1 //===- llvm/Target/TargetSchedule.cpp - Sched Machine Model ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a wrapper around MCSchedModel that allows the interface 11 // to benefit from information currently only available in TargetInstrInfo. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/TargetSchedule.h" 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/CodeGen/MachineInstr.h" 18 #include "llvm/CodeGen/MachineOperand.h" 19 #include "llvm/CodeGen/TargetInstrInfo.h" 20 #include "llvm/CodeGen/TargetRegisterInfo.h" 21 #include "llvm/CodeGen/TargetSubtargetInfo.h" 22 #include "llvm/MC/MCInstrDesc.h" 23 #include "llvm/MC/MCInstrItineraries.h" 24 #include "llvm/MC/MCSchedule.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include <algorithm> 29 #include <cassert> 30 #include <cstdint> 31 32 using namespace llvm; 33 34 static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true), 35 cl::desc("Use TargetSchedModel for latency lookup")); 36 37 static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true), 38 cl::desc("Use InstrItineraryData for latency lookup")); 39 40 bool TargetSchedModel::hasInstrSchedModel() const { 41 return EnableSchedModel && SchedModel.hasInstrSchedModel(); 42 } 43 44 bool TargetSchedModel::hasInstrItineraries() const { 45 return EnableSchedItins && !InstrItins.isEmpty(); 46 } 47 48 static unsigned gcd(unsigned Dividend, unsigned Divisor) { 49 // Dividend and Divisor will be naturally swapped as needed. 50 while (Divisor) { 51 unsigned Rem = Dividend % Divisor; 52 Dividend = Divisor; 53 Divisor = Rem; 54 }; 55 return Dividend; 56 } 57 58 static unsigned lcm(unsigned A, unsigned B) { 59 unsigned LCM = (uint64_t(A) * B) / gcd(A, B); 60 assert((LCM >= A && LCM >= B) && "LCM overflow"); 61 return LCM; 62 } 63 64 void TargetSchedModel::init(const TargetSubtargetInfo *TSInfo) { 65 STI = TSInfo; 66 SchedModel = TSInfo->getSchedModel(); 67 TII = TSInfo->getInstrInfo(); 68 STI->initInstrItins(InstrItins); 69 70 unsigned NumRes = SchedModel.getNumProcResourceKinds(); 71 ResourceFactors.resize(NumRes); 72 ResourceLCM = SchedModel.IssueWidth; 73 for (unsigned Idx = 0; Idx < NumRes; ++Idx) { 74 unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits; 75 if (NumUnits > 0) 76 ResourceLCM = lcm(ResourceLCM, NumUnits); 77 } 78 MicroOpFactor = ResourceLCM / SchedModel.IssueWidth; 79 for (unsigned Idx = 0; Idx < NumRes; ++Idx) { 80 unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits; 81 ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0; 82 } 83 } 84 85 /// Returns true only if instruction is specified as single issue. 86 bool TargetSchedModel::mustBeginGroup(const MachineInstr *MI, 87 const MCSchedClassDesc *SC) const { 88 if (hasInstrSchedModel()) { 89 if (!SC) 90 SC = resolveSchedClass(MI); 91 if (SC->isValid()) 92 return SC->BeginGroup; 93 } 94 return false; 95 } 96 97 bool TargetSchedModel::mustEndGroup(const MachineInstr *MI, 98 const MCSchedClassDesc *SC) const { 99 if (hasInstrSchedModel()) { 100 if (!SC) 101 SC = resolveSchedClass(MI); 102 if (SC->isValid()) 103 return SC->EndGroup; 104 } 105 return false; 106 } 107 108 unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI, 109 const MCSchedClassDesc *SC) const { 110 if (hasInstrItineraries()) { 111 int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass()); 112 return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, *MI); 113 } 114 if (hasInstrSchedModel()) { 115 if (!SC) 116 SC = resolveSchedClass(MI); 117 if (SC->isValid()) 118 return SC->NumMicroOps; 119 } 120 return MI->isTransient() ? 0 : 1; 121 } 122 123 // The machine model may explicitly specify an invalid latency, which 124 // effectively means infinite latency. Since users of the TargetSchedule API 125 // don't know how to handle this, we convert it to a very large latency that is 126 // easy to distinguish when debugging the DAG but won't induce overflow. 127 static unsigned capLatency(int Cycles) { 128 return Cycles >= 0 ? Cycles : 1000; 129 } 130 131 /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require 132 /// evaluation of predicates that depend on instruction operands or flags. 133 const MCSchedClassDesc *TargetSchedModel:: 134 resolveSchedClass(const MachineInstr *MI) const { 135 // Get the definition's scheduling class descriptor from this machine model. 136 unsigned SchedClass = MI->getDesc().getSchedClass(); 137 const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass); 138 if (!SCDesc->isValid()) 139 return SCDesc; 140 141 #ifndef NDEBUG 142 unsigned NIter = 0; 143 #endif 144 while (SCDesc->isVariant()) { 145 assert(++NIter < 6 && "Variants are nested deeper than the magic number"); 146 147 SchedClass = STI->resolveSchedClass(SchedClass, MI, this); 148 SCDesc = SchedModel.getSchedClassDesc(SchedClass); 149 } 150 return SCDesc; 151 } 152 153 /// Find the def index of this operand. This index maps to the machine model and 154 /// is independent of use operands. Def operands may be reordered with uses or 155 /// merged with uses without affecting the def index (e.g. before/after 156 /// regalloc). However, an instruction's def operands must never be reordered 157 /// with respect to each other. 158 static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) { 159 unsigned DefIdx = 0; 160 for (unsigned i = 0; i != DefOperIdx; ++i) { 161 const MachineOperand &MO = MI->getOperand(i); 162 if (MO.isReg() && MO.isDef()) 163 ++DefIdx; 164 } 165 return DefIdx; 166 } 167 168 /// Find the use index of this operand. This is independent of the instruction's 169 /// def operands. 170 /// 171 /// Note that uses are not determined by the operand's isUse property, which 172 /// is simply the inverse of isDef. Here we consider any readsReg operand to be 173 /// a "use". The machine model allows an operand to be both a Def and Use. 174 static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) { 175 unsigned UseIdx = 0; 176 for (unsigned i = 0; i != UseOperIdx; ++i) { 177 const MachineOperand &MO = MI->getOperand(i); 178 if (MO.isReg() && MO.readsReg() && !MO.isDef()) 179 ++UseIdx; 180 } 181 return UseIdx; 182 } 183 184 // Top-level API for clients that know the operand indices. 185 unsigned TargetSchedModel::computeOperandLatency( 186 const MachineInstr *DefMI, unsigned DefOperIdx, 187 const MachineInstr *UseMI, unsigned UseOperIdx) const { 188 189 if (!hasInstrSchedModel() && !hasInstrItineraries()) 190 return TII->defaultDefLatency(SchedModel, *DefMI); 191 192 if (hasInstrItineraries()) { 193 int OperLatency = 0; 194 if (UseMI) { 195 OperLatency = TII->getOperandLatency(&InstrItins, *DefMI, DefOperIdx, 196 *UseMI, UseOperIdx); 197 } 198 else { 199 unsigned DefClass = DefMI->getDesc().getSchedClass(); 200 OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx); 201 } 202 if (OperLatency >= 0) 203 return OperLatency; 204 205 // No operand latency was found. 206 unsigned InstrLatency = TII->getInstrLatency(&InstrItins, *DefMI); 207 208 // Expected latency is the max of the stage latency and itinerary props. 209 // Rather than directly querying InstrItins stage latency, we call a TII 210 // hook to allow subtargets to specialize latency. This hook is only 211 // applicable to the InstrItins model. InstrSchedModel should model all 212 // special cases without TII hooks. 213 InstrLatency = 214 std::max(InstrLatency, TII->defaultDefLatency(SchedModel, *DefMI)); 215 return InstrLatency; 216 } 217 // hasInstrSchedModel() 218 const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI); 219 unsigned DefIdx = findDefIdx(DefMI, DefOperIdx); 220 if (DefIdx < SCDesc->NumWriteLatencyEntries) { 221 // Lookup the definition's write latency in SubtargetInfo. 222 const MCWriteLatencyEntry *WLEntry = 223 STI->getWriteLatencyEntry(SCDesc, DefIdx); 224 unsigned WriteID = WLEntry->WriteResourceID; 225 unsigned Latency = capLatency(WLEntry->Cycles); 226 if (!UseMI) 227 return Latency; 228 229 // Lookup the use's latency adjustment in SubtargetInfo. 230 const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI); 231 if (UseDesc->NumReadAdvanceEntries == 0) 232 return Latency; 233 unsigned UseIdx = findUseIdx(UseMI, UseOperIdx); 234 int Advance = STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID); 235 if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap 236 return 0; 237 return Latency - Advance; 238 } 239 // If DefIdx does not exist in the model (e.g. implicit defs), then return 240 // unit latency (defaultDefLatency may be too conservative). 241 #ifndef NDEBUG 242 if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit() 243 && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef() 244 && SchedModel.isComplete()) { 245 errs() << "DefIdx " << DefIdx << " exceeds machine model writes for " 246 << *DefMI << " (Try with MCSchedModel.CompleteModel set to false)"; 247 llvm_unreachable("incomplete machine model"); 248 } 249 #endif 250 // FIXME: Automatically giving all implicit defs defaultDefLatency is 251 // undesirable. We should only do it for defs that are known to the MC 252 // desc like flags. Truly implicit defs should get 1 cycle latency. 253 return DefMI->isTransient() ? 0 : TII->defaultDefLatency(SchedModel, *DefMI); 254 } 255 256 unsigned 257 TargetSchedModel::computeInstrLatency(const MCSchedClassDesc &SCDesc) const { 258 return capLatency(MCSchedModel::computeInstrLatency(*STI, SCDesc)); 259 } 260 261 unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode) const { 262 assert(hasInstrSchedModel() && "Only call this function with a SchedModel"); 263 unsigned SCIdx = TII->get(Opcode).getSchedClass(); 264 return capLatency(SchedModel.computeInstrLatency(*STI, SCIdx)); 265 } 266 267 unsigned TargetSchedModel::computeInstrLatency(const MCInst &Inst) const { 268 if (hasInstrSchedModel()) 269 return capLatency(SchedModel.computeInstrLatency(*STI, *TII, Inst)); 270 return computeInstrLatency(Inst.getOpcode()); 271 } 272 273 unsigned 274 TargetSchedModel::computeInstrLatency(const MachineInstr *MI, 275 bool UseDefaultDefLatency) const { 276 // For the itinerary model, fall back to the old subtarget hook. 277 // Allow subtargets to compute Bundle latencies outside the machine model. 278 if (hasInstrItineraries() || MI->isBundle() || 279 (!hasInstrSchedModel() && !UseDefaultDefLatency)) 280 return TII->getInstrLatency(&InstrItins, *MI); 281 282 if (hasInstrSchedModel()) { 283 const MCSchedClassDesc *SCDesc = resolveSchedClass(MI); 284 if (SCDesc->isValid()) 285 return computeInstrLatency(*SCDesc); 286 } 287 return TII->defaultDefLatency(SchedModel, *MI); 288 } 289 290 unsigned TargetSchedModel:: 291 computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx, 292 const MachineInstr *DepMI) const { 293 if (!SchedModel.isOutOfOrder()) 294 return 1; 295 296 // Out-of-order processor can dispatch WAW dependencies in the same cycle. 297 298 // Treat predication as a data dependency for out-of-order cpus. In-order 299 // cpus do not need to treat predicated writes specially. 300 // 301 // TODO: The following hack exists because predication passes do not 302 // correctly append imp-use operands, and readsReg() strangely returns false 303 // for predicated defs. 304 unsigned Reg = DefMI->getOperand(DefOperIdx).getReg(); 305 const MachineFunction &MF = *DefMI->getMF(); 306 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 307 if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(*DepMI)) 308 return computeInstrLatency(DefMI); 309 310 // If we have a per operand scheduling model, check if this def is writing 311 // an unbuffered resource. If so, it treated like an in-order cpu. 312 if (hasInstrSchedModel()) { 313 const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI); 314 if (SCDesc->isValid()) { 315 for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc), 316 *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) { 317 if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->BufferSize) 318 return 1; 319 } 320 } 321 } 322 return 0; 323 } 324 325 double 326 TargetSchedModel::computeReciprocalThroughput(const MachineInstr *MI) const { 327 if (hasInstrItineraries()) { 328 unsigned SchedClass = MI->getDesc().getSchedClass(); 329 return MCSchedModel::getReciprocalThroughput(SchedClass, 330 *getInstrItineraries()); 331 } 332 333 if (hasInstrSchedModel()) 334 return MCSchedModel::getReciprocalThroughput(*STI, *resolveSchedClass(MI)); 335 336 return 0.0; 337 } 338 339 double 340 TargetSchedModel::computeReciprocalThroughput(unsigned Opcode) const { 341 unsigned SchedClass = TII->get(Opcode).getSchedClass(); 342 if (hasInstrItineraries()) 343 return MCSchedModel::getReciprocalThroughput(SchedClass, 344 *getInstrItineraries()); 345 if (hasInstrSchedModel()) { 346 const MCSchedClassDesc &SCDesc = *SchedModel.getSchedClassDesc(SchedClass); 347 if (SCDesc.isValid() && !SCDesc.isVariant()) 348 return MCSchedModel::getReciprocalThroughput(*STI, SCDesc); 349 } 350 351 return 0.0; 352 } 353 354 double 355 TargetSchedModel::computeReciprocalThroughput(const MCInst &MI) const { 356 if (hasInstrSchedModel()) 357 return SchedModel.getReciprocalThroughput(*STI, *TII, MI); 358 return computeReciprocalThroughput(MI.getOpcode()); 359 } 360 361