1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass inserts stack protectors into functions which need them. A variable 11 // with a random value in it is stored onto the stack before the local variables 12 // are allocated. Upon exiting the block, the stored value is checked. If it's 13 // changed, then there was some sort of violation and the program aborts. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/CodeGen/StackProtector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/EHPersonalities.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/CodeGen/Passes.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DebugLoc.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/Instruction.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/IR/User.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetOptions.h" 50 #include <utility> 51 52 using namespace llvm; 53 54 #define DEBUG_TYPE "stack-protector" 55 56 STATISTIC(NumFunProtected, "Number of functions protected"); 57 STATISTIC(NumAddrTaken, "Number of local variables that have their address" 58 " taken."); 59 60 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp", 61 cl::init(true), cl::Hidden); 62 63 char StackProtector::ID = 0; 64 65 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE, 66 "Insert stack protectors", false, true) 67 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 68 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE, 69 "Insert stack protectors", false, true) 70 71 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); } 72 73 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const { 74 AU.addRequired<TargetPassConfig>(); 75 AU.addPreserved<DominatorTreeWrapperPass>(); 76 } 77 78 bool StackProtector::runOnFunction(Function &Fn) { 79 F = &Fn; 80 M = F->getParent(); 81 DominatorTreeWrapperPass *DTWP = 82 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 83 DT = DTWP ? &DTWP->getDomTree() : nullptr; 84 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 85 Trip = TM->getTargetTriple(); 86 TLI = TM->getSubtargetImpl(Fn)->getTargetLowering(); 87 HasPrologue = false; 88 HasIRCheck = false; 89 90 Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size"); 91 if (Attr.isStringAttribute() && 92 Attr.getValueAsString().getAsInteger(10, SSPBufferSize)) 93 return false; // Invalid integer string 94 95 if (!RequiresStackProtector()) 96 return false; 97 98 // TODO(etienneb): Functions with funclets are not correctly supported now. 99 // Do nothing if this is funclet-based personality. 100 if (Fn.hasPersonalityFn()) { 101 EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn()); 102 if (isFuncletEHPersonality(Personality)) 103 return false; 104 } 105 106 ++NumFunProtected; 107 return InsertStackProtectors(); 108 } 109 110 /// \param [out] IsLarge is set to true if a protectable array is found and 111 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with 112 /// multiple arrays, this gets set if any of them is large. 113 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge, 114 bool Strong, 115 bool InStruct) const { 116 if (!Ty) 117 return false; 118 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 119 if (!AT->getElementType()->isIntegerTy(8)) { 120 // If we're on a non-Darwin platform or we're inside of a structure, don't 121 // add stack protectors unless the array is a character array. 122 // However, in strong mode any array, regardless of type and size, 123 // triggers a protector. 124 if (!Strong && (InStruct || !Trip.isOSDarwin())) 125 return false; 126 } 127 128 // If an array has more than SSPBufferSize bytes of allocated space, then we 129 // emit stack protectors. 130 if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) { 131 IsLarge = true; 132 return true; 133 } 134 135 if (Strong) 136 // Require a protector for all arrays in strong mode 137 return true; 138 } 139 140 const StructType *ST = dyn_cast<StructType>(Ty); 141 if (!ST) 142 return false; 143 144 bool NeedsProtector = false; 145 for (StructType::element_iterator I = ST->element_begin(), 146 E = ST->element_end(); 147 I != E; ++I) 148 if (ContainsProtectableArray(*I, IsLarge, Strong, true)) { 149 // If the element is a protectable array and is large (>= SSPBufferSize) 150 // then we are done. If the protectable array is not large, then 151 // keep looking in case a subsequent element is a large array. 152 if (IsLarge) 153 return true; 154 NeedsProtector = true; 155 } 156 157 return NeedsProtector; 158 } 159 160 bool StackProtector::HasAddressTaken(const Instruction *AI) { 161 for (const User *U : AI->users()) { 162 if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 163 if (AI == SI->getValueOperand()) 164 return true; 165 } else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) { 166 if (AI == SI->getOperand(0)) 167 return true; 168 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 169 // Ignore intrinsics that are not calls. TODO: Use isLoweredToCall(). 170 if (!isa<DbgInfoIntrinsic>(CI) && !CI->isLifetimeStartOrEnd()) 171 return true; 172 } else if (isa<InvokeInst>(U)) { 173 return true; 174 } else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) { 175 if (HasAddressTaken(SI)) 176 return true; 177 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 178 // Keep track of what PHI nodes we have already visited to ensure 179 // they are only visited once. 180 if (VisitedPHIs.insert(PN).second) 181 if (HasAddressTaken(PN)) 182 return true; 183 } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 184 if (HasAddressTaken(GEP)) 185 return true; 186 } else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 187 if (HasAddressTaken(BI)) 188 return true; 189 } 190 } 191 return false; 192 } 193 194 /// Search for the first call to the llvm.stackprotector intrinsic and return it 195 /// if present. 196 static const CallInst *findStackProtectorIntrinsic(Function &F) { 197 for (const BasicBlock &BB : F) 198 for (const Instruction &I : BB) 199 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 200 if (CI->getCalledFunction() == 201 Intrinsic::getDeclaration(F.getParent(), Intrinsic::stackprotector)) 202 return CI; 203 return nullptr; 204 } 205 206 /// Check whether or not this function needs a stack protector based 207 /// upon the stack protector level. 208 /// 209 /// We use two heuristics: a standard (ssp) and strong (sspstrong). 210 /// The standard heuristic which will add a guard variable to functions that 211 /// call alloca with a either a variable size or a size >= SSPBufferSize, 212 /// functions with character buffers larger than SSPBufferSize, and functions 213 /// with aggregates containing character buffers larger than SSPBufferSize. The 214 /// strong heuristic will add a guard variables to functions that call alloca 215 /// regardless of size, functions with any buffer regardless of type and size, 216 /// functions with aggregates that contain any buffer regardless of type and 217 /// size, and functions that contain stack-based variables that have had their 218 /// address taken. 219 bool StackProtector::RequiresStackProtector() { 220 bool Strong = false; 221 bool NeedsProtector = false; 222 HasPrologue = findStackProtectorIntrinsic(*F); 223 224 if (F->hasFnAttribute(Attribute::SafeStack)) 225 return false; 226 227 // We are constructing the OptimizationRemarkEmitter on the fly rather than 228 // using the analysis pass to avoid building DominatorTree and LoopInfo which 229 // are not available this late in the IR pipeline. 230 OptimizationRemarkEmitter ORE(F); 231 232 if (F->hasFnAttribute(Attribute::StackProtectReq)) { 233 ORE.emit([&]() { 234 return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F) 235 << "Stack protection applied to function " 236 << ore::NV("Function", F) 237 << " due to a function attribute or command-line switch"; 238 }); 239 NeedsProtector = true; 240 Strong = true; // Use the same heuristic as strong to determine SSPLayout 241 } else if (F->hasFnAttribute(Attribute::StackProtectStrong)) 242 Strong = true; 243 else if (HasPrologue) 244 NeedsProtector = true; 245 else if (!F->hasFnAttribute(Attribute::StackProtect)) 246 return false; 247 248 for (const BasicBlock &BB : *F) { 249 for (const Instruction &I : BB) { 250 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 251 if (AI->isArrayAllocation()) { 252 auto RemarkBuilder = [&]() { 253 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray", 254 &I) 255 << "Stack protection applied to function " 256 << ore::NV("Function", F) 257 << " due to a call to alloca or use of a variable length " 258 "array"; 259 }; 260 if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) { 261 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) { 262 // A call to alloca with size >= SSPBufferSize requires 263 // stack protectors. 264 Layout.insert(std::make_pair(AI, 265 MachineFrameInfo::SSPLK_LargeArray)); 266 ORE.emit(RemarkBuilder); 267 NeedsProtector = true; 268 } else if (Strong) { 269 // Require protectors for all alloca calls in strong mode. 270 Layout.insert(std::make_pair(AI, 271 MachineFrameInfo::SSPLK_SmallArray)); 272 ORE.emit(RemarkBuilder); 273 NeedsProtector = true; 274 } 275 } else { 276 // A call to alloca with a variable size requires protectors. 277 Layout.insert(std::make_pair(AI, 278 MachineFrameInfo::SSPLK_LargeArray)); 279 ORE.emit(RemarkBuilder); 280 NeedsProtector = true; 281 } 282 continue; 283 } 284 285 bool IsLarge = false; 286 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) { 287 Layout.insert(std::make_pair(AI, IsLarge 288 ? MachineFrameInfo::SSPLK_LargeArray 289 : MachineFrameInfo::SSPLK_SmallArray)); 290 ORE.emit([&]() { 291 return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I) 292 << "Stack protection applied to function " 293 << ore::NV("Function", F) 294 << " due to a stack allocated buffer or struct containing a " 295 "buffer"; 296 }); 297 NeedsProtector = true; 298 continue; 299 } 300 301 if (Strong && HasAddressTaken(AI)) { 302 ++NumAddrTaken; 303 Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf)); 304 ORE.emit([&]() { 305 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken", 306 &I) 307 << "Stack protection applied to function " 308 << ore::NV("Function", F) 309 << " due to the address of a local variable being taken"; 310 }); 311 NeedsProtector = true; 312 } 313 } 314 } 315 } 316 317 return NeedsProtector; 318 } 319 320 /// Create a stack guard loading and populate whether SelectionDAG SSP is 321 /// supported. 322 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M, 323 IRBuilder<> &B, 324 bool *SupportsSelectionDAGSP = nullptr) { 325 if (Value *Guard = TLI->getIRStackGuard(B)) 326 return B.CreateLoad(Guard, true, "StackGuard"); 327 328 // Use SelectionDAG SSP handling, since there isn't an IR guard. 329 // 330 // This is more or less weird, since we optionally output whether we 331 // should perform a SelectionDAG SP here. The reason is that it's strictly 332 // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also 333 // mutating. There is no way to get this bit without mutating the IR, so 334 // getting this bit has to happen in this right time. 335 // 336 // We could have define a new function TLI::supportsSelectionDAGSP(), but that 337 // will put more burden on the backends' overriding work, especially when it 338 // actually conveys the same information getIRStackGuard() already gives. 339 if (SupportsSelectionDAGSP) 340 *SupportsSelectionDAGSP = true; 341 TLI->insertSSPDeclarations(*M); 342 return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard)); 343 } 344 345 /// Insert code into the entry block that stores the stack guard 346 /// variable onto the stack: 347 /// 348 /// entry: 349 /// StackGuardSlot = alloca i8* 350 /// StackGuard = <stack guard> 351 /// call void @llvm.stackprotector(StackGuard, StackGuardSlot) 352 /// 353 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo 354 /// node. 355 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI, 356 const TargetLoweringBase *TLI, AllocaInst *&AI) { 357 bool SupportsSelectionDAGSP = false; 358 IRBuilder<> B(&F->getEntryBlock().front()); 359 PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext()); 360 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot"); 361 362 Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP); 363 B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), 364 {GuardSlot, AI}); 365 return SupportsSelectionDAGSP; 366 } 367 368 /// InsertStackProtectors - Insert code into the prologue and epilogue of the 369 /// function. 370 /// 371 /// - The prologue code loads and stores the stack guard onto the stack. 372 /// - The epilogue checks the value stored in the prologue against the original 373 /// value. It calls __stack_chk_fail if they differ. 374 bool StackProtector::InsertStackProtectors() { 375 // If the target wants to XOR the frame pointer into the guard value, it's 376 // impossible to emit the check in IR, so the target *must* support stack 377 // protection in SDAG. 378 bool SupportsSelectionDAGSP = 379 TLI->useStackGuardXorFP() || 380 (EnableSelectionDAGSP && !TM->Options.EnableFastISel && 381 !TM->Options.EnableGlobalISel); 382 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard. 383 384 for (Function::iterator I = F->begin(), E = F->end(); I != E;) { 385 BasicBlock *BB = &*I++; 386 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 387 if (!RI) 388 continue; 389 390 // Generate prologue instrumentation if not already generated. 391 if (!HasPrologue) { 392 HasPrologue = true; 393 SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI); 394 } 395 396 // SelectionDAG based code generation. Nothing else needs to be done here. 397 // The epilogue instrumentation is postponed to SelectionDAG. 398 if (SupportsSelectionDAGSP) 399 break; 400 401 // Find the stack guard slot if the prologue was not created by this pass 402 // itself via a previous call to CreatePrologue(). 403 if (!AI) { 404 const CallInst *SPCall = findStackProtectorIntrinsic(*F); 405 assert(SPCall && "Call to llvm.stackprotector is missing"); 406 AI = cast<AllocaInst>(SPCall->getArgOperand(1)); 407 } 408 409 // Set HasIRCheck to true, so that SelectionDAG will not generate its own 410 // version. SelectionDAG called 'shouldEmitSDCheck' to check whether 411 // instrumentation has already been generated. 412 HasIRCheck = true; 413 414 // Generate epilogue instrumentation. The epilogue intrumentation can be 415 // function-based or inlined depending on which mechanism the target is 416 // providing. 417 if (Value* GuardCheck = TLI->getSSPStackGuardCheck(*M)) { 418 // Generate the function-based epilogue instrumentation. 419 // The target provides a guard check function, generate a call to it. 420 IRBuilder<> B(RI); 421 LoadInst *Guard = B.CreateLoad(AI, true, "Guard"); 422 CallInst *Call = B.CreateCall(GuardCheck, {Guard}); 423 llvm::Function *Function = cast<llvm::Function>(GuardCheck); 424 Call->setAttributes(Function->getAttributes()); 425 Call->setCallingConv(Function->getCallingConv()); 426 } else { 427 // Generate the epilogue with inline instrumentation. 428 // If we do not support SelectionDAG based tail calls, generate IR level 429 // tail calls. 430 // 431 // For each block with a return instruction, convert this: 432 // 433 // return: 434 // ... 435 // ret ... 436 // 437 // into this: 438 // 439 // return: 440 // ... 441 // %1 = <stack guard> 442 // %2 = load StackGuardSlot 443 // %3 = cmp i1 %1, %2 444 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk 445 // 446 // SP_return: 447 // ret ... 448 // 449 // CallStackCheckFailBlk: 450 // call void @__stack_chk_fail() 451 // unreachable 452 453 // Create the FailBB. We duplicate the BB every time since the MI tail 454 // merge pass will merge together all of the various BB into one including 455 // fail BB generated by the stack protector pseudo instruction. 456 BasicBlock *FailBB = CreateFailBB(); 457 458 // Split the basic block before the return instruction. 459 BasicBlock *NewBB = BB->splitBasicBlock(RI->getIterator(), "SP_return"); 460 461 // Update the dominator tree if we need to. 462 if (DT && DT->isReachableFromEntry(BB)) { 463 DT->addNewBlock(NewBB, BB); 464 DT->addNewBlock(FailBB, BB); 465 } 466 467 // Remove default branch instruction to the new BB. 468 BB->getTerminator()->eraseFromParent(); 469 470 // Move the newly created basic block to the point right after the old 471 // basic block so that it's in the "fall through" position. 472 NewBB->moveAfter(BB); 473 474 // Generate the stack protector instructions in the old basic block. 475 IRBuilder<> B(BB); 476 Value *Guard = getStackGuard(TLI, M, B); 477 LoadInst *LI2 = B.CreateLoad(AI, true); 478 Value *Cmp = B.CreateICmpEQ(Guard, LI2); 479 auto SuccessProb = 480 BranchProbabilityInfo::getBranchProbStackProtector(true); 481 auto FailureProb = 482 BranchProbabilityInfo::getBranchProbStackProtector(false); 483 MDNode *Weights = MDBuilder(F->getContext()) 484 .createBranchWeights(SuccessProb.getNumerator(), 485 FailureProb.getNumerator()); 486 B.CreateCondBr(Cmp, NewBB, FailBB, Weights); 487 } 488 } 489 490 // Return if we didn't modify any basic blocks. i.e., there are no return 491 // statements in the function. 492 return HasPrologue; 493 } 494 495 /// CreateFailBB - Create a basic block to jump to when the stack protector 496 /// check fails. 497 BasicBlock *StackProtector::CreateFailBB() { 498 LLVMContext &Context = F->getContext(); 499 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F); 500 IRBuilder<> B(FailBB); 501 B.SetCurrentDebugLocation(DebugLoc::get(0, 0, F->getSubprogram())); 502 if (Trip.isOSOpenBSD()) { 503 Constant *StackChkFail = 504 M->getOrInsertFunction("__stack_smash_handler", 505 Type::getVoidTy(Context), 506 Type::getInt8PtrTy(Context)); 507 508 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH")); 509 } else { 510 Constant *StackChkFail = 511 M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context)); 512 513 B.CreateCall(StackChkFail, {}); 514 } 515 B.CreateUnreachable(); 516 return FailBB; 517 } 518 519 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const { 520 return HasPrologue && !HasIRCheck && dyn_cast<ReturnInst>(BB.getTerminator()); 521 } 522 523 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const { 524 if (Layout.empty()) 525 return; 526 527 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) { 528 if (MFI.isDeadObjectIndex(I)) 529 continue; 530 531 const AllocaInst *AI = MFI.getObjectAllocation(I); 532 if (!AI) 533 continue; 534 535 SSPLayoutMap::const_iterator LI = Layout.find(AI); 536 if (LI == Layout.end()) 537 continue; 538 539 MFI.setObjectSSPLayout(I, LI->second); 540 } 541 } 542