1 //===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLoweringBase class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/StackMaps.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/GlobalVariable.h"
29 #include "llvm/IR/Mangler.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/MCContext.h"
32 #include "llvm/MC/MCExpr.h"
33 #include "llvm/Support/BranchProbability.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Target/TargetLoweringObjectFile.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include "llvm/Target/TargetRegisterInfo.h"
40 #include "llvm/Target/TargetSubtargetInfo.h"
41 #include <cctype>
42 using namespace llvm;
43 
44 static cl::opt<bool> JumpIsExpensiveOverride(
45     "jump-is-expensive", cl::init(false),
46     cl::desc("Do not create extra branches to split comparison logic."),
47     cl::Hidden);
48 
49 static cl::opt<unsigned> MinimumJumpTableEntries
50   ("min-jump-table-entries", cl::init(4), cl::Hidden,
51    cl::desc("Set minimum number of entries to use a jump table."));
52 
53 static cl::opt<unsigned> MaximumJumpTableSize
54   ("max-jump-table-size", cl::init(0), cl::Hidden,
55    cl::desc("Set maximum size of jump tables; zero for no limit."));
56 
57 /// Minimum jump table density for normal functions.
58 static cl::opt<unsigned>
59     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
60                      cl::desc("Minimum density for building a jump table in "
61                               "a normal function"));
62 
63 /// Minimum jump table density for -Os or -Oz functions.
64 static cl::opt<unsigned> OptsizeJumpTableDensity(
65     "optsize-jump-table-density", cl::init(40), cl::Hidden,
66     cl::desc("Minimum density for building a jump table in "
67              "an optsize function"));
68 
69 // Although this default value is arbitrary, it is not random. It is assumed
70 // that a condition that evaluates the same way by a higher percentage than this
71 // is best represented as control flow. Therefore, the default value N should be
72 // set such that the win from N% correct executions is greater than the loss
73 // from (100 - N)% mispredicted executions for the majority of intended targets.
74 static cl::opt<int> MinPercentageForPredictableBranch(
75     "min-predictable-branch", cl::init(99),
76     cl::desc("Minimum percentage (0-100) that a condition must be either true "
77              "or false to assume that the condition is predictable"),
78     cl::Hidden);
79 
80 /// InitLibcallNames - Set default libcall names.
81 ///
82 static void InitLibcallNames(const char **Names, const Triple &TT) {
83   Names[RTLIB::SHL_I16] = "__ashlhi3";
84   Names[RTLIB::SHL_I32] = "__ashlsi3";
85   Names[RTLIB::SHL_I64] = "__ashldi3";
86   Names[RTLIB::SHL_I128] = "__ashlti3";
87   Names[RTLIB::SRL_I16] = "__lshrhi3";
88   Names[RTLIB::SRL_I32] = "__lshrsi3";
89   Names[RTLIB::SRL_I64] = "__lshrdi3";
90   Names[RTLIB::SRL_I128] = "__lshrti3";
91   Names[RTLIB::SRA_I16] = "__ashrhi3";
92   Names[RTLIB::SRA_I32] = "__ashrsi3";
93   Names[RTLIB::SRA_I64] = "__ashrdi3";
94   Names[RTLIB::SRA_I128] = "__ashrti3";
95   Names[RTLIB::MUL_I8] = "__mulqi3";
96   Names[RTLIB::MUL_I16] = "__mulhi3";
97   Names[RTLIB::MUL_I32] = "__mulsi3";
98   Names[RTLIB::MUL_I64] = "__muldi3";
99   Names[RTLIB::MUL_I128] = "__multi3";
100   Names[RTLIB::MULO_I32] = "__mulosi4";
101   Names[RTLIB::MULO_I64] = "__mulodi4";
102   Names[RTLIB::MULO_I128] = "__muloti4";
103   Names[RTLIB::SDIV_I8] = "__divqi3";
104   Names[RTLIB::SDIV_I16] = "__divhi3";
105   Names[RTLIB::SDIV_I32] = "__divsi3";
106   Names[RTLIB::SDIV_I64] = "__divdi3";
107   Names[RTLIB::SDIV_I128] = "__divti3";
108   Names[RTLIB::UDIV_I8] = "__udivqi3";
109   Names[RTLIB::UDIV_I16] = "__udivhi3";
110   Names[RTLIB::UDIV_I32] = "__udivsi3";
111   Names[RTLIB::UDIV_I64] = "__udivdi3";
112   Names[RTLIB::UDIV_I128] = "__udivti3";
113   Names[RTLIB::SREM_I8] = "__modqi3";
114   Names[RTLIB::SREM_I16] = "__modhi3";
115   Names[RTLIB::SREM_I32] = "__modsi3";
116   Names[RTLIB::SREM_I64] = "__moddi3";
117   Names[RTLIB::SREM_I128] = "__modti3";
118   Names[RTLIB::UREM_I8] = "__umodqi3";
119   Names[RTLIB::UREM_I16] = "__umodhi3";
120   Names[RTLIB::UREM_I32] = "__umodsi3";
121   Names[RTLIB::UREM_I64] = "__umoddi3";
122   Names[RTLIB::UREM_I128] = "__umodti3";
123 
124   Names[RTLIB::NEG_I32] = "__negsi2";
125   Names[RTLIB::NEG_I64] = "__negdi2";
126   Names[RTLIB::ADD_F32] = "__addsf3";
127   Names[RTLIB::ADD_F64] = "__adddf3";
128   Names[RTLIB::ADD_F80] = "__addxf3";
129   Names[RTLIB::ADD_F128] = "__addtf3";
130   Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
131   Names[RTLIB::SUB_F32] = "__subsf3";
132   Names[RTLIB::SUB_F64] = "__subdf3";
133   Names[RTLIB::SUB_F80] = "__subxf3";
134   Names[RTLIB::SUB_F128] = "__subtf3";
135   Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
136   Names[RTLIB::MUL_F32] = "__mulsf3";
137   Names[RTLIB::MUL_F64] = "__muldf3";
138   Names[RTLIB::MUL_F80] = "__mulxf3";
139   Names[RTLIB::MUL_F128] = "__multf3";
140   Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
141   Names[RTLIB::DIV_F32] = "__divsf3";
142   Names[RTLIB::DIV_F64] = "__divdf3";
143   Names[RTLIB::DIV_F80] = "__divxf3";
144   Names[RTLIB::DIV_F128] = "__divtf3";
145   Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
146   Names[RTLIB::REM_F32] = "fmodf";
147   Names[RTLIB::REM_F64] = "fmod";
148   Names[RTLIB::REM_F80] = "fmodl";
149   Names[RTLIB::REM_F128] = "fmodl";
150   Names[RTLIB::REM_PPCF128] = "fmodl";
151   Names[RTLIB::FMA_F32] = "fmaf";
152   Names[RTLIB::FMA_F64] = "fma";
153   Names[RTLIB::FMA_F80] = "fmal";
154   Names[RTLIB::FMA_F128] = "fmal";
155   Names[RTLIB::FMA_PPCF128] = "fmal";
156   Names[RTLIB::POWI_F32] = "__powisf2";
157   Names[RTLIB::POWI_F64] = "__powidf2";
158   Names[RTLIB::POWI_F80] = "__powixf2";
159   Names[RTLIB::POWI_F128] = "__powitf2";
160   Names[RTLIB::POWI_PPCF128] = "__powitf2";
161   Names[RTLIB::SQRT_F32] = "sqrtf";
162   Names[RTLIB::SQRT_F64] = "sqrt";
163   Names[RTLIB::SQRT_F80] = "sqrtl";
164   Names[RTLIB::SQRT_F128] = "sqrtl";
165   Names[RTLIB::SQRT_PPCF128] = "sqrtl";
166   Names[RTLIB::LOG_F32] = "logf";
167   Names[RTLIB::LOG_F64] = "log";
168   Names[RTLIB::LOG_F80] = "logl";
169   Names[RTLIB::LOG_F128] = "logl";
170   Names[RTLIB::LOG_PPCF128] = "logl";
171   Names[RTLIB::LOG2_F32] = "log2f";
172   Names[RTLIB::LOG2_F64] = "log2";
173   Names[RTLIB::LOG2_F80] = "log2l";
174   Names[RTLIB::LOG2_F128] = "log2l";
175   Names[RTLIB::LOG2_PPCF128] = "log2l";
176   Names[RTLIB::LOG10_F32] = "log10f";
177   Names[RTLIB::LOG10_F64] = "log10";
178   Names[RTLIB::LOG10_F80] = "log10l";
179   Names[RTLIB::LOG10_F128] = "log10l";
180   Names[RTLIB::LOG10_PPCF128] = "log10l";
181   Names[RTLIB::EXP_F32] = "expf";
182   Names[RTLIB::EXP_F64] = "exp";
183   Names[RTLIB::EXP_F80] = "expl";
184   Names[RTLIB::EXP_F128] = "expl";
185   Names[RTLIB::EXP_PPCF128] = "expl";
186   Names[RTLIB::EXP2_F32] = "exp2f";
187   Names[RTLIB::EXP2_F64] = "exp2";
188   Names[RTLIB::EXP2_F80] = "exp2l";
189   Names[RTLIB::EXP2_F128] = "exp2l";
190   Names[RTLIB::EXP2_PPCF128] = "exp2l";
191   Names[RTLIB::SIN_F32] = "sinf";
192   Names[RTLIB::SIN_F64] = "sin";
193   Names[RTLIB::SIN_F80] = "sinl";
194   Names[RTLIB::SIN_F128] = "sinl";
195   Names[RTLIB::SIN_PPCF128] = "sinl";
196   Names[RTLIB::COS_F32] = "cosf";
197   Names[RTLIB::COS_F64] = "cos";
198   Names[RTLIB::COS_F80] = "cosl";
199   Names[RTLIB::COS_F128] = "cosl";
200   Names[RTLIB::COS_PPCF128] = "cosl";
201   Names[RTLIB::POW_F32] = "powf";
202   Names[RTLIB::POW_F64] = "pow";
203   Names[RTLIB::POW_F80] = "powl";
204   Names[RTLIB::POW_F128] = "powl";
205   Names[RTLIB::POW_PPCF128] = "powl";
206   Names[RTLIB::CEIL_F32] = "ceilf";
207   Names[RTLIB::CEIL_F64] = "ceil";
208   Names[RTLIB::CEIL_F80] = "ceill";
209   Names[RTLIB::CEIL_F128] = "ceill";
210   Names[RTLIB::CEIL_PPCF128] = "ceill";
211   Names[RTLIB::TRUNC_F32] = "truncf";
212   Names[RTLIB::TRUNC_F64] = "trunc";
213   Names[RTLIB::TRUNC_F80] = "truncl";
214   Names[RTLIB::TRUNC_F128] = "truncl";
215   Names[RTLIB::TRUNC_PPCF128] = "truncl";
216   Names[RTLIB::RINT_F32] = "rintf";
217   Names[RTLIB::RINT_F64] = "rint";
218   Names[RTLIB::RINT_F80] = "rintl";
219   Names[RTLIB::RINT_F128] = "rintl";
220   Names[RTLIB::RINT_PPCF128] = "rintl";
221   Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
222   Names[RTLIB::NEARBYINT_F64] = "nearbyint";
223   Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
224   Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
225   Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
226   Names[RTLIB::ROUND_F32] = "roundf";
227   Names[RTLIB::ROUND_F64] = "round";
228   Names[RTLIB::ROUND_F80] = "roundl";
229   Names[RTLIB::ROUND_F128] = "roundl";
230   Names[RTLIB::ROUND_PPCF128] = "roundl";
231   Names[RTLIB::FLOOR_F32] = "floorf";
232   Names[RTLIB::FLOOR_F64] = "floor";
233   Names[RTLIB::FLOOR_F80] = "floorl";
234   Names[RTLIB::FLOOR_F128] = "floorl";
235   Names[RTLIB::FLOOR_PPCF128] = "floorl";
236   Names[RTLIB::FMIN_F32] = "fminf";
237   Names[RTLIB::FMIN_F64] = "fmin";
238   Names[RTLIB::FMIN_F80] = "fminl";
239   Names[RTLIB::FMIN_F128] = "fminl";
240   Names[RTLIB::FMIN_PPCF128] = "fminl";
241   Names[RTLIB::FMAX_F32] = "fmaxf";
242   Names[RTLIB::FMAX_F64] = "fmax";
243   Names[RTLIB::FMAX_F80] = "fmaxl";
244   Names[RTLIB::FMAX_F128] = "fmaxl";
245   Names[RTLIB::FMAX_PPCF128] = "fmaxl";
246   Names[RTLIB::ROUND_F32] = "roundf";
247   Names[RTLIB::ROUND_F64] = "round";
248   Names[RTLIB::ROUND_F80] = "roundl";
249   Names[RTLIB::ROUND_F128] = "roundl";
250   Names[RTLIB::ROUND_PPCF128] = "roundl";
251   Names[RTLIB::COPYSIGN_F32] = "copysignf";
252   Names[RTLIB::COPYSIGN_F64] = "copysign";
253   Names[RTLIB::COPYSIGN_F80] = "copysignl";
254   Names[RTLIB::COPYSIGN_F128] = "copysignl";
255   Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
256   Names[RTLIB::FPEXT_F32_PPCF128] = "__gcc_stoq";
257   Names[RTLIB::FPEXT_F64_PPCF128] = "__gcc_dtoq";
258   Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
259   Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
260   Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
261   if (TT.isOSDarwin()) {
262     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
263     // of the gnueabi-style __gnu_*_ieee.
264     // FIXME: What about other targets?
265     Names[RTLIB::FPEXT_F16_F32] = "__extendhfsf2";
266     Names[RTLIB::FPROUND_F32_F16] = "__truncsfhf2";
267   } else {
268     Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
269     Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
270   }
271   Names[RTLIB::FPROUND_F64_F16] = "__truncdfhf2";
272   Names[RTLIB::FPROUND_F80_F16] = "__truncxfhf2";
273   Names[RTLIB::FPROUND_F128_F16] = "__trunctfhf2";
274   Names[RTLIB::FPROUND_PPCF128_F16] = "__trunctfhf2";
275   Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
276   Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
277   Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
278   Names[RTLIB::FPROUND_PPCF128_F32] = "__gcc_qtos";
279   Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
280   Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
281   Names[RTLIB::FPROUND_PPCF128_F64] = "__gcc_qtod";
282   Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
283   Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
284   Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
285   Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
286   Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
287   Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
288   Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
289   Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
290   Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
291   Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
292   Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
293   Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
294   Names[RTLIB::FPTOSINT_PPCF128_I32] = "__gcc_qtou";
295   Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
296   Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
297   Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
298   Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
299   Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
300   Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
301   Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
302   Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
303   Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
304   Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
305   Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
306   Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
307   Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
308   Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
309   Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
310   Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
311   Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
312   Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
313   Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
314   Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
315   Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
316   Names[RTLIB::SINTTOFP_I32_PPCF128] = "__gcc_itoq";
317   Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
318   Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
319   Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
320   Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
321   Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
322   Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
323   Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
324   Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
325   Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
326   Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
327   Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
328   Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
329   Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
330   Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
331   Names[RTLIB::UINTTOFP_I32_PPCF128] = "__gcc_utoq";
332   Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
333   Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
334   Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
335   Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
336   Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
337   Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
338   Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
339   Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
340   Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
341   Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
342   Names[RTLIB::OEQ_F32] = "__eqsf2";
343   Names[RTLIB::OEQ_F64] = "__eqdf2";
344   Names[RTLIB::OEQ_F128] = "__eqtf2";
345   Names[RTLIB::OEQ_PPCF128] = "__gcc_qeq";
346   Names[RTLIB::UNE_F32] = "__nesf2";
347   Names[RTLIB::UNE_F64] = "__nedf2";
348   Names[RTLIB::UNE_F128] = "__netf2";
349   Names[RTLIB::UNE_PPCF128] = "__gcc_qne";
350   Names[RTLIB::OGE_F32] = "__gesf2";
351   Names[RTLIB::OGE_F64] = "__gedf2";
352   Names[RTLIB::OGE_F128] = "__getf2";
353   Names[RTLIB::OGE_PPCF128] = "__gcc_qge";
354   Names[RTLIB::OLT_F32] = "__ltsf2";
355   Names[RTLIB::OLT_F64] = "__ltdf2";
356   Names[RTLIB::OLT_F128] = "__lttf2";
357   Names[RTLIB::OLT_PPCF128] = "__gcc_qlt";
358   Names[RTLIB::OLE_F32] = "__lesf2";
359   Names[RTLIB::OLE_F64] = "__ledf2";
360   Names[RTLIB::OLE_F128] = "__letf2";
361   Names[RTLIB::OLE_PPCF128] = "__gcc_qle";
362   Names[RTLIB::OGT_F32] = "__gtsf2";
363   Names[RTLIB::OGT_F64] = "__gtdf2";
364   Names[RTLIB::OGT_F128] = "__gttf2";
365   Names[RTLIB::OGT_PPCF128] = "__gcc_qgt";
366   Names[RTLIB::UO_F32] = "__unordsf2";
367   Names[RTLIB::UO_F64] = "__unorddf2";
368   Names[RTLIB::UO_F128] = "__unordtf2";
369   Names[RTLIB::UO_PPCF128] = "__gcc_qunord";
370   Names[RTLIB::O_F32] = "__unordsf2";
371   Names[RTLIB::O_F64] = "__unorddf2";
372   Names[RTLIB::O_F128] = "__unordtf2";
373   Names[RTLIB::O_PPCF128] = "__gcc_qunord";
374   Names[RTLIB::MEMCPY] = "memcpy";
375   Names[RTLIB::MEMMOVE] = "memmove";
376   Names[RTLIB::MEMSET] = "memset";
377   Names[RTLIB::MEMCPY_ELEMENT_ATOMIC_1] = "__llvm_memcpy_element_atomic_1";
378   Names[RTLIB::MEMCPY_ELEMENT_ATOMIC_2] = "__llvm_memcpy_element_atomic_2";
379   Names[RTLIB::MEMCPY_ELEMENT_ATOMIC_4] = "__llvm_memcpy_element_atomic_4";
380   Names[RTLIB::MEMCPY_ELEMENT_ATOMIC_8] = "__llvm_memcpy_element_atomic_8";
381   Names[RTLIB::MEMCPY_ELEMENT_ATOMIC_16] = "__llvm_memcpy_element_atomic_16";
382   Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
383   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
384   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
385   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
386   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
387   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16";
388   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
389   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
390   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
391   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
392   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16";
393   Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
394   Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
395   Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
396   Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
397   Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16";
398   Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
399   Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
400   Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
401   Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
402   Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16";
403   Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
404   Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
405   Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
406   Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
407   Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16";
408   Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
409   Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
410   Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
411   Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
412   Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16";
413   Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
414   Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
415   Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
416   Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
417   Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16";
418   Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
419   Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
420   Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
421   Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
422   Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16";
423   Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1";
424   Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2";
425   Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4";
426   Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8";
427   Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16";
428   Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1";
429   Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2";
430   Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4";
431   Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8";
432   Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16";
433   Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1";
434   Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2";
435   Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4";
436   Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8";
437   Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16";
438   Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1";
439   Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2";
440   Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4";
441   Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8";
442   Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16";
443 
444   Names[RTLIB::ATOMIC_LOAD] = "__atomic_load";
445   Names[RTLIB::ATOMIC_LOAD_1] = "__atomic_load_1";
446   Names[RTLIB::ATOMIC_LOAD_2] = "__atomic_load_2";
447   Names[RTLIB::ATOMIC_LOAD_4] = "__atomic_load_4";
448   Names[RTLIB::ATOMIC_LOAD_8] = "__atomic_load_8";
449   Names[RTLIB::ATOMIC_LOAD_16] = "__atomic_load_16";
450 
451   Names[RTLIB::ATOMIC_STORE] = "__atomic_store";
452   Names[RTLIB::ATOMIC_STORE_1] = "__atomic_store_1";
453   Names[RTLIB::ATOMIC_STORE_2] = "__atomic_store_2";
454   Names[RTLIB::ATOMIC_STORE_4] = "__atomic_store_4";
455   Names[RTLIB::ATOMIC_STORE_8] = "__atomic_store_8";
456   Names[RTLIB::ATOMIC_STORE_16] = "__atomic_store_16";
457 
458   Names[RTLIB::ATOMIC_EXCHANGE] = "__atomic_exchange";
459   Names[RTLIB::ATOMIC_EXCHANGE_1] = "__atomic_exchange_1";
460   Names[RTLIB::ATOMIC_EXCHANGE_2] = "__atomic_exchange_2";
461   Names[RTLIB::ATOMIC_EXCHANGE_4] = "__atomic_exchange_4";
462   Names[RTLIB::ATOMIC_EXCHANGE_8] = "__atomic_exchange_8";
463   Names[RTLIB::ATOMIC_EXCHANGE_16] = "__atomic_exchange_16";
464 
465   Names[RTLIB::ATOMIC_COMPARE_EXCHANGE] = "__atomic_compare_exchange";
466   Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_1] = "__atomic_compare_exchange_1";
467   Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_2] = "__atomic_compare_exchange_2";
468   Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_4] = "__atomic_compare_exchange_4";
469   Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_8] = "__atomic_compare_exchange_8";
470   Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_16] = "__atomic_compare_exchange_16";
471 
472   Names[RTLIB::ATOMIC_FETCH_ADD_1] = "__atomic_fetch_add_1";
473   Names[RTLIB::ATOMIC_FETCH_ADD_2] = "__atomic_fetch_add_2";
474   Names[RTLIB::ATOMIC_FETCH_ADD_4] = "__atomic_fetch_add_4";
475   Names[RTLIB::ATOMIC_FETCH_ADD_8] = "__atomic_fetch_add_8";
476   Names[RTLIB::ATOMIC_FETCH_ADD_16] = "__atomic_fetch_add_16";
477   Names[RTLIB::ATOMIC_FETCH_SUB_1] = "__atomic_fetch_sub_1";
478   Names[RTLIB::ATOMIC_FETCH_SUB_2] = "__atomic_fetch_sub_2";
479   Names[RTLIB::ATOMIC_FETCH_SUB_4] = "__atomic_fetch_sub_4";
480   Names[RTLIB::ATOMIC_FETCH_SUB_8] = "__atomic_fetch_sub_8";
481   Names[RTLIB::ATOMIC_FETCH_SUB_16] = "__atomic_fetch_sub_16";
482   Names[RTLIB::ATOMIC_FETCH_AND_1] = "__atomic_fetch_and_1";
483   Names[RTLIB::ATOMIC_FETCH_AND_2] = "__atomic_fetch_and_2";
484   Names[RTLIB::ATOMIC_FETCH_AND_4] = "__atomic_fetch_and_4";
485   Names[RTLIB::ATOMIC_FETCH_AND_8] = "__atomic_fetch_and_8";
486   Names[RTLIB::ATOMIC_FETCH_AND_16] = "__atomic_fetch_and_16";
487   Names[RTLIB::ATOMIC_FETCH_OR_1] = "__atomic_fetch_or_1";
488   Names[RTLIB::ATOMIC_FETCH_OR_2] = "__atomic_fetch_or_2";
489   Names[RTLIB::ATOMIC_FETCH_OR_4] = "__atomic_fetch_or_4";
490   Names[RTLIB::ATOMIC_FETCH_OR_8] = "__atomic_fetch_or_8";
491   Names[RTLIB::ATOMIC_FETCH_OR_16] = "__atomic_fetch_or_16";
492   Names[RTLIB::ATOMIC_FETCH_XOR_1] = "__atomic_fetch_xor_1";
493   Names[RTLIB::ATOMIC_FETCH_XOR_2] = "__atomic_fetch_xor_2";
494   Names[RTLIB::ATOMIC_FETCH_XOR_4] = "__atomic_fetch_xor_4";
495   Names[RTLIB::ATOMIC_FETCH_XOR_8] = "__atomic_fetch_xor_8";
496   Names[RTLIB::ATOMIC_FETCH_XOR_16] = "__atomic_fetch_xor_16";
497   Names[RTLIB::ATOMIC_FETCH_NAND_1] = "__atomic_fetch_nand_1";
498   Names[RTLIB::ATOMIC_FETCH_NAND_2] = "__atomic_fetch_nand_2";
499   Names[RTLIB::ATOMIC_FETCH_NAND_4] = "__atomic_fetch_nand_4";
500   Names[RTLIB::ATOMIC_FETCH_NAND_8] = "__atomic_fetch_nand_8";
501   Names[RTLIB::ATOMIC_FETCH_NAND_16] = "__atomic_fetch_nand_16";
502 
503   if (TT.isGNUEnvironment()) {
504     Names[RTLIB::SINCOS_F32] = "sincosf";
505     Names[RTLIB::SINCOS_F64] = "sincos";
506     Names[RTLIB::SINCOS_F80] = "sincosl";
507     Names[RTLIB::SINCOS_F128] = "sincosl";
508     Names[RTLIB::SINCOS_PPCF128] = "sincosl";
509   }
510 
511   if (!TT.isOSOpenBSD()) {
512     Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail";
513   }
514 
515   Names[RTLIB::DEOPTIMIZE] = "__llvm_deoptimize";
516 }
517 
518 /// Set default libcall CallingConvs.
519 static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
520   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
521     CCs[LC] = CallingConv::C;
522 }
523 
524 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
525 /// UNKNOWN_LIBCALL if there is none.
526 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
527   if (OpVT == MVT::f16) {
528     if (RetVT == MVT::f32)
529       return FPEXT_F16_F32;
530   } else if (OpVT == MVT::f32) {
531     if (RetVT == MVT::f64)
532       return FPEXT_F32_F64;
533     if (RetVT == MVT::f128)
534       return FPEXT_F32_F128;
535     if (RetVT == MVT::ppcf128)
536       return FPEXT_F32_PPCF128;
537   } else if (OpVT == MVT::f64) {
538     if (RetVT == MVT::f128)
539       return FPEXT_F64_F128;
540     else if (RetVT == MVT::ppcf128)
541       return FPEXT_F64_PPCF128;
542   }
543 
544   return UNKNOWN_LIBCALL;
545 }
546 
547 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
548 /// UNKNOWN_LIBCALL if there is none.
549 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
550   if (RetVT == MVT::f16) {
551     if (OpVT == MVT::f32)
552       return FPROUND_F32_F16;
553     if (OpVT == MVT::f64)
554       return FPROUND_F64_F16;
555     if (OpVT == MVT::f80)
556       return FPROUND_F80_F16;
557     if (OpVT == MVT::f128)
558       return FPROUND_F128_F16;
559     if (OpVT == MVT::ppcf128)
560       return FPROUND_PPCF128_F16;
561   } else if (RetVT == MVT::f32) {
562     if (OpVT == MVT::f64)
563       return FPROUND_F64_F32;
564     if (OpVT == MVT::f80)
565       return FPROUND_F80_F32;
566     if (OpVT == MVT::f128)
567       return FPROUND_F128_F32;
568     if (OpVT == MVT::ppcf128)
569       return FPROUND_PPCF128_F32;
570   } else if (RetVT == MVT::f64) {
571     if (OpVT == MVT::f80)
572       return FPROUND_F80_F64;
573     if (OpVT == MVT::f128)
574       return FPROUND_F128_F64;
575     if (OpVT == MVT::ppcf128)
576       return FPROUND_PPCF128_F64;
577   }
578 
579   return UNKNOWN_LIBCALL;
580 }
581 
582 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
583 /// UNKNOWN_LIBCALL if there is none.
584 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
585   if (OpVT == MVT::f32) {
586     if (RetVT == MVT::i32)
587       return FPTOSINT_F32_I32;
588     if (RetVT == MVT::i64)
589       return FPTOSINT_F32_I64;
590     if (RetVT == MVT::i128)
591       return FPTOSINT_F32_I128;
592   } else if (OpVT == MVT::f64) {
593     if (RetVT == MVT::i32)
594       return FPTOSINT_F64_I32;
595     if (RetVT == MVT::i64)
596       return FPTOSINT_F64_I64;
597     if (RetVT == MVT::i128)
598       return FPTOSINT_F64_I128;
599   } else if (OpVT == MVT::f80) {
600     if (RetVT == MVT::i32)
601       return FPTOSINT_F80_I32;
602     if (RetVT == MVT::i64)
603       return FPTOSINT_F80_I64;
604     if (RetVT == MVT::i128)
605       return FPTOSINT_F80_I128;
606   } else if (OpVT == MVT::f128) {
607     if (RetVT == MVT::i32)
608       return FPTOSINT_F128_I32;
609     if (RetVT == MVT::i64)
610       return FPTOSINT_F128_I64;
611     if (RetVT == MVT::i128)
612       return FPTOSINT_F128_I128;
613   } else if (OpVT == MVT::ppcf128) {
614     if (RetVT == MVT::i32)
615       return FPTOSINT_PPCF128_I32;
616     if (RetVT == MVT::i64)
617       return FPTOSINT_PPCF128_I64;
618     if (RetVT == MVT::i128)
619       return FPTOSINT_PPCF128_I128;
620   }
621   return UNKNOWN_LIBCALL;
622 }
623 
624 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
625 /// UNKNOWN_LIBCALL if there is none.
626 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
627   if (OpVT == MVT::f32) {
628     if (RetVT == MVT::i32)
629       return FPTOUINT_F32_I32;
630     if (RetVT == MVT::i64)
631       return FPTOUINT_F32_I64;
632     if (RetVT == MVT::i128)
633       return FPTOUINT_F32_I128;
634   } else if (OpVT == MVT::f64) {
635     if (RetVT == MVT::i32)
636       return FPTOUINT_F64_I32;
637     if (RetVT == MVT::i64)
638       return FPTOUINT_F64_I64;
639     if (RetVT == MVT::i128)
640       return FPTOUINT_F64_I128;
641   } else if (OpVT == MVT::f80) {
642     if (RetVT == MVT::i32)
643       return FPTOUINT_F80_I32;
644     if (RetVT == MVT::i64)
645       return FPTOUINT_F80_I64;
646     if (RetVT == MVT::i128)
647       return FPTOUINT_F80_I128;
648   } else if (OpVT == MVT::f128) {
649     if (RetVT == MVT::i32)
650       return FPTOUINT_F128_I32;
651     if (RetVT == MVT::i64)
652       return FPTOUINT_F128_I64;
653     if (RetVT == MVT::i128)
654       return FPTOUINT_F128_I128;
655   } else if (OpVT == MVT::ppcf128) {
656     if (RetVT == MVT::i32)
657       return FPTOUINT_PPCF128_I32;
658     if (RetVT == MVT::i64)
659       return FPTOUINT_PPCF128_I64;
660     if (RetVT == MVT::i128)
661       return FPTOUINT_PPCF128_I128;
662   }
663   return UNKNOWN_LIBCALL;
664 }
665 
666 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
667 /// UNKNOWN_LIBCALL if there is none.
668 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
669   if (OpVT == MVT::i32) {
670     if (RetVT == MVT::f32)
671       return SINTTOFP_I32_F32;
672     if (RetVT == MVT::f64)
673       return SINTTOFP_I32_F64;
674     if (RetVT == MVT::f80)
675       return SINTTOFP_I32_F80;
676     if (RetVT == MVT::f128)
677       return SINTTOFP_I32_F128;
678     if (RetVT == MVT::ppcf128)
679       return SINTTOFP_I32_PPCF128;
680   } else if (OpVT == MVT::i64) {
681     if (RetVT == MVT::f32)
682       return SINTTOFP_I64_F32;
683     if (RetVT == MVT::f64)
684       return SINTTOFP_I64_F64;
685     if (RetVT == MVT::f80)
686       return SINTTOFP_I64_F80;
687     if (RetVT == MVT::f128)
688       return SINTTOFP_I64_F128;
689     if (RetVT == MVT::ppcf128)
690       return SINTTOFP_I64_PPCF128;
691   } else if (OpVT == MVT::i128) {
692     if (RetVT == MVT::f32)
693       return SINTTOFP_I128_F32;
694     if (RetVT == MVT::f64)
695       return SINTTOFP_I128_F64;
696     if (RetVT == MVT::f80)
697       return SINTTOFP_I128_F80;
698     if (RetVT == MVT::f128)
699       return SINTTOFP_I128_F128;
700     if (RetVT == MVT::ppcf128)
701       return SINTTOFP_I128_PPCF128;
702   }
703   return UNKNOWN_LIBCALL;
704 }
705 
706 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
707 /// UNKNOWN_LIBCALL if there is none.
708 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
709   if (OpVT == MVT::i32) {
710     if (RetVT == MVT::f32)
711       return UINTTOFP_I32_F32;
712     if (RetVT == MVT::f64)
713       return UINTTOFP_I32_F64;
714     if (RetVT == MVT::f80)
715       return UINTTOFP_I32_F80;
716     if (RetVT == MVT::f128)
717       return UINTTOFP_I32_F128;
718     if (RetVT == MVT::ppcf128)
719       return UINTTOFP_I32_PPCF128;
720   } else if (OpVT == MVT::i64) {
721     if (RetVT == MVT::f32)
722       return UINTTOFP_I64_F32;
723     if (RetVT == MVT::f64)
724       return UINTTOFP_I64_F64;
725     if (RetVT == MVT::f80)
726       return UINTTOFP_I64_F80;
727     if (RetVT == MVT::f128)
728       return UINTTOFP_I64_F128;
729     if (RetVT == MVT::ppcf128)
730       return UINTTOFP_I64_PPCF128;
731   } else if (OpVT == MVT::i128) {
732     if (RetVT == MVT::f32)
733       return UINTTOFP_I128_F32;
734     if (RetVT == MVT::f64)
735       return UINTTOFP_I128_F64;
736     if (RetVT == MVT::f80)
737       return UINTTOFP_I128_F80;
738     if (RetVT == MVT::f128)
739       return UINTTOFP_I128_F128;
740     if (RetVT == MVT::ppcf128)
741       return UINTTOFP_I128_PPCF128;
742   }
743   return UNKNOWN_LIBCALL;
744 }
745 
746 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
747 #define OP_TO_LIBCALL(Name, Enum)                                              \
748   case Name:                                                                   \
749     switch (VT.SimpleTy) {                                                     \
750     default:                                                                   \
751       return UNKNOWN_LIBCALL;                                                  \
752     case MVT::i8:                                                              \
753       return Enum##_1;                                                         \
754     case MVT::i16:                                                             \
755       return Enum##_2;                                                         \
756     case MVT::i32:                                                             \
757       return Enum##_4;                                                         \
758     case MVT::i64:                                                             \
759       return Enum##_8;                                                         \
760     case MVT::i128:                                                            \
761       return Enum##_16;                                                        \
762     }
763 
764   switch (Opc) {
765     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
766     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
767     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
768     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
769     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
770     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
771     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
772     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
773     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
774     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
775     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
776     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
777   }
778 
779 #undef OP_TO_LIBCALL
780 
781   return UNKNOWN_LIBCALL;
782 }
783 
784 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_ATOMIC(uint64_t ElementSize) {
785   switch (ElementSize) {
786   case 1:
787     return MEMCPY_ELEMENT_ATOMIC_1;
788   case 2:
789     return MEMCPY_ELEMENT_ATOMIC_2;
790   case 4:
791     return MEMCPY_ELEMENT_ATOMIC_4;
792   case 8:
793     return MEMCPY_ELEMENT_ATOMIC_8;
794   case 16:
795     return MEMCPY_ELEMENT_ATOMIC_16;
796   default:
797     return UNKNOWN_LIBCALL;
798   }
799 
800 }
801 
802 /// InitCmpLibcallCCs - Set default comparison libcall CC.
803 ///
804 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
805   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
806   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
807   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
808   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
809   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
810   CCs[RTLIB::UNE_F32] = ISD::SETNE;
811   CCs[RTLIB::UNE_F64] = ISD::SETNE;
812   CCs[RTLIB::UNE_F128] = ISD::SETNE;
813   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
814   CCs[RTLIB::OGE_F32] = ISD::SETGE;
815   CCs[RTLIB::OGE_F64] = ISD::SETGE;
816   CCs[RTLIB::OGE_F128] = ISD::SETGE;
817   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
818   CCs[RTLIB::OLT_F32] = ISD::SETLT;
819   CCs[RTLIB::OLT_F64] = ISD::SETLT;
820   CCs[RTLIB::OLT_F128] = ISD::SETLT;
821   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
822   CCs[RTLIB::OLE_F32] = ISD::SETLE;
823   CCs[RTLIB::OLE_F64] = ISD::SETLE;
824   CCs[RTLIB::OLE_F128] = ISD::SETLE;
825   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
826   CCs[RTLIB::OGT_F32] = ISD::SETGT;
827   CCs[RTLIB::OGT_F64] = ISD::SETGT;
828   CCs[RTLIB::OGT_F128] = ISD::SETGT;
829   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
830   CCs[RTLIB::UO_F32] = ISD::SETNE;
831   CCs[RTLIB::UO_F64] = ISD::SETNE;
832   CCs[RTLIB::UO_F128] = ISD::SETNE;
833   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
834   CCs[RTLIB::O_F32] = ISD::SETEQ;
835   CCs[RTLIB::O_F64] = ISD::SETEQ;
836   CCs[RTLIB::O_F128] = ISD::SETEQ;
837   CCs[RTLIB::O_PPCF128] = ISD::SETEQ;
838 }
839 
840 /// NOTE: The TargetMachine owns TLOF.
841 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
842   initActions();
843 
844   // Perform these initializations only once.
845   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
846       MaxLoadsPerMemcmp = 8;
847   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
848       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
849   UseUnderscoreSetJmp = false;
850   UseUnderscoreLongJmp = false;
851   HasMultipleConditionRegisters = false;
852   HasExtractBitsInsn = false;
853   JumpIsExpensive = JumpIsExpensiveOverride;
854   PredictableSelectIsExpensive = false;
855   EnableExtLdPromotion = false;
856   HasFloatingPointExceptions = true;
857   StackPointerRegisterToSaveRestore = 0;
858   BooleanContents = UndefinedBooleanContent;
859   BooleanFloatContents = UndefinedBooleanContent;
860   BooleanVectorContents = UndefinedBooleanContent;
861   SchedPreferenceInfo = Sched::ILP;
862   JumpBufSize = 0;
863   JumpBufAlignment = 0;
864   MinFunctionAlignment = 0;
865   PrefFunctionAlignment = 0;
866   PrefLoopAlignment = 0;
867   GatherAllAliasesMaxDepth = 18;
868   MinStackArgumentAlignment = 1;
869   // TODO: the default will be switched to 0 in the next commit, along
870   // with the Target-specific changes necessary.
871   MaxAtomicSizeInBitsSupported = 1024;
872 
873   MinCmpXchgSizeInBits = 0;
874 
875   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
876 
877   InitLibcallNames(LibcallRoutineNames, TM.getTargetTriple());
878   InitCmpLibcallCCs(CmpLibcallCCs);
879   InitLibcallCallingConvs(LibcallCallingConvs);
880 }
881 
882 void TargetLoweringBase::initActions() {
883   // All operations default to being supported.
884   memset(OpActions, 0, sizeof(OpActions));
885   memset(LoadExtActions, 0, sizeof(LoadExtActions));
886   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
887   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
888   memset(CondCodeActions, 0, sizeof(CondCodeActions));
889   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
890   std::fill(std::begin(TargetDAGCombineArray),
891             std::end(TargetDAGCombineArray), 0);
892 
893   // Set default actions for various operations.
894   for (MVT VT : MVT::all_valuetypes()) {
895     // Default all indexed load / store to expand.
896     for (unsigned IM = (unsigned)ISD::PRE_INC;
897          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
898       setIndexedLoadAction(IM, VT, Expand);
899       setIndexedStoreAction(IM, VT, Expand);
900     }
901 
902     // Most backends expect to see the node which just returns the value loaded.
903     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
904 
905     // These operations default to expand.
906     setOperationAction(ISD::FGETSIGN, VT, Expand);
907     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
908     setOperationAction(ISD::FMINNUM, VT, Expand);
909     setOperationAction(ISD::FMAXNUM, VT, Expand);
910     setOperationAction(ISD::FMINNAN, VT, Expand);
911     setOperationAction(ISD::FMAXNAN, VT, Expand);
912     setOperationAction(ISD::FMAD, VT, Expand);
913     setOperationAction(ISD::SMIN, VT, Expand);
914     setOperationAction(ISD::SMAX, VT, Expand);
915     setOperationAction(ISD::UMIN, VT, Expand);
916     setOperationAction(ISD::UMAX, VT, Expand);
917     setOperationAction(ISD::ABS, VT, Expand);
918 
919     // Overflow operations default to expand
920     setOperationAction(ISD::SADDO, VT, Expand);
921     setOperationAction(ISD::SSUBO, VT, Expand);
922     setOperationAction(ISD::UADDO, VT, Expand);
923     setOperationAction(ISD::USUBO, VT, Expand);
924     setOperationAction(ISD::SMULO, VT, Expand);
925     setOperationAction(ISD::UMULO, VT, Expand);
926 
927     // ADDCARRY operations default to expand
928     setOperationAction(ISD::ADDCARRY, VT, Expand);
929     setOperationAction(ISD::SUBCARRY, VT, Expand);
930     setOperationAction(ISD::SETCCCARRY, VT, Expand);
931 
932     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
933     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
934     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
935 
936     setOperationAction(ISD::BITREVERSE, VT, Expand);
937 
938     // These library functions default to expand.
939     setOperationAction(ISD::FROUND, VT, Expand);
940     setOperationAction(ISD::FPOWI, VT, Expand);
941 
942     // These operations default to expand for vector types.
943     if (VT.isVector()) {
944       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
945       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
946       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
947       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
948     }
949 
950     // For most targets @llvm.get.dynamic.area.offset just returns 0.
951     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
952   }
953 
954   // Most targets ignore the @llvm.prefetch intrinsic.
955   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
956 
957   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
958   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
959 
960   // ConstantFP nodes default to expand.  Targets can either change this to
961   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
962   // to optimize expansions for certain constants.
963   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
964   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
965   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
966   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
967   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
968 
969   // These library functions default to expand.
970   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
971     setOperationAction(ISD::FLOG ,      VT, Expand);
972     setOperationAction(ISD::FLOG2,      VT, Expand);
973     setOperationAction(ISD::FLOG10,     VT, Expand);
974     setOperationAction(ISD::FEXP ,      VT, Expand);
975     setOperationAction(ISD::FEXP2,      VT, Expand);
976     setOperationAction(ISD::FFLOOR,     VT, Expand);
977     setOperationAction(ISD::FNEARBYINT, VT, Expand);
978     setOperationAction(ISD::FCEIL,      VT, Expand);
979     setOperationAction(ISD::FRINT,      VT, Expand);
980     setOperationAction(ISD::FTRUNC,     VT, Expand);
981     setOperationAction(ISD::FROUND,     VT, Expand);
982   }
983 
984   // Default ISD::TRAP to expand (which turns it into abort).
985   setOperationAction(ISD::TRAP, MVT::Other, Expand);
986 
987   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
988   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
989   //
990   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
991 }
992 
993 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
994                                                EVT) const {
995   return MVT::getIntegerVT(8 * DL.getPointerSize(0));
996 }
997 
998 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy,
999                                          const DataLayout &DL) const {
1000   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
1001   if (LHSTy.isVector())
1002     return LHSTy;
1003   return getScalarShiftAmountTy(DL, LHSTy);
1004 }
1005 
1006 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
1007   assert(isTypeLegal(VT));
1008   switch (Op) {
1009   default:
1010     return false;
1011   case ISD::SDIV:
1012   case ISD::UDIV:
1013   case ISD::SREM:
1014   case ISD::UREM:
1015     return true;
1016   }
1017 }
1018 
1019 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
1020   // If the command-line option was specified, ignore this request.
1021   if (!JumpIsExpensiveOverride.getNumOccurrences())
1022     JumpIsExpensive = isExpensive;
1023 }
1024 
1025 TargetLoweringBase::LegalizeKind
1026 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
1027   // If this is a simple type, use the ComputeRegisterProp mechanism.
1028   if (VT.isSimple()) {
1029     MVT SVT = VT.getSimpleVT();
1030     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
1031     MVT NVT = TransformToType[SVT.SimpleTy];
1032     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
1033 
1034     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
1035             ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) &&
1036            "Promote may not follow Expand or Promote");
1037 
1038     if (LA == TypeSplitVector)
1039       return LegalizeKind(LA,
1040                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
1041                                            SVT.getVectorNumElements() / 2));
1042     if (LA == TypeScalarizeVector)
1043       return LegalizeKind(LA, SVT.getVectorElementType());
1044     return LegalizeKind(LA, NVT);
1045   }
1046 
1047   // Handle Extended Scalar Types.
1048   if (!VT.isVector()) {
1049     assert(VT.isInteger() && "Float types must be simple");
1050     unsigned BitSize = VT.getSizeInBits();
1051     // First promote to a power-of-two size, then expand if necessary.
1052     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1053       EVT NVT = VT.getRoundIntegerType(Context);
1054       assert(NVT != VT && "Unable to round integer VT");
1055       LegalizeKind NextStep = getTypeConversion(Context, NVT);
1056       // Avoid multi-step promotion.
1057       if (NextStep.first == TypePromoteInteger)
1058         return NextStep;
1059       // Return rounded integer type.
1060       return LegalizeKind(TypePromoteInteger, NVT);
1061     }
1062 
1063     return LegalizeKind(TypeExpandInteger,
1064                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
1065   }
1066 
1067   // Handle vector types.
1068   unsigned NumElts = VT.getVectorNumElements();
1069   EVT EltVT = VT.getVectorElementType();
1070 
1071   // Vectors with only one element are always scalarized.
1072   if (NumElts == 1)
1073     return LegalizeKind(TypeScalarizeVector, EltVT);
1074 
1075   // Try to widen vector elements until the element type is a power of two and
1076   // promote it to a legal type later on, for example:
1077   // <3 x i8> -> <4 x i8> -> <4 x i32>
1078   if (EltVT.isInteger()) {
1079     // Vectors with a number of elements that is not a power of two are always
1080     // widened, for example <3 x i8> -> <4 x i8>.
1081     if (!VT.isPow2VectorType()) {
1082       NumElts = (unsigned)NextPowerOf2(NumElts);
1083       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1084       return LegalizeKind(TypeWidenVector, NVT);
1085     }
1086 
1087     // Examine the element type.
1088     LegalizeKind LK = getTypeConversion(Context, EltVT);
1089 
1090     // If type is to be expanded, split the vector.
1091     //  <4 x i140> -> <2 x i140>
1092     if (LK.first == TypeExpandInteger)
1093       return LegalizeKind(TypeSplitVector,
1094                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
1095 
1096     // Promote the integer element types until a legal vector type is found
1097     // or until the element integer type is too big. If a legal type was not
1098     // found, fallback to the usual mechanism of widening/splitting the
1099     // vector.
1100     EVT OldEltVT = EltVT;
1101     while (1) {
1102       // Increase the bitwidth of the element to the next pow-of-two
1103       // (which is greater than 8 bits).
1104       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1105                   .getRoundIntegerType(Context);
1106 
1107       // Stop trying when getting a non-simple element type.
1108       // Note that vector elements may be greater than legal vector element
1109       // types. Example: X86 XMM registers hold 64bit element on 32bit
1110       // systems.
1111       if (!EltVT.isSimple())
1112         break;
1113 
1114       // Build a new vector type and check if it is legal.
1115       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1116       // Found a legal promoted vector type.
1117       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1118         return LegalizeKind(TypePromoteInteger,
1119                             EVT::getVectorVT(Context, EltVT, NumElts));
1120     }
1121 
1122     // Reset the type to the unexpanded type if we did not find a legal vector
1123     // type with a promoted vector element type.
1124     EltVT = OldEltVT;
1125   }
1126 
1127   // Try to widen the vector until a legal type is found.
1128   // If there is no wider legal type, split the vector.
1129   while (1) {
1130     // Round up to the next power of 2.
1131     NumElts = (unsigned)NextPowerOf2(NumElts);
1132 
1133     // If there is no simple vector type with this many elements then there
1134     // cannot be a larger legal vector type.  Note that this assumes that
1135     // there are no skipped intermediate vector types in the simple types.
1136     if (!EltVT.isSimple())
1137       break;
1138     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1139     if (LargerVector == MVT())
1140       break;
1141 
1142     // If this type is legal then widen the vector.
1143     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1144       return LegalizeKind(TypeWidenVector, LargerVector);
1145   }
1146 
1147   // Widen odd vectors to next power of two.
1148   if (!VT.isPow2VectorType()) {
1149     EVT NVT = VT.getPow2VectorType(Context);
1150     return LegalizeKind(TypeWidenVector, NVT);
1151   }
1152 
1153   // Vectors with illegal element types are expanded.
1154   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
1155   return LegalizeKind(TypeSplitVector, NVT);
1156 }
1157 
1158 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1159                                           unsigned &NumIntermediates,
1160                                           MVT &RegisterVT,
1161                                           TargetLoweringBase *TLI) {
1162   // Figure out the right, legal destination reg to copy into.
1163   unsigned NumElts = VT.getVectorNumElements();
1164   MVT EltTy = VT.getVectorElementType();
1165 
1166   unsigned NumVectorRegs = 1;
1167 
1168   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1169   // could break down into LHS/RHS like LegalizeDAG does.
1170   if (!isPowerOf2_32(NumElts)) {
1171     NumVectorRegs = NumElts;
1172     NumElts = 1;
1173   }
1174 
1175   // Divide the input until we get to a supported size.  This will always
1176   // end with a scalar if the target doesn't support vectors.
1177   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
1178     NumElts >>= 1;
1179     NumVectorRegs <<= 1;
1180   }
1181 
1182   NumIntermediates = NumVectorRegs;
1183 
1184   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
1185   if (!TLI->isTypeLegal(NewVT))
1186     NewVT = EltTy;
1187   IntermediateVT = NewVT;
1188 
1189   unsigned NewVTSize = NewVT.getSizeInBits();
1190 
1191   // Convert sizes such as i33 to i64.
1192   if (!isPowerOf2_32(NewVTSize))
1193     NewVTSize = NextPowerOf2(NewVTSize);
1194 
1195   MVT DestVT = TLI->getRegisterType(NewVT);
1196   RegisterVT = DestVT;
1197   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
1198     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1199 
1200   // Otherwise, promotion or legal types use the same number of registers as
1201   // the vector decimated to the appropriate level.
1202   return NumVectorRegs;
1203 }
1204 
1205 /// isLegalRC - Return true if the value types that can be represented by the
1206 /// specified register class are all legal.
1207 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1208                                    const TargetRegisterClass &RC) const {
1209   for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1210     if (isTypeLegal(*I))
1211       return true;
1212   return false;
1213 }
1214 
1215 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1216 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1217 MachineBasicBlock *
1218 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1219                                    MachineBasicBlock *MBB) const {
1220   MachineInstr *MI = &InitialMI;
1221   MachineFunction &MF = *MI->getParent()->getParent();
1222   MachineFrameInfo &MFI = MF.getFrameInfo();
1223 
1224   // We're handling multiple types of operands here:
1225   // PATCHPOINT MetaArgs - live-in, read only, direct
1226   // STATEPOINT Deopt Spill - live-through, read only, indirect
1227   // STATEPOINT Deopt Alloca - live-through, read only, direct
1228   // (We're currently conservative and mark the deopt slots read/write in
1229   // practice.)
1230   // STATEPOINT GC Spill - live-through, read/write, indirect
1231   // STATEPOINT GC Alloca - live-through, read/write, direct
1232   // The live-in vs live-through is handled already (the live through ones are
1233   // all stack slots), but we need to handle the different type of stackmap
1234   // operands and memory effects here.
1235 
1236   // MI changes inside this loop as we grow operands.
1237   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
1238     MachineOperand &MO = MI->getOperand(OperIdx);
1239     if (!MO.isFI())
1240       continue;
1241 
1242     // foldMemoryOperand builds a new MI after replacing a single FI operand
1243     // with the canonical set of five x86 addressing-mode operands.
1244     int FI = MO.getIndex();
1245     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1246 
1247     // Copy operands before the frame-index.
1248     for (unsigned i = 0; i < OperIdx; ++i)
1249       MIB.add(MI->getOperand(i));
1250     // Add frame index operands recognized by stackmaps.cpp
1251     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1252       // indirect-mem-ref tag, size, #FI, offset.
1253       // Used for spills inserted by StatepointLowering.  This codepath is not
1254       // used for patchpoints/stackmaps at all, for these spilling is done via
1255       // foldMemoryOperand callback only.
1256       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1257       MIB.addImm(StackMaps::IndirectMemRefOp);
1258       MIB.addImm(MFI.getObjectSize(FI));
1259       MIB.add(MI->getOperand(OperIdx));
1260       MIB.addImm(0);
1261     } else {
1262       // direct-mem-ref tag, #FI, offset.
1263       // Used by patchpoint, and direct alloca arguments to statepoints
1264       MIB.addImm(StackMaps::DirectMemRefOp);
1265       MIB.add(MI->getOperand(OperIdx));
1266       MIB.addImm(0);
1267     }
1268     // Copy the operands after the frame index.
1269     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
1270       MIB.add(MI->getOperand(i));
1271 
1272     // Inherit previous memory operands.
1273     MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
1274     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1275 
1276     // Add a new memory operand for this FI.
1277     assert(MFI.getObjectOffset(FI) != -1);
1278 
1279     auto Flags = MachineMemOperand::MOLoad;
1280     if (MI->getOpcode() == TargetOpcode::STATEPOINT) {
1281       Flags |= MachineMemOperand::MOStore;
1282       Flags |= MachineMemOperand::MOVolatile;
1283     }
1284     MachineMemOperand *MMO = MF.getMachineMemOperand(
1285         MachinePointerInfo::getFixedStack(MF, FI), Flags,
1286         MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
1287     MIB->addMemOperand(MF, MMO);
1288 
1289     // Replace the instruction and update the operand index.
1290     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1291     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
1292     MI->eraseFromParent();
1293     MI = MIB;
1294   }
1295   return MBB;
1296 }
1297 
1298 /// findRepresentativeClass - Return the largest legal super-reg register class
1299 /// of the register class for the specified type and its associated "cost".
1300 // This function is in TargetLowering because it uses RegClassForVT which would
1301 // need to be moved to TargetRegisterInfo and would necessitate moving
1302 // isTypeLegal over as well - a massive change that would just require
1303 // TargetLowering having a TargetRegisterInfo class member that it would use.
1304 std::pair<const TargetRegisterClass *, uint8_t>
1305 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1306                                             MVT VT) const {
1307   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1308   if (!RC)
1309     return std::make_pair(RC, 0);
1310 
1311   // Compute the set of all super-register classes.
1312   BitVector SuperRegRC(TRI->getNumRegClasses());
1313   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1314     SuperRegRC.setBitsInMask(RCI.getMask());
1315 
1316   // Find the first legal register class with the largest spill size.
1317   const TargetRegisterClass *BestRC = RC;
1318   for (unsigned i : SuperRegRC.set_bits()) {
1319     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1320     // We want the largest possible spill size.
1321     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1322       continue;
1323     if (!isLegalRC(*TRI, *SuperRC))
1324       continue;
1325     BestRC = SuperRC;
1326   }
1327   return std::make_pair(BestRC, 1);
1328 }
1329 
1330 /// computeRegisterProperties - Once all of the register classes are added,
1331 /// this allows us to compute derived properties we expose.
1332 void TargetLoweringBase::computeRegisterProperties(
1333     const TargetRegisterInfo *TRI) {
1334   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1335                 "Too many value types for ValueTypeActions to hold!");
1336 
1337   // Everything defaults to needing one register.
1338   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1339     NumRegistersForVT[i] = 1;
1340     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1341   }
1342   // ...except isVoid, which doesn't need any registers.
1343   NumRegistersForVT[MVT::isVoid] = 0;
1344 
1345   // Find the largest integer register class.
1346   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1347   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1348     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1349 
1350   // Every integer value type larger than this largest register takes twice as
1351   // many registers to represent as the previous ValueType.
1352   for (unsigned ExpandedReg = LargestIntReg + 1;
1353        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1354     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1355     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1356     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1357     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1358                                    TypeExpandInteger);
1359   }
1360 
1361   // Inspect all of the ValueType's smaller than the largest integer
1362   // register to see which ones need promotion.
1363   unsigned LegalIntReg = LargestIntReg;
1364   for (unsigned IntReg = LargestIntReg - 1;
1365        IntReg >= (unsigned)MVT::i1; --IntReg) {
1366     MVT IVT = (MVT::SimpleValueType)IntReg;
1367     if (isTypeLegal(IVT)) {
1368       LegalIntReg = IntReg;
1369     } else {
1370       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1371         (const MVT::SimpleValueType)LegalIntReg;
1372       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1373     }
1374   }
1375 
1376   // ppcf128 type is really two f64's.
1377   if (!isTypeLegal(MVT::ppcf128)) {
1378     if (isTypeLegal(MVT::f64)) {
1379       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1380       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1381       TransformToType[MVT::ppcf128] = MVT::f64;
1382       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1383     } else {
1384       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1385       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1386       TransformToType[MVT::ppcf128] = MVT::i128;
1387       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1388     }
1389   }
1390 
1391   // Decide how to handle f128. If the target does not have native f128 support,
1392   // expand it to i128 and we will be generating soft float library calls.
1393   if (!isTypeLegal(MVT::f128)) {
1394     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1395     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1396     TransformToType[MVT::f128] = MVT::i128;
1397     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1398   }
1399 
1400   // Decide how to handle f64. If the target does not have native f64 support,
1401   // expand it to i64 and we will be generating soft float library calls.
1402   if (!isTypeLegal(MVT::f64)) {
1403     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1404     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1405     TransformToType[MVT::f64] = MVT::i64;
1406     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1407   }
1408 
1409   // Decide how to handle f32. If the target does not have native f32 support,
1410   // expand it to i32 and we will be generating soft float library calls.
1411   if (!isTypeLegal(MVT::f32)) {
1412     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1413     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1414     TransformToType[MVT::f32] = MVT::i32;
1415     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1416   }
1417 
1418   // Decide how to handle f16. If the target does not have native f16 support,
1419   // promote it to f32, because there are no f16 library calls (except for
1420   // conversions).
1421   if (!isTypeLegal(MVT::f16)) {
1422     NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1423     RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1424     TransformToType[MVT::f16] = MVT::f32;
1425     ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1426   }
1427 
1428   // Loop over all of the vector value types to see which need transformations.
1429   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1430        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1431     MVT VT = (MVT::SimpleValueType) i;
1432     if (isTypeLegal(VT))
1433       continue;
1434 
1435     MVT EltVT = VT.getVectorElementType();
1436     unsigned NElts = VT.getVectorNumElements();
1437     bool IsLegalWiderType = false;
1438     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1439     switch (PreferredAction) {
1440     case TypePromoteInteger: {
1441       // Try to promote the elements of integer vectors. If no legal
1442       // promotion was found, fall through to the widen-vector method.
1443       for (unsigned nVT = i + 1; nVT <= MVT::LAST_INTEGER_VECTOR_VALUETYPE; ++nVT) {
1444         MVT SVT = (MVT::SimpleValueType) nVT;
1445         // Promote vectors of integers to vectors with the same number
1446         // of elements, with a wider element type.
1447         if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() &&
1448             SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)) {
1449           TransformToType[i] = SVT;
1450           RegisterTypeForVT[i] = SVT;
1451           NumRegistersForVT[i] = 1;
1452           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1453           IsLegalWiderType = true;
1454           break;
1455         }
1456       }
1457       if (IsLegalWiderType)
1458         break;
1459       LLVM_FALLTHROUGH;
1460     }
1461     case TypeWidenVector: {
1462       // Try to widen the vector.
1463       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1464         MVT SVT = (MVT::SimpleValueType) nVT;
1465         if (SVT.getVectorElementType() == EltVT
1466             && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
1467           TransformToType[i] = SVT;
1468           RegisterTypeForVT[i] = SVT;
1469           NumRegistersForVT[i] = 1;
1470           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1471           IsLegalWiderType = true;
1472           break;
1473         }
1474       }
1475       if (IsLegalWiderType)
1476         break;
1477       LLVM_FALLTHROUGH;
1478     }
1479     case TypeSplitVector:
1480     case TypeScalarizeVector: {
1481       MVT IntermediateVT;
1482       MVT RegisterVT;
1483       unsigned NumIntermediates;
1484       NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1485           NumIntermediates, RegisterVT, this);
1486       RegisterTypeForVT[i] = RegisterVT;
1487 
1488       MVT NVT = VT.getPow2VectorType();
1489       if (NVT == VT) {
1490         // Type is already a power of 2.  The default action is to split.
1491         TransformToType[i] = MVT::Other;
1492         if (PreferredAction == TypeScalarizeVector)
1493           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1494         else if (PreferredAction == TypeSplitVector)
1495           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1496         else
1497           // Set type action according to the number of elements.
1498           ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
1499                                                         : TypeSplitVector);
1500       } else {
1501         TransformToType[i] = NVT;
1502         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1503       }
1504       break;
1505     }
1506     default:
1507       llvm_unreachable("Unknown vector legalization action!");
1508     }
1509   }
1510 
1511   // Determine the 'representative' register class for each value type.
1512   // An representative register class is the largest (meaning one which is
1513   // not a sub-register class / subreg register class) legal register class for
1514   // a group of value types. For example, on i386, i8, i16, and i32
1515   // representative would be GR32; while on x86_64 it's GR64.
1516   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1517     const TargetRegisterClass* RRC;
1518     uint8_t Cost;
1519     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1520     RepRegClassForVT[i] = RRC;
1521     RepRegClassCostForVT[i] = Cost;
1522   }
1523 }
1524 
1525 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1526                                            EVT VT) const {
1527   assert(!VT.isVector() && "No default SetCC type for vectors!");
1528   return getPointerTy(DL).SimpleTy;
1529 }
1530 
1531 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1532   return MVT::i32; // return the default value
1533 }
1534 
1535 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1536 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1537 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1538 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1539 ///
1540 /// This method returns the number of registers needed, and the VT for each
1541 /// register.  It also returns the VT and quantity of the intermediate values
1542 /// before they are promoted/expanded.
1543 ///
1544 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1545                                                 EVT &IntermediateVT,
1546                                                 unsigned &NumIntermediates,
1547                                                 MVT &RegisterVT) const {
1548   unsigned NumElts = VT.getVectorNumElements();
1549 
1550   // If there is a wider vector type with the same element type as this one,
1551   // or a promoted vector type that has the same number of elements which
1552   // are wider, then we should convert to that legal vector type.
1553   // This handles things like <2 x float> -> <4 x float> and
1554   // <4 x i1> -> <4 x i32>.
1555   LegalizeTypeAction TA = getTypeAction(Context, VT);
1556   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1557     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1558     if (isTypeLegal(RegisterEVT)) {
1559       IntermediateVT = RegisterEVT;
1560       RegisterVT = RegisterEVT.getSimpleVT();
1561       NumIntermediates = 1;
1562       return 1;
1563     }
1564   }
1565 
1566   // Figure out the right, legal destination reg to copy into.
1567   EVT EltTy = VT.getVectorElementType();
1568 
1569   unsigned NumVectorRegs = 1;
1570 
1571   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1572   // could break down into LHS/RHS like LegalizeDAG does.
1573   if (!isPowerOf2_32(NumElts)) {
1574     NumVectorRegs = NumElts;
1575     NumElts = 1;
1576   }
1577 
1578   // Divide the input until we get to a supported size.  This will always
1579   // end with a scalar if the target doesn't support vectors.
1580   while (NumElts > 1 && !isTypeLegal(
1581                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
1582     NumElts >>= 1;
1583     NumVectorRegs <<= 1;
1584   }
1585 
1586   NumIntermediates = NumVectorRegs;
1587 
1588   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1589   if (!isTypeLegal(NewVT))
1590     NewVT = EltTy;
1591   IntermediateVT = NewVT;
1592 
1593   MVT DestVT = getRegisterType(Context, NewVT);
1594   RegisterVT = DestVT;
1595   unsigned NewVTSize = NewVT.getSizeInBits();
1596 
1597   // Convert sizes such as i33 to i64.
1598   if (!isPowerOf2_32(NewVTSize))
1599     NewVTSize = NextPowerOf2(NewVTSize);
1600 
1601   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1602     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1603 
1604   // Otherwise, promotion or legal types use the same number of registers as
1605   // the vector decimated to the appropriate level.
1606   return NumVectorRegs;
1607 }
1608 
1609 /// Get the EVTs and ArgFlags collections that represent the legalized return
1610 /// type of the given function.  This does not require a DAG or a return value,
1611 /// and is suitable for use before any DAGs for the function are constructed.
1612 /// TODO: Move this out of TargetLowering.cpp.
1613 void llvm::GetReturnInfo(Type *ReturnType, AttributeList attr,
1614                          SmallVectorImpl<ISD::OutputArg> &Outs,
1615                          const TargetLowering &TLI, const DataLayout &DL) {
1616   SmallVector<EVT, 4> ValueVTs;
1617   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1618   unsigned NumValues = ValueVTs.size();
1619   if (NumValues == 0) return;
1620 
1621   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1622     EVT VT = ValueVTs[j];
1623     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1624 
1625     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1626       ExtendKind = ISD::SIGN_EXTEND;
1627     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1628       ExtendKind = ISD::ZERO_EXTEND;
1629 
1630     // FIXME: C calling convention requires the return type to be promoted to
1631     // at least 32-bit. But this is not necessary for non-C calling
1632     // conventions. The frontend should mark functions whose return values
1633     // require promoting with signext or zeroext attributes.
1634     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1635       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1636       if (VT.bitsLT(MinVT))
1637         VT = MinVT;
1638     }
1639 
1640     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1641     MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1642 
1643     // 'inreg' on function refers to return value
1644     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1645     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
1646       Flags.setInReg();
1647 
1648     // Propagate extension type if any
1649     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1650       Flags.setSExt();
1651     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1652       Flags.setZExt();
1653 
1654     for (unsigned i = 0; i < NumParts; ++i)
1655       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
1656   }
1657 }
1658 
1659 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1660 /// function arguments in the caller parameter area.  This is the actual
1661 /// alignment, not its logarithm.
1662 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1663                                                    const DataLayout &DL) const {
1664   return DL.getABITypeAlignment(Ty);
1665 }
1666 
1667 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1668                                             const DataLayout &DL, EVT VT,
1669                                             unsigned AddrSpace,
1670                                             unsigned Alignment,
1671                                             bool *Fast) const {
1672   // Check if the specified alignment is sufficient based on the data layout.
1673   // TODO: While using the data layout works in practice, a better solution
1674   // would be to implement this check directly (make this a virtual function).
1675   // For example, the ABI alignment may change based on software platform while
1676   // this function should only be affected by hardware implementation.
1677   Type *Ty = VT.getTypeForEVT(Context);
1678   if (Alignment >= DL.getABITypeAlignment(Ty)) {
1679     // Assume that an access that meets the ABI-specified alignment is fast.
1680     if (Fast != nullptr)
1681       *Fast = true;
1682     return true;
1683   }
1684 
1685   // This is a misaligned access.
1686   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Fast);
1687 }
1688 
1689 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
1690   return BranchProbability(MinPercentageForPredictableBranch, 100);
1691 }
1692 
1693 //===----------------------------------------------------------------------===//
1694 //  TargetTransformInfo Helpers
1695 //===----------------------------------------------------------------------===//
1696 
1697 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1698   enum InstructionOpcodes {
1699 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1700 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1701 #include "llvm/IR/Instruction.def"
1702   };
1703   switch (static_cast<InstructionOpcodes>(Opcode)) {
1704   case Ret:            return 0;
1705   case Br:             return 0;
1706   case Switch:         return 0;
1707   case IndirectBr:     return 0;
1708   case Invoke:         return 0;
1709   case Resume:         return 0;
1710   case Unreachable:    return 0;
1711   case CleanupRet:     return 0;
1712   case CatchRet:       return 0;
1713   case CatchPad:       return 0;
1714   case CatchSwitch:    return 0;
1715   case CleanupPad:     return 0;
1716   case Add:            return ISD::ADD;
1717   case FAdd:           return ISD::FADD;
1718   case Sub:            return ISD::SUB;
1719   case FSub:           return ISD::FSUB;
1720   case Mul:            return ISD::MUL;
1721   case FMul:           return ISD::FMUL;
1722   case UDiv:           return ISD::UDIV;
1723   case SDiv:           return ISD::SDIV;
1724   case FDiv:           return ISD::FDIV;
1725   case URem:           return ISD::UREM;
1726   case SRem:           return ISD::SREM;
1727   case FRem:           return ISD::FREM;
1728   case Shl:            return ISD::SHL;
1729   case LShr:           return ISD::SRL;
1730   case AShr:           return ISD::SRA;
1731   case And:            return ISD::AND;
1732   case Or:             return ISD::OR;
1733   case Xor:            return ISD::XOR;
1734   case Alloca:         return 0;
1735   case Load:           return ISD::LOAD;
1736   case Store:          return ISD::STORE;
1737   case GetElementPtr:  return 0;
1738   case Fence:          return 0;
1739   case AtomicCmpXchg:  return 0;
1740   case AtomicRMW:      return 0;
1741   case Trunc:          return ISD::TRUNCATE;
1742   case ZExt:           return ISD::ZERO_EXTEND;
1743   case SExt:           return ISD::SIGN_EXTEND;
1744   case FPToUI:         return ISD::FP_TO_UINT;
1745   case FPToSI:         return ISD::FP_TO_SINT;
1746   case UIToFP:         return ISD::UINT_TO_FP;
1747   case SIToFP:         return ISD::SINT_TO_FP;
1748   case FPTrunc:        return ISD::FP_ROUND;
1749   case FPExt:          return ISD::FP_EXTEND;
1750   case PtrToInt:       return ISD::BITCAST;
1751   case IntToPtr:       return ISD::BITCAST;
1752   case BitCast:        return ISD::BITCAST;
1753   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1754   case ICmp:           return ISD::SETCC;
1755   case FCmp:           return ISD::SETCC;
1756   case PHI:            return 0;
1757   case Call:           return 0;
1758   case Select:         return ISD::SELECT;
1759   case UserOp1:        return 0;
1760   case UserOp2:        return 0;
1761   case VAArg:          return 0;
1762   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1763   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1764   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1765   case ExtractValue:   return ISD::MERGE_VALUES;
1766   case InsertValue:    return ISD::MERGE_VALUES;
1767   case LandingPad:     return 0;
1768   }
1769 
1770   llvm_unreachable("Unknown instruction type encountered!");
1771 }
1772 
1773 std::pair<int, MVT>
1774 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1775                                             Type *Ty) const {
1776   LLVMContext &C = Ty->getContext();
1777   EVT MTy = getValueType(DL, Ty);
1778 
1779   int Cost = 1;
1780   // We keep legalizing the type until we find a legal kind. We assume that
1781   // the only operation that costs anything is the split. After splitting
1782   // we need to handle two types.
1783   while (true) {
1784     LegalizeKind LK = getTypeConversion(C, MTy);
1785 
1786     if (LK.first == TypeLegal)
1787       return std::make_pair(Cost, MTy.getSimpleVT());
1788 
1789     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1790       Cost *= 2;
1791 
1792     // Do not loop with f128 type.
1793     if (MTy == LK.second)
1794       return std::make_pair(Cost, MTy.getSimpleVT());
1795 
1796     // Keep legalizing the type.
1797     MTy = LK.second;
1798   }
1799 }
1800 
1801 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1802                                                               bool UseTLS) const {
1803   // compiler-rt provides a variable with a magic name.  Targets that do not
1804   // link with compiler-rt may also provide such a variable.
1805   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1806   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1807   auto UnsafeStackPtr =
1808       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1809 
1810   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1811 
1812   if (!UnsafeStackPtr) {
1813     auto TLSModel = UseTLS ?
1814         GlobalValue::InitialExecTLSModel :
1815         GlobalValue::NotThreadLocal;
1816     // The global variable is not defined yet, define it ourselves.
1817     // We use the initial-exec TLS model because we do not support the
1818     // variable living anywhere other than in the main executable.
1819     UnsafeStackPtr = new GlobalVariable(
1820         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1821         UnsafeStackPtrVar, nullptr, TLSModel);
1822   } else {
1823     // The variable exists, check its type and attributes.
1824     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1825       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1826     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1827       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1828                          (UseTLS ? "" : "not ") + "be thread-local");
1829   }
1830   return UnsafeStackPtr;
1831 }
1832 
1833 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1834   if (!TM.getTargetTriple().isAndroid())
1835     return getDefaultSafeStackPointerLocation(IRB, true);
1836 
1837   // Android provides a libc function to retrieve the address of the current
1838   // thread's unsafe stack pointer.
1839   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1840   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1841   Value *Fn = M->getOrInsertFunction("__safestack_pointer_address",
1842                                      StackPtrTy->getPointerTo(0));
1843   return IRB.CreateCall(Fn);
1844 }
1845 
1846 //===----------------------------------------------------------------------===//
1847 //  Loop Strength Reduction hooks
1848 //===----------------------------------------------------------------------===//
1849 
1850 /// isLegalAddressingMode - Return true if the addressing mode represented
1851 /// by AM is legal for this target, for a load/store of the specified type.
1852 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1853                                                const AddrMode &AM, Type *Ty,
1854                                                unsigned AS) const {
1855   // The default implementation of this implements a conservative RISCy, r+r and
1856   // r+i addr mode.
1857 
1858   // Allows a sign-extended 16-bit immediate field.
1859   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1860     return false;
1861 
1862   // No global is ever allowed as a base.
1863   if (AM.BaseGV)
1864     return false;
1865 
1866   // Only support r+r,
1867   switch (AM.Scale) {
1868   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1869     break;
1870   case 1:
1871     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1872       return false;
1873     // Otherwise we have r+r or r+i.
1874     break;
1875   case 2:
1876     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1877       return false;
1878     // Allow 2*r as r+r.
1879     break;
1880   default: // Don't allow n * r
1881     return false;
1882   }
1883 
1884   return true;
1885 }
1886 
1887 //===----------------------------------------------------------------------===//
1888 //  Stack Protector
1889 //===----------------------------------------------------------------------===//
1890 
1891 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1892 // so that SelectionDAG handle SSP.
1893 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
1894   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1895     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1896     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1897     return M.getOrInsertGlobal("__guard_local", PtrTy);
1898   }
1899   return nullptr;
1900 }
1901 
1902 // Currently only support "standard" __stack_chk_guard.
1903 // TODO: add LOAD_STACK_GUARD support.
1904 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1905   M.getOrInsertGlobal("__stack_chk_guard", Type::getInt8PtrTy(M.getContext()));
1906 }
1907 
1908 // Currently only support "standard" __stack_chk_guard.
1909 // TODO: add LOAD_STACK_GUARD support.
1910 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1911   return M.getGlobalVariable("__stack_chk_guard", true);
1912 }
1913 
1914 Value *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1915   return nullptr;
1916 }
1917 
1918 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1919   return MinimumJumpTableEntries;
1920 }
1921 
1922 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1923   MinimumJumpTableEntries = Val;
1924 }
1925 
1926 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
1927   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
1928 }
1929 
1930 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
1931   return MaximumJumpTableSize;
1932 }
1933 
1934 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
1935   MaximumJumpTableSize = Val;
1936 }
1937 
1938 //===----------------------------------------------------------------------===//
1939 //  Reciprocal Estimates
1940 //===----------------------------------------------------------------------===//
1941 
1942 /// Get the reciprocal estimate attribute string for a function that will
1943 /// override the target defaults.
1944 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
1945   const Function *F = MF.getFunction();
1946   return F->getFnAttribute("reciprocal-estimates").getValueAsString();
1947 }
1948 
1949 /// Construct a string for the given reciprocal operation of the given type.
1950 /// This string should match the corresponding option to the front-end's
1951 /// "-mrecip" flag assuming those strings have been passed through in an
1952 /// attribute string. For example, "vec-divf" for a division of a vXf32.
1953 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
1954   std::string Name = VT.isVector() ? "vec-" : "";
1955 
1956   Name += IsSqrt ? "sqrt" : "div";
1957 
1958   // TODO: Handle "half" or other float types?
1959   if (VT.getScalarType() == MVT::f64) {
1960     Name += "d";
1961   } else {
1962     assert(VT.getScalarType() == MVT::f32 &&
1963            "Unexpected FP type for reciprocal estimate");
1964     Name += "f";
1965   }
1966 
1967   return Name;
1968 }
1969 
1970 /// Return the character position and value (a single numeric character) of a
1971 /// customized refinement operation in the input string if it exists. Return
1972 /// false if there is no customized refinement step count.
1973 static bool parseRefinementStep(StringRef In, size_t &Position,
1974                                 uint8_t &Value) {
1975   const char RefStepToken = ':';
1976   Position = In.find(RefStepToken);
1977   if (Position == StringRef::npos)
1978     return false;
1979 
1980   StringRef RefStepString = In.substr(Position + 1);
1981   // Allow exactly one numeric character for the additional refinement
1982   // step parameter.
1983   if (RefStepString.size() == 1) {
1984     char RefStepChar = RefStepString[0];
1985     if (RefStepChar >= '0' && RefStepChar <= '9') {
1986       Value = RefStepChar - '0';
1987       return true;
1988     }
1989   }
1990   report_fatal_error("Invalid refinement step for -recip.");
1991 }
1992 
1993 /// For the input attribute string, return one of the ReciprocalEstimate enum
1994 /// status values (enabled, disabled, or not specified) for this operation on
1995 /// the specified data type.
1996 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
1997   if (Override.empty())
1998     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1999 
2000   SmallVector<StringRef, 4> OverrideVector;
2001   SplitString(Override, OverrideVector, ",");
2002   unsigned NumArgs = OverrideVector.size();
2003 
2004   // Check if "all", "none", or "default" was specified.
2005   if (NumArgs == 1) {
2006     // Look for an optional setting of the number of refinement steps needed
2007     // for this type of reciprocal operation.
2008     size_t RefPos;
2009     uint8_t RefSteps;
2010     if (parseRefinementStep(Override, RefPos, RefSteps)) {
2011       // Split the string for further processing.
2012       Override = Override.substr(0, RefPos);
2013     }
2014 
2015     // All reciprocal types are enabled.
2016     if (Override == "all")
2017       return TargetLoweringBase::ReciprocalEstimate::Enabled;
2018 
2019     // All reciprocal types are disabled.
2020     if (Override == "none")
2021       return TargetLoweringBase::ReciprocalEstimate::Disabled;
2022 
2023     // Target defaults for enablement are used.
2024     if (Override == "default")
2025       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2026   }
2027 
2028   // The attribute string may omit the size suffix ('f'/'d').
2029   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2030   std::string VTNameNoSize = VTName;
2031   VTNameNoSize.pop_back();
2032   static const char DisabledPrefix = '!';
2033 
2034   for (StringRef RecipType : OverrideVector) {
2035     size_t RefPos;
2036     uint8_t RefSteps;
2037     if (parseRefinementStep(RecipType, RefPos, RefSteps))
2038       RecipType = RecipType.substr(0, RefPos);
2039 
2040     // Ignore the disablement token for string matching.
2041     bool IsDisabled = RecipType[0] == DisabledPrefix;
2042     if (IsDisabled)
2043       RecipType = RecipType.substr(1);
2044 
2045     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2046       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
2047                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
2048   }
2049 
2050   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2051 }
2052 
2053 /// For the input attribute string, return the customized refinement step count
2054 /// for this operation on the specified data type. If the step count does not
2055 /// exist, return the ReciprocalEstimate enum value for unspecified.
2056 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2057   if (Override.empty())
2058     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2059 
2060   SmallVector<StringRef, 4> OverrideVector;
2061   SplitString(Override, OverrideVector, ",");
2062   unsigned NumArgs = OverrideVector.size();
2063 
2064   // Check if "all", "default", or "none" was specified.
2065   if (NumArgs == 1) {
2066     // Look for an optional setting of the number of refinement steps needed
2067     // for this type of reciprocal operation.
2068     size_t RefPos;
2069     uint8_t RefSteps;
2070     if (!parseRefinementStep(Override, RefPos, RefSteps))
2071       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2072 
2073     // Split the string for further processing.
2074     Override = Override.substr(0, RefPos);
2075     assert(Override != "none" &&
2076            "Disabled reciprocals, but specifed refinement steps?");
2077 
2078     // If this is a general override, return the specified number of steps.
2079     if (Override == "all" || Override == "default")
2080       return RefSteps;
2081   }
2082 
2083   // The attribute string may omit the size suffix ('f'/'d').
2084   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2085   std::string VTNameNoSize = VTName;
2086   VTNameNoSize.pop_back();
2087 
2088   for (StringRef RecipType : OverrideVector) {
2089     size_t RefPos;
2090     uint8_t RefSteps;
2091     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2092       continue;
2093 
2094     RecipType = RecipType.substr(0, RefPos);
2095     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2096       return RefSteps;
2097   }
2098 
2099   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2100 }
2101 
2102 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
2103                                                     MachineFunction &MF) const {
2104   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
2105 }
2106 
2107 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
2108                                                    MachineFunction &MF) const {
2109   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
2110 }
2111 
2112 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2113                                                MachineFunction &MF) const {
2114   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2115 }
2116 
2117 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2118                                               MachineFunction &MF) const {
2119   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2120 }
2121 
2122 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2123   MF.getRegInfo().freezeReservedRegs(MF);
2124 }
2125