1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/TargetInstrInfo.h" 15 #include "llvm/CodeGen/MachineFrameInfo.h" 16 #include "llvm/CodeGen/MachineInstrBuilder.h" 17 #include "llvm/CodeGen/MachineMemOperand.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 #include "llvm/CodeGen/PseudoSourceValue.h" 20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 21 #include "llvm/CodeGen/StackMaps.h" 22 #include "llvm/CodeGen/TargetFrameLowering.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetRegisterInfo.h" 25 #include "llvm/CodeGen/TargetSchedule.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCInstrItineraries.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include <cctype> 34 35 using namespace llvm; 36 37 static cl::opt<bool> DisableHazardRecognizer( 38 "disable-sched-hazard", cl::Hidden, cl::init(false), 39 cl::desc("Disable hazard detection during preRA scheduling")); 40 41 TargetInstrInfo::~TargetInstrInfo() { 42 } 43 44 const TargetRegisterClass* 45 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, 46 const TargetRegisterInfo *TRI, 47 const MachineFunction &MF) const { 48 if (OpNum >= MCID.getNumOperands()) 49 return nullptr; 50 51 short RegClass = MCID.OpInfo[OpNum].RegClass; 52 if (MCID.OpInfo[OpNum].isLookupPtrRegClass()) 53 return TRI->getPointerRegClass(MF, RegClass); 54 55 // Instructions like INSERT_SUBREG do not have fixed register classes. 56 if (RegClass < 0) 57 return nullptr; 58 59 // Otherwise just look it up normally. 60 return TRI->getRegClass(RegClass); 61 } 62 63 /// insertNoop - Insert a noop into the instruction stream at the specified 64 /// point. 65 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, 66 MachineBasicBlock::iterator MI) const { 67 llvm_unreachable("Target didn't implement insertNoop!"); 68 } 69 70 static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) { 71 return strncmp(Str, MAI.getCommentString().data(), 72 MAI.getCommentString().size()) == 0; 73 } 74 75 /// Measure the specified inline asm to determine an approximation of its 76 /// length. 77 /// Comments (which run till the next SeparatorString or newline) do not 78 /// count as an instruction. 79 /// Any other non-whitespace text is considered an instruction, with 80 /// multiple instructions separated by SeparatorString or newlines. 81 /// Variable-length instructions are not handled here; this function 82 /// may be overloaded in the target code to do that. 83 /// We implement a special case of the .space directive which takes only a 84 /// single integer argument in base 10 that is the size in bytes. This is a 85 /// restricted form of the GAS directive in that we only interpret 86 /// simple--i.e. not a logical or arithmetic expression--size values without 87 /// the optional fill value. This is primarily used for creating arbitrary 88 /// sized inline asm blocks for testing purposes. 89 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str, 90 const MCAsmInfo &MAI) const { 91 // Count the number of instructions in the asm. 92 bool AtInsnStart = true; 93 unsigned Length = 0; 94 for (; *Str; ++Str) { 95 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), 96 strlen(MAI.getSeparatorString())) == 0) { 97 AtInsnStart = true; 98 } else if (isAsmComment(Str, MAI)) { 99 // Stop counting as an instruction after a comment until the next 100 // separator. 101 AtInsnStart = false; 102 } 103 104 if (AtInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) { 105 unsigned AddLength = MAI.getMaxInstLength(); 106 if (strncmp(Str, ".space", 6) == 0) { 107 char *EStr; 108 int SpaceSize; 109 SpaceSize = strtol(Str + 6, &EStr, 10); 110 SpaceSize = SpaceSize < 0 ? 0 : SpaceSize; 111 while (*EStr != '\n' && std::isspace(static_cast<unsigned char>(*EStr))) 112 ++EStr; 113 if (*EStr == '\0' || *EStr == '\n' || 114 isAsmComment(EStr, MAI)) // Successfully parsed .space argument 115 AddLength = SpaceSize; 116 } 117 Length += AddLength; 118 AtInsnStart = false; 119 } 120 } 121 122 return Length; 123 } 124 125 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything 126 /// after it, replacing it with an unconditional branch to NewDest. 127 void 128 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, 129 MachineBasicBlock *NewDest) const { 130 MachineBasicBlock *MBB = Tail->getParent(); 131 132 // Remove all the old successors of MBB from the CFG. 133 while (!MBB->succ_empty()) 134 MBB->removeSuccessor(MBB->succ_begin()); 135 136 // Save off the debug loc before erasing the instruction. 137 DebugLoc DL = Tail->getDebugLoc(); 138 139 // Remove all the dead instructions from the end of MBB. 140 MBB->erase(Tail, MBB->end()); 141 142 // If MBB isn't immediately before MBB, insert a branch to it. 143 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) 144 insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL); 145 MBB->addSuccessor(NewDest); 146 } 147 148 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI, 149 bool NewMI, unsigned Idx1, 150 unsigned Idx2) const { 151 const MCInstrDesc &MCID = MI.getDesc(); 152 bool HasDef = MCID.getNumDefs(); 153 if (HasDef && !MI.getOperand(0).isReg()) 154 // No idea how to commute this instruction. Target should implement its own. 155 return nullptr; 156 157 unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1; 158 unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2; 159 assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) && 160 CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 && 161 "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands."); 162 assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() && 163 "This only knows how to commute register operands so far"); 164 165 unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0; 166 unsigned Reg1 = MI.getOperand(Idx1).getReg(); 167 unsigned Reg2 = MI.getOperand(Idx2).getReg(); 168 unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0; 169 unsigned SubReg1 = MI.getOperand(Idx1).getSubReg(); 170 unsigned SubReg2 = MI.getOperand(Idx2).getSubReg(); 171 bool Reg1IsKill = MI.getOperand(Idx1).isKill(); 172 bool Reg2IsKill = MI.getOperand(Idx2).isKill(); 173 bool Reg1IsUndef = MI.getOperand(Idx1).isUndef(); 174 bool Reg2IsUndef = MI.getOperand(Idx2).isUndef(); 175 bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead(); 176 bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead(); 177 // Avoid calling isRenamable for virtual registers since we assert that 178 // renamable property is only queried/set for physical registers. 179 bool Reg1IsRenamable = TargetRegisterInfo::isPhysicalRegister(Reg1) 180 ? MI.getOperand(Idx1).isRenamable() 181 : false; 182 bool Reg2IsRenamable = TargetRegisterInfo::isPhysicalRegister(Reg2) 183 ? MI.getOperand(Idx2).isRenamable() 184 : false; 185 // If destination is tied to either of the commuted source register, then 186 // it must be updated. 187 if (HasDef && Reg0 == Reg1 && 188 MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { 189 Reg2IsKill = false; 190 Reg0 = Reg2; 191 SubReg0 = SubReg2; 192 } else if (HasDef && Reg0 == Reg2 && 193 MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { 194 Reg1IsKill = false; 195 Reg0 = Reg1; 196 SubReg0 = SubReg1; 197 } 198 199 MachineInstr *CommutedMI = nullptr; 200 if (NewMI) { 201 // Create a new instruction. 202 MachineFunction &MF = *MI.getMF(); 203 CommutedMI = MF.CloneMachineInstr(&MI); 204 } else { 205 CommutedMI = &MI; 206 } 207 208 if (HasDef) { 209 CommutedMI->getOperand(0).setReg(Reg0); 210 CommutedMI->getOperand(0).setSubReg(SubReg0); 211 } 212 CommutedMI->getOperand(Idx2).setReg(Reg1); 213 CommutedMI->getOperand(Idx1).setReg(Reg2); 214 CommutedMI->getOperand(Idx2).setSubReg(SubReg1); 215 CommutedMI->getOperand(Idx1).setSubReg(SubReg2); 216 CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill); 217 CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill); 218 CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef); 219 CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef); 220 CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal); 221 CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal); 222 // Avoid calling setIsRenamable for virtual registers since we assert that 223 // renamable property is only queried/set for physical registers. 224 if (TargetRegisterInfo::isPhysicalRegister(Reg1)) 225 CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable); 226 if (TargetRegisterInfo::isPhysicalRegister(Reg2)) 227 CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable); 228 return CommutedMI; 229 } 230 231 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI, 232 unsigned OpIdx1, 233 unsigned OpIdx2) const { 234 // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose 235 // any commutable operand, which is done in findCommutedOpIndices() method 236 // called below. 237 if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) && 238 !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) { 239 assert(MI.isCommutable() && 240 "Precondition violation: MI must be commutable."); 241 return nullptr; 242 } 243 return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 244 } 245 246 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1, 247 unsigned &ResultIdx2, 248 unsigned CommutableOpIdx1, 249 unsigned CommutableOpIdx2) { 250 if (ResultIdx1 == CommuteAnyOperandIndex && 251 ResultIdx2 == CommuteAnyOperandIndex) { 252 ResultIdx1 = CommutableOpIdx1; 253 ResultIdx2 = CommutableOpIdx2; 254 } else if (ResultIdx1 == CommuteAnyOperandIndex) { 255 if (ResultIdx2 == CommutableOpIdx1) 256 ResultIdx1 = CommutableOpIdx2; 257 else if (ResultIdx2 == CommutableOpIdx2) 258 ResultIdx1 = CommutableOpIdx1; 259 else 260 return false; 261 } else if (ResultIdx2 == CommuteAnyOperandIndex) { 262 if (ResultIdx1 == CommutableOpIdx1) 263 ResultIdx2 = CommutableOpIdx2; 264 else if (ResultIdx1 == CommutableOpIdx2) 265 ResultIdx2 = CommutableOpIdx1; 266 else 267 return false; 268 } else 269 // Check that the result operand indices match the given commutable 270 // operand indices. 271 return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) || 272 (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1); 273 274 return true; 275 } 276 277 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr &MI, 278 unsigned &SrcOpIdx1, 279 unsigned &SrcOpIdx2) const { 280 assert(!MI.isBundle() && 281 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); 282 283 const MCInstrDesc &MCID = MI.getDesc(); 284 if (!MCID.isCommutable()) 285 return false; 286 287 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this 288 // is not true, then the target must implement this. 289 unsigned CommutableOpIdx1 = MCID.getNumDefs(); 290 unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1; 291 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 292 CommutableOpIdx1, CommutableOpIdx2)) 293 return false; 294 295 if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) 296 // No idea. 297 return false; 298 return true; 299 } 300 301 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 302 if (!MI.isTerminator()) return false; 303 304 // Conditional branch is a special case. 305 if (MI.isBranch() && !MI.isBarrier()) 306 return true; 307 if (!MI.isPredicable()) 308 return true; 309 return !isPredicated(MI); 310 } 311 312 bool TargetInstrInfo::PredicateInstruction( 313 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 314 bool MadeChange = false; 315 316 assert(!MI.isBundle() && 317 "TargetInstrInfo::PredicateInstruction() can't handle bundles"); 318 319 const MCInstrDesc &MCID = MI.getDesc(); 320 if (!MI.isPredicable()) 321 return false; 322 323 for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) { 324 if (MCID.OpInfo[i].isPredicate()) { 325 MachineOperand &MO = MI.getOperand(i); 326 if (MO.isReg()) { 327 MO.setReg(Pred[j].getReg()); 328 MadeChange = true; 329 } else if (MO.isImm()) { 330 MO.setImm(Pred[j].getImm()); 331 MadeChange = true; 332 } else if (MO.isMBB()) { 333 MO.setMBB(Pred[j].getMBB()); 334 MadeChange = true; 335 } 336 ++j; 337 } 338 } 339 return MadeChange; 340 } 341 342 bool TargetInstrInfo::hasLoadFromStackSlot( 343 const MachineInstr &MI, 344 SmallVectorImpl<const MachineMemOperand *> &Accesses) const { 345 size_t StartSize = Accesses.size(); 346 for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), 347 oe = MI.memoperands_end(); 348 o != oe; ++o) { 349 if ((*o)->isLoad() && 350 dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) 351 Accesses.push_back(*o); 352 } 353 return Accesses.size() != StartSize; 354 } 355 356 bool TargetInstrInfo::hasStoreToStackSlot( 357 const MachineInstr &MI, 358 SmallVectorImpl<const MachineMemOperand *> &Accesses) const { 359 size_t StartSize = Accesses.size(); 360 for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), 361 oe = MI.memoperands_end(); 362 o != oe; ++o) { 363 if ((*o)->isStore() && 364 dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) 365 Accesses.push_back(*o); 366 } 367 return Accesses.size() != StartSize; 368 } 369 370 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC, 371 unsigned SubIdx, unsigned &Size, 372 unsigned &Offset, 373 const MachineFunction &MF) const { 374 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 375 if (!SubIdx) { 376 Size = TRI->getSpillSize(*RC); 377 Offset = 0; 378 return true; 379 } 380 unsigned BitSize = TRI->getSubRegIdxSize(SubIdx); 381 // Convert bit size to byte size. 382 if (BitSize % 8) 383 return false; 384 385 int BitOffset = TRI->getSubRegIdxOffset(SubIdx); 386 if (BitOffset < 0 || BitOffset % 8) 387 return false; 388 389 Size = BitSize /= 8; 390 Offset = (unsigned)BitOffset / 8; 391 392 assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range"); 393 394 if (!MF.getDataLayout().isLittleEndian()) { 395 Offset = TRI->getSpillSize(*RC) - (Offset + Size); 396 } 397 return true; 398 } 399 400 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, 401 MachineBasicBlock::iterator I, 402 unsigned DestReg, unsigned SubIdx, 403 const MachineInstr &Orig, 404 const TargetRegisterInfo &TRI) const { 405 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 406 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); 407 MBB.insert(I, MI); 408 } 409 410 bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0, 411 const MachineInstr &MI1, 412 const MachineRegisterInfo *MRI) const { 413 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 414 } 415 416 MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB, 417 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const { 418 assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated"); 419 MachineFunction &MF = *MBB.getParent(); 420 return MF.CloneMachineInstrBundle(MBB, InsertBefore, Orig); 421 } 422 423 // If the COPY instruction in MI can be folded to a stack operation, return 424 // the register class to use. 425 static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI, 426 unsigned FoldIdx) { 427 assert(MI.isCopy() && "MI must be a COPY instruction"); 428 if (MI.getNumOperands() != 2) 429 return nullptr; 430 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); 431 432 const MachineOperand &FoldOp = MI.getOperand(FoldIdx); 433 const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx); 434 435 if (FoldOp.getSubReg() || LiveOp.getSubReg()) 436 return nullptr; 437 438 unsigned FoldReg = FoldOp.getReg(); 439 unsigned LiveReg = LiveOp.getReg(); 440 441 assert(TargetRegisterInfo::isVirtualRegister(FoldReg) && 442 "Cannot fold physregs"); 443 444 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 445 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); 446 447 if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg())) 448 return RC->contains(LiveOp.getReg()) ? RC : nullptr; 449 450 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) 451 return RC; 452 453 // FIXME: Allow folding when register classes are memory compatible. 454 return nullptr; 455 } 456 457 void TargetInstrInfo::getNoop(MCInst &NopInst) const { 458 llvm_unreachable("Not implemented"); 459 } 460 461 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI, 462 ArrayRef<unsigned> Ops, int FrameIndex, 463 const TargetInstrInfo &TII) { 464 unsigned StartIdx = 0; 465 switch (MI.getOpcode()) { 466 case TargetOpcode::STACKMAP: { 467 // StackMapLiveValues are foldable 468 StartIdx = StackMapOpers(&MI).getVarIdx(); 469 break; 470 } 471 case TargetOpcode::PATCHPOINT: { 472 // For PatchPoint, the call args are not foldable (even if reported in the 473 // stackmap e.g. via anyregcc). 474 StartIdx = PatchPointOpers(&MI).getVarIdx(); 475 break; 476 } 477 case TargetOpcode::STATEPOINT: { 478 // For statepoints, fold deopt and gc arguments, but not call arguments. 479 StartIdx = StatepointOpers(&MI).getVarIdx(); 480 break; 481 } 482 default: 483 llvm_unreachable("unexpected stackmap opcode"); 484 } 485 486 // Return false if any operands requested for folding are not foldable (not 487 // part of the stackmap's live values). 488 for (unsigned Op : Ops) { 489 if (Op < StartIdx) 490 return nullptr; 491 } 492 493 MachineInstr *NewMI = 494 MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true); 495 MachineInstrBuilder MIB(MF, NewMI); 496 497 // No need to fold return, the meta data, and function arguments 498 for (unsigned i = 0; i < StartIdx; ++i) 499 MIB.add(MI.getOperand(i)); 500 501 for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) { 502 MachineOperand &MO = MI.getOperand(i); 503 if (is_contained(Ops, i)) { 504 unsigned SpillSize; 505 unsigned SpillOffset; 506 // Compute the spill slot size and offset. 507 const TargetRegisterClass *RC = 508 MF.getRegInfo().getRegClass(MO.getReg()); 509 bool Valid = 510 TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF); 511 if (!Valid) 512 report_fatal_error("cannot spill patchpoint subregister operand"); 513 MIB.addImm(StackMaps::IndirectMemRefOp); 514 MIB.addImm(SpillSize); 515 MIB.addFrameIndex(FrameIndex); 516 MIB.addImm(SpillOffset); 517 } 518 else 519 MIB.add(MO); 520 } 521 return NewMI; 522 } 523 524 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, 525 ArrayRef<unsigned> Ops, int FI, 526 LiveIntervals *LIS) const { 527 auto Flags = MachineMemOperand::MONone; 528 for (unsigned OpIdx : Ops) 529 Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore 530 : MachineMemOperand::MOLoad; 531 532 MachineBasicBlock *MBB = MI.getParent(); 533 assert(MBB && "foldMemoryOperand needs an inserted instruction"); 534 MachineFunction &MF = *MBB->getParent(); 535 536 // If we're not folding a load into a subreg, the size of the load is the 537 // size of the spill slot. But if we are, we need to figure out what the 538 // actual load size is. 539 int64_t MemSize = 0; 540 const MachineFrameInfo &MFI = MF.getFrameInfo(); 541 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 542 543 if (Flags & MachineMemOperand::MOStore) { 544 MemSize = MFI.getObjectSize(FI); 545 } else { 546 for (unsigned OpIdx : Ops) { 547 int64_t OpSize = MFI.getObjectSize(FI); 548 549 if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) { 550 unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg); 551 if (SubRegSize > 0 && !(SubRegSize % 8)) 552 OpSize = SubRegSize / 8; 553 } 554 555 MemSize = std::max(MemSize, OpSize); 556 } 557 } 558 559 assert(MemSize && "Did not expect a zero-sized stack slot"); 560 561 MachineInstr *NewMI = nullptr; 562 563 if (MI.getOpcode() == TargetOpcode::STACKMAP || 564 MI.getOpcode() == TargetOpcode::PATCHPOINT || 565 MI.getOpcode() == TargetOpcode::STATEPOINT) { 566 // Fold stackmap/patchpoint. 567 NewMI = foldPatchpoint(MF, MI, Ops, FI, *this); 568 if (NewMI) 569 MBB->insert(MI, NewMI); 570 } else { 571 // Ask the target to do the actual folding. 572 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS); 573 } 574 575 if (NewMI) { 576 NewMI->setMemRefs(MF, MI.memoperands()); 577 // Add a memory operand, foldMemoryOperandImpl doesn't do that. 578 assert((!(Flags & MachineMemOperand::MOStore) || 579 NewMI->mayStore()) && 580 "Folded a def to a non-store!"); 581 assert((!(Flags & MachineMemOperand::MOLoad) || 582 NewMI->mayLoad()) && 583 "Folded a use to a non-load!"); 584 assert(MFI.getObjectOffset(FI) != -1); 585 MachineMemOperand *MMO = MF.getMachineMemOperand( 586 MachinePointerInfo::getFixedStack(MF, FI), Flags, MemSize, 587 MFI.getObjectAlignment(FI)); 588 NewMI->addMemOperand(MF, MMO); 589 590 return NewMI; 591 } 592 593 // Straight COPY may fold as load/store. 594 if (!MI.isCopy() || Ops.size() != 1) 595 return nullptr; 596 597 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); 598 if (!RC) 599 return nullptr; 600 601 const MachineOperand &MO = MI.getOperand(1 - Ops[0]); 602 MachineBasicBlock::iterator Pos = MI; 603 604 if (Flags == MachineMemOperand::MOStore) 605 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); 606 else 607 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); 608 return &*--Pos; 609 } 610 611 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, 612 ArrayRef<unsigned> Ops, 613 MachineInstr &LoadMI, 614 LiveIntervals *LIS) const { 615 assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!"); 616 #ifndef NDEBUG 617 for (unsigned OpIdx : Ops) 618 assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!"); 619 #endif 620 621 MachineBasicBlock &MBB = *MI.getParent(); 622 MachineFunction &MF = *MBB.getParent(); 623 624 // Ask the target to do the actual folding. 625 MachineInstr *NewMI = nullptr; 626 int FrameIndex = 0; 627 628 if ((MI.getOpcode() == TargetOpcode::STACKMAP || 629 MI.getOpcode() == TargetOpcode::PATCHPOINT || 630 MI.getOpcode() == TargetOpcode::STATEPOINT) && 631 isLoadFromStackSlot(LoadMI, FrameIndex)) { 632 // Fold stackmap/patchpoint. 633 NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this); 634 if (NewMI) 635 NewMI = &*MBB.insert(MI, NewMI); 636 } else { 637 // Ask the target to do the actual folding. 638 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS); 639 } 640 641 if (!NewMI) 642 return nullptr; 643 644 // Copy the memoperands from the load to the folded instruction. 645 if (MI.memoperands_empty()) { 646 NewMI->setMemRefs(MF, LoadMI.memoperands()); 647 } else { 648 // Handle the rare case of folding multiple loads. 649 NewMI->setMemRefs(MF, MI.memoperands()); 650 for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(), 651 E = LoadMI.memoperands_end(); 652 I != E; ++I) { 653 NewMI->addMemOperand(MF, *I); 654 } 655 } 656 return NewMI; 657 } 658 659 bool TargetInstrInfo::hasReassociableOperands( 660 const MachineInstr &Inst, const MachineBasicBlock *MBB) const { 661 const MachineOperand &Op1 = Inst.getOperand(1); 662 const MachineOperand &Op2 = Inst.getOperand(2); 663 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 664 665 // We need virtual register definitions for the operands that we will 666 // reassociate. 667 MachineInstr *MI1 = nullptr; 668 MachineInstr *MI2 = nullptr; 669 if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg())) 670 MI1 = MRI.getUniqueVRegDef(Op1.getReg()); 671 if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg())) 672 MI2 = MRI.getUniqueVRegDef(Op2.getReg()); 673 674 // And they need to be in the trace (otherwise, they won't have a depth). 675 return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB; 676 } 677 678 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst, 679 bool &Commuted) const { 680 const MachineBasicBlock *MBB = Inst.getParent(); 681 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 682 MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg()); 683 MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg()); 684 unsigned AssocOpcode = Inst.getOpcode(); 685 686 // If only one operand has the same opcode and it's the second source operand, 687 // the operands must be commuted. 688 Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode; 689 if (Commuted) 690 std::swap(MI1, MI2); 691 692 // 1. The previous instruction must be the same type as Inst. 693 // 2. The previous instruction must have virtual register definitions for its 694 // operands in the same basic block as Inst. 695 // 3. The previous instruction's result must only be used by Inst. 696 return MI1->getOpcode() == AssocOpcode && 697 hasReassociableOperands(*MI1, MBB) && 698 MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg()); 699 } 700 701 // 1. The operation must be associative and commutative. 702 // 2. The instruction must have virtual register definitions for its 703 // operands in the same basic block. 704 // 3. The instruction must have a reassociable sibling. 705 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst, 706 bool &Commuted) const { 707 return isAssociativeAndCommutative(Inst) && 708 hasReassociableOperands(Inst, Inst.getParent()) && 709 hasReassociableSibling(Inst, Commuted); 710 } 711 712 // The concept of the reassociation pass is that these operations can benefit 713 // from this kind of transformation: 714 // 715 // A = ? op ? 716 // B = A op X (Prev) 717 // C = B op Y (Root) 718 // --> 719 // A = ? op ? 720 // B = X op Y 721 // C = A op B 722 // 723 // breaking the dependency between A and B, allowing them to be executed in 724 // parallel (or back-to-back in a pipeline) instead of depending on each other. 725 726 // FIXME: This has the potential to be expensive (compile time) while not 727 // improving the code at all. Some ways to limit the overhead: 728 // 1. Track successful transforms; bail out if hit rate gets too low. 729 // 2. Only enable at -O3 or some other non-default optimization level. 730 // 3. Pre-screen pattern candidates here: if an operand of the previous 731 // instruction is known to not increase the critical path, then don't match 732 // that pattern. 733 bool TargetInstrInfo::getMachineCombinerPatterns( 734 MachineInstr &Root, 735 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 736 bool Commute; 737 if (isReassociationCandidate(Root, Commute)) { 738 // We found a sequence of instructions that may be suitable for a 739 // reassociation of operands to increase ILP. Specify each commutation 740 // possibility for the Prev instruction in the sequence and let the 741 // machine combiner decide if changing the operands is worthwhile. 742 if (Commute) { 743 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB); 744 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB); 745 } else { 746 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY); 747 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY); 748 } 749 return true; 750 } 751 752 return false; 753 } 754 755 /// Return true when a code sequence can improve loop throughput. 756 bool 757 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const { 758 return false; 759 } 760 761 /// Attempt the reassociation transformation to reduce critical path length. 762 /// See the above comments before getMachineCombinerPatterns(). 763 void TargetInstrInfo::reassociateOps( 764 MachineInstr &Root, MachineInstr &Prev, 765 MachineCombinerPattern Pattern, 766 SmallVectorImpl<MachineInstr *> &InsInstrs, 767 SmallVectorImpl<MachineInstr *> &DelInstrs, 768 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 769 MachineFunction *MF = Root.getMF(); 770 MachineRegisterInfo &MRI = MF->getRegInfo(); 771 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 772 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 773 const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI); 774 775 // This array encodes the operand index for each parameter because the 776 // operands may be commuted. Each row corresponds to a pattern value, 777 // and each column specifies the index of A, B, X, Y. 778 unsigned OpIdx[4][4] = { 779 { 1, 1, 2, 2 }, 780 { 1, 2, 2, 1 }, 781 { 2, 1, 1, 2 }, 782 { 2, 2, 1, 1 } 783 }; 784 785 int Row; 786 switch (Pattern) { 787 case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break; 788 case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break; 789 case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break; 790 case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break; 791 default: llvm_unreachable("unexpected MachineCombinerPattern"); 792 } 793 794 MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]); 795 MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]); 796 MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]); 797 MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]); 798 MachineOperand &OpC = Root.getOperand(0); 799 800 unsigned RegA = OpA.getReg(); 801 unsigned RegB = OpB.getReg(); 802 unsigned RegX = OpX.getReg(); 803 unsigned RegY = OpY.getReg(); 804 unsigned RegC = OpC.getReg(); 805 806 if (TargetRegisterInfo::isVirtualRegister(RegA)) 807 MRI.constrainRegClass(RegA, RC); 808 if (TargetRegisterInfo::isVirtualRegister(RegB)) 809 MRI.constrainRegClass(RegB, RC); 810 if (TargetRegisterInfo::isVirtualRegister(RegX)) 811 MRI.constrainRegClass(RegX, RC); 812 if (TargetRegisterInfo::isVirtualRegister(RegY)) 813 MRI.constrainRegClass(RegY, RC); 814 if (TargetRegisterInfo::isVirtualRegister(RegC)) 815 MRI.constrainRegClass(RegC, RC); 816 817 // Create a new virtual register for the result of (X op Y) instead of 818 // recycling RegB because the MachineCombiner's computation of the critical 819 // path requires a new register definition rather than an existing one. 820 unsigned NewVR = MRI.createVirtualRegister(RC); 821 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); 822 823 unsigned Opcode = Root.getOpcode(); 824 bool KillA = OpA.isKill(); 825 bool KillX = OpX.isKill(); 826 bool KillY = OpY.isKill(); 827 828 // Create new instructions for insertion. 829 MachineInstrBuilder MIB1 = 830 BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR) 831 .addReg(RegX, getKillRegState(KillX)) 832 .addReg(RegY, getKillRegState(KillY)); 833 MachineInstrBuilder MIB2 = 834 BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC) 835 .addReg(RegA, getKillRegState(KillA)) 836 .addReg(NewVR, getKillRegState(true)); 837 838 setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2); 839 840 // Record new instructions for insertion and old instructions for deletion. 841 InsInstrs.push_back(MIB1); 842 InsInstrs.push_back(MIB2); 843 DelInstrs.push_back(&Prev); 844 DelInstrs.push_back(&Root); 845 } 846 847 void TargetInstrInfo::genAlternativeCodeSequence( 848 MachineInstr &Root, MachineCombinerPattern Pattern, 849 SmallVectorImpl<MachineInstr *> &InsInstrs, 850 SmallVectorImpl<MachineInstr *> &DelInstrs, 851 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const { 852 MachineRegisterInfo &MRI = Root.getMF()->getRegInfo(); 853 854 // Select the previous instruction in the sequence based on the input pattern. 855 MachineInstr *Prev = nullptr; 856 switch (Pattern) { 857 case MachineCombinerPattern::REASSOC_AX_BY: 858 case MachineCombinerPattern::REASSOC_XA_BY: 859 Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg()); 860 break; 861 case MachineCombinerPattern::REASSOC_AX_YB: 862 case MachineCombinerPattern::REASSOC_XA_YB: 863 Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg()); 864 break; 865 default: 866 break; 867 } 868 869 assert(Prev && "Unknown pattern for machine combiner"); 870 871 reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg); 872 } 873 874 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric( 875 const MachineInstr &MI, AliasAnalysis *AA) const { 876 const MachineFunction &MF = *MI.getMF(); 877 const MachineRegisterInfo &MRI = MF.getRegInfo(); 878 879 // Remat clients assume operand 0 is the defined register. 880 if (!MI.getNumOperands() || !MI.getOperand(0).isReg()) 881 return false; 882 unsigned DefReg = MI.getOperand(0).getReg(); 883 884 // A sub-register definition can only be rematerialized if the instruction 885 // doesn't read the other parts of the register. Otherwise it is really a 886 // read-modify-write operation on the full virtual register which cannot be 887 // moved safely. 888 if (TargetRegisterInfo::isVirtualRegister(DefReg) && 889 MI.getOperand(0).getSubReg() && MI.readsVirtualRegister(DefReg)) 890 return false; 891 892 // A load from a fixed stack slot can be rematerialized. This may be 893 // redundant with subsequent checks, but it's target-independent, 894 // simple, and a common case. 895 int FrameIdx = 0; 896 if (isLoadFromStackSlot(MI, FrameIdx) && 897 MF.getFrameInfo().isImmutableObjectIndex(FrameIdx)) 898 return true; 899 900 // Avoid instructions obviously unsafe for remat. 901 if (MI.isNotDuplicable() || MI.mayStore() || MI.hasUnmodeledSideEffects()) 902 return false; 903 904 // Don't remat inline asm. We have no idea how expensive it is 905 // even if it's side effect free. 906 if (MI.isInlineAsm()) 907 return false; 908 909 // Avoid instructions which load from potentially varying memory. 910 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA)) 911 return false; 912 913 // If any of the registers accessed are non-constant, conservatively assume 914 // the instruction is not rematerializable. 915 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 916 const MachineOperand &MO = MI.getOperand(i); 917 if (!MO.isReg()) continue; 918 unsigned Reg = MO.getReg(); 919 if (Reg == 0) 920 continue; 921 922 // Check for a well-behaved physical register. 923 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 924 if (MO.isUse()) { 925 // If the physreg has no defs anywhere, it's just an ambient register 926 // and we can freely move its uses. Alternatively, if it's allocatable, 927 // it could get allocated to something with a def during allocation. 928 if (!MRI.isConstantPhysReg(Reg)) 929 return false; 930 } else { 931 // A physreg def. We can't remat it. 932 return false; 933 } 934 continue; 935 } 936 937 // Only allow one virtual-register def. There may be multiple defs of the 938 // same virtual register, though. 939 if (MO.isDef() && Reg != DefReg) 940 return false; 941 942 // Don't allow any virtual-register uses. Rematting an instruction with 943 // virtual register uses would length the live ranges of the uses, which 944 // is not necessarily a good idea, certainly not "trivial". 945 if (MO.isUse()) 946 return false; 947 } 948 949 // Everything checked out. 950 return true; 951 } 952 953 int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const { 954 const MachineFunction *MF = MI.getMF(); 955 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 956 bool StackGrowsDown = 957 TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; 958 959 unsigned FrameSetupOpcode = getCallFrameSetupOpcode(); 960 unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode(); 961 962 if (!isFrameInstr(MI)) 963 return 0; 964 965 int SPAdj = TFI->alignSPAdjust(getFrameSize(MI)); 966 967 if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) || 968 (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode)) 969 SPAdj = -SPAdj; 970 971 return SPAdj; 972 } 973 974 /// isSchedulingBoundary - Test if the given instruction should be 975 /// considered a scheduling boundary. This primarily includes labels 976 /// and terminators. 977 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 978 const MachineBasicBlock *MBB, 979 const MachineFunction &MF) const { 980 // Terminators and labels can't be scheduled around. 981 if (MI.isTerminator() || MI.isPosition()) 982 return true; 983 984 // Don't attempt to schedule around any instruction that defines 985 // a stack-oriented pointer, as it's unlikely to be profitable. This 986 // saves compile time, because it doesn't require every single 987 // stack slot reference to depend on the instruction that does the 988 // modification. 989 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 990 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 991 return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI); 992 } 993 994 // Provide a global flag for disabling the PreRA hazard recognizer that targets 995 // may choose to honor. 996 bool TargetInstrInfo::usePreRAHazardRecognizer() const { 997 return !DisableHazardRecognizer; 998 } 999 1000 // Default implementation of CreateTargetRAHazardRecognizer. 1001 ScheduleHazardRecognizer *TargetInstrInfo:: 1002 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 1003 const ScheduleDAG *DAG) const { 1004 // Dummy hazard recognizer allows all instructions to issue. 1005 return new ScheduleHazardRecognizer(); 1006 } 1007 1008 // Default implementation of CreateTargetMIHazardRecognizer. 1009 ScheduleHazardRecognizer *TargetInstrInfo:: 1010 CreateTargetMIHazardRecognizer(const InstrItineraryData *II, 1011 const ScheduleDAG *DAG) const { 1012 return (ScheduleHazardRecognizer *) 1013 new ScoreboardHazardRecognizer(II, DAG, "misched"); 1014 } 1015 1016 // Default implementation of CreateTargetPostRAHazardRecognizer. 1017 ScheduleHazardRecognizer *TargetInstrInfo:: 1018 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 1019 const ScheduleDAG *DAG) const { 1020 return (ScheduleHazardRecognizer *) 1021 new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); 1022 } 1023 1024 //===----------------------------------------------------------------------===// 1025 // SelectionDAG latency interface. 1026 //===----------------------------------------------------------------------===// 1027 1028 int 1029 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 1030 SDNode *DefNode, unsigned DefIdx, 1031 SDNode *UseNode, unsigned UseIdx) const { 1032 if (!ItinData || ItinData->isEmpty()) 1033 return -1; 1034 1035 if (!DefNode->isMachineOpcode()) 1036 return -1; 1037 1038 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); 1039 if (!UseNode->isMachineOpcode()) 1040 return ItinData->getOperandCycle(DefClass, DefIdx); 1041 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); 1042 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 1043 } 1044 1045 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 1046 SDNode *N) const { 1047 if (!ItinData || ItinData->isEmpty()) 1048 return 1; 1049 1050 if (!N->isMachineOpcode()) 1051 return 1; 1052 1053 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); 1054 } 1055 1056 //===----------------------------------------------------------------------===// 1057 // MachineInstr latency interface. 1058 //===----------------------------------------------------------------------===// 1059 1060 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 1061 const MachineInstr &MI) const { 1062 if (!ItinData || ItinData->isEmpty()) 1063 return 1; 1064 1065 unsigned Class = MI.getDesc().getSchedClass(); 1066 int UOps = ItinData->Itineraries[Class].NumMicroOps; 1067 if (UOps >= 0) 1068 return UOps; 1069 1070 // The # of u-ops is dynamically determined. The specific target should 1071 // override this function to return the right number. 1072 return 1; 1073 } 1074 1075 /// Return the default expected latency for a def based on it's opcode. 1076 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel, 1077 const MachineInstr &DefMI) const { 1078 if (DefMI.isTransient()) 1079 return 0; 1080 if (DefMI.mayLoad()) 1081 return SchedModel.LoadLatency; 1082 if (isHighLatencyDef(DefMI.getOpcode())) 1083 return SchedModel.HighLatency; 1084 return 1; 1085 } 1086 1087 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const { 1088 return 0; 1089 } 1090 1091 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 1092 const MachineInstr &MI, 1093 unsigned *PredCost) const { 1094 // Default to one cycle for no itinerary. However, an "empty" itinerary may 1095 // still have a MinLatency property, which getStageLatency checks. 1096 if (!ItinData) 1097 return MI.mayLoad() ? 2 : 1; 1098 1099 return ItinData->getStageLatency(MI.getDesc().getSchedClass()); 1100 } 1101 1102 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, 1103 const MachineInstr &DefMI, 1104 unsigned DefIdx) const { 1105 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 1106 if (!ItinData || ItinData->isEmpty()) 1107 return false; 1108 1109 unsigned DefClass = DefMI.getDesc().getSchedClass(); 1110 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 1111 return (DefCycle != -1 && DefCycle <= 1); 1112 } 1113 1114 /// Both DefMI and UseMI must be valid. By default, call directly to the 1115 /// itinerary. This may be overriden by the target. 1116 int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 1117 const MachineInstr &DefMI, 1118 unsigned DefIdx, 1119 const MachineInstr &UseMI, 1120 unsigned UseIdx) const { 1121 unsigned DefClass = DefMI.getDesc().getSchedClass(); 1122 unsigned UseClass = UseMI.getDesc().getSchedClass(); 1123 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 1124 } 1125 1126 /// If we can determine the operand latency from the def only, without itinerary 1127 /// lookup, do so. Otherwise return -1. 1128 int TargetInstrInfo::computeDefOperandLatency( 1129 const InstrItineraryData *ItinData, const MachineInstr &DefMI) const { 1130 1131 // Let the target hook getInstrLatency handle missing itineraries. 1132 if (!ItinData) 1133 return getInstrLatency(ItinData, DefMI); 1134 1135 if(ItinData->isEmpty()) 1136 return defaultDefLatency(ItinData->SchedModel, DefMI); 1137 1138 // ...operand lookup required 1139 return -1; 1140 } 1141 1142 bool TargetInstrInfo::getRegSequenceInputs( 1143 const MachineInstr &MI, unsigned DefIdx, 1144 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 1145 assert((MI.isRegSequence() || 1146 MI.isRegSequenceLike()) && "Instruction do not have the proper type"); 1147 1148 if (!MI.isRegSequence()) 1149 return getRegSequenceLikeInputs(MI, DefIdx, InputRegs); 1150 1151 // We are looking at: 1152 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... 1153 assert(DefIdx == 0 && "REG_SEQUENCE only has one def"); 1154 for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; 1155 OpIdx += 2) { 1156 const MachineOperand &MOReg = MI.getOperand(OpIdx); 1157 if (MOReg.isUndef()) 1158 continue; 1159 const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1); 1160 assert(MOSubIdx.isImm() && 1161 "One of the subindex of the reg_sequence is not an immediate"); 1162 // Record Reg:SubReg, SubIdx. 1163 InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(), 1164 (unsigned)MOSubIdx.getImm())); 1165 } 1166 return true; 1167 } 1168 1169 bool TargetInstrInfo::getExtractSubregInputs( 1170 const MachineInstr &MI, unsigned DefIdx, 1171 RegSubRegPairAndIdx &InputReg) const { 1172 assert((MI.isExtractSubreg() || 1173 MI.isExtractSubregLike()) && "Instruction do not have the proper type"); 1174 1175 if (!MI.isExtractSubreg()) 1176 return getExtractSubregLikeInputs(MI, DefIdx, InputReg); 1177 1178 // We are looking at: 1179 // Def = EXTRACT_SUBREG v0.sub1, sub0. 1180 assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def"); 1181 const MachineOperand &MOReg = MI.getOperand(1); 1182 if (MOReg.isUndef()) 1183 return false; 1184 const MachineOperand &MOSubIdx = MI.getOperand(2); 1185 assert(MOSubIdx.isImm() && 1186 "The subindex of the extract_subreg is not an immediate"); 1187 1188 InputReg.Reg = MOReg.getReg(); 1189 InputReg.SubReg = MOReg.getSubReg(); 1190 InputReg.SubIdx = (unsigned)MOSubIdx.getImm(); 1191 return true; 1192 } 1193 1194 bool TargetInstrInfo::getInsertSubregInputs( 1195 const MachineInstr &MI, unsigned DefIdx, 1196 RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const { 1197 assert((MI.isInsertSubreg() || 1198 MI.isInsertSubregLike()) && "Instruction do not have the proper type"); 1199 1200 if (!MI.isInsertSubreg()) 1201 return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg); 1202 1203 // We are looking at: 1204 // Def = INSERT_SEQUENCE v0, v1, sub0. 1205 assert(DefIdx == 0 && "INSERT_SUBREG only has one def"); 1206 const MachineOperand &MOBaseReg = MI.getOperand(1); 1207 const MachineOperand &MOInsertedReg = MI.getOperand(2); 1208 if (MOInsertedReg.isUndef()) 1209 return false; 1210 const MachineOperand &MOSubIdx = MI.getOperand(3); 1211 assert(MOSubIdx.isImm() && 1212 "One of the subindex of the reg_sequence is not an immediate"); 1213 BaseReg.Reg = MOBaseReg.getReg(); 1214 BaseReg.SubReg = MOBaseReg.getSubReg(); 1215 1216 InsertedReg.Reg = MOInsertedReg.getReg(); 1217 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 1218 InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm(); 1219 return true; 1220 } 1221