1 //===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLoweringBase class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/CodeGen/Analysis.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/StackMaps.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Mangler.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCContext.h"
31 #include "llvm/MC/MCExpr.h"
32 #include "llvm/Support/BranchProbability.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Target/TargetLowering.h"
37 #include "llvm/Target/TargetLoweringObjectFile.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include "llvm/Target/TargetRegisterInfo.h"
40 #include "llvm/Target/TargetSubtargetInfo.h"
41 #include <cctype>
42 using namespace llvm;
43 
44 static cl::opt<bool> JumpIsExpensiveOverride(
45     "jump-is-expensive", cl::init(false),
46     cl::desc("Do not create extra branches to split comparison logic."),
47     cl::Hidden);
48 
49 static cl::opt<unsigned> MinimumJumpTableEntries
50   ("min-jump-table-entries", cl::init(4), cl::Hidden,
51    cl::desc("Set minimum number of entries to use a jump table."));
52 
53 static cl::opt<unsigned> MaximumJumpTableSize
54   ("max-jump-table-size", cl::init(0), cl::Hidden,
55    cl::desc("Set maximum size of jump tables; zero for no limit."));
56 
57 /// Minimum jump table density for normal functions.
58 static cl::opt<unsigned>
59     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
60                      cl::desc("Minimum density for building a jump table in "
61                               "a normal function"));
62 
63 /// Minimum jump table density for -Os or -Oz functions.
64 static cl::opt<unsigned> OptsizeJumpTableDensity(
65     "optsize-jump-table-density", cl::init(40), cl::Hidden,
66     cl::desc("Minimum density for building a jump table in "
67              "an optsize function"));
68 
69 // Although this default value is arbitrary, it is not random. It is assumed
70 // that a condition that evaluates the same way by a higher percentage than this
71 // is best represented as control flow. Therefore, the default value N should be
72 // set such that the win from N% correct executions is greater than the loss
73 // from (100 - N)% mispredicted executions for the majority of intended targets.
74 static cl::opt<int> MinPercentageForPredictableBranch(
75     "min-predictable-branch", cl::init(99),
76     cl::desc("Minimum percentage (0-100) that a condition must be either true "
77              "or false to assume that the condition is predictable"),
78     cl::Hidden);
79 
80 /// InitLibcallNames - Set default libcall names.
81 ///
82 static void InitLibcallNames(const char **Names, const Triple &TT) {
83   Names[RTLIB::SHL_I16] = "__ashlhi3";
84   Names[RTLIB::SHL_I32] = "__ashlsi3";
85   Names[RTLIB::SHL_I64] = "__ashldi3";
86   Names[RTLIB::SHL_I128] = "__ashlti3";
87   Names[RTLIB::SRL_I16] = "__lshrhi3";
88   Names[RTLIB::SRL_I32] = "__lshrsi3";
89   Names[RTLIB::SRL_I64] = "__lshrdi3";
90   Names[RTLIB::SRL_I128] = "__lshrti3";
91   Names[RTLIB::SRA_I16] = "__ashrhi3";
92   Names[RTLIB::SRA_I32] = "__ashrsi3";
93   Names[RTLIB::SRA_I64] = "__ashrdi3";
94   Names[RTLIB::SRA_I128] = "__ashrti3";
95   Names[RTLIB::MUL_I8] = "__mulqi3";
96   Names[RTLIB::MUL_I16] = "__mulhi3";
97   Names[RTLIB::MUL_I32] = "__mulsi3";
98   Names[RTLIB::MUL_I64] = "__muldi3";
99   Names[RTLIB::MUL_I128] = "__multi3";
100   Names[RTLIB::MULO_I32] = "__mulosi4";
101   Names[RTLIB::MULO_I64] = "__mulodi4";
102   Names[RTLIB::MULO_I128] = "__muloti4";
103   Names[RTLIB::SDIV_I8] = "__divqi3";
104   Names[RTLIB::SDIV_I16] = "__divhi3";
105   Names[RTLIB::SDIV_I32] = "__divsi3";
106   Names[RTLIB::SDIV_I64] = "__divdi3";
107   Names[RTLIB::SDIV_I128] = "__divti3";
108   Names[RTLIB::UDIV_I8] = "__udivqi3";
109   Names[RTLIB::UDIV_I16] = "__udivhi3";
110   Names[RTLIB::UDIV_I32] = "__udivsi3";
111   Names[RTLIB::UDIV_I64] = "__udivdi3";
112   Names[RTLIB::UDIV_I128] = "__udivti3";
113   Names[RTLIB::SREM_I8] = "__modqi3";
114   Names[RTLIB::SREM_I16] = "__modhi3";
115   Names[RTLIB::SREM_I32] = "__modsi3";
116   Names[RTLIB::SREM_I64] = "__moddi3";
117   Names[RTLIB::SREM_I128] = "__modti3";
118   Names[RTLIB::UREM_I8] = "__umodqi3";
119   Names[RTLIB::UREM_I16] = "__umodhi3";
120   Names[RTLIB::UREM_I32] = "__umodsi3";
121   Names[RTLIB::UREM_I64] = "__umoddi3";
122   Names[RTLIB::UREM_I128] = "__umodti3";
123 
124   Names[RTLIB::NEG_I32] = "__negsi2";
125   Names[RTLIB::NEG_I64] = "__negdi2";
126   Names[RTLIB::ADD_F32] = "__addsf3";
127   Names[RTLIB::ADD_F64] = "__adddf3";
128   Names[RTLIB::ADD_F80] = "__addxf3";
129   Names[RTLIB::ADD_F128] = "__addtf3";
130   Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
131   Names[RTLIB::SUB_F32] = "__subsf3";
132   Names[RTLIB::SUB_F64] = "__subdf3";
133   Names[RTLIB::SUB_F80] = "__subxf3";
134   Names[RTLIB::SUB_F128] = "__subtf3";
135   Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
136   Names[RTLIB::MUL_F32] = "__mulsf3";
137   Names[RTLIB::MUL_F64] = "__muldf3";
138   Names[RTLIB::MUL_F80] = "__mulxf3";
139   Names[RTLIB::MUL_F128] = "__multf3";
140   Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
141   Names[RTLIB::DIV_F32] = "__divsf3";
142   Names[RTLIB::DIV_F64] = "__divdf3";
143   Names[RTLIB::DIV_F80] = "__divxf3";
144   Names[RTLIB::DIV_F128] = "__divtf3";
145   Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
146   Names[RTLIB::REM_F32] = "fmodf";
147   Names[RTLIB::REM_F64] = "fmod";
148   Names[RTLIB::REM_F80] = "fmodl";
149   Names[RTLIB::REM_F128] = "fmodl";
150   Names[RTLIB::REM_PPCF128] = "fmodl";
151   Names[RTLIB::FMA_F32] = "fmaf";
152   Names[RTLIB::FMA_F64] = "fma";
153   Names[RTLIB::FMA_F80] = "fmal";
154   Names[RTLIB::FMA_F128] = "fmal";
155   Names[RTLIB::FMA_PPCF128] = "fmal";
156   Names[RTLIB::POWI_F32] = "__powisf2";
157   Names[RTLIB::POWI_F64] = "__powidf2";
158   Names[RTLIB::POWI_F80] = "__powixf2";
159   Names[RTLIB::POWI_F128] = "__powitf2";
160   Names[RTLIB::POWI_PPCF128] = "__powitf2";
161   Names[RTLIB::SQRT_F32] = "sqrtf";
162   Names[RTLIB::SQRT_F64] = "sqrt";
163   Names[RTLIB::SQRT_F80] = "sqrtl";
164   Names[RTLIB::SQRT_F128] = "sqrtl";
165   Names[RTLIB::SQRT_PPCF128] = "sqrtl";
166   Names[RTLIB::LOG_F32] = "logf";
167   Names[RTLIB::LOG_F64] = "log";
168   Names[RTLIB::LOG_F80] = "logl";
169   Names[RTLIB::LOG_F128] = "logl";
170   Names[RTLIB::LOG_PPCF128] = "logl";
171   Names[RTLIB::LOG2_F32] = "log2f";
172   Names[RTLIB::LOG2_F64] = "log2";
173   Names[RTLIB::LOG2_F80] = "log2l";
174   Names[RTLIB::LOG2_F128] = "log2l";
175   Names[RTLIB::LOG2_PPCF128] = "log2l";
176   Names[RTLIB::LOG10_F32] = "log10f";
177   Names[RTLIB::LOG10_F64] = "log10";
178   Names[RTLIB::LOG10_F80] = "log10l";
179   Names[RTLIB::LOG10_F128] = "log10l";
180   Names[RTLIB::LOG10_PPCF128] = "log10l";
181   Names[RTLIB::EXP_F32] = "expf";
182   Names[RTLIB::EXP_F64] = "exp";
183   Names[RTLIB::EXP_F80] = "expl";
184   Names[RTLIB::EXP_F128] = "expl";
185   Names[RTLIB::EXP_PPCF128] = "expl";
186   Names[RTLIB::EXP2_F32] = "exp2f";
187   Names[RTLIB::EXP2_F64] = "exp2";
188   Names[RTLIB::EXP2_F80] = "exp2l";
189   Names[RTLIB::EXP2_F128] = "exp2l";
190   Names[RTLIB::EXP2_PPCF128] = "exp2l";
191   Names[RTLIB::SIN_F32] = "sinf";
192   Names[RTLIB::SIN_F64] = "sin";
193   Names[RTLIB::SIN_F80] = "sinl";
194   Names[RTLIB::SIN_F128] = "sinl";
195   Names[RTLIB::SIN_PPCF128] = "sinl";
196   Names[RTLIB::COS_F32] = "cosf";
197   Names[RTLIB::COS_F64] = "cos";
198   Names[RTLIB::COS_F80] = "cosl";
199   Names[RTLIB::COS_F128] = "cosl";
200   Names[RTLIB::COS_PPCF128] = "cosl";
201   Names[RTLIB::POW_F32] = "powf";
202   Names[RTLIB::POW_F64] = "pow";
203   Names[RTLIB::POW_F80] = "powl";
204   Names[RTLIB::POW_F128] = "powl";
205   Names[RTLIB::POW_PPCF128] = "powl";
206   Names[RTLIB::CEIL_F32] = "ceilf";
207   Names[RTLIB::CEIL_F64] = "ceil";
208   Names[RTLIB::CEIL_F80] = "ceill";
209   Names[RTLIB::CEIL_F128] = "ceill";
210   Names[RTLIB::CEIL_PPCF128] = "ceill";
211   Names[RTLIB::TRUNC_F32] = "truncf";
212   Names[RTLIB::TRUNC_F64] = "trunc";
213   Names[RTLIB::TRUNC_F80] = "truncl";
214   Names[RTLIB::TRUNC_F128] = "truncl";
215   Names[RTLIB::TRUNC_PPCF128] = "truncl";
216   Names[RTLIB::RINT_F32] = "rintf";
217   Names[RTLIB::RINT_F64] = "rint";
218   Names[RTLIB::RINT_F80] = "rintl";
219   Names[RTLIB::RINT_F128] = "rintl";
220   Names[RTLIB::RINT_PPCF128] = "rintl";
221   Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
222   Names[RTLIB::NEARBYINT_F64] = "nearbyint";
223   Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
224   Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
225   Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
226   Names[RTLIB::ROUND_F32] = "roundf";
227   Names[RTLIB::ROUND_F64] = "round";
228   Names[RTLIB::ROUND_F80] = "roundl";
229   Names[RTLIB::ROUND_F128] = "roundl";
230   Names[RTLIB::ROUND_PPCF128] = "roundl";
231   Names[RTLIB::FLOOR_F32] = "floorf";
232   Names[RTLIB::FLOOR_F64] = "floor";
233   Names[RTLIB::FLOOR_F80] = "floorl";
234   Names[RTLIB::FLOOR_F128] = "floorl";
235   Names[RTLIB::FLOOR_PPCF128] = "floorl";
236   Names[RTLIB::FMIN_F32] = "fminf";
237   Names[RTLIB::FMIN_F64] = "fmin";
238   Names[RTLIB::FMIN_F80] = "fminl";
239   Names[RTLIB::FMIN_F128] = "fminl";
240   Names[RTLIB::FMIN_PPCF128] = "fminl";
241   Names[RTLIB::FMAX_F32] = "fmaxf";
242   Names[RTLIB::FMAX_F64] = "fmax";
243   Names[RTLIB::FMAX_F80] = "fmaxl";
244   Names[RTLIB::FMAX_F128] = "fmaxl";
245   Names[RTLIB::FMAX_PPCF128] = "fmaxl";
246   Names[RTLIB::ROUND_F32] = "roundf";
247   Names[RTLIB::ROUND_F64] = "round";
248   Names[RTLIB::ROUND_F80] = "roundl";
249   Names[RTLIB::ROUND_F128] = "roundl";
250   Names[RTLIB::ROUND_PPCF128] = "roundl";
251   Names[RTLIB::COPYSIGN_F32] = "copysignf";
252   Names[RTLIB::COPYSIGN_F64] = "copysign";
253   Names[RTLIB::COPYSIGN_F80] = "copysignl";
254   Names[RTLIB::COPYSIGN_F128] = "copysignl";
255   Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
256   Names[RTLIB::FPEXT_F32_PPCF128] = "__gcc_stoq";
257   Names[RTLIB::FPEXT_F64_PPCF128] = "__gcc_dtoq";
258   Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
259   Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
260   Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
261   if (TT.isOSDarwin()) {
262     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
263     // of the gnueabi-style __gnu_*_ieee.
264     // FIXME: What about other targets?
265     Names[RTLIB::FPEXT_F16_F32] = "__extendhfsf2";
266     Names[RTLIB::FPROUND_F32_F16] = "__truncsfhf2";
267   } else {
268     Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
269     Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
270   }
271   Names[RTLIB::FPROUND_F64_F16] = "__truncdfhf2";
272   Names[RTLIB::FPROUND_F80_F16] = "__truncxfhf2";
273   Names[RTLIB::FPROUND_F128_F16] = "__trunctfhf2";
274   Names[RTLIB::FPROUND_PPCF128_F16] = "__trunctfhf2";
275   Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
276   Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
277   Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
278   Names[RTLIB::FPROUND_PPCF128_F32] = "__gcc_qtos";
279   Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
280   Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
281   Names[RTLIB::FPROUND_PPCF128_F64] = "__gcc_qtod";
282   Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
283   Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
284   Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
285   Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
286   Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
287   Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
288   Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
289   Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
290   Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
291   Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
292   Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
293   Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
294   Names[RTLIB::FPTOSINT_PPCF128_I32] = "__gcc_qtou";
295   Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
296   Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
297   Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
298   Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
299   Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
300   Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
301   Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
302   Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
303   Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
304   Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
305   Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
306   Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
307   Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
308   Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
309   Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
310   Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
311   Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
312   Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
313   Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
314   Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
315   Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
316   Names[RTLIB::SINTTOFP_I32_PPCF128] = "__gcc_itoq";
317   Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
318   Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
319   Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
320   Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
321   Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
322   Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
323   Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
324   Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
325   Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
326   Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
327   Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
328   Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
329   Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
330   Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
331   Names[RTLIB::UINTTOFP_I32_PPCF128] = "__gcc_utoq";
332   Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
333   Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
334   Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
335   Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
336   Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
337   Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
338   Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
339   Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
340   Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
341   Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
342   Names[RTLIB::OEQ_F32] = "__eqsf2";
343   Names[RTLIB::OEQ_F64] = "__eqdf2";
344   Names[RTLIB::OEQ_F128] = "__eqtf2";
345   Names[RTLIB::OEQ_PPCF128] = "__gcc_qeq";
346   Names[RTLIB::UNE_F32] = "__nesf2";
347   Names[RTLIB::UNE_F64] = "__nedf2";
348   Names[RTLIB::UNE_F128] = "__netf2";
349   Names[RTLIB::UNE_PPCF128] = "__gcc_qne";
350   Names[RTLIB::OGE_F32] = "__gesf2";
351   Names[RTLIB::OGE_F64] = "__gedf2";
352   Names[RTLIB::OGE_F128] = "__getf2";
353   Names[RTLIB::OGE_PPCF128] = "__gcc_qge";
354   Names[RTLIB::OLT_F32] = "__ltsf2";
355   Names[RTLIB::OLT_F64] = "__ltdf2";
356   Names[RTLIB::OLT_F128] = "__lttf2";
357   Names[RTLIB::OLT_PPCF128] = "__gcc_qlt";
358   Names[RTLIB::OLE_F32] = "__lesf2";
359   Names[RTLIB::OLE_F64] = "__ledf2";
360   Names[RTLIB::OLE_F128] = "__letf2";
361   Names[RTLIB::OLE_PPCF128] = "__gcc_qle";
362   Names[RTLIB::OGT_F32] = "__gtsf2";
363   Names[RTLIB::OGT_F64] = "__gtdf2";
364   Names[RTLIB::OGT_F128] = "__gttf2";
365   Names[RTLIB::OGT_PPCF128] = "__gcc_qgt";
366   Names[RTLIB::UO_F32] = "__unordsf2";
367   Names[RTLIB::UO_F64] = "__unorddf2";
368   Names[RTLIB::UO_F128] = "__unordtf2";
369   Names[RTLIB::UO_PPCF128] = "__gcc_qunord";
370   Names[RTLIB::O_F32] = "__unordsf2";
371   Names[RTLIB::O_F64] = "__unorddf2";
372   Names[RTLIB::O_F128] = "__unordtf2";
373   Names[RTLIB::O_PPCF128] = "__gcc_qunord";
374   Names[RTLIB::MEMCPY] = "memcpy";
375   Names[RTLIB::MEMMOVE] = "memmove";
376   Names[RTLIB::MEMSET] = "memset";
377   Names[RTLIB::MEMCPY_ELEMENT_UNORDERED_ATOMIC_1] =
378       "__llvm_memcpy_element_unordered_atomic_1";
379   Names[RTLIB::MEMCPY_ELEMENT_UNORDERED_ATOMIC_2] =
380       "__llvm_memcpy_element_unordered_atomic_2";
381   Names[RTLIB::MEMCPY_ELEMENT_UNORDERED_ATOMIC_4] =
382       "__llvm_memcpy_element_unordered_atomic_4";
383   Names[RTLIB::MEMCPY_ELEMENT_UNORDERED_ATOMIC_8] =
384       "__llvm_memcpy_element_unordered_atomic_8";
385   Names[RTLIB::MEMCPY_ELEMENT_UNORDERED_ATOMIC_16] =
386       "__llvm_memcpy_element_unordered_atomic_16";
387   Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
388   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
389   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
390   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
391   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
392   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16";
393   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
394   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
395   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
396   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
397   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16";
398   Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
399   Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
400   Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
401   Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
402   Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16";
403   Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
404   Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
405   Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
406   Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
407   Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16";
408   Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
409   Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
410   Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
411   Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
412   Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16";
413   Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
414   Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
415   Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
416   Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
417   Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16";
418   Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
419   Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
420   Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
421   Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
422   Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16";
423   Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
424   Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
425   Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
426   Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
427   Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16";
428   Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1";
429   Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2";
430   Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4";
431   Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8";
432   Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16";
433   Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1";
434   Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2";
435   Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4";
436   Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8";
437   Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16";
438   Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1";
439   Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2";
440   Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4";
441   Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8";
442   Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16";
443   Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1";
444   Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2";
445   Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4";
446   Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8";
447   Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16";
448 
449   Names[RTLIB::ATOMIC_LOAD] = "__atomic_load";
450   Names[RTLIB::ATOMIC_LOAD_1] = "__atomic_load_1";
451   Names[RTLIB::ATOMIC_LOAD_2] = "__atomic_load_2";
452   Names[RTLIB::ATOMIC_LOAD_4] = "__atomic_load_4";
453   Names[RTLIB::ATOMIC_LOAD_8] = "__atomic_load_8";
454   Names[RTLIB::ATOMIC_LOAD_16] = "__atomic_load_16";
455 
456   Names[RTLIB::ATOMIC_STORE] = "__atomic_store";
457   Names[RTLIB::ATOMIC_STORE_1] = "__atomic_store_1";
458   Names[RTLIB::ATOMIC_STORE_2] = "__atomic_store_2";
459   Names[RTLIB::ATOMIC_STORE_4] = "__atomic_store_4";
460   Names[RTLIB::ATOMIC_STORE_8] = "__atomic_store_8";
461   Names[RTLIB::ATOMIC_STORE_16] = "__atomic_store_16";
462 
463   Names[RTLIB::ATOMIC_EXCHANGE] = "__atomic_exchange";
464   Names[RTLIB::ATOMIC_EXCHANGE_1] = "__atomic_exchange_1";
465   Names[RTLIB::ATOMIC_EXCHANGE_2] = "__atomic_exchange_2";
466   Names[RTLIB::ATOMIC_EXCHANGE_4] = "__atomic_exchange_4";
467   Names[RTLIB::ATOMIC_EXCHANGE_8] = "__atomic_exchange_8";
468   Names[RTLIB::ATOMIC_EXCHANGE_16] = "__atomic_exchange_16";
469 
470   Names[RTLIB::ATOMIC_COMPARE_EXCHANGE] = "__atomic_compare_exchange";
471   Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_1] = "__atomic_compare_exchange_1";
472   Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_2] = "__atomic_compare_exchange_2";
473   Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_4] = "__atomic_compare_exchange_4";
474   Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_8] = "__atomic_compare_exchange_8";
475   Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_16] = "__atomic_compare_exchange_16";
476 
477   Names[RTLIB::ATOMIC_FETCH_ADD_1] = "__atomic_fetch_add_1";
478   Names[RTLIB::ATOMIC_FETCH_ADD_2] = "__atomic_fetch_add_2";
479   Names[RTLIB::ATOMIC_FETCH_ADD_4] = "__atomic_fetch_add_4";
480   Names[RTLIB::ATOMIC_FETCH_ADD_8] = "__atomic_fetch_add_8";
481   Names[RTLIB::ATOMIC_FETCH_ADD_16] = "__atomic_fetch_add_16";
482   Names[RTLIB::ATOMIC_FETCH_SUB_1] = "__atomic_fetch_sub_1";
483   Names[RTLIB::ATOMIC_FETCH_SUB_2] = "__atomic_fetch_sub_2";
484   Names[RTLIB::ATOMIC_FETCH_SUB_4] = "__atomic_fetch_sub_4";
485   Names[RTLIB::ATOMIC_FETCH_SUB_8] = "__atomic_fetch_sub_8";
486   Names[RTLIB::ATOMIC_FETCH_SUB_16] = "__atomic_fetch_sub_16";
487   Names[RTLIB::ATOMIC_FETCH_AND_1] = "__atomic_fetch_and_1";
488   Names[RTLIB::ATOMIC_FETCH_AND_2] = "__atomic_fetch_and_2";
489   Names[RTLIB::ATOMIC_FETCH_AND_4] = "__atomic_fetch_and_4";
490   Names[RTLIB::ATOMIC_FETCH_AND_8] = "__atomic_fetch_and_8";
491   Names[RTLIB::ATOMIC_FETCH_AND_16] = "__atomic_fetch_and_16";
492   Names[RTLIB::ATOMIC_FETCH_OR_1] = "__atomic_fetch_or_1";
493   Names[RTLIB::ATOMIC_FETCH_OR_2] = "__atomic_fetch_or_2";
494   Names[RTLIB::ATOMIC_FETCH_OR_4] = "__atomic_fetch_or_4";
495   Names[RTLIB::ATOMIC_FETCH_OR_8] = "__atomic_fetch_or_8";
496   Names[RTLIB::ATOMIC_FETCH_OR_16] = "__atomic_fetch_or_16";
497   Names[RTLIB::ATOMIC_FETCH_XOR_1] = "__atomic_fetch_xor_1";
498   Names[RTLIB::ATOMIC_FETCH_XOR_2] = "__atomic_fetch_xor_2";
499   Names[RTLIB::ATOMIC_FETCH_XOR_4] = "__atomic_fetch_xor_4";
500   Names[RTLIB::ATOMIC_FETCH_XOR_8] = "__atomic_fetch_xor_8";
501   Names[RTLIB::ATOMIC_FETCH_XOR_16] = "__atomic_fetch_xor_16";
502   Names[RTLIB::ATOMIC_FETCH_NAND_1] = "__atomic_fetch_nand_1";
503   Names[RTLIB::ATOMIC_FETCH_NAND_2] = "__atomic_fetch_nand_2";
504   Names[RTLIB::ATOMIC_FETCH_NAND_4] = "__atomic_fetch_nand_4";
505   Names[RTLIB::ATOMIC_FETCH_NAND_8] = "__atomic_fetch_nand_8";
506   Names[RTLIB::ATOMIC_FETCH_NAND_16] = "__atomic_fetch_nand_16";
507 
508   if (TT.isGNUEnvironment()) {
509     Names[RTLIB::SINCOS_F32] = "sincosf";
510     Names[RTLIB::SINCOS_F64] = "sincos";
511     Names[RTLIB::SINCOS_F80] = "sincosl";
512     Names[RTLIB::SINCOS_F128] = "sincosl";
513     Names[RTLIB::SINCOS_PPCF128] = "sincosl";
514   }
515 
516   if (!TT.isOSOpenBSD()) {
517     Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail";
518   }
519 
520   Names[RTLIB::DEOPTIMIZE] = "__llvm_deoptimize";
521 }
522 
523 /// Set default libcall CallingConvs.
524 static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
525   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
526     CCs[LC] = CallingConv::C;
527 }
528 
529 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
530 /// UNKNOWN_LIBCALL if there is none.
531 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
532   if (OpVT == MVT::f16) {
533     if (RetVT == MVT::f32)
534       return FPEXT_F16_F32;
535   } else if (OpVT == MVT::f32) {
536     if (RetVT == MVT::f64)
537       return FPEXT_F32_F64;
538     if (RetVT == MVT::f128)
539       return FPEXT_F32_F128;
540     if (RetVT == MVT::ppcf128)
541       return FPEXT_F32_PPCF128;
542   } else if (OpVT == MVT::f64) {
543     if (RetVT == MVT::f128)
544       return FPEXT_F64_F128;
545     else if (RetVT == MVT::ppcf128)
546       return FPEXT_F64_PPCF128;
547   }
548 
549   return UNKNOWN_LIBCALL;
550 }
551 
552 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
553 /// UNKNOWN_LIBCALL if there is none.
554 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
555   if (RetVT == MVT::f16) {
556     if (OpVT == MVT::f32)
557       return FPROUND_F32_F16;
558     if (OpVT == MVT::f64)
559       return FPROUND_F64_F16;
560     if (OpVT == MVT::f80)
561       return FPROUND_F80_F16;
562     if (OpVT == MVT::f128)
563       return FPROUND_F128_F16;
564     if (OpVT == MVT::ppcf128)
565       return FPROUND_PPCF128_F16;
566   } else if (RetVT == MVT::f32) {
567     if (OpVT == MVT::f64)
568       return FPROUND_F64_F32;
569     if (OpVT == MVT::f80)
570       return FPROUND_F80_F32;
571     if (OpVT == MVT::f128)
572       return FPROUND_F128_F32;
573     if (OpVT == MVT::ppcf128)
574       return FPROUND_PPCF128_F32;
575   } else if (RetVT == MVT::f64) {
576     if (OpVT == MVT::f80)
577       return FPROUND_F80_F64;
578     if (OpVT == MVT::f128)
579       return FPROUND_F128_F64;
580     if (OpVT == MVT::ppcf128)
581       return FPROUND_PPCF128_F64;
582   }
583 
584   return UNKNOWN_LIBCALL;
585 }
586 
587 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
588 /// UNKNOWN_LIBCALL if there is none.
589 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
590   if (OpVT == MVT::f32) {
591     if (RetVT == MVT::i32)
592       return FPTOSINT_F32_I32;
593     if (RetVT == MVT::i64)
594       return FPTOSINT_F32_I64;
595     if (RetVT == MVT::i128)
596       return FPTOSINT_F32_I128;
597   } else if (OpVT == MVT::f64) {
598     if (RetVT == MVT::i32)
599       return FPTOSINT_F64_I32;
600     if (RetVT == MVT::i64)
601       return FPTOSINT_F64_I64;
602     if (RetVT == MVT::i128)
603       return FPTOSINT_F64_I128;
604   } else if (OpVT == MVT::f80) {
605     if (RetVT == MVT::i32)
606       return FPTOSINT_F80_I32;
607     if (RetVT == MVT::i64)
608       return FPTOSINT_F80_I64;
609     if (RetVT == MVT::i128)
610       return FPTOSINT_F80_I128;
611   } else if (OpVT == MVT::f128) {
612     if (RetVT == MVT::i32)
613       return FPTOSINT_F128_I32;
614     if (RetVT == MVT::i64)
615       return FPTOSINT_F128_I64;
616     if (RetVT == MVT::i128)
617       return FPTOSINT_F128_I128;
618   } else if (OpVT == MVT::ppcf128) {
619     if (RetVT == MVT::i32)
620       return FPTOSINT_PPCF128_I32;
621     if (RetVT == MVT::i64)
622       return FPTOSINT_PPCF128_I64;
623     if (RetVT == MVT::i128)
624       return FPTOSINT_PPCF128_I128;
625   }
626   return UNKNOWN_LIBCALL;
627 }
628 
629 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
630 /// UNKNOWN_LIBCALL if there is none.
631 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
632   if (OpVT == MVT::f32) {
633     if (RetVT == MVT::i32)
634       return FPTOUINT_F32_I32;
635     if (RetVT == MVT::i64)
636       return FPTOUINT_F32_I64;
637     if (RetVT == MVT::i128)
638       return FPTOUINT_F32_I128;
639   } else if (OpVT == MVT::f64) {
640     if (RetVT == MVT::i32)
641       return FPTOUINT_F64_I32;
642     if (RetVT == MVT::i64)
643       return FPTOUINT_F64_I64;
644     if (RetVT == MVT::i128)
645       return FPTOUINT_F64_I128;
646   } else if (OpVT == MVT::f80) {
647     if (RetVT == MVT::i32)
648       return FPTOUINT_F80_I32;
649     if (RetVT == MVT::i64)
650       return FPTOUINT_F80_I64;
651     if (RetVT == MVT::i128)
652       return FPTOUINT_F80_I128;
653   } else if (OpVT == MVT::f128) {
654     if (RetVT == MVT::i32)
655       return FPTOUINT_F128_I32;
656     if (RetVT == MVT::i64)
657       return FPTOUINT_F128_I64;
658     if (RetVT == MVT::i128)
659       return FPTOUINT_F128_I128;
660   } else if (OpVT == MVT::ppcf128) {
661     if (RetVT == MVT::i32)
662       return FPTOUINT_PPCF128_I32;
663     if (RetVT == MVT::i64)
664       return FPTOUINT_PPCF128_I64;
665     if (RetVT == MVT::i128)
666       return FPTOUINT_PPCF128_I128;
667   }
668   return UNKNOWN_LIBCALL;
669 }
670 
671 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
672 /// UNKNOWN_LIBCALL if there is none.
673 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
674   if (OpVT == MVT::i32) {
675     if (RetVT == MVT::f32)
676       return SINTTOFP_I32_F32;
677     if (RetVT == MVT::f64)
678       return SINTTOFP_I32_F64;
679     if (RetVT == MVT::f80)
680       return SINTTOFP_I32_F80;
681     if (RetVT == MVT::f128)
682       return SINTTOFP_I32_F128;
683     if (RetVT == MVT::ppcf128)
684       return SINTTOFP_I32_PPCF128;
685   } else if (OpVT == MVT::i64) {
686     if (RetVT == MVT::f32)
687       return SINTTOFP_I64_F32;
688     if (RetVT == MVT::f64)
689       return SINTTOFP_I64_F64;
690     if (RetVT == MVT::f80)
691       return SINTTOFP_I64_F80;
692     if (RetVT == MVT::f128)
693       return SINTTOFP_I64_F128;
694     if (RetVT == MVT::ppcf128)
695       return SINTTOFP_I64_PPCF128;
696   } else if (OpVT == MVT::i128) {
697     if (RetVT == MVT::f32)
698       return SINTTOFP_I128_F32;
699     if (RetVT == MVT::f64)
700       return SINTTOFP_I128_F64;
701     if (RetVT == MVT::f80)
702       return SINTTOFP_I128_F80;
703     if (RetVT == MVT::f128)
704       return SINTTOFP_I128_F128;
705     if (RetVT == MVT::ppcf128)
706       return SINTTOFP_I128_PPCF128;
707   }
708   return UNKNOWN_LIBCALL;
709 }
710 
711 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
712 /// UNKNOWN_LIBCALL if there is none.
713 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
714   if (OpVT == MVT::i32) {
715     if (RetVT == MVT::f32)
716       return UINTTOFP_I32_F32;
717     if (RetVT == MVT::f64)
718       return UINTTOFP_I32_F64;
719     if (RetVT == MVT::f80)
720       return UINTTOFP_I32_F80;
721     if (RetVT == MVT::f128)
722       return UINTTOFP_I32_F128;
723     if (RetVT == MVT::ppcf128)
724       return UINTTOFP_I32_PPCF128;
725   } else if (OpVT == MVT::i64) {
726     if (RetVT == MVT::f32)
727       return UINTTOFP_I64_F32;
728     if (RetVT == MVT::f64)
729       return UINTTOFP_I64_F64;
730     if (RetVT == MVT::f80)
731       return UINTTOFP_I64_F80;
732     if (RetVT == MVT::f128)
733       return UINTTOFP_I64_F128;
734     if (RetVT == MVT::ppcf128)
735       return UINTTOFP_I64_PPCF128;
736   } else if (OpVT == MVT::i128) {
737     if (RetVT == MVT::f32)
738       return UINTTOFP_I128_F32;
739     if (RetVT == MVT::f64)
740       return UINTTOFP_I128_F64;
741     if (RetVT == MVT::f80)
742       return UINTTOFP_I128_F80;
743     if (RetVT == MVT::f128)
744       return UINTTOFP_I128_F128;
745     if (RetVT == MVT::ppcf128)
746       return UINTTOFP_I128_PPCF128;
747   }
748   return UNKNOWN_LIBCALL;
749 }
750 
751 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
752 #define OP_TO_LIBCALL(Name, Enum)                                              \
753   case Name:                                                                   \
754     switch (VT.SimpleTy) {                                                     \
755     default:                                                                   \
756       return UNKNOWN_LIBCALL;                                                  \
757     case MVT::i8:                                                              \
758       return Enum##_1;                                                         \
759     case MVT::i16:                                                             \
760       return Enum##_2;                                                         \
761     case MVT::i32:                                                             \
762       return Enum##_4;                                                         \
763     case MVT::i64:                                                             \
764       return Enum##_8;                                                         \
765     case MVT::i128:                                                            \
766       return Enum##_16;                                                        \
767     }
768 
769   switch (Opc) {
770     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
771     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
772     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
773     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
774     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
775     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
776     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
777     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
778     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
779     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
780     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
781     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
782   }
783 
784 #undef OP_TO_LIBCALL
785 
786   return UNKNOWN_LIBCALL;
787 }
788 
789 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
790   switch (ElementSize) {
791   case 1:
792     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
793   case 2:
794     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
795   case 4:
796     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
797   case 8:
798     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
799   case 16:
800     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
801   default:
802     return UNKNOWN_LIBCALL;
803   }
804 }
805 
806 /// InitCmpLibcallCCs - Set default comparison libcall CC.
807 ///
808 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
809   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
810   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
811   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
812   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
813   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
814   CCs[RTLIB::UNE_F32] = ISD::SETNE;
815   CCs[RTLIB::UNE_F64] = ISD::SETNE;
816   CCs[RTLIB::UNE_F128] = ISD::SETNE;
817   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
818   CCs[RTLIB::OGE_F32] = ISD::SETGE;
819   CCs[RTLIB::OGE_F64] = ISD::SETGE;
820   CCs[RTLIB::OGE_F128] = ISD::SETGE;
821   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
822   CCs[RTLIB::OLT_F32] = ISD::SETLT;
823   CCs[RTLIB::OLT_F64] = ISD::SETLT;
824   CCs[RTLIB::OLT_F128] = ISD::SETLT;
825   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
826   CCs[RTLIB::OLE_F32] = ISD::SETLE;
827   CCs[RTLIB::OLE_F64] = ISD::SETLE;
828   CCs[RTLIB::OLE_F128] = ISD::SETLE;
829   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
830   CCs[RTLIB::OGT_F32] = ISD::SETGT;
831   CCs[RTLIB::OGT_F64] = ISD::SETGT;
832   CCs[RTLIB::OGT_F128] = ISD::SETGT;
833   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
834   CCs[RTLIB::UO_F32] = ISD::SETNE;
835   CCs[RTLIB::UO_F64] = ISD::SETNE;
836   CCs[RTLIB::UO_F128] = ISD::SETNE;
837   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
838   CCs[RTLIB::O_F32] = ISD::SETEQ;
839   CCs[RTLIB::O_F64] = ISD::SETEQ;
840   CCs[RTLIB::O_F128] = ISD::SETEQ;
841   CCs[RTLIB::O_PPCF128] = ISD::SETEQ;
842 }
843 
844 /// NOTE: The TargetMachine owns TLOF.
845 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
846   initActions();
847 
848   // Perform these initializations only once.
849   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
850       MaxLoadsPerMemcmp = 8;
851   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
852       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
853   UseUnderscoreSetJmp = false;
854   UseUnderscoreLongJmp = false;
855   HasMultipleConditionRegisters = false;
856   HasExtractBitsInsn = false;
857   JumpIsExpensive = JumpIsExpensiveOverride;
858   PredictableSelectIsExpensive = false;
859   EnableExtLdPromotion = false;
860   HasFloatingPointExceptions = true;
861   StackPointerRegisterToSaveRestore = 0;
862   BooleanContents = UndefinedBooleanContent;
863   BooleanFloatContents = UndefinedBooleanContent;
864   BooleanVectorContents = UndefinedBooleanContent;
865   SchedPreferenceInfo = Sched::ILP;
866   JumpBufSize = 0;
867   JumpBufAlignment = 0;
868   MinFunctionAlignment = 0;
869   PrefFunctionAlignment = 0;
870   PrefLoopAlignment = 0;
871   GatherAllAliasesMaxDepth = 18;
872   MinStackArgumentAlignment = 1;
873   // TODO: the default will be switched to 0 in the next commit, along
874   // with the Target-specific changes necessary.
875   MaxAtomicSizeInBitsSupported = 1024;
876 
877   MinCmpXchgSizeInBits = 0;
878 
879   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
880 
881   InitLibcallNames(LibcallRoutineNames, TM.getTargetTriple());
882   InitCmpLibcallCCs(CmpLibcallCCs);
883   InitLibcallCallingConvs(LibcallCallingConvs);
884 }
885 
886 void TargetLoweringBase::initActions() {
887   // All operations default to being supported.
888   memset(OpActions, 0, sizeof(OpActions));
889   memset(LoadExtActions, 0, sizeof(LoadExtActions));
890   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
891   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
892   memset(CondCodeActions, 0, sizeof(CondCodeActions));
893   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
894   std::fill(std::begin(TargetDAGCombineArray),
895             std::end(TargetDAGCombineArray), 0);
896 
897   // Set default actions for various operations.
898   for (MVT VT : MVT::all_valuetypes()) {
899     // Default all indexed load / store to expand.
900     for (unsigned IM = (unsigned)ISD::PRE_INC;
901          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
902       setIndexedLoadAction(IM, VT, Expand);
903       setIndexedStoreAction(IM, VT, Expand);
904     }
905 
906     // Most backends expect to see the node which just returns the value loaded.
907     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
908 
909     // These operations default to expand.
910     setOperationAction(ISD::FGETSIGN, VT, Expand);
911     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
912     setOperationAction(ISD::FMINNUM, VT, Expand);
913     setOperationAction(ISD::FMAXNUM, VT, Expand);
914     setOperationAction(ISD::FMINNAN, VT, Expand);
915     setOperationAction(ISD::FMAXNAN, VT, Expand);
916     setOperationAction(ISD::FMAD, VT, Expand);
917     setOperationAction(ISD::SMIN, VT, Expand);
918     setOperationAction(ISD::SMAX, VT, Expand);
919     setOperationAction(ISD::UMIN, VT, Expand);
920     setOperationAction(ISD::UMAX, VT, Expand);
921     setOperationAction(ISD::ABS, VT, Expand);
922 
923     // Overflow operations default to expand
924     setOperationAction(ISD::SADDO, VT, Expand);
925     setOperationAction(ISD::SSUBO, VT, Expand);
926     setOperationAction(ISD::UADDO, VT, Expand);
927     setOperationAction(ISD::USUBO, VT, Expand);
928     setOperationAction(ISD::SMULO, VT, Expand);
929     setOperationAction(ISD::UMULO, VT, Expand);
930 
931     // ADDCARRY operations default to expand
932     setOperationAction(ISD::ADDCARRY, VT, Expand);
933     setOperationAction(ISD::SUBCARRY, VT, Expand);
934     setOperationAction(ISD::SETCCCARRY, VT, Expand);
935 
936     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
937     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
938     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
939 
940     setOperationAction(ISD::BITREVERSE, VT, Expand);
941 
942     // These library functions default to expand.
943     setOperationAction(ISD::FROUND, VT, Expand);
944     setOperationAction(ISD::FPOWI, VT, Expand);
945 
946     // These operations default to expand for vector types.
947     if (VT.isVector()) {
948       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
949       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
950       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
951       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
952     }
953 
954     // For most targets @llvm.get.dynamic.area.offset just returns 0.
955     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
956   }
957 
958   // Most targets ignore the @llvm.prefetch intrinsic.
959   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
960 
961   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
962   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
963 
964   // ConstantFP nodes default to expand.  Targets can either change this to
965   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
966   // to optimize expansions for certain constants.
967   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
968   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
969   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
970   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
971   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
972 
973   // These library functions default to expand.
974   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
975     setOperationAction(ISD::FLOG ,      VT, Expand);
976     setOperationAction(ISD::FLOG2,      VT, Expand);
977     setOperationAction(ISD::FLOG10,     VT, Expand);
978     setOperationAction(ISD::FEXP ,      VT, Expand);
979     setOperationAction(ISD::FEXP2,      VT, Expand);
980     setOperationAction(ISD::FFLOOR,     VT, Expand);
981     setOperationAction(ISD::FNEARBYINT, VT, Expand);
982     setOperationAction(ISD::FCEIL,      VT, Expand);
983     setOperationAction(ISD::FRINT,      VT, Expand);
984     setOperationAction(ISD::FTRUNC,     VT, Expand);
985     setOperationAction(ISD::FROUND,     VT, Expand);
986   }
987 
988   // Default ISD::TRAP to expand (which turns it into abort).
989   setOperationAction(ISD::TRAP, MVT::Other, Expand);
990 
991   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
992   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
993   //
994   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
995 }
996 
997 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
998                                                EVT) const {
999   return MVT::getIntegerVT(8 * DL.getPointerSize(0));
1000 }
1001 
1002 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy,
1003                                          const DataLayout &DL) const {
1004   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
1005   if (LHSTy.isVector())
1006     return LHSTy;
1007   return getScalarShiftAmountTy(DL, LHSTy);
1008 }
1009 
1010 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
1011   assert(isTypeLegal(VT));
1012   switch (Op) {
1013   default:
1014     return false;
1015   case ISD::SDIV:
1016   case ISD::UDIV:
1017   case ISD::SREM:
1018   case ISD::UREM:
1019     return true;
1020   }
1021 }
1022 
1023 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
1024   // If the command-line option was specified, ignore this request.
1025   if (!JumpIsExpensiveOverride.getNumOccurrences())
1026     JumpIsExpensive = isExpensive;
1027 }
1028 
1029 TargetLoweringBase::LegalizeKind
1030 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
1031   // If this is a simple type, use the ComputeRegisterProp mechanism.
1032   if (VT.isSimple()) {
1033     MVT SVT = VT.getSimpleVT();
1034     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
1035     MVT NVT = TransformToType[SVT.SimpleTy];
1036     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
1037 
1038     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
1039             ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) &&
1040            "Promote may not follow Expand or Promote");
1041 
1042     if (LA == TypeSplitVector)
1043       return LegalizeKind(LA,
1044                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
1045                                            SVT.getVectorNumElements() / 2));
1046     if (LA == TypeScalarizeVector)
1047       return LegalizeKind(LA, SVT.getVectorElementType());
1048     return LegalizeKind(LA, NVT);
1049   }
1050 
1051   // Handle Extended Scalar Types.
1052   if (!VT.isVector()) {
1053     assert(VT.isInteger() && "Float types must be simple");
1054     unsigned BitSize = VT.getSizeInBits();
1055     // First promote to a power-of-two size, then expand if necessary.
1056     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1057       EVT NVT = VT.getRoundIntegerType(Context);
1058       assert(NVT != VT && "Unable to round integer VT");
1059       LegalizeKind NextStep = getTypeConversion(Context, NVT);
1060       // Avoid multi-step promotion.
1061       if (NextStep.first == TypePromoteInteger)
1062         return NextStep;
1063       // Return rounded integer type.
1064       return LegalizeKind(TypePromoteInteger, NVT);
1065     }
1066 
1067     return LegalizeKind(TypeExpandInteger,
1068                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
1069   }
1070 
1071   // Handle vector types.
1072   unsigned NumElts = VT.getVectorNumElements();
1073   EVT EltVT = VT.getVectorElementType();
1074 
1075   // Vectors with only one element are always scalarized.
1076   if (NumElts == 1)
1077     return LegalizeKind(TypeScalarizeVector, EltVT);
1078 
1079   // Try to widen vector elements until the element type is a power of two and
1080   // promote it to a legal type later on, for example:
1081   // <3 x i8> -> <4 x i8> -> <4 x i32>
1082   if (EltVT.isInteger()) {
1083     // Vectors with a number of elements that is not a power of two are always
1084     // widened, for example <3 x i8> -> <4 x i8>.
1085     if (!VT.isPow2VectorType()) {
1086       NumElts = (unsigned)NextPowerOf2(NumElts);
1087       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1088       return LegalizeKind(TypeWidenVector, NVT);
1089     }
1090 
1091     // Examine the element type.
1092     LegalizeKind LK = getTypeConversion(Context, EltVT);
1093 
1094     // If type is to be expanded, split the vector.
1095     //  <4 x i140> -> <2 x i140>
1096     if (LK.first == TypeExpandInteger)
1097       return LegalizeKind(TypeSplitVector,
1098                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
1099 
1100     // Promote the integer element types until a legal vector type is found
1101     // or until the element integer type is too big. If a legal type was not
1102     // found, fallback to the usual mechanism of widening/splitting the
1103     // vector.
1104     EVT OldEltVT = EltVT;
1105     while (1) {
1106       // Increase the bitwidth of the element to the next pow-of-two
1107       // (which is greater than 8 bits).
1108       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1109                   .getRoundIntegerType(Context);
1110 
1111       // Stop trying when getting a non-simple element type.
1112       // Note that vector elements may be greater than legal vector element
1113       // types. Example: X86 XMM registers hold 64bit element on 32bit
1114       // systems.
1115       if (!EltVT.isSimple())
1116         break;
1117 
1118       // Build a new vector type and check if it is legal.
1119       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1120       // Found a legal promoted vector type.
1121       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1122         return LegalizeKind(TypePromoteInteger,
1123                             EVT::getVectorVT(Context, EltVT, NumElts));
1124     }
1125 
1126     // Reset the type to the unexpanded type if we did not find a legal vector
1127     // type with a promoted vector element type.
1128     EltVT = OldEltVT;
1129   }
1130 
1131   // Try to widen the vector until a legal type is found.
1132   // If there is no wider legal type, split the vector.
1133   while (1) {
1134     // Round up to the next power of 2.
1135     NumElts = (unsigned)NextPowerOf2(NumElts);
1136 
1137     // If there is no simple vector type with this many elements then there
1138     // cannot be a larger legal vector type.  Note that this assumes that
1139     // there are no skipped intermediate vector types in the simple types.
1140     if (!EltVT.isSimple())
1141       break;
1142     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1143     if (LargerVector == MVT())
1144       break;
1145 
1146     // If this type is legal then widen the vector.
1147     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1148       return LegalizeKind(TypeWidenVector, LargerVector);
1149   }
1150 
1151   // Widen odd vectors to next power of two.
1152   if (!VT.isPow2VectorType()) {
1153     EVT NVT = VT.getPow2VectorType(Context);
1154     return LegalizeKind(TypeWidenVector, NVT);
1155   }
1156 
1157   // Vectors with illegal element types are expanded.
1158   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
1159   return LegalizeKind(TypeSplitVector, NVT);
1160 }
1161 
1162 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1163                                           unsigned &NumIntermediates,
1164                                           MVT &RegisterVT,
1165                                           TargetLoweringBase *TLI) {
1166   // Figure out the right, legal destination reg to copy into.
1167   unsigned NumElts = VT.getVectorNumElements();
1168   MVT EltTy = VT.getVectorElementType();
1169 
1170   unsigned NumVectorRegs = 1;
1171 
1172   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1173   // could break down into LHS/RHS like LegalizeDAG does.
1174   if (!isPowerOf2_32(NumElts)) {
1175     NumVectorRegs = NumElts;
1176     NumElts = 1;
1177   }
1178 
1179   // Divide the input until we get to a supported size.  This will always
1180   // end with a scalar if the target doesn't support vectors.
1181   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
1182     NumElts >>= 1;
1183     NumVectorRegs <<= 1;
1184   }
1185 
1186   NumIntermediates = NumVectorRegs;
1187 
1188   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
1189   if (!TLI->isTypeLegal(NewVT))
1190     NewVT = EltTy;
1191   IntermediateVT = NewVT;
1192 
1193   unsigned NewVTSize = NewVT.getSizeInBits();
1194 
1195   // Convert sizes such as i33 to i64.
1196   if (!isPowerOf2_32(NewVTSize))
1197     NewVTSize = NextPowerOf2(NewVTSize);
1198 
1199   MVT DestVT = TLI->getRegisterType(NewVT);
1200   RegisterVT = DestVT;
1201   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
1202     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1203 
1204   // Otherwise, promotion or legal types use the same number of registers as
1205   // the vector decimated to the appropriate level.
1206   return NumVectorRegs;
1207 }
1208 
1209 /// isLegalRC - Return true if the value types that can be represented by the
1210 /// specified register class are all legal.
1211 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1212                                    const TargetRegisterClass &RC) const {
1213   for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1214     if (isTypeLegal(*I))
1215       return true;
1216   return false;
1217 }
1218 
1219 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1220 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1221 MachineBasicBlock *
1222 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1223                                    MachineBasicBlock *MBB) const {
1224   MachineInstr *MI = &InitialMI;
1225   MachineFunction &MF = *MI->getParent()->getParent();
1226   MachineFrameInfo &MFI = MF.getFrameInfo();
1227 
1228   // We're handling multiple types of operands here:
1229   // PATCHPOINT MetaArgs - live-in, read only, direct
1230   // STATEPOINT Deopt Spill - live-through, read only, indirect
1231   // STATEPOINT Deopt Alloca - live-through, read only, direct
1232   // (We're currently conservative and mark the deopt slots read/write in
1233   // practice.)
1234   // STATEPOINT GC Spill - live-through, read/write, indirect
1235   // STATEPOINT GC Alloca - live-through, read/write, direct
1236   // The live-in vs live-through is handled already (the live through ones are
1237   // all stack slots), but we need to handle the different type of stackmap
1238   // operands and memory effects here.
1239 
1240   // MI changes inside this loop as we grow operands.
1241   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
1242     MachineOperand &MO = MI->getOperand(OperIdx);
1243     if (!MO.isFI())
1244       continue;
1245 
1246     // foldMemoryOperand builds a new MI after replacing a single FI operand
1247     // with the canonical set of five x86 addressing-mode operands.
1248     int FI = MO.getIndex();
1249     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1250 
1251     // Copy operands before the frame-index.
1252     for (unsigned i = 0; i < OperIdx; ++i)
1253       MIB.add(MI->getOperand(i));
1254     // Add frame index operands recognized by stackmaps.cpp
1255     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1256       // indirect-mem-ref tag, size, #FI, offset.
1257       // Used for spills inserted by StatepointLowering.  This codepath is not
1258       // used for patchpoints/stackmaps at all, for these spilling is done via
1259       // foldMemoryOperand callback only.
1260       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1261       MIB.addImm(StackMaps::IndirectMemRefOp);
1262       MIB.addImm(MFI.getObjectSize(FI));
1263       MIB.add(MI->getOperand(OperIdx));
1264       MIB.addImm(0);
1265     } else {
1266       // direct-mem-ref tag, #FI, offset.
1267       // Used by patchpoint, and direct alloca arguments to statepoints
1268       MIB.addImm(StackMaps::DirectMemRefOp);
1269       MIB.add(MI->getOperand(OperIdx));
1270       MIB.addImm(0);
1271     }
1272     // Copy the operands after the frame index.
1273     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
1274       MIB.add(MI->getOperand(i));
1275 
1276     // Inherit previous memory operands.
1277     MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
1278     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1279 
1280     // Add a new memory operand for this FI.
1281     assert(MFI.getObjectOffset(FI) != -1);
1282 
1283     auto Flags = MachineMemOperand::MOLoad;
1284     if (MI->getOpcode() == TargetOpcode::STATEPOINT) {
1285       Flags |= MachineMemOperand::MOStore;
1286       Flags |= MachineMemOperand::MOVolatile;
1287     }
1288     MachineMemOperand *MMO = MF.getMachineMemOperand(
1289         MachinePointerInfo::getFixedStack(MF, FI), Flags,
1290         MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
1291     MIB->addMemOperand(MF, MMO);
1292 
1293     // Replace the instruction and update the operand index.
1294     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1295     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
1296     MI->eraseFromParent();
1297     MI = MIB;
1298   }
1299   return MBB;
1300 }
1301 
1302 /// findRepresentativeClass - Return the largest legal super-reg register class
1303 /// of the register class for the specified type and its associated "cost".
1304 // This function is in TargetLowering because it uses RegClassForVT which would
1305 // need to be moved to TargetRegisterInfo and would necessitate moving
1306 // isTypeLegal over as well - a massive change that would just require
1307 // TargetLowering having a TargetRegisterInfo class member that it would use.
1308 std::pair<const TargetRegisterClass *, uint8_t>
1309 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1310                                             MVT VT) const {
1311   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1312   if (!RC)
1313     return std::make_pair(RC, 0);
1314 
1315   // Compute the set of all super-register classes.
1316   BitVector SuperRegRC(TRI->getNumRegClasses());
1317   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1318     SuperRegRC.setBitsInMask(RCI.getMask());
1319 
1320   // Find the first legal register class with the largest spill size.
1321   const TargetRegisterClass *BestRC = RC;
1322   for (unsigned i : SuperRegRC.set_bits()) {
1323     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1324     // We want the largest possible spill size.
1325     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1326       continue;
1327     if (!isLegalRC(*TRI, *SuperRC))
1328       continue;
1329     BestRC = SuperRC;
1330   }
1331   return std::make_pair(BestRC, 1);
1332 }
1333 
1334 /// computeRegisterProperties - Once all of the register classes are added,
1335 /// this allows us to compute derived properties we expose.
1336 void TargetLoweringBase::computeRegisterProperties(
1337     const TargetRegisterInfo *TRI) {
1338   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1339                 "Too many value types for ValueTypeActions to hold!");
1340 
1341   // Everything defaults to needing one register.
1342   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1343     NumRegistersForVT[i] = 1;
1344     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1345   }
1346   // ...except isVoid, which doesn't need any registers.
1347   NumRegistersForVT[MVT::isVoid] = 0;
1348 
1349   // Find the largest integer register class.
1350   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1351   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1352     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1353 
1354   // Every integer value type larger than this largest register takes twice as
1355   // many registers to represent as the previous ValueType.
1356   for (unsigned ExpandedReg = LargestIntReg + 1;
1357        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1358     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1359     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1360     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1361     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1362                                    TypeExpandInteger);
1363   }
1364 
1365   // Inspect all of the ValueType's smaller than the largest integer
1366   // register to see which ones need promotion.
1367   unsigned LegalIntReg = LargestIntReg;
1368   for (unsigned IntReg = LargestIntReg - 1;
1369        IntReg >= (unsigned)MVT::i1; --IntReg) {
1370     MVT IVT = (MVT::SimpleValueType)IntReg;
1371     if (isTypeLegal(IVT)) {
1372       LegalIntReg = IntReg;
1373     } else {
1374       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1375         (const MVT::SimpleValueType)LegalIntReg;
1376       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1377     }
1378   }
1379 
1380   // ppcf128 type is really two f64's.
1381   if (!isTypeLegal(MVT::ppcf128)) {
1382     if (isTypeLegal(MVT::f64)) {
1383       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1384       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1385       TransformToType[MVT::ppcf128] = MVT::f64;
1386       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1387     } else {
1388       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1389       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1390       TransformToType[MVT::ppcf128] = MVT::i128;
1391       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1392     }
1393   }
1394 
1395   // Decide how to handle f128. If the target does not have native f128 support,
1396   // expand it to i128 and we will be generating soft float library calls.
1397   if (!isTypeLegal(MVT::f128)) {
1398     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1399     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1400     TransformToType[MVT::f128] = MVT::i128;
1401     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1402   }
1403 
1404   // Decide how to handle f64. If the target does not have native f64 support,
1405   // expand it to i64 and we will be generating soft float library calls.
1406   if (!isTypeLegal(MVT::f64)) {
1407     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1408     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1409     TransformToType[MVT::f64] = MVT::i64;
1410     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1411   }
1412 
1413   // Decide how to handle f32. If the target does not have native f32 support,
1414   // expand it to i32 and we will be generating soft float library calls.
1415   if (!isTypeLegal(MVT::f32)) {
1416     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1417     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1418     TransformToType[MVT::f32] = MVT::i32;
1419     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1420   }
1421 
1422   // Decide how to handle f16. If the target does not have native f16 support,
1423   // promote it to f32, because there are no f16 library calls (except for
1424   // conversions).
1425   if (!isTypeLegal(MVT::f16)) {
1426     NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1427     RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1428     TransformToType[MVT::f16] = MVT::f32;
1429     ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1430   }
1431 
1432   // Loop over all of the vector value types to see which need transformations.
1433   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1434        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1435     MVT VT = (MVT::SimpleValueType) i;
1436     if (isTypeLegal(VT))
1437       continue;
1438 
1439     MVT EltVT = VT.getVectorElementType();
1440     unsigned NElts = VT.getVectorNumElements();
1441     bool IsLegalWiderType = false;
1442     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1443     switch (PreferredAction) {
1444     case TypePromoteInteger: {
1445       // Try to promote the elements of integer vectors. If no legal
1446       // promotion was found, fall through to the widen-vector method.
1447       for (unsigned nVT = i + 1; nVT <= MVT::LAST_INTEGER_VECTOR_VALUETYPE; ++nVT) {
1448         MVT SVT = (MVT::SimpleValueType) nVT;
1449         // Promote vectors of integers to vectors with the same number
1450         // of elements, with a wider element type.
1451         if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() &&
1452             SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)) {
1453           TransformToType[i] = SVT;
1454           RegisterTypeForVT[i] = SVT;
1455           NumRegistersForVT[i] = 1;
1456           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1457           IsLegalWiderType = true;
1458           break;
1459         }
1460       }
1461       if (IsLegalWiderType)
1462         break;
1463       LLVM_FALLTHROUGH;
1464     }
1465     case TypeWidenVector: {
1466       // Try to widen the vector.
1467       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1468         MVT SVT = (MVT::SimpleValueType) nVT;
1469         if (SVT.getVectorElementType() == EltVT
1470             && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
1471           TransformToType[i] = SVT;
1472           RegisterTypeForVT[i] = SVT;
1473           NumRegistersForVT[i] = 1;
1474           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1475           IsLegalWiderType = true;
1476           break;
1477         }
1478       }
1479       if (IsLegalWiderType)
1480         break;
1481       LLVM_FALLTHROUGH;
1482     }
1483     case TypeSplitVector:
1484     case TypeScalarizeVector: {
1485       MVT IntermediateVT;
1486       MVT RegisterVT;
1487       unsigned NumIntermediates;
1488       NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1489           NumIntermediates, RegisterVT, this);
1490       RegisterTypeForVT[i] = RegisterVT;
1491 
1492       MVT NVT = VT.getPow2VectorType();
1493       if (NVT == VT) {
1494         // Type is already a power of 2.  The default action is to split.
1495         TransformToType[i] = MVT::Other;
1496         if (PreferredAction == TypeScalarizeVector)
1497           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1498         else if (PreferredAction == TypeSplitVector)
1499           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1500         else
1501           // Set type action according to the number of elements.
1502           ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
1503                                                         : TypeSplitVector);
1504       } else {
1505         TransformToType[i] = NVT;
1506         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1507       }
1508       break;
1509     }
1510     default:
1511       llvm_unreachable("Unknown vector legalization action!");
1512     }
1513   }
1514 
1515   // Determine the 'representative' register class for each value type.
1516   // An representative register class is the largest (meaning one which is
1517   // not a sub-register class / subreg register class) legal register class for
1518   // a group of value types. For example, on i386, i8, i16, and i32
1519   // representative would be GR32; while on x86_64 it's GR64.
1520   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1521     const TargetRegisterClass* RRC;
1522     uint8_t Cost;
1523     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1524     RepRegClassForVT[i] = RRC;
1525     RepRegClassCostForVT[i] = Cost;
1526   }
1527 }
1528 
1529 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1530                                            EVT VT) const {
1531   assert(!VT.isVector() && "No default SetCC type for vectors!");
1532   return getPointerTy(DL).SimpleTy;
1533 }
1534 
1535 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1536   return MVT::i32; // return the default value
1537 }
1538 
1539 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1540 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1541 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1542 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1543 ///
1544 /// This method returns the number of registers needed, and the VT for each
1545 /// register.  It also returns the VT and quantity of the intermediate values
1546 /// before they are promoted/expanded.
1547 ///
1548 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1549                                                 EVT &IntermediateVT,
1550                                                 unsigned &NumIntermediates,
1551                                                 MVT &RegisterVT) const {
1552   unsigned NumElts = VT.getVectorNumElements();
1553 
1554   // If there is a wider vector type with the same element type as this one,
1555   // or a promoted vector type that has the same number of elements which
1556   // are wider, then we should convert to that legal vector type.
1557   // This handles things like <2 x float> -> <4 x float> and
1558   // <4 x i1> -> <4 x i32>.
1559   LegalizeTypeAction TA = getTypeAction(Context, VT);
1560   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1561     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1562     if (isTypeLegal(RegisterEVT)) {
1563       IntermediateVT = RegisterEVT;
1564       RegisterVT = RegisterEVT.getSimpleVT();
1565       NumIntermediates = 1;
1566       return 1;
1567     }
1568   }
1569 
1570   // Figure out the right, legal destination reg to copy into.
1571   EVT EltTy = VT.getVectorElementType();
1572 
1573   unsigned NumVectorRegs = 1;
1574 
1575   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1576   // could break down into LHS/RHS like LegalizeDAG does.
1577   if (!isPowerOf2_32(NumElts)) {
1578     NumVectorRegs = NumElts;
1579     NumElts = 1;
1580   }
1581 
1582   // Divide the input until we get to a supported size.  This will always
1583   // end with a scalar if the target doesn't support vectors.
1584   while (NumElts > 1 && !isTypeLegal(
1585                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
1586     NumElts >>= 1;
1587     NumVectorRegs <<= 1;
1588   }
1589 
1590   NumIntermediates = NumVectorRegs;
1591 
1592   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1593   if (!isTypeLegal(NewVT))
1594     NewVT = EltTy;
1595   IntermediateVT = NewVT;
1596 
1597   MVT DestVT = getRegisterType(Context, NewVT);
1598   RegisterVT = DestVT;
1599   unsigned NewVTSize = NewVT.getSizeInBits();
1600 
1601   // Convert sizes such as i33 to i64.
1602   if (!isPowerOf2_32(NewVTSize))
1603     NewVTSize = NextPowerOf2(NewVTSize);
1604 
1605   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1606     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1607 
1608   // Otherwise, promotion or legal types use the same number of registers as
1609   // the vector decimated to the appropriate level.
1610   return NumVectorRegs;
1611 }
1612 
1613 /// Get the EVTs and ArgFlags collections that represent the legalized return
1614 /// type of the given function.  This does not require a DAG or a return value,
1615 /// and is suitable for use before any DAGs for the function are constructed.
1616 /// TODO: Move this out of TargetLowering.cpp.
1617 void llvm::GetReturnInfo(Type *ReturnType, AttributeList attr,
1618                          SmallVectorImpl<ISD::OutputArg> &Outs,
1619                          const TargetLowering &TLI, const DataLayout &DL) {
1620   SmallVector<EVT, 4> ValueVTs;
1621   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1622   unsigned NumValues = ValueVTs.size();
1623   if (NumValues == 0) return;
1624 
1625   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1626     EVT VT = ValueVTs[j];
1627     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1628 
1629     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1630       ExtendKind = ISD::SIGN_EXTEND;
1631     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1632       ExtendKind = ISD::ZERO_EXTEND;
1633 
1634     // FIXME: C calling convention requires the return type to be promoted to
1635     // at least 32-bit. But this is not necessary for non-C calling
1636     // conventions. The frontend should mark functions whose return values
1637     // require promoting with signext or zeroext attributes.
1638     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1639       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1640       if (VT.bitsLT(MinVT))
1641         VT = MinVT;
1642     }
1643 
1644     unsigned NumParts =
1645         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), VT);
1646     MVT PartVT =
1647         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), VT);
1648 
1649     // 'inreg' on function refers to return value
1650     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1651     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
1652       Flags.setInReg();
1653 
1654     // Propagate extension type if any
1655     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1656       Flags.setSExt();
1657     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1658       Flags.setZExt();
1659 
1660     for (unsigned i = 0; i < NumParts; ++i)
1661       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
1662   }
1663 }
1664 
1665 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1666 /// function arguments in the caller parameter area.  This is the actual
1667 /// alignment, not its logarithm.
1668 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1669                                                    const DataLayout &DL) const {
1670   return DL.getABITypeAlignment(Ty);
1671 }
1672 
1673 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1674                                             const DataLayout &DL, EVT VT,
1675                                             unsigned AddrSpace,
1676                                             unsigned Alignment,
1677                                             bool *Fast) const {
1678   // Check if the specified alignment is sufficient based on the data layout.
1679   // TODO: While using the data layout works in practice, a better solution
1680   // would be to implement this check directly (make this a virtual function).
1681   // For example, the ABI alignment may change based on software platform while
1682   // this function should only be affected by hardware implementation.
1683   Type *Ty = VT.getTypeForEVT(Context);
1684   if (Alignment >= DL.getABITypeAlignment(Ty)) {
1685     // Assume that an access that meets the ABI-specified alignment is fast.
1686     if (Fast != nullptr)
1687       *Fast = true;
1688     return true;
1689   }
1690 
1691   // This is a misaligned access.
1692   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Fast);
1693 }
1694 
1695 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
1696   return BranchProbability(MinPercentageForPredictableBranch, 100);
1697 }
1698 
1699 //===----------------------------------------------------------------------===//
1700 //  TargetTransformInfo Helpers
1701 //===----------------------------------------------------------------------===//
1702 
1703 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1704   enum InstructionOpcodes {
1705 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1706 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1707 #include "llvm/IR/Instruction.def"
1708   };
1709   switch (static_cast<InstructionOpcodes>(Opcode)) {
1710   case Ret:            return 0;
1711   case Br:             return 0;
1712   case Switch:         return 0;
1713   case IndirectBr:     return 0;
1714   case Invoke:         return 0;
1715   case Resume:         return 0;
1716   case Unreachable:    return 0;
1717   case CleanupRet:     return 0;
1718   case CatchRet:       return 0;
1719   case CatchPad:       return 0;
1720   case CatchSwitch:    return 0;
1721   case CleanupPad:     return 0;
1722   case Add:            return ISD::ADD;
1723   case FAdd:           return ISD::FADD;
1724   case Sub:            return ISD::SUB;
1725   case FSub:           return ISD::FSUB;
1726   case Mul:            return ISD::MUL;
1727   case FMul:           return ISD::FMUL;
1728   case UDiv:           return ISD::UDIV;
1729   case SDiv:           return ISD::SDIV;
1730   case FDiv:           return ISD::FDIV;
1731   case URem:           return ISD::UREM;
1732   case SRem:           return ISD::SREM;
1733   case FRem:           return ISD::FREM;
1734   case Shl:            return ISD::SHL;
1735   case LShr:           return ISD::SRL;
1736   case AShr:           return ISD::SRA;
1737   case And:            return ISD::AND;
1738   case Or:             return ISD::OR;
1739   case Xor:            return ISD::XOR;
1740   case Alloca:         return 0;
1741   case Load:           return ISD::LOAD;
1742   case Store:          return ISD::STORE;
1743   case GetElementPtr:  return 0;
1744   case Fence:          return 0;
1745   case AtomicCmpXchg:  return 0;
1746   case AtomicRMW:      return 0;
1747   case Trunc:          return ISD::TRUNCATE;
1748   case ZExt:           return ISD::ZERO_EXTEND;
1749   case SExt:           return ISD::SIGN_EXTEND;
1750   case FPToUI:         return ISD::FP_TO_UINT;
1751   case FPToSI:         return ISD::FP_TO_SINT;
1752   case UIToFP:         return ISD::UINT_TO_FP;
1753   case SIToFP:         return ISD::SINT_TO_FP;
1754   case FPTrunc:        return ISD::FP_ROUND;
1755   case FPExt:          return ISD::FP_EXTEND;
1756   case PtrToInt:       return ISD::BITCAST;
1757   case IntToPtr:       return ISD::BITCAST;
1758   case BitCast:        return ISD::BITCAST;
1759   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1760   case ICmp:           return ISD::SETCC;
1761   case FCmp:           return ISD::SETCC;
1762   case PHI:            return 0;
1763   case Call:           return 0;
1764   case Select:         return ISD::SELECT;
1765   case UserOp1:        return 0;
1766   case UserOp2:        return 0;
1767   case VAArg:          return 0;
1768   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1769   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1770   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1771   case ExtractValue:   return ISD::MERGE_VALUES;
1772   case InsertValue:    return ISD::MERGE_VALUES;
1773   case LandingPad:     return 0;
1774   }
1775 
1776   llvm_unreachable("Unknown instruction type encountered!");
1777 }
1778 
1779 std::pair<int, MVT>
1780 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1781                                             Type *Ty) const {
1782   LLVMContext &C = Ty->getContext();
1783   EVT MTy = getValueType(DL, Ty);
1784 
1785   int Cost = 1;
1786   // We keep legalizing the type until we find a legal kind. We assume that
1787   // the only operation that costs anything is the split. After splitting
1788   // we need to handle two types.
1789   while (true) {
1790     LegalizeKind LK = getTypeConversion(C, MTy);
1791 
1792     if (LK.first == TypeLegal)
1793       return std::make_pair(Cost, MTy.getSimpleVT());
1794 
1795     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1796       Cost *= 2;
1797 
1798     // Do not loop with f128 type.
1799     if (MTy == LK.second)
1800       return std::make_pair(Cost, MTy.getSimpleVT());
1801 
1802     // Keep legalizing the type.
1803     MTy = LK.second;
1804   }
1805 }
1806 
1807 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1808                                                               bool UseTLS) const {
1809   // compiler-rt provides a variable with a magic name.  Targets that do not
1810   // link with compiler-rt may also provide such a variable.
1811   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1812   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1813   auto UnsafeStackPtr =
1814       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1815 
1816   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1817 
1818   if (!UnsafeStackPtr) {
1819     auto TLSModel = UseTLS ?
1820         GlobalValue::InitialExecTLSModel :
1821         GlobalValue::NotThreadLocal;
1822     // The global variable is not defined yet, define it ourselves.
1823     // We use the initial-exec TLS model because we do not support the
1824     // variable living anywhere other than in the main executable.
1825     UnsafeStackPtr = new GlobalVariable(
1826         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1827         UnsafeStackPtrVar, nullptr, TLSModel);
1828   } else {
1829     // The variable exists, check its type and attributes.
1830     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1831       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1832     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1833       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1834                          (UseTLS ? "" : "not ") + "be thread-local");
1835   }
1836   return UnsafeStackPtr;
1837 }
1838 
1839 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1840   if (!TM.getTargetTriple().isAndroid())
1841     return getDefaultSafeStackPointerLocation(IRB, true);
1842 
1843   // Android provides a libc function to retrieve the address of the current
1844   // thread's unsafe stack pointer.
1845   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1846   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1847   Value *Fn = M->getOrInsertFunction("__safestack_pointer_address",
1848                                      StackPtrTy->getPointerTo(0));
1849   return IRB.CreateCall(Fn);
1850 }
1851 
1852 //===----------------------------------------------------------------------===//
1853 //  Loop Strength Reduction hooks
1854 //===----------------------------------------------------------------------===//
1855 
1856 /// isLegalAddressingMode - Return true if the addressing mode represented
1857 /// by AM is legal for this target, for a load/store of the specified type.
1858 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1859                                                const AddrMode &AM, Type *Ty,
1860                                                unsigned AS) const {
1861   // The default implementation of this implements a conservative RISCy, r+r and
1862   // r+i addr mode.
1863 
1864   // Allows a sign-extended 16-bit immediate field.
1865   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1866     return false;
1867 
1868   // No global is ever allowed as a base.
1869   if (AM.BaseGV)
1870     return false;
1871 
1872   // Only support r+r,
1873   switch (AM.Scale) {
1874   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1875     break;
1876   case 1:
1877     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1878       return false;
1879     // Otherwise we have r+r or r+i.
1880     break;
1881   case 2:
1882     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1883       return false;
1884     // Allow 2*r as r+r.
1885     break;
1886   default: // Don't allow n * r
1887     return false;
1888   }
1889 
1890   return true;
1891 }
1892 
1893 //===----------------------------------------------------------------------===//
1894 //  Stack Protector
1895 //===----------------------------------------------------------------------===//
1896 
1897 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1898 // so that SelectionDAG handle SSP.
1899 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
1900   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1901     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1902     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1903     return M.getOrInsertGlobal("__guard_local", PtrTy);
1904   }
1905   return nullptr;
1906 }
1907 
1908 // Currently only support "standard" __stack_chk_guard.
1909 // TODO: add LOAD_STACK_GUARD support.
1910 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1911   M.getOrInsertGlobal("__stack_chk_guard", Type::getInt8PtrTy(M.getContext()));
1912 }
1913 
1914 // Currently only support "standard" __stack_chk_guard.
1915 // TODO: add LOAD_STACK_GUARD support.
1916 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1917   return M.getGlobalVariable("__stack_chk_guard", true);
1918 }
1919 
1920 Value *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1921   return nullptr;
1922 }
1923 
1924 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1925   return MinimumJumpTableEntries;
1926 }
1927 
1928 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1929   MinimumJumpTableEntries = Val;
1930 }
1931 
1932 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
1933   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
1934 }
1935 
1936 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
1937   return MaximumJumpTableSize;
1938 }
1939 
1940 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
1941   MaximumJumpTableSize = Val;
1942 }
1943 
1944 //===----------------------------------------------------------------------===//
1945 //  Reciprocal Estimates
1946 //===----------------------------------------------------------------------===//
1947 
1948 /// Get the reciprocal estimate attribute string for a function that will
1949 /// override the target defaults.
1950 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
1951   const Function *F = MF.getFunction();
1952   return F->getFnAttribute("reciprocal-estimates").getValueAsString();
1953 }
1954 
1955 /// Construct a string for the given reciprocal operation of the given type.
1956 /// This string should match the corresponding option to the front-end's
1957 /// "-mrecip" flag assuming those strings have been passed through in an
1958 /// attribute string. For example, "vec-divf" for a division of a vXf32.
1959 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
1960   std::string Name = VT.isVector() ? "vec-" : "";
1961 
1962   Name += IsSqrt ? "sqrt" : "div";
1963 
1964   // TODO: Handle "half" or other float types?
1965   if (VT.getScalarType() == MVT::f64) {
1966     Name += "d";
1967   } else {
1968     assert(VT.getScalarType() == MVT::f32 &&
1969            "Unexpected FP type for reciprocal estimate");
1970     Name += "f";
1971   }
1972 
1973   return Name;
1974 }
1975 
1976 /// Return the character position and value (a single numeric character) of a
1977 /// customized refinement operation in the input string if it exists. Return
1978 /// false if there is no customized refinement step count.
1979 static bool parseRefinementStep(StringRef In, size_t &Position,
1980                                 uint8_t &Value) {
1981   const char RefStepToken = ':';
1982   Position = In.find(RefStepToken);
1983   if (Position == StringRef::npos)
1984     return false;
1985 
1986   StringRef RefStepString = In.substr(Position + 1);
1987   // Allow exactly one numeric character for the additional refinement
1988   // step parameter.
1989   if (RefStepString.size() == 1) {
1990     char RefStepChar = RefStepString[0];
1991     if (RefStepChar >= '0' && RefStepChar <= '9') {
1992       Value = RefStepChar - '0';
1993       return true;
1994     }
1995   }
1996   report_fatal_error("Invalid refinement step for -recip.");
1997 }
1998 
1999 /// For the input attribute string, return one of the ReciprocalEstimate enum
2000 /// status values (enabled, disabled, or not specified) for this operation on
2001 /// the specified data type.
2002 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2003   if (Override.empty())
2004     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2005 
2006   SmallVector<StringRef, 4> OverrideVector;
2007   SplitString(Override, OverrideVector, ",");
2008   unsigned NumArgs = OverrideVector.size();
2009 
2010   // Check if "all", "none", or "default" was specified.
2011   if (NumArgs == 1) {
2012     // Look for an optional setting of the number of refinement steps needed
2013     // for this type of reciprocal operation.
2014     size_t RefPos;
2015     uint8_t RefSteps;
2016     if (parseRefinementStep(Override, RefPos, RefSteps)) {
2017       // Split the string for further processing.
2018       Override = Override.substr(0, RefPos);
2019     }
2020 
2021     // All reciprocal types are enabled.
2022     if (Override == "all")
2023       return TargetLoweringBase::ReciprocalEstimate::Enabled;
2024 
2025     // All reciprocal types are disabled.
2026     if (Override == "none")
2027       return TargetLoweringBase::ReciprocalEstimate::Disabled;
2028 
2029     // Target defaults for enablement are used.
2030     if (Override == "default")
2031       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2032   }
2033 
2034   // The attribute string may omit the size suffix ('f'/'d').
2035   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2036   std::string VTNameNoSize = VTName;
2037   VTNameNoSize.pop_back();
2038   static const char DisabledPrefix = '!';
2039 
2040   for (StringRef RecipType : OverrideVector) {
2041     size_t RefPos;
2042     uint8_t RefSteps;
2043     if (parseRefinementStep(RecipType, RefPos, RefSteps))
2044       RecipType = RecipType.substr(0, RefPos);
2045 
2046     // Ignore the disablement token for string matching.
2047     bool IsDisabled = RecipType[0] == DisabledPrefix;
2048     if (IsDisabled)
2049       RecipType = RecipType.substr(1);
2050 
2051     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2052       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
2053                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
2054   }
2055 
2056   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2057 }
2058 
2059 /// For the input attribute string, return the customized refinement step count
2060 /// for this operation on the specified data type. If the step count does not
2061 /// exist, return the ReciprocalEstimate enum value for unspecified.
2062 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2063   if (Override.empty())
2064     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2065 
2066   SmallVector<StringRef, 4> OverrideVector;
2067   SplitString(Override, OverrideVector, ",");
2068   unsigned NumArgs = OverrideVector.size();
2069 
2070   // Check if "all", "default", or "none" was specified.
2071   if (NumArgs == 1) {
2072     // Look for an optional setting of the number of refinement steps needed
2073     // for this type of reciprocal operation.
2074     size_t RefPos;
2075     uint8_t RefSteps;
2076     if (!parseRefinementStep(Override, RefPos, RefSteps))
2077       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2078 
2079     // Split the string for further processing.
2080     Override = Override.substr(0, RefPos);
2081     assert(Override != "none" &&
2082            "Disabled reciprocals, but specifed refinement steps?");
2083 
2084     // If this is a general override, return the specified number of steps.
2085     if (Override == "all" || Override == "default")
2086       return RefSteps;
2087   }
2088 
2089   // The attribute string may omit the size suffix ('f'/'d').
2090   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2091   std::string VTNameNoSize = VTName;
2092   VTNameNoSize.pop_back();
2093 
2094   for (StringRef RecipType : OverrideVector) {
2095     size_t RefPos;
2096     uint8_t RefSteps;
2097     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2098       continue;
2099 
2100     RecipType = RecipType.substr(0, RefPos);
2101     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2102       return RefSteps;
2103   }
2104 
2105   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2106 }
2107 
2108 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
2109                                                     MachineFunction &MF) const {
2110   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
2111 }
2112 
2113 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
2114                                                    MachineFunction &MF) const {
2115   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
2116 }
2117 
2118 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2119                                                MachineFunction &MF) const {
2120   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2121 }
2122 
2123 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2124                                               MachineFunction &MF) const {
2125   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2126 }
2127 
2128 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2129   MF.getRegInfo().freezeReservedRegs(MF);
2130 }
2131