // Set of already processed instructions in the current block. 90 SmallPtrSet<MachineInstr*, 8> Processed; 91 92 // A map from virtual registers to physical registers which are likely targets 93 // to be coalesced to due to copies from physical registers to virtual 94 // registers. e.g. v1024 = move r0. 95 DenseMap<unsigned, unsigned> SrcRegMap; 96 97 // A map from virtual registers to physical registers which are likely targets 98 // to be coalesced to due to copies to physical registers from virtual 99 // registers. e.g. r1 = move v1024. 100 DenseMap<unsigned, unsigned> DstRegMap; 101 102 bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg, 103 MachineBasicBlock::iterator OldPos); 104 105 bool isRevCopyChain(unsigned FromReg, unsigned ToReg, int Maxlen); 106 107 bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef); 108 109 bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 110 MachineInstr *MI, unsigned Dist); 111 112 bool commuteInstruction(MachineInstr *MI, unsigned DstIdx, 113 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); 114 115 bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB); 116 117 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 118 MachineBasicBlock::iterator &nmi, 119 unsigned RegA, unsigned RegB, unsigned Dist); 120 121 bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI); 122 123 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 124 MachineBasicBlock::iterator &nmi, 125 unsigned Reg); 126 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 127 MachineBasicBlock::iterator &nmi, 128 unsigned Reg); 129 130 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 131 MachineBasicBlock::iterator &nmi, 132 unsigned SrcIdx, unsigned DstIdx, 133 unsigned Dist, bool shouldOnlyCommute); 134 135 bool tryInstructionCommute(MachineInstr *MI, 136 unsigned DstOpIdx, 137 unsigned BaseOpIdx, 138 bool BaseOpKilled, 139 unsigned Dist); 140 void scanUses(unsigned DstReg); 141 142 void processCopy(MachineInstr *MI); 143 144 typedef SmallVector<std::pair<unsigned, unsigned>, 4> TiedPairList; 145 typedef SmallDenseMap<unsigned, TiedPairList> TiedOperandMap; 146 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 147 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 148 void eliminateRegSequence(MachineBasicBlock::iterator&); 149 150 public: 151 static char ID; // Pass identification, replacement for typeid 152 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 153 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 154 } 155 156 void getAnalysisUsage(AnalysisUsage &AU) const override { 157 AU.setPreservesCFG(); 158 AU.addRequired<AAResultsWrapperPass>(); 159 AU.addUsedIfAvailable<LiveVariables>(); 160 AU.addPreserved<LiveVariables>(); 161 AU.addPreserved<SlotIndexes>(); 162 AU.addPreserved<LiveIntervals>(); 163 AU.addPreservedID(MachineLoopInfoID); 164 AU.addPreservedID(MachineDominatorsID); 165 MachineFunctionPass::getAnalysisUsage(AU); 166 } 167 168 /// Pass entry point. 169 bool runOnMachineFunction(MachineFunction&) override; 170 }; 171 } // end anonymous namespace 172 173 char TwoAddressInstructionPass::ID = 0; 174 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction", 175 "Two-Address instruction pass", false, false) 176 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 177 INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction", 178 "Two-Address instruction pass", false, false) 179 180 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 181 182 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS); 183 184 /// A two-address instruction has been converted to a three-address instruction 185 /// to avoid clobbering a register. Try to sink it past the instruction that 186 /// would kill the above mentioned register to reduce register pressure. 187 bool TwoAddressInstructionPass:: 188 sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg, 189 MachineBasicBlock::iterator OldPos) { 190 // FIXME: Shouldn't we be trying to do this before we three-addressify the 191 // instruction? After this transformation is done, we no longer need 192 // the instruction to be in three-address form. 193 194 // Check if it's safe to move this instruction. 195 bool SeenStore = true; // Be conservative. 196 if (!MI->isSafeToMove(AA, SeenStore)) 197 return false; 198 199 unsigned DefReg = 0; 200 SmallSet<unsigned, 4> UseRegs; 201 202 for (const MachineOperand &MO : MI->operands()) { 203 if (!MO.isReg()) 204 continue; 205 unsigned MOReg = MO.getReg(); 206 if (!MOReg) 207 continue; 208 if (MO.isUse() && MOReg != SavedReg) 209 UseRegs.insert(MO.getReg()); 210 if (!MO.isDef()) 211 continue; 212 if (MO.isImplicit()) 213 // Don't try to move it if it implicitly defines a register. 214 return false; 215 if (DefReg) 216 // For now, don't move any instructions that define multiple registers. 217 return false; 218 DefReg = MO.getReg(); 219 } 220 221 // Find the instruction that kills SavedReg. 222 MachineInstr *KillMI = nullptr; 223 if (LIS) { 224 LiveInterval &LI = LIS->getInterval(SavedReg); 225 assert(LI.end() != LI.begin() && 226 "Reg should not have empty live interval."); 227 228 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 229 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 230 if (I != LI.end() && I->start < MBBEndIdx) 231 return false; 232 233 --I; 234 KillMI = LIS->getInstructionFromIndex(I->end); 235 } 236 if (!KillMI) { 237 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SavedReg)) { 238 if (!UseMO.isKill()) 239 continue; 240 KillMI = UseMO.getParent(); 241 break; 242 } 243 } 244 245 // If we find the instruction that kills SavedReg, and it is in an 246 // appropriate location, we can try to sink the current instruction 247 // past it. 248 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI || 249 MachineBasicBlock::iterator(KillMI) == OldPos || KillMI->isTerminator()) 250 return false; 251 252 // If any of the definitions are used by another instruction between the 253 // position and the kill use, then it's not safe to sink it. 254 // 255 // FIXME: This can be sped up if there is an easy way to query whether an 256 // instruction is before or after another instruction. Then we can use 257 // MachineRegisterInfo def / use instead. 258 MachineOperand *KillMO = nullptr; 259 MachineBasicBlock::iterator KillPos = KillMI; 260 ++KillPos; 261 262 unsigned NumVisited = 0; 263 for (MachineInstr &OtherMI : llvm::make_range(std::next(OldPos), KillPos)) { 264 // DBG_VALUE cannot be counted against the limit. 265 if (OtherMI.isDebugValue()) 266 continue; 267 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost. 268 return false; 269 ++NumVisited; 270 for (unsigned i = 0, e = OtherMI.getNumOperands(); i != e; ++i) { 271 MachineOperand &MO = OtherMI.getOperand(i); 272 if (!MO.isReg()) 273 continue; 274 unsigned MOReg = MO.getReg(); 275 if (!MOReg) 276 continue; 277 if (DefReg == MOReg) 278 return false; 279 280 if (MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS))) { 281 if (&OtherMI == KillMI && MOReg == SavedReg) 282 // Save the operand that kills the register. We want to unset the kill 283 // marker if we can sink MI past it. 284 KillMO = &MO; 285 else if (UseRegs.count(MOReg)) 286 // One of the uses is killed before the destination. 287 return false; 288 } 289 } 290 } 291 assert(KillMO && "Didn't find kill"); 292 293 if (!LIS) { 294 // Update kill and LV information. 295 KillMO->setIsKill(false); 296 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI); 297 KillMO->setIsKill(true); 298 299 if (LV) 300 LV->replaceKillInstruction(SavedReg, *KillMI, *MI); 301 } 302 303 // Move instruction to its destination. 304 MBB->remove(MI); 305 MBB->insert(KillPos, MI); 306 307 if (LIS) 308 LIS->handleMove(*MI); 309 310 ++Num3AddrSunk; 311 return true; 312 } 313 314 /// Return the MachineInstr* if it is the single def of the Reg in current BB. 315 static MachineInstr *getSingleDef(unsigned Reg, MachineBasicBlock *BB, 316 const MachineRegisterInfo *MRI) { 317 MachineInstr *Ret = nullptr; 318 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 319 if (DefMI.getParent() != BB || DefMI.isDebugValue()) 320 continue; 321 if (!Ret) 322 Ret = &DefMI; 323 else if (Ret != &DefMI) 324 return nullptr; 325 } 326 return Ret; 327 } 328 329 /// Check if there is a reversed copy chain from FromReg to ToReg: 330 /// %Tmp1 = copy %Tmp2; 331 /// %FromReg = copy %Tmp1; 332 /// %ToReg = add %FromReg ... 333 /// %Tmp2 = copy %ToReg; 334 /// MaxLen specifies the maximum length of the copy chain the func 335 /// can walk through. 336 bool TwoAddressInstructionPass::isRevCopyChain(unsigned FromReg, unsigned ToReg, 337 int Maxlen) { 338 unsigned TmpReg = FromReg; 339 for (int i = 0; i < Maxlen; i++) { 340 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI); 341 if (!Def || !Def->isCopy()) 342 return false; 343 344 TmpReg = Def->getOperand(1).getReg(); 345 346 if (TmpReg == ToReg) 347 return true; 348 } 349 return false; 350 } 351 352 /// Return true if there are no intervening uses between the last instruction 353 /// in the MBB that defines the specified register and the two-address 354 /// instruction which is being processed. It also returns the last def location 355 /// by reference. 356 bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist, 357 unsigned &LastDef) { 358 LastDef = 0; 359 unsigned LastUse = Dist; 360 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 361 MachineInstr *MI = MO.getParent(); 362 if (MI->getParent() != MBB || MI->isDebugValue()) 363 continue; 364 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 365 if (DI == DistanceMap.end()) 366 continue; 367 if (MO.isUse() && DI->second < LastUse) 368 LastUse = DI->second; 369 if (MO.isDef() && DI->second > LastDef) 370 LastDef = DI->second; 371 } 372 373 return !(LastUse > LastDef && LastUse < Dist); 374 } 375 376 /// Return true if the specified MI is a copy instruction or an extract_subreg 377 /// instruction. It also returns the source and destination registers and 378 /// whether they are physical registers by reference. 379 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 380 unsigned &SrcReg, unsigned &DstReg, 381 bool &IsSrcPhys, bool &IsDstPhys) { 382 SrcReg = 0; 383 DstReg = 0; 384 if (MI.isCopy()) { 385 DstReg = MI.getOperand(0).getReg(); 386 SrcReg = MI.getOperand(1).getReg(); 387 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 388 DstReg = MI.getOperand(0).getReg(); 389 SrcReg = MI.getOperand(2).getReg(); 390 } else 391 return false; 392 393 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); 394 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 395 return true; 396 } 397 398 /// Test if the given register value, which is used by the 399 /// given instruction, is killed by the given instruction. 400 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, 401 LiveIntervals *LIS) { 402 if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) && 403 !LIS->isNotInMIMap(*MI)) { 404 // FIXME: Sometimes tryInstructionTransform() will add instructions and 405 // test whether they can be folded before keeping them. In this case it 406 // sets a kill before recursively calling tryInstructionTransform() again. 407 // If there is no interval available, we assume that this instruction is 408 // one of those. A kill flag is manually inserted on the operand so the 409 // check below will handle it. 410 LiveInterval &LI = LIS->getInterval(Reg); 411 // This is to match the kill flag version where undefs don't have kill 412 // flags. 413 if (!LI.hasAtLeastOneValue()) 414 return false; 415 416 SlotIndex useIdx = LIS->getInstructionIndex(*MI); 417 LiveInterval::const_iterator I = LI.find(useIdx); 418 assert(I != LI.end() && "Reg must be live-in to use."); 419 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 420 } 421 422 return MI->killsRegister(Reg); 423 } 424 425 /// Test if the given register value, which is used by the given 426 /// instruction, is killed by the given instruction. This looks through 427 /// coalescable copies to see if the original value is potentially not killed. 428 /// 429 /// For example, in this code: 430 /// 431 /// %reg1034 = copy %reg1024 432 /// %reg1035 = copy %reg1025<kill> 433 /// %reg1036 = add %reg1034<kill>, %reg1035<kill> 434 /// 435 /// %reg1034 is not considered to be killed, since it is copied from a 436 /// register which is not killed. Treating it as not killed lets the 437 /// normal heuristics commute the (two-address) add, which lets 438 /// coalescing eliminate the extra copy. 439 /// 440 /// If allowFalsePositives is true then likely kills are treated as kills even 441 /// if it can't be proven that they are kills. 442 static bool isKilled(MachineInstr &MI, unsigned Reg, 443 const MachineRegisterInfo *MRI, 444 const TargetInstrInfo *TII, 445 LiveIntervals *LIS, 446 bool allowFalsePositives) { 447 MachineInstr *DefMI = &MI; 448 for (;;) { 449 // All uses of physical registers are likely to be kills. 450 if (TargetRegisterInfo::isPhysicalRegister(Reg) && 451 (allowFalsePositives || MRI->hasOneUse(Reg))) 452 return true; 453 if (!isPlainlyKilled(DefMI, Reg, LIS)) 454 return false; 455 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 456 return true; 457 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 458 // If there are multiple defs, we can't do a simple analysis, so just 459 // go with what the kill flag says. 460 if (std::next(Begin) != MRI->def_end()) 461 return true; 462 DefMI = Begin->getParent(); 463 bool IsSrcPhys, IsDstPhys; 464 unsigned SrcReg, DstReg; 465 // If the def is something other than a copy, then it isn't going to 466 // be coalesced, so follow the kill flag. 467 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 468 return true; 469 Reg = SrcReg; 470 } 471 } 472 473 /// Return true if the specified MI uses the specified register as a two-address 474 /// use. If so, return the destination register by reference. 475 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) { 476 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 477 const MachineOperand &MO = MI.getOperand(i); 478 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 479 continue; 480 unsigned ti; 481 if (MI.isRegTiedToDefOperand(i, &ti)) { 482 DstReg = MI.getOperand(ti).getReg(); 483 return true; 484 } 485 } 486 return false; 487 } 488 489 /// Given a register, if has a single in-basic block use, return the use 490 /// instruction if it's a copy or a two-address use. 491 static 492 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB, 493 MachineRegisterInfo *MRI, 494 const TargetInstrInfo *TII, 495 bool &IsCopy, 496 unsigned &DstReg, bool &IsDstPhys) { 497 if (!MRI->hasOneNonDBGUse(Reg)) 498 // None or more than one use. 499 return nullptr; 500 MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg); 501 if (UseMI.getParent() != MBB) 502 return nullptr; 503 unsigned SrcReg; 504 bool IsSrcPhys; 505 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 506 IsCopy = true; 507 return &UseMI; 508 } 509 IsDstPhys = false; 510 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 511 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 512 return &UseMI; 513 } 514 return nullptr; 515 } 516 517 /// Return the physical register the specified virtual register might be mapped 518 /// to. 519 static unsigned 520 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) { 521 while (TargetRegisterInfo::isVirtualRegister(Reg)) { 522 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg); 523 if (SI == RegMap.end()) 524 return 0; 525 Reg = SI->second; 526 } 527 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 528 return Reg; 529 return 0; 530 } 531 532 /// Return true if the two registers are equal or aliased. 533 static bool 534 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) { 535 if (RegA == RegB) 536 return true; 537 if (!RegA || !RegB) 538 return false; 539 return TRI->regsOverlap(RegA, RegB); 540 } 541 542 // Returns true if Reg is equal or aliased to at least one register in Set. 543 static bool regOverlapsSet(const SmallVectorImpl<unsigned> &Set, unsigned Reg, 544 const TargetRegisterInfo *TRI) { 545 for (unsigned R : Set) 546 if (TRI->regsOverlap(R, Reg)) 547 return true; 548 549 return false; 550 } 551 552 /// Return true if it's potentially profitable to commute the two-address 553 /// instruction that's being processed. 554 bool 555 TwoAddressInstructionPass:: 556 isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 557 MachineInstr *MI, unsigned Dist) { 558 if (OptLevel == CodeGenOpt::None) 559 return false; 560 561 // Determine if it's profitable to commute this two address instruction. In 562 // general, we want no uses between this instruction and the definition of 563 // the two-address register. 564 // e.g. 565 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 566 // %reg1029<def> = MOV8rr %reg1028 567 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 568 // insert => %reg1030<def> = MOV8rr %reg1028 569 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 570 // In this case, it might not be possible to coalesce the second MOV8rr 571 // instruction if the first one is coalesced. So it would be profitable to 572 // commute it: 573 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 574 // %reg1029<def> = MOV8rr %reg1028 575 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 576 // insert => %reg1030<def> = MOV8rr %reg1029 577 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead> 578 579 if (!isPlainlyKilled(MI, regC, LIS)) 580 return false; 581 582 // Ok, we have something like: 583 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 584 // let's see if it's worth commuting it. 585 586 // Look for situations like this: 587 // %reg1024<def> = MOV r1 588 // %reg1025<def> = MOV r0 589 // %reg1026<def> = ADD %reg1024, %reg1025 590 // r0 = MOV %reg1026 591 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 592 unsigned ToRegA = getMappedReg(regA, DstRegMap); 593 if (ToRegA) { 594 unsigned FromRegB = getMappedReg(regB, SrcRegMap); 595 unsigned FromRegC = getMappedReg(regC, SrcRegMap); 596 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI); 597 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI); 598 599 // Compute if any of the following are true: 600 // -RegB is not tied to a register and RegC is compatible with RegA. 601 // -RegB is tied to the wrong physical register, but RegC is. 602 // -RegB is tied to the wrong physical register, and RegC isn't tied. 603 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) 604 return true; 605 // Don't compute if any of the following are true: 606 // -RegC is not tied to a register and RegB is compatible with RegA. 607 // -RegC is tied to the wrong physical register, but RegB is. 608 // -RegC is tied to the wrong physical register, and RegB isn't tied. 609 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) 610 return false; 611 } 612 613 // If there is a use of regC between its last def (could be livein) and this 614 // instruction, then bail. 615 unsigned LastDefC = 0; 616 if (!noUseAfterLastDef(regC, Dist, LastDefC)) 617 return false; 618 619 // If there is a use of regB between its last def (could be livein) and this 620 // instruction, then go ahead and make this transformation. 621 unsigned LastDefB = 0; 622 if (!noUseAfterLastDef(regB, Dist, LastDefB)) 623 return true; 624 625 // Look for situation like this: 626 // %reg101 = MOV %reg100 627 // %reg102 = ... 628 // %reg103 = ADD %reg102, %reg101 629 // ... = %reg103 ... 630 // %reg100 = MOV %reg103 631 // If there is a reversed copy chain from reg101 to reg103, commute the ADD 632 // to eliminate an otherwise unavoidable copy. 633 // FIXME: 634 // We can extend the logic further: If an pair of operands in an insn has 635 // been merged, the insn could be regarded as a virtual copy, and the virtual 636 // copy could also be used to construct a copy chain. 637 // To more generally minimize register copies, ideally the logic of two addr 638 // instruction pass should be integrated with register allocation pass where 639 // interference graph is available. 640 if (isRevCopyChain(regC, regA, 3)) 641 return true; 642 643 if (isRevCopyChain(regB, regA, 3)) 644 return false; 645 646 // Since there are no intervening uses for both registers, then commute 647 // if the def of regC is closer. Its live interval is shorter. 648 return LastDefB && LastDefC && LastDefC > LastDefB; 649 } 650 651 /// Commute a two-address instruction and update the basic block, distance map, 652 /// and live variables if needed. Return true if it is successful. 653 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, 654 unsigned DstIdx, 655 unsigned RegBIdx, 656 unsigned RegCIdx, 657 unsigned Dist) { 658 unsigned RegC = MI->getOperand(RegCIdx).getReg(); 659 DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 660 MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx); 661 662 if (NewMI == nullptr) { 663 DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 664 return false; 665 } 666 667 DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 668 assert(NewMI == MI && 669 "TargetInstrInfo::commuteInstruction() should not return a new " 670 "instruction unless it was requested."); 671 672 // Update source register map. 673 unsigned FromRegC = getMappedReg(RegC, SrcRegMap); 674 if (FromRegC) { 675 unsigned RegA = MI->getOperand(DstIdx).getReg(); 676 SrcRegMap[RegA] = FromRegC; 677 } 678 679 return true; 680 } 681 682 /// Return true if it is profitable to convert the given 2-address instruction 683 /// to a 3-address one. 684 bool 685 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){ 686 // Look for situations like this: 687 // %reg1024<def> = MOV r1 688 // %reg1025<def> = MOV r0 689 // %reg1026<def> = ADD %reg1024, %reg1025 690 // r2 = MOV %reg1026 691 // Turn ADD into a 3-address instruction to avoid a copy. 692 unsigned FromRegB = getMappedReg(RegB, SrcRegMap); 693 if (!FromRegB) 694 return false; 695 unsigned ToRegA = getMappedReg(RegA, DstRegMap); 696 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 697 } 698 699 /// Convert the specified two-address instruction into a three address one. 700 /// Return true if this transformation was successful. 701 bool 702 TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi, 703 MachineBasicBlock::iterator &nmi, 704 unsigned RegA, unsigned RegB, 705 unsigned Dist) { 706 // FIXME: Why does convertToThreeAddress() need an iterator reference? 707 MachineFunction::iterator MFI = MBB->getIterator(); 708 MachineInstr *NewMI = TII->convertToThreeAddress(MFI, *mi, LV); 709 assert(MBB->getIterator() == MFI && 710 "convertToThreeAddress changed iterator reference"); 711 if (!NewMI) 712 return false; 713 714 DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 715 DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 716 bool Sunk = false; 717 718 if (LIS) 719 LIS->ReplaceMachineInstrInMaps(*mi, *NewMI); 720 721 if (NewMI->findRegisterUseOperand(RegB, false, TRI)) 722 // FIXME: Temporary workaround. If the new instruction doesn't 723 // uses RegB, convertToThreeAddress must have created more 724 // then one instruction. 725 Sunk = sink3AddrInstruction(NewMI, RegB, mi); 726 727 MBB->erase(mi); // Nuke the old inst. 728 729 if (!Sunk) { 730 DistanceMap.insert(std::make_pair(NewMI, Dist)); 731 mi = NewMI; 732 nmi = std::next(mi); 733 } 734 735 // Update source and destination register maps. 736 SrcRegMap.erase(RegA); 737 DstRegMap.erase(RegB); 738 return true; 739 } 740 741 /// Scan forward recursively for only uses, update maps if the use is a copy or 742 /// a two-address instruction. 743 void 744 TwoAddressInstructionPass::scanUses(unsigned DstReg) { 745 SmallVector<unsigned, 4> VirtRegPairs; 746 bool IsDstPhys; 747 bool IsCopy = false; 748 unsigned NewReg = 0; 749 unsigned Reg = DstReg; 750 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 751 NewReg, IsDstPhys)) { 752 if (IsCopy && !Processed.insert(UseMI).second) 753 break; 754 755 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 756 if (DI != DistanceMap.end()) 757 // Earlier in the same MBB.Reached via a back edge. 758 break; 759 760 if (IsDstPhys) { 761 VirtRegPairs.push_back(NewReg); 762 break; 763 } 764 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second; 765 if (!isNew) 766 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!"); 767 VirtRegPairs.push_back(NewReg); 768 Reg = NewReg; 769 } 770 771 if (!VirtRegPairs.empty()) { 772 unsigned ToReg = VirtRegPairs.back(); 773 VirtRegPairs.pop_back(); 774 while (!VirtRegPairs.empty()) { 775 unsigned FromReg = VirtRegPairs.back(); 776 VirtRegPairs.pop_back(); 777 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 778 if (!isNew) 779 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 780 ToReg = FromReg; 781 } 782 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 783 if (!isNew) 784 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 785 } 786 } 787 788 /// If the specified instruction is not yet processed, process it if it's a 789 /// copy. For a copy instruction, we find the physical registers the 790 /// source and destination registers might be mapped to. These are kept in 791 /// point-to maps used to determine future optimizations. e.g. 792 /// v1024 = mov r0 793 /// v1025 = mov r1 794 /// v1026 = add v1024, v1025 795 /// r1 = mov r1026 796 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 797 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 798 /// potentially joined with r1 on the output side. It's worthwhile to commute 799 /// 'add' to eliminate a copy. 800 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 801 if (Processed.count(MI)) 802 return; 803 804 bool IsSrcPhys, IsDstPhys; 805 unsigned SrcReg, DstReg; 806 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 807 return; 808 809 if (IsDstPhys && !IsSrcPhys) 810 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 811 else if (!IsDstPhys && IsSrcPhys) { 812 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 813 if (!isNew) 814 assert(SrcRegMap[DstReg] == SrcReg && 815 "Can't map to two src physical registers!"); 816 817 scanUses(DstReg); 818 } 819 820 Processed.insert(MI); 821 } 822 823 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 824 /// consider moving the instruction below the kill instruction in order to 825 /// eliminate the need for the copy. 826 bool TwoAddressInstructionPass:: 827 rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 828 MachineBasicBlock::iterator &nmi, 829 unsigned Reg) { 830 // Bail immediately if we don't have LV or LIS available. We use them to find 831 // kills efficiently. 832 if (!LV && !LIS) 833 return false; 834 835 MachineInstr *MI = &*mi; 836 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 837 if (DI == DistanceMap.end()) 838 // Must be created from unfolded load. Don't waste time trying this. 839 return false; 840 841 MachineInstr *KillMI = nullptr; 842 if (LIS) { 843 LiveInterval &LI = LIS->getInterval(Reg); 844 assert(LI.end() != LI.begin() && 845 "Reg should not have empty live interval."); 846 847 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 848 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 849 if (I != LI.end() && I->start < MBBEndIdx) 850 return false; 851 852 --I; 853 KillMI = LIS->getInstructionFromIndex(I->end); 854 } else { 855 KillMI = LV->getVarInfo(Reg).findKill(MBB); 856 } 857 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 858 // Don't mess with copies, they may be coalesced later. 859 return false; 860 861 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 862 KillMI->isBranch() || KillMI->isTerminator()) 863 // Don't move pass calls, etc. 864 return false; 865 866 unsigned DstReg; 867 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 868 return false; 869 870 bool SeenStore = true; 871 if (!MI->isSafeToMove(AA, SeenStore)) 872 return false; 873 874 if (TII->getInstrLatency(InstrItins, *MI) > 1) 875 // FIXME: Needs more sophisticated heuristics. 876 return false; 877 878 SmallVector<unsigned, 2> Uses; 879 SmallVector<unsigned, 2> Kills; 880 SmallVector<unsigned, 2> Defs; 881 for (const MachineOperand &MO : MI->operands()) { 882 if (!MO.isReg()) 883 continue; 884 unsigned MOReg = MO.getReg(); 885 if (!MOReg) 886 continue; 887 if (MO.isDef()) 888 Defs.push_back(MOReg); 889 else { 890 Uses.push_back(MOReg); 891 if (MOReg != Reg && (MO.isKill() || 892 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 893 Kills.push_back(MOReg); 894 } 895 } 896 897 // Move the copies connected to MI down as well. 898 MachineBasicBlock::iterator Begin = MI; 899 MachineBasicBlock::iterator AfterMI = std::next(Begin); 900 901 MachineBasicBlock::iterator End = AfterMI; 902 while (End->isCopy() && 903 regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI)) { 904 Defs.push_back(End->getOperand(0).getReg()); 905 ++End; 906 } 907 908 // Check if the reschedule will not break depedencies. 909 unsigned NumVisited = 0; 910 MachineBasicBlock::iterator KillPos = KillMI; 911 ++KillPos; 912 for (MachineInstr &OtherMI : llvm::make_range(End, KillPos)) { 913 // DBG_VALUE cannot be counted against the limit. 914 if (OtherMI.isDebugValue()) 915 continue; 916 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 917 return false; 918 ++NumVisited; 919 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 920 OtherMI.isBranch() || OtherMI.isTerminator()) 921 // Don't move pass calls, etc. 922 return false; 923 for (const MachineOperand &MO : OtherMI.operands()) { 924 if (!MO.isReg()) 925 continue; 926 unsigned MOReg = MO.getReg(); 927 if (!MOReg) 928 continue; 929 if (MO.isDef()) { 930 if (regOverlapsSet(Uses, MOReg, TRI)) 931 // Physical register use would be clobbered. 932 return false; 933 if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI)) 934 // May clobber a physical register def. 935 // FIXME: This may be too conservative. It's ok if the instruction 936 // is sunken completely below the use. 937 return false; 938 } else { 939 if (regOverlapsSet(Defs, MOReg, TRI)) 940 return false; 941 bool isKill = 942 MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)); 943 if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) || 944 regOverlapsSet(Kills, MOReg, TRI))) 945 // Don't want to extend other live ranges and update kills. 946 return false; 947 if (MOReg == Reg && !isKill) 948 // We can't schedule across a use of the register in question. 949 return false; 950 // Ensure that if this is register in question, its the kill we expect. 951 assert((MOReg != Reg || &OtherMI == KillMI) && 952 "Found multiple kills of a register in a basic block"); 953 } 954 } 955 } 956 957 // Move debug info as well. 958 while (Begin != MBB->begin() && std::prev(Begin)->isDebugValue()) 959 --Begin; 960 961 nmi = End; 962 MachineBasicBlock::iterator InsertPos = KillPos; 963 if (LIS) { 964 // We have to move the copies first so that the MBB is still well-formed 965 // when calling handleMove(). 966 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 967 auto CopyMI = MBBI++; 968 MBB->splice(InsertPos, MBB, CopyMI); 969 LIS->handleMove(*CopyMI); 970 InsertPos = CopyMI; 971 } 972 End = std::next(MachineBasicBlock::iterator(MI)); 973 } 974 975 // Copies following MI may have been moved as well. 976 MBB->splice(InsertPos, MBB, Begin, End); 977 DistanceMap.erase(DI); 978 979 // Update live variables 980 if (LIS) { 981 LIS->handleMove(*MI); 982 } else { 983 LV->removeVirtualRegisterKilled(Reg, *KillMI); 984 LV->addVirtualRegisterKilled(Reg, *MI); 985 } 986 987 DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 988 return true; 989 } 990 991 /// Return true if the re-scheduling will put the given instruction too close 992 /// to the defs of its register dependencies. 993 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist, 994 MachineInstr *MI) { 995 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 996 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 997 continue; 998 if (&DefMI == MI) 999 return true; // MI is defining something KillMI uses 1000 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 1001 if (DDI == DistanceMap.end()) 1002 return true; // Below MI 1003 unsigned DefDist = DDI->second; 1004 assert(Dist > DefDist && "Visited def already?"); 1005 if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist)) 1006 return true; 1007 } 1008 return false; 1009 } 1010 1011 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 1012 /// consider moving the kill instruction above the current two-address 1013 /// instruction in order to eliminate the need for the copy. 1014 bool TwoAddressInstructionPass:: 1015 rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 1016 MachineBasicBlock::iterator &nmi, 1017 unsigned Reg) { 1018 // Bail immediately if we don't have LV or LIS available. We use them to find 1019 // kills efficiently. 1020 if (!LV && !LIS) 1021 return false; 1022 1023 MachineInstr *MI = &*mi; 1024 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 1025 if (DI == DistanceMap.end()) 1026 // Must be created from unfolded load. Don't waste time trying this. 1027 return false; 1028 1029 MachineInstr *KillMI = nullptr; 1030 if (LIS) { 1031 LiveInterval &LI = LIS->getInterval(Reg); 1032 assert(LI.end() != LI.begin() && 1033 "Reg should not have empty live interval."); 1034 1035 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 1036 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 1037 if (I != LI.end() && I->start < MBBEndIdx) 1038 return false; 1039 1040 --I; 1041 KillMI = LIS->getInstructionFromIndex(I->end); 1042 } else { 1043 KillMI = LV->getVarInfo(Reg).findKill(MBB); 1044 } 1045 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 1046 // Don't mess with copies, they may be coalesced later. 1047 return false; 1048 1049 unsigned DstReg; 1050 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 1051 return false; 1052 1053 bool SeenStore = true; 1054 if (!KillMI->isSafeToMove(AA, SeenStore)) 1055 return false; 1056 1057 SmallSet<unsigned, 2> Uses; 1058 SmallSet<unsigned, 2> Kills; 1059 SmallSet<unsigned, 2> Defs; 1060 SmallSet<unsigned, 2> LiveDefs; 1061 for (const MachineOperand &MO : KillMI->operands()) { 1062 if (!MO.isReg()) 1063 continue; 1064 unsigned MOReg = MO.getReg(); 1065 if (MO.isUse()) { 1066 if (!MOReg) 1067 continue; 1068 if (isDefTooClose(MOReg, DI->second, MI)) 1069 return false; 1070 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 1071 if (MOReg == Reg && !isKill) 1072 return false; 1073 Uses.insert(MOReg); 1074 if (isKill && MOReg != Reg) 1075 Kills.insert(MOReg); 1076 } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1077 Defs.insert(MOReg); 1078 if (!MO.isDead()) 1079 LiveDefs.insert(MOReg); 1080 } 1081 } 1082 1083 // Check if the reschedule will not break depedencies. 1084 unsigned NumVisited = 0; 1085 for (MachineInstr &OtherMI : 1086 llvm::make_range(mi, MachineBasicBlock::iterator(KillMI))) { 1087 // DBG_VALUE cannot be counted against the limit. 1088 if (OtherMI.isDebugValue()) 1089 continue; 1090 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 1091 return false; 1092 ++NumVisited; 1093 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 1094 OtherMI.isBranch() || OtherMI.isTerminator()) 1095 // Don't move pass calls, etc. 1096 return false; 1097 SmallVector<unsigned, 2> OtherDefs; 1098 for (const MachineOperand &MO : OtherMI.operands()) { 1099 if (!MO.isReg()) 1100 continue; 1101 unsigned MOReg = MO.getReg(); 1102 if (!MOReg) 1103 continue; 1104 if (MO.isUse()) { 1105 if (Defs.count(MOReg)) 1106 // Moving KillMI can clobber the physical register if the def has 1107 // not been seen. 1108 return false; 1109 if (Kills.count(MOReg)) 1110 // Don't want to extend other live ranges and update kills. 1111 return false; 1112 if (&OtherMI != MI && MOReg == Reg && 1113 !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)))) 1114 // We can't schedule across a use of the register in question. 1115 return false; 1116 } else { 1117 OtherDefs.push_back(MOReg); 1118 } 1119 } 1120 1121 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1122 unsigned MOReg = OtherDefs[i]; 1123 if (Uses.count(MOReg)) 1124 return false; 1125 if (TargetRegisterInfo::isPhysicalRegister(MOReg) && 1126 LiveDefs.count(MOReg)) 1127 return false; 1128 // Physical register def is seen. 1129 Defs.erase(MOReg); 1130 } 1131 } 1132 1133 // Move the old kill above MI, don't forget to move debug info as well. 1134 MachineBasicBlock::iterator InsertPos = mi; 1135 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugValue()) 1136 --InsertPos; 1137 MachineBasicBlock::iterator From = KillMI; 1138 MachineBasicBlock::iterator To = std::next(From); 1139 while (std::prev(From)->isDebugValue()) 1140 --From; 1141 MBB->splice(InsertPos, MBB, From, To); 1142 1143 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1144 DistanceMap.erase(DI); 1145 1146 // Update live variables 1147 if (LIS) { 1148 LIS->handleMove(*KillMI); 1149 } else { 1150 LV->removeVirtualRegisterKilled(Reg, *KillMI); 1151 LV->addVirtualRegisterKilled(Reg, *MI); 1152 } 1153 1154 DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1155 return true; 1156 } 1157 1158 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the 1159 /// given machine instruction to improve opportunities for coalescing and 1160 /// elimination of a register to register copy. 1161 /// 1162 /// 'DstOpIdx' specifies the index of MI def operand. 1163 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' 1164 /// operand is killed by the given instruction. 1165 /// The 'Dist' arguments provides the distance of MI from the start of the 1166 /// current basic block and it is used to determine if it is profitable 1167 /// to commute operands in the instruction. 1168 /// 1169 /// Returns true if the transformation happened. Otherwise, returns false. 1170 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, 1171 unsigned DstOpIdx, 1172 unsigned BaseOpIdx, 1173 bool BaseOpKilled, 1174 unsigned Dist) { 1175 if (!MI->isCommutable()) 1176 return false; 1177 1178 unsigned DstOpReg = MI->getOperand(DstOpIdx).getReg(); 1179 unsigned BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); 1180 unsigned OpsNum = MI->getDesc().getNumOperands(); 1181 unsigned OtherOpIdx = MI->getDesc().getNumDefs(); 1182 for (; OtherOpIdx < OpsNum; OtherOpIdx++) { 1183 // The call of findCommutedOpIndices below only checks if BaseOpIdx 1184 // and OtherOpIdx are commutable, it does not really search for 1185 // other commutable operands and does not change the values of passed 1186 // variables. 1187 if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() || 1188 !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx)) 1189 continue; 1190 1191 unsigned OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); 1192 bool AggressiveCommute = false; 1193 1194 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp 1195 // operands. This makes the live ranges of DstOp and OtherOp joinable. 1196 bool DoCommute = 1197 !BaseOpKilled && isKilled(*MI, OtherOpReg, MRI, TII, LIS, false); 1198 1199 if (!DoCommute && 1200 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { 1201 DoCommute = true; 1202 AggressiveCommute = true; 1203 } 1204 1205 // If it's profitable to commute, try to do so. 1206 if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx, 1207 Dist)) { 1208 ++NumCommuted; 1209 if (AggressiveCommute) 1210 ++NumAggrCommuted; 1211 return true; 1212 } 1213 } 1214 return false; 1215 } 1216 1217 /// For the case where an instruction has a single pair of tied register 1218 /// operands, attempt some transformations that may either eliminate the tied 1219 /// operands or improve the opportunities for coalescing away the register copy. 1220 /// Returns true if no copy needs to be inserted to untie mi's operands 1221 /// (either because they were untied, or because mi was rescheduled, and will 1222 /// be visited again later). If the shouldOnlyCommute flag is true, only 1223 /// instruction commutation is attempted. 1224 bool TwoAddressInstructionPass:: 1225 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1226 MachineBasicBlock::iterator &nmi, 1227 unsigned SrcIdx, unsigned DstIdx, 1228 unsigned Dist, bool shouldOnlyCommute) { 1229 if (OptLevel == CodeGenOpt::None) 1230 return false; 1231 1232 MachineInstr &MI = *mi; 1233 unsigned regA = MI.getOperand(DstIdx).getReg(); 1234 unsigned regB = MI.getOperand(SrcIdx).getReg(); 1235 1236 assert(TargetRegisterInfo::isVirtualRegister(regB) && 1237 "cannot make instruction into two-address form"); 1238 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1239 1240 if (TargetRegisterInfo::isVirtualRegister(regA)) 1241 scanUses(regA); 1242 1243 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); 1244 1245 // If the instruction is convertible to 3 Addr, instead 1246 // of returning try 3 Addr transformation aggresively and 1247 // use this variable to check later. Because it might be better. 1248 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` 1249 // instead of the following code. 1250 // addl %esi, %edi 1251 // movl %edi, %eax 1252 // ret 1253 if (Commuted && !MI.isConvertibleTo3Addr()) 1254 return false; 1255 1256 if (shouldOnlyCommute) 1257 return false; 1258 1259 // If there is one more use of regB later in the same MBB, consider 1260 // re-schedule this MI below it. 1261 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1262 ++NumReSchedDowns; 1263 return true; 1264 } 1265 1266 // If we commuted, regB may have changed so we should re-sample it to avoid 1267 // confusing the three address conversion below. 1268 if (Commuted) { 1269 regB = MI.getOperand(SrcIdx).getReg(); 1270 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1271 } 1272 1273 if (MI.isConvertibleTo3Addr()) { 1274 // This instruction is potentially convertible to a true 1275 // three-address instruction. Check if it is profitable. 1276 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1277 // Try to convert it. 1278 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1279 ++NumConvertedTo3Addr; 1280 return true; // Done with this instruction. 1281 } 1282 } 1283 } 1284 1285 // Return if it is commuted but 3 addr conversion is failed. 1286 if (Commuted) 1287 return false; 1288 1289 // If there is one more use of regB later in the same MBB, consider 1290 // re-schedule it before this MI if it's legal. 1291 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1292 ++NumReSchedUps; 1293 return true; 1294 } 1295 1296 // If this is an instruction with a load folded into it, try unfolding 1297 // the load, e.g. avoid this: 1298 // movq %rdx, %rcx 1299 // addq (%rax), %rcx 1300 // in favor of this: 1301 // movq (%rax), %rcx 1302 // addq %rdx, %rcx 1303 // because it's preferable to schedule a load than a register copy. 1304 if (MI.mayLoad() && !regBKilled) { 1305 // Determine if a load can be unfolded. 1306 unsigned LoadRegIndex; 1307 unsigned NewOpc = 1308 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1309 /*UnfoldLoad=*/true, 1310 /*UnfoldStore=*/false, 1311 &LoadRegIndex); 1312 if (NewOpc != 0) { 1313 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1314 if (UnfoldMCID.getNumDefs() == 1) { 1315 // Unfold the load. 1316 DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1317 const TargetRegisterClass *RC = 1318 TRI->getAllocatableClass( 1319 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1320 unsigned Reg = MRI->createVirtualRegister(RC); 1321 SmallVector<MachineInstr *, 2> NewMIs; 1322 if (!TII->unfoldMemoryOperand(*MF, MI, Reg, 1323 /*UnfoldLoad=*/true, 1324 /*UnfoldStore=*/false, NewMIs)) { 1325 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1326 return false; 1327 } 1328 assert(NewMIs.size() == 2 && 1329 "Unfolded a load into multiple instructions!"); 1330 // The load was previously folded, so this is the only use. 1331 NewMIs[1]->addRegisterKilled(Reg, TRI); 1332 1333 // Tentatively insert the instructions into the block so that they 1334 // look "normal" to the transformation logic. 1335 MBB->insert(mi, NewMIs[0]); 1336 MBB->insert(mi, NewMIs[1]); 1337 1338 DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1339 << "2addr: NEW INST: " << *NewMIs[1]); 1340 1341 // Transform the instruction, now that it no longer has a load. 1342 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1343 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1344 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1345 bool TransformResult = 1346 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1347 (void)TransformResult; 1348 assert(!TransformResult && 1349 "tryInstructionTransform() should return false."); 1350 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1351 // Success, or at least we made an improvement. Keep the unfolded 1352 // instructions and discard the original. 1353 if (LV) { 1354 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1355 MachineOperand &MO = MI.getOperand(i); 1356 if (MO.isReg() && 1357 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 1358 if (MO.isUse()) { 1359 if (MO.isKill()) { 1360 if (NewMIs[0]->killsRegister(MO.getReg())) 1361 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]); 1362 else { 1363 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1364 "Kill missing after load unfold!"); 1365 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]); 1366 } 1367 } 1368 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) { 1369 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1370 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]); 1371 else { 1372 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1373 "Dead flag missing after load unfold!"); 1374 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]); 1375 } 1376 } 1377 } 1378 } 1379 LV->addVirtualRegisterKilled(Reg, *NewMIs[1]); 1380 } 1381 1382 SmallVector<unsigned, 4> OrigRegs; 1383 if (LIS) { 1384 for (const MachineOperand &MO : MI.operands()) { 1385 if (MO.isReg()) 1386 OrigRegs.push_back(MO.getReg()); 1387 } 1388 } 1389 1390 MI.eraseFromParent(); 1391 1392 // Update LiveIntervals. 1393 if (LIS) { 1394 MachineBasicBlock::iterator Begin(NewMIs[0]); 1395 MachineBasicBlock::iterator End(NewMIs[1]); 1396 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1397 } 1398 1399 mi = NewMIs[1]; 1400 } else { 1401 // Transforming didn't eliminate the tie and didn't lead to an 1402 // improvement. Clean up the unfolded instructions and keep the 1403 // original. 1404 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1405 NewMIs[0]->eraseFromParent(); 1406 NewMIs[1]->eraseFromParent(); 1407 } 1408 } 1409 } 1410 } 1411 1412 return false; 1413 } 1414 1415 // Collect tied operands of MI that need to be handled. 1416 // Rewrite trivial cases immediately. 1417 // Return true if any tied operands where found, including the trivial ones. 1418 bool TwoAddressInstructionPass:: 1419 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1420 const MCInstrDesc &MCID = MI->getDesc(); 1421 bool AnyOps = false; 1422 unsigned NumOps = MI->getNumOperands(); 1423 1424 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1425 unsigned DstIdx = 0; 1426 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1427 continue; 1428 AnyOps = true; 1429 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1430 MachineOperand &DstMO = MI->getOperand(DstIdx); 1431 unsigned SrcReg = SrcMO.getReg(); 1432 unsigned DstReg = DstMO.getReg(); 1433 // Tied constraint already satisfied? 1434 if (SrcReg == DstReg) 1435 continue; 1436 1437 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1438 1439 // Deal with <undef> uses immediately - simply rewrite the src operand. 1440 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1441 // Constrain the DstReg register class if required. 1442 if (TargetRegisterInfo::isVirtualRegister(DstReg)) 1443 if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx, 1444 TRI, *MF)) 1445 MRI->constrainRegClass(DstReg, RC); 1446 SrcMO.setReg(DstReg); 1447 SrcMO.setSubReg(0); 1448 DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1449 continue; 1450 } 1451 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1452 } 1453 return AnyOps; 1454 } 1455 1456 // Process a list of tied MI operands that all use the same source register. 1457 // The tied pairs are of the form (SrcIdx, DstIdx). 1458 void 1459 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1460 TiedPairList &TiedPairs, 1461 unsigned &Dist) { 1462 bool IsEarlyClobber = false; 1463 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1464 const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second); 1465 IsEarlyClobber |= DstMO.isEarlyClobber(); 1466 } 1467 1468 bool RemovedKillFlag = false; 1469 bool AllUsesCopied = true; 1470 unsigned LastCopiedReg = 0; 1471 SlotIndex LastCopyIdx; 1472 unsigned RegB = 0; 1473 unsigned SubRegB = 0; 1474 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1475 unsigned SrcIdx = TiedPairs[tpi].first; 1476 unsigned DstIdx = TiedPairs[tpi].second; 1477 1478 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1479 unsigned RegA = DstMO.getReg(); 1480 1481 // Grab RegB from the instruction because it may have changed if the 1482 // instruction was commuted. 1483 RegB = MI->getOperand(SrcIdx).getReg(); 1484 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1485 1486 if (RegA == RegB) { 1487 // The register is tied to multiple destinations (or else we would 1488 // not have continued this far), but this use of the register 1489 // already matches the tied destination. Leave it. 1490 AllUsesCopied = false; 1491 continue; 1492 } 1493 LastCopiedReg = RegA; 1494 1495 assert(TargetRegisterInfo::isVirtualRegister(RegB) && 1496 "cannot make instruction into two-address form"); 1497 1498 #ifndef NDEBUG 1499 // First, verify that we don't have a use of "a" in the instruction 1500 // (a = b + a for example) because our transformation will not 1501 // work. This should never occur because we are in SSA form. 1502 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1503 assert(i == DstIdx || 1504 !MI->getOperand(i).isReg() || 1505 MI->getOperand(i).getReg() != RegA); 1506 #endif 1507 1508 // Emit a copy. 1509 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1510 TII->get(TargetOpcode::COPY), RegA); 1511 // If this operand is folding a truncation, the truncation now moves to the 1512 // copy so that the register classes remain valid for the operands. 1513 MIB.addReg(RegB, 0, SubRegB); 1514 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1515 if (SubRegB) { 1516 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 1517 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1518 SubRegB) && 1519 "tied subregister must be a truncation"); 1520 // The superreg class will not be used to constrain the subreg class. 1521 RC = nullptr; 1522 } 1523 else { 1524 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1525 && "tied subregister must be a truncation"); 1526 } 1527 } 1528 1529 // Update DistanceMap. 1530 MachineBasicBlock::iterator PrevMI = MI; 1531 --PrevMI; 1532 DistanceMap.insert(std::make_pair(&*PrevMI, Dist)); 1533 DistanceMap[MI] = ++Dist; 1534 1535 if (LIS) { 1536 LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot(); 1537 1538 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 1539 LiveInterval &LI = LIS->getInterval(RegA); 1540 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1541 SlotIndex endIdx = 1542 LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber); 1543 LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI)); 1544 } 1545 } 1546 1547 DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1548 1549 MachineOperand &MO = MI->getOperand(SrcIdx); 1550 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1551 "inconsistent operand info for 2-reg pass"); 1552 if (MO.isKill()) { 1553 MO.setIsKill(false); 1554 RemovedKillFlag = true; 1555 } 1556 1557 // Make sure regA is a legal regclass for the SrcIdx operand. 1558 if (TargetRegisterInfo::isVirtualRegister(RegA) && 1559 TargetRegisterInfo::isVirtualRegister(RegB)) 1560 MRI->constrainRegClass(RegA, RC); 1561 MO.setReg(RegA); 1562 // The getMatchingSuper asserts guarantee that the register class projected 1563 // by SubRegB is compatible with RegA with no subregister. So regardless of 1564 // whether the dest oper writes a subreg, the source oper should not. 1565 MO.setSubReg(0); 1566 1567 // Propagate SrcRegMap. 1568 SrcRegMap[RegA] = RegB; 1569 } 1570 1571 if (AllUsesCopied) { 1572 if (!IsEarlyClobber) { 1573 // Replace other (un-tied) uses of regB with LastCopiedReg. 1574 for (MachineOperand &MO : MI->operands()) { 1575 if (MO.isReg() && MO.getReg() == RegB && 1576 MO.isUse()) { 1577 if (MO.isKill()) { 1578 MO.setIsKill(false); 1579 RemovedKillFlag = true; 1580 } 1581 MO.setReg(LastCopiedReg); 1582 MO.setSubReg(MO.getSubReg()); 1583 } 1584 } 1585 } 1586 1587 // Update live variables for regB. 1588 if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(*MI)) { 1589 MachineBasicBlock::iterator PrevMI = MI; 1590 --PrevMI; 1591 LV->addVirtualRegisterKilled(RegB, *PrevMI); 1592 } 1593 1594 // Update LiveIntervals. 1595 if (LIS) { 1596 LiveInterval &LI = LIS->getInterval(RegB); 1597 SlotIndex MIIdx = LIS->getInstructionIndex(*MI); 1598 LiveInterval::const_iterator I = LI.find(MIIdx); 1599 assert(I != LI.end() && "RegB must be live-in to use."); 1600 1601 SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber); 1602 if (I->end == UseIdx) 1603 LI.removeSegment(LastCopyIdx, UseIdx); 1604 } 1605 1606 } else if (RemovedKillFlag) { 1607 // Some tied uses of regB matched their destination registers, so 1608 // regB is still used in this instruction, but a kill flag was 1609 // removed from a different tied use of regB, so now we need to add 1610 // a kill flag to one of the remaining uses of regB. 1611 for (MachineOperand &MO : MI->operands()) { 1612 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1613 MO.setIsKill(true); 1614 break; 1615 } 1616 } 1617 } 1618 } 1619 1620 /// Reduce two-address instructions to two operands. 1621 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1622 MF = &Func; 1623 const TargetMachine &TM = MF->getTarget(); 1624 MRI = &MF->getRegInfo(); 1625 TII = MF->getSubtarget().getInstrInfo(); 1626 TRI = MF->getSubtarget().getRegisterInfo(); 1627 InstrItins = MF->getSubtarget().getInstrItineraryData(); 1628 LV = getAnalysisIfAvailable<LiveVariables>(); 1629 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1630 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1631 OptLevel = TM.getOptLevel(); 1632 1633 bool MadeChange = false; 1634 1635 DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1636 DEBUG(dbgs() << "********** Function: " 1637 << MF->getName() << '\n'); 1638 1639 // This pass takes the function out of SSA form. 1640 MRI->leaveSSA(); 1641 1642 TiedOperandMap TiedOperands; 1643 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); 1644 MBBI != MBBE; ++MBBI) { 1645 MBB = &*MBBI; 1646 unsigned Dist = 0; 1647 DistanceMap.clear(); 1648 SrcRegMap.clear(); 1649 DstRegMap.clear(); 1650 Processed.clear(); 1651 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1652 mi != me; ) { 1653 MachineBasicBlock::iterator nmi = std::next(mi); 1654 if (mi->isDebugValue()) { 1655 mi = nmi; 1656 continue; 1657 } 1658 1659 // Expand REG_SEQUENCE instructions. This will position mi at the first 1660 // expanded instruction. 1661 if (mi->isRegSequence()) 1662 eliminateRegSequence(mi); 1663 1664 DistanceMap.insert(std::make_pair(&*mi, ++Dist)); 1665 1666 processCopy(&*mi); 1667 1668 // First scan through all the tied register uses in this instruction 1669 // and record a list of pairs of tied operands for each register. 1670 if (!collectTiedOperands(&*mi, TiedOperands)) { 1671 mi = nmi; 1672 continue; 1673 } 1674 1675 ++NumTwoAddressInstrs; 1676 MadeChange = true; 1677 DEBUG(dbgs() << '\t' << *mi); 1678 1679 // If the instruction has a single pair of tied operands, try some 1680 // transformations that may either eliminate the tied operands or 1681 // improve the opportunities for coalescing away the register copy. 1682 if (TiedOperands.size() == 1) { 1683 SmallVectorImpl<std::pair<unsigned, unsigned> > &TiedPairs 1684 = TiedOperands.begin()->second; 1685 if (TiedPairs.size() == 1) { 1686 unsigned SrcIdx = TiedPairs[0].first; 1687 unsigned DstIdx = TiedPairs[0].second; 1688 unsigned SrcReg = mi->getOperand(SrcIdx).getReg(); 1689 unsigned DstReg = mi->getOperand(DstIdx).getReg(); 1690 if (SrcReg != DstReg && 1691 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1692 // The tied operands have been eliminated or shifted further down 1693 // the block to ease elimination. Continue processing with 'nmi'. 1694 TiedOperands.clear(); 1695 mi = nmi; 1696 continue; 1697 } 1698 } 1699 } 1700 1701 // Now iterate over the information collected above. 1702 for (auto &TO : TiedOperands) { 1703 processTiedPairs(&*mi, TO.second, Dist); 1704 DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1705 } 1706 1707 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1708 if (mi->isInsertSubreg()) { 1709 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1710 // To %reg:subidx = COPY %subreg 1711 unsigned SubIdx = mi->getOperand(3).getImm(); 1712 mi->RemoveOperand(3); 1713 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1714 mi->getOperand(0).setSubReg(SubIdx); 1715 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1716 mi->RemoveOperand(1); 1717 mi->setDesc(TII->get(TargetOpcode::COPY)); 1718 DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1719 } 1720 1721 // Clear TiedOperands here instead of at the top of the loop 1722 // since most instructions do not have tied operands. 1723 TiedOperands.clear(); 1724 mi = nmi; 1725 } 1726 } 1727 1728 if (LIS) 1729 MF->verify(this, "After two-address instruction pass"); 1730 1731 return MadeChange; 1732 } 1733 1734 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1735 /// 1736 /// The instruction is turned into a sequence of sub-register copies: 1737 /// 1738 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1739 /// 1740 /// Becomes: 1741 /// 1742 /// %dst:ssub0<def,undef> = COPY %v1 1743 /// %dst:ssub1<def> = COPY %v2 1744 /// 1745 void TwoAddressInstructionPass:: 1746 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1747 MachineInstr &MI = *MBBI; 1748 unsigned DstReg = MI.getOperand(0).getReg(); 1749 if (MI.getOperand(0).getSubReg() || 1750 TargetRegisterInfo::isPhysicalRegister(DstReg) || 1751 !(MI.getNumOperands() & 1)) { 1752 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI); 1753 llvm_unreachable(nullptr); 1754 } 1755 1756 SmallVector<unsigned, 4> OrigRegs; 1757 if (LIS) { 1758 OrigRegs.push_back(MI.getOperand(0).getReg()); 1759 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) 1760 OrigRegs.push_back(MI.getOperand(i).getReg()); 1761 } 1762 1763 bool DefEmitted = false; 1764 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) { 1765 MachineOperand &UseMO = MI.getOperand(i); 1766 unsigned SrcReg = UseMO.getReg(); 1767 unsigned SubIdx = MI.getOperand(i+1).getImm(); 1768 // Nothing needs to be inserted for <undef> operands. 1769 if (UseMO.isUndef()) 1770 continue; 1771 1772 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1773 // might insert a COPY that uses SrcReg after is was killed. 1774 bool isKill = UseMO.isKill(); 1775 if (isKill) 1776 for (unsigned j = i + 2; j < e; j += 2) 1777 if (MI.getOperand(j).getReg() == SrcReg) { 1778 MI.getOperand(j).setIsKill(); 1779 UseMO.setIsKill(false); 1780 isKill = false; 1781 break; 1782 } 1783 1784 // Insert the sub-register copy. 1785 MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1786 TII->get(TargetOpcode::COPY)) 1787 .addReg(DstReg, RegState::Define, SubIdx) 1788 .addOperand(UseMO); 1789 1790 // The first def needs an <undef> flag because there is no live register 1791 // before it. 1792 if (!DefEmitted) { 1793 CopyMI->getOperand(0).setIsUndef(true); 1794 // Return an iterator pointing to the first inserted instr. 1795 MBBI = CopyMI; 1796 } 1797 DefEmitted = true; 1798 1799 // Update LiveVariables' kill info. 1800 if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg)) 1801 LV->replaceKillInstruction(SrcReg, MI, *CopyMI); 1802 1803 DEBUG(dbgs() << "Inserted: " << *CopyMI); 1804 } 1805 1806 MachineBasicBlock::iterator EndMBBI = 1807 std::next(MachineBasicBlock::iterator(MI)); 1808 1809 if (!DefEmitted) { 1810 DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF"); 1811 MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1812 for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j) 1813 MI.RemoveOperand(j); 1814 } else { 1815 DEBUG(dbgs() << "Eliminated: " << MI); 1816 MI.eraseFromParent(); 1817 } 1818 1819 // Udpate LiveIntervals. 1820 if (LIS) 1821 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1822 } 1823