1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass inserts stack protectors into functions which need them. A variable 11 // with a random value in it is stored onto the stack before the local variables 12 // are allocated. Upon exiting the block, the stored value is checked. If it's 13 // changed, then there was some sort of violation and the program aborts. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/BranchProbabilityInfo.h" 20 #include "llvm/Analysis/EHPersonalities.h" 21 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/StackProtector.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DebugInfo.h" 29 #include "llvm/IR/DebugLoc.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/User.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Target/TargetLowering.h" 44 #include "llvm/Target/TargetMachine.h" 45 #include "llvm/Target/TargetOptions.h" 46 #include "llvm/Target/TargetSubtargetInfo.h" 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "stack-protector" 52 53 STATISTIC(NumFunProtected, "Number of functions protected"); 54 STATISTIC(NumAddrTaken, "Number of local variables that have their address" 55 " taken."); 56 57 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp", 58 cl::init(true), cl::Hidden); 59 60 char StackProtector::ID = 0; 61 INITIALIZE_PASS_BEGIN(StackProtector, "stack-protector", 62 "Insert stack protectors", false, true) 63 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 64 INITIALIZE_PASS_END(StackProtector, "stack-protector", 65 "Insert stack protectors", false, true) 66 67 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); } 68 69 StackProtector::SSPLayoutKind 70 StackProtector::getSSPLayout(const AllocaInst *AI) const { 71 return AI ? Layout.lookup(AI) : SSPLK_None; 72 } 73 74 void StackProtector::adjustForColoring(const AllocaInst *From, 75 const AllocaInst *To) { 76 // When coloring replaces one alloca with another, transfer the SSPLayoutKind 77 // tag from the remapped to the target alloca. The remapped alloca should 78 // have a size smaller than or equal to the replacement alloca. 79 SSPLayoutMap::iterator I = Layout.find(From); 80 if (I != Layout.end()) { 81 SSPLayoutKind Kind = I->second; 82 Layout.erase(I); 83 84 // Transfer the tag, but make sure that SSPLK_AddrOf does not overwrite 85 // SSPLK_SmallArray or SSPLK_LargeArray, and make sure that 86 // SSPLK_SmallArray does not overwrite SSPLK_LargeArray. 87 I = Layout.find(To); 88 if (I == Layout.end()) 89 Layout.insert(std::make_pair(To, Kind)); 90 else if (I->second != SSPLK_LargeArray && Kind != SSPLK_AddrOf) 91 I->second = Kind; 92 } 93 } 94 95 bool StackProtector::runOnFunction(Function &Fn) { 96 F = &Fn; 97 M = F->getParent(); 98 DominatorTreeWrapperPass *DTWP = 99 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 100 DT = DTWP ? &DTWP->getDomTree() : nullptr; 101 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 102 Trip = TM->getTargetTriple(); 103 TLI = TM->getSubtargetImpl(Fn)->getTargetLowering(); 104 HasPrologue = false; 105 HasIRCheck = false; 106 107 Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size"); 108 if (Attr.isStringAttribute() && 109 Attr.getValueAsString().getAsInteger(10, SSPBufferSize)) 110 return false; // Invalid integer string 111 112 if (!RequiresStackProtector()) 113 return false; 114 115 // TODO(etienneb): Functions with funclets are not correctly supported now. 116 // Do nothing if this is funclet-based personality. 117 if (Fn.hasPersonalityFn()) { 118 EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn()); 119 if (isFuncletEHPersonality(Personality)) 120 return false; 121 } 122 123 ++NumFunProtected; 124 return InsertStackProtectors(); 125 } 126 127 /// \param [out] IsLarge is set to true if a protectable array is found and 128 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with 129 /// multiple arrays, this gets set if any of them is large. 130 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge, 131 bool Strong, 132 bool InStruct) const { 133 if (!Ty) 134 return false; 135 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 136 if (!AT->getElementType()->isIntegerTy(8)) { 137 // If we're on a non-Darwin platform or we're inside of a structure, don't 138 // add stack protectors unless the array is a character array. 139 // However, in strong mode any array, regardless of type and size, 140 // triggers a protector. 141 if (!Strong && (InStruct || !Trip.isOSDarwin())) 142 return false; 143 } 144 145 // If an array has more than SSPBufferSize bytes of allocated space, then we 146 // emit stack protectors. 147 if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) { 148 IsLarge = true; 149 return true; 150 } 151 152 if (Strong) 153 // Require a protector for all arrays in strong mode 154 return true; 155 } 156 157 const StructType *ST = dyn_cast<StructType>(Ty); 158 if (!ST) 159 return false; 160 161 bool NeedsProtector = false; 162 for (StructType::element_iterator I = ST->element_begin(), 163 E = ST->element_end(); 164 I != E; ++I) 165 if (ContainsProtectableArray(*I, IsLarge, Strong, true)) { 166 // If the element is a protectable array and is large (>= SSPBufferSize) 167 // then we are done. If the protectable array is not large, then 168 // keep looking in case a subsequent element is a large array. 169 if (IsLarge) 170 return true; 171 NeedsProtector = true; 172 } 173 174 return NeedsProtector; 175 } 176 177 bool StackProtector::HasAddressTaken(const Instruction *AI) { 178 for (const User *U : AI->users()) { 179 if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 180 if (AI == SI->getValueOperand()) 181 return true; 182 } else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) { 183 if (AI == SI->getOperand(0)) 184 return true; 185 } else if (isa<CallInst>(U)) { 186 return true; 187 } else if (isa<InvokeInst>(U)) { 188 return true; 189 } else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) { 190 if (HasAddressTaken(SI)) 191 return true; 192 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 193 // Keep track of what PHI nodes we have already visited to ensure 194 // they are only visited once. 195 if (VisitedPHIs.insert(PN).second) 196 if (HasAddressTaken(PN)) 197 return true; 198 } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 199 if (HasAddressTaken(GEP)) 200 return true; 201 } else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 202 if (HasAddressTaken(BI)) 203 return true; 204 } 205 } 206 return false; 207 } 208 209 /// \brief Check whether or not this function needs a stack protector based 210 /// upon the stack protector level. 211 /// 212 /// We use two heuristics: a standard (ssp) and strong (sspstrong). 213 /// The standard heuristic which will add a guard variable to functions that 214 /// call alloca with a either a variable size or a size >= SSPBufferSize, 215 /// functions with character buffers larger than SSPBufferSize, and functions 216 /// with aggregates containing character buffers larger than SSPBufferSize. The 217 /// strong heuristic will add a guard variables to functions that call alloca 218 /// regardless of size, functions with any buffer regardless of type and size, 219 /// functions with aggregates that contain any buffer regardless of type and 220 /// size, and functions that contain stack-based variables that have had their 221 /// address taken. 222 bool StackProtector::RequiresStackProtector() { 223 bool Strong = false; 224 bool NeedsProtector = false; 225 for (const BasicBlock &BB : *F) 226 for (const Instruction &I : BB) 227 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 228 if (CI->getCalledFunction() == 229 Intrinsic::getDeclaration(F->getParent(), 230 Intrinsic::stackprotector)) 231 HasPrologue = true; 232 233 if (F->hasFnAttribute(Attribute::SafeStack)) 234 return false; 235 236 // We are constructing the OptimizationRemarkEmitter on the fly rather than 237 // using the analysis pass to avoid building DominatorTree and LoopInfo which 238 // are not available this late in the IR pipeline. 239 OptimizationRemarkEmitter ORE(F); 240 241 if (F->hasFnAttribute(Attribute::StackProtectReq)) { 242 ORE.emit(OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F) 243 << "Stack protection applied to function " 244 << ore::NV("Function", F) 245 << " due to a function attribute or command-line switch"); 246 NeedsProtector = true; 247 Strong = true; // Use the same heuristic as strong to determine SSPLayout 248 } else if (F->hasFnAttribute(Attribute::StackProtectStrong)) 249 Strong = true; 250 else if (HasPrologue) 251 NeedsProtector = true; 252 else if (!F->hasFnAttribute(Attribute::StackProtect)) 253 return false; 254 255 for (const BasicBlock &BB : *F) { 256 for (const Instruction &I : BB) { 257 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 258 if (AI->isArrayAllocation()) { 259 OptimizationRemark Remark(DEBUG_TYPE, "StackProtectorAllocaOrArray", 260 &I); 261 Remark 262 << "Stack protection applied to function " 263 << ore::NV("Function", F) 264 << " due to a call to alloca or use of a variable length array"; 265 if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) { 266 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) { 267 // A call to alloca with size >= SSPBufferSize requires 268 // stack protectors. 269 Layout.insert(std::make_pair(AI, SSPLK_LargeArray)); 270 ORE.emit(Remark); 271 NeedsProtector = true; 272 } else if (Strong) { 273 // Require protectors for all alloca calls in strong mode. 274 Layout.insert(std::make_pair(AI, SSPLK_SmallArray)); 275 ORE.emit(Remark); 276 NeedsProtector = true; 277 } 278 } else { 279 // A call to alloca with a variable size requires protectors. 280 Layout.insert(std::make_pair(AI, SSPLK_LargeArray)); 281 ORE.emit(Remark); 282 NeedsProtector = true; 283 } 284 continue; 285 } 286 287 bool IsLarge = false; 288 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) { 289 Layout.insert(std::make_pair(AI, IsLarge ? SSPLK_LargeArray 290 : SSPLK_SmallArray)); 291 ORE.emit(OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I) 292 << "Stack protection applied to function " 293 << ore::NV("Function", F) 294 << " due to a stack allocated buffer or struct containing a " 295 "buffer"); 296 NeedsProtector = true; 297 continue; 298 } 299 300 if (Strong && HasAddressTaken(AI)) { 301 ++NumAddrTaken; 302 Layout.insert(std::make_pair(AI, SSPLK_AddrOf)); 303 ORE.emit( 304 OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken", &I) 305 << "Stack protection applied to function " 306 << ore::NV("Function", F) 307 << " due to the address of a local variable being taken"); 308 NeedsProtector = true; 309 } 310 } 311 } 312 } 313 314 return NeedsProtector; 315 } 316 317 /// Create a stack guard loading and populate whether SelectionDAG SSP is 318 /// supported. 319 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M, 320 IRBuilder<> &B, 321 bool *SupportsSelectionDAGSP = nullptr) { 322 if (Value *Guard = TLI->getIRStackGuard(B)) 323 return B.CreateLoad(Guard, true, "StackGuard"); 324 325 // Use SelectionDAG SSP handling, since there isn't an IR guard. 326 // 327 // This is more or less weird, since we optionally output whether we 328 // should perform a SelectionDAG SP here. The reason is that it's strictly 329 // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also 330 // mutating. There is no way to get this bit without mutating the IR, so 331 // getting this bit has to happen in this right time. 332 // 333 // We could have define a new function TLI::supportsSelectionDAGSP(), but that 334 // will put more burden on the backends' overriding work, especially when it 335 // actually conveys the same information getIRStackGuard() already gives. 336 if (SupportsSelectionDAGSP) 337 *SupportsSelectionDAGSP = true; 338 TLI->insertSSPDeclarations(*M); 339 return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard)); 340 } 341 342 /// Insert code into the entry block that stores the stack guard 343 /// variable onto the stack: 344 /// 345 /// entry: 346 /// StackGuardSlot = alloca i8* 347 /// StackGuard = <stack guard> 348 /// call void @llvm.stackprotector(StackGuard, StackGuardSlot) 349 /// 350 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo 351 /// node. 352 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI, 353 const TargetLoweringBase *TLI, AllocaInst *&AI) { 354 bool SupportsSelectionDAGSP = false; 355 IRBuilder<> B(&F->getEntryBlock().front()); 356 PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext()); 357 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot"); 358 359 Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP); 360 B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), 361 {GuardSlot, AI}); 362 return SupportsSelectionDAGSP; 363 } 364 365 /// InsertStackProtectors - Insert code into the prologue and epilogue of the 366 /// function. 367 /// 368 /// - The prologue code loads and stores the stack guard onto the stack. 369 /// - The epilogue checks the value stored in the prologue against the original 370 /// value. It calls __stack_chk_fail if they differ. 371 bool StackProtector::InsertStackProtectors() { 372 bool SupportsSelectionDAGSP = 373 EnableSelectionDAGSP && !TM->Options.EnableFastISel; 374 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard. 375 376 for (Function::iterator I = F->begin(), E = F->end(); I != E;) { 377 BasicBlock *BB = &*I++; 378 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 379 if (!RI) 380 continue; 381 382 // Generate prologue instrumentation if not already generated. 383 if (!HasPrologue) { 384 HasPrologue = true; 385 SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI); 386 } 387 388 // SelectionDAG based code generation. Nothing else needs to be done here. 389 // The epilogue instrumentation is postponed to SelectionDAG. 390 if (SupportsSelectionDAGSP) 391 break; 392 393 // Set HasIRCheck to true, so that SelectionDAG will not generate its own 394 // version. SelectionDAG called 'shouldEmitSDCheck' to check whether 395 // instrumentation has already been generated. 396 HasIRCheck = true; 397 398 // Generate epilogue instrumentation. The epilogue intrumentation can be 399 // function-based or inlined depending on which mechanism the target is 400 // providing. 401 if (Value* GuardCheck = TLI->getSSPStackGuardCheck(*M)) { 402 // Generate the function-based epilogue instrumentation. 403 // The target provides a guard check function, generate a call to it. 404 IRBuilder<> B(RI); 405 LoadInst *Guard = B.CreateLoad(AI, true, "Guard"); 406 CallInst *Call = B.CreateCall(GuardCheck, {Guard}); 407 llvm::Function *Function = cast<llvm::Function>(GuardCheck); 408 Call->setAttributes(Function->getAttributes()); 409 Call->setCallingConv(Function->getCallingConv()); 410 } else { 411 // Generate the epilogue with inline instrumentation. 412 // If we do not support SelectionDAG based tail calls, generate IR level 413 // tail calls. 414 // 415 // For each block with a return instruction, convert this: 416 // 417 // return: 418 // ... 419 // ret ... 420 // 421 // into this: 422 // 423 // return: 424 // ... 425 // %1 = <stack guard> 426 // %2 = load StackGuardSlot 427 // %3 = cmp i1 %1, %2 428 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk 429 // 430 // SP_return: 431 // ret ... 432 // 433 // CallStackCheckFailBlk: 434 // call void @__stack_chk_fail() 435 // unreachable 436 437 // Create the FailBB. We duplicate the BB every time since the MI tail 438 // merge pass will merge together all of the various BB into one including 439 // fail BB generated by the stack protector pseudo instruction. 440 BasicBlock *FailBB = CreateFailBB(); 441 442 // Split the basic block before the return instruction. 443 BasicBlock *NewBB = BB->splitBasicBlock(RI->getIterator(), "SP_return"); 444 445 // Update the dominator tree if we need to. 446 if (DT && DT->isReachableFromEntry(BB)) { 447 DT->addNewBlock(NewBB, BB); 448 DT->addNewBlock(FailBB, BB); 449 } 450 451 // Remove default branch instruction to the new BB. 452 BB->getTerminator()->eraseFromParent(); 453 454 // Move the newly created basic block to the point right after the old 455 // basic block so that it's in the "fall through" position. 456 NewBB->moveAfter(BB); 457 458 // Generate the stack protector instructions in the old basic block. 459 IRBuilder<> B(BB); 460 Value *Guard = getStackGuard(TLI, M, B); 461 LoadInst *LI2 = B.CreateLoad(AI, true); 462 Value *Cmp = B.CreateICmpEQ(Guard, LI2); 463 auto SuccessProb = 464 BranchProbabilityInfo::getBranchProbStackProtector(true); 465 auto FailureProb = 466 BranchProbabilityInfo::getBranchProbStackProtector(false); 467 MDNode *Weights = MDBuilder(F->getContext()) 468 .createBranchWeights(SuccessProb.getNumerator(), 469 FailureProb.getNumerator()); 470 B.CreateCondBr(Cmp, NewBB, FailBB, Weights); 471 } 472 } 473 474 // Return if we didn't modify any basic blocks. i.e., there are no return 475 // statements in the function. 476 return HasPrologue; 477 } 478 479 /// CreateFailBB - Create a basic block to jump to when the stack protector 480 /// check fails. 481 BasicBlock *StackProtector::CreateFailBB() { 482 LLVMContext &Context = F->getContext(); 483 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F); 484 IRBuilder<> B(FailBB); 485 B.SetCurrentDebugLocation(DebugLoc::get(0, 0, F->getSubprogram())); 486 if (Trip.isOSOpenBSD()) { 487 Constant *StackChkFail = 488 M->getOrInsertFunction("__stack_smash_handler", 489 Type::getVoidTy(Context), 490 Type::getInt8PtrTy(Context)); 491 492 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH")); 493 } else { 494 Constant *StackChkFail = 495 M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context)); 496 497 B.CreateCall(StackChkFail, {}); 498 } 499 B.CreateUnreachable(); 500 return FailBB; 501 } 502 503 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const { 504 return HasPrologue && !HasIRCheck && dyn_cast<ReturnInst>(BB.getTerminator()); 505 } 506