1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass inserts stack protectors into functions which need them. A variable 11 // with a random value in it is stored onto the stack before the local variables 12 // are allocated. Upon exiting the block, the stored value is checked. If it's 13 // changed, then there was some sort of violation and the program aborts. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/CodeGen/StackProtector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/EHPersonalities.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/CodeGen/Passes.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DebugLoc.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/Instruction.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/IR/User.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include <utility> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "stack-protector" 54 55 STATISTIC(NumFunProtected, "Number of functions protected"); 56 STATISTIC(NumAddrTaken, "Number of local variables that have their address" 57 " taken."); 58 59 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp", 60 cl::init(true), cl::Hidden); 61 62 char StackProtector::ID = 0; 63 64 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE, 65 "Insert stack protectors", false, true) 66 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 67 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE, 68 "Insert stack protectors", false, true) 69 70 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); } 71 72 StackProtector::SSPLayoutKind 73 StackProtector::getSSPLayout(const AllocaInst *AI) const { 74 return AI ? Layout.lookup(AI) : SSPLK_None; 75 } 76 77 void StackProtector::adjustForColoring(const AllocaInst *From, 78 const AllocaInst *To) { 79 // When coloring replaces one alloca with another, transfer the SSPLayoutKind 80 // tag from the remapped to the target alloca. The remapped alloca should 81 // have a size smaller than or equal to the replacement alloca. 82 SSPLayoutMap::iterator I = Layout.find(From); 83 if (I != Layout.end()) { 84 SSPLayoutKind Kind = I->second; 85 Layout.erase(I); 86 87 // Transfer the tag, but make sure that SSPLK_AddrOf does not overwrite 88 // SSPLK_SmallArray or SSPLK_LargeArray, and make sure that 89 // SSPLK_SmallArray does not overwrite SSPLK_LargeArray. 90 I = Layout.find(To); 91 if (I == Layout.end()) 92 Layout.insert(std::make_pair(To, Kind)); 93 else if (I->second != SSPLK_LargeArray && Kind != SSPLK_AddrOf) 94 I->second = Kind; 95 } 96 } 97 98 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const { 99 AU.addRequired<TargetPassConfig>(); 100 AU.addPreserved<DominatorTreeWrapperPass>(); 101 } 102 103 bool StackProtector::runOnFunction(Function &Fn) { 104 F = &Fn; 105 M = F->getParent(); 106 DominatorTreeWrapperPass *DTWP = 107 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 108 DT = DTWP ? &DTWP->getDomTree() : nullptr; 109 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 110 Trip = TM->getTargetTriple(); 111 TLI = TM->getSubtargetImpl(Fn)->getTargetLowering(); 112 HasPrologue = false; 113 HasIRCheck = false; 114 115 Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size"); 116 if (Attr.isStringAttribute() && 117 Attr.getValueAsString().getAsInteger(10, SSPBufferSize)) 118 return false; // Invalid integer string 119 120 if (!RequiresStackProtector()) 121 return false; 122 123 // TODO(etienneb): Functions with funclets are not correctly supported now. 124 // Do nothing if this is funclet-based personality. 125 if (Fn.hasPersonalityFn()) { 126 EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn()); 127 if (isFuncletEHPersonality(Personality)) 128 return false; 129 } 130 131 ++NumFunProtected; 132 return InsertStackProtectors(); 133 } 134 135 /// \param [out] IsLarge is set to true if a protectable array is found and 136 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with 137 /// multiple arrays, this gets set if any of them is large. 138 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge, 139 bool Strong, 140 bool InStruct) const { 141 if (!Ty) 142 return false; 143 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 144 if (!AT->getElementType()->isIntegerTy(8)) { 145 // If we're on a non-Darwin platform or we're inside of a structure, don't 146 // add stack protectors unless the array is a character array. 147 // However, in strong mode any array, regardless of type and size, 148 // triggers a protector. 149 if (!Strong && (InStruct || !Trip.isOSDarwin())) 150 return false; 151 } 152 153 // If an array has more than SSPBufferSize bytes of allocated space, then we 154 // emit stack protectors. 155 if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) { 156 IsLarge = true; 157 return true; 158 } 159 160 if (Strong) 161 // Require a protector for all arrays in strong mode 162 return true; 163 } 164 165 const StructType *ST = dyn_cast<StructType>(Ty); 166 if (!ST) 167 return false; 168 169 bool NeedsProtector = false; 170 for (StructType::element_iterator I = ST->element_begin(), 171 E = ST->element_end(); 172 I != E; ++I) 173 if (ContainsProtectableArray(*I, IsLarge, Strong, true)) { 174 // If the element is a protectable array and is large (>= SSPBufferSize) 175 // then we are done. If the protectable array is not large, then 176 // keep looking in case a subsequent element is a large array. 177 if (IsLarge) 178 return true; 179 NeedsProtector = true; 180 } 181 182 return NeedsProtector; 183 } 184 185 bool StackProtector::HasAddressTaken(const Instruction *AI) { 186 for (const User *U : AI->users()) { 187 if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 188 if (AI == SI->getValueOperand()) 189 return true; 190 } else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) { 191 if (AI == SI->getOperand(0)) 192 return true; 193 } else if (isa<CallInst>(U)) { 194 return true; 195 } else if (isa<InvokeInst>(U)) { 196 return true; 197 } else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) { 198 if (HasAddressTaken(SI)) 199 return true; 200 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 201 // Keep track of what PHI nodes we have already visited to ensure 202 // they are only visited once. 203 if (VisitedPHIs.insert(PN).second) 204 if (HasAddressTaken(PN)) 205 return true; 206 } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 207 if (HasAddressTaken(GEP)) 208 return true; 209 } else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 210 if (HasAddressTaken(BI)) 211 return true; 212 } 213 } 214 return false; 215 } 216 217 /// \brief Check whether or not this function needs a stack protector based 218 /// upon the stack protector level. 219 /// 220 /// We use two heuristics: a standard (ssp) and strong (sspstrong). 221 /// The standard heuristic which will add a guard variable to functions that 222 /// call alloca with a either a variable size or a size >= SSPBufferSize, 223 /// functions with character buffers larger than SSPBufferSize, and functions 224 /// with aggregates containing character buffers larger than SSPBufferSize. The 225 /// strong heuristic will add a guard variables to functions that call alloca 226 /// regardless of size, functions with any buffer regardless of type and size, 227 /// functions with aggregates that contain any buffer regardless of type and 228 /// size, and functions that contain stack-based variables that have had their 229 /// address taken. 230 bool StackProtector::RequiresStackProtector() { 231 bool Strong = false; 232 bool NeedsProtector = false; 233 for (const BasicBlock &BB : *F) 234 for (const Instruction &I : BB) 235 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 236 if (CI->getCalledFunction() == 237 Intrinsic::getDeclaration(F->getParent(), 238 Intrinsic::stackprotector)) 239 HasPrologue = true; 240 241 if (F->hasFnAttribute(Attribute::SafeStack)) 242 return false; 243 244 // We are constructing the OptimizationRemarkEmitter on the fly rather than 245 // using the analysis pass to avoid building DominatorTree and LoopInfo which 246 // are not available this late in the IR pipeline. 247 OptimizationRemarkEmitter ORE(F); 248 249 if (F->hasFnAttribute(Attribute::StackProtectReq)) { 250 ORE.emit([&]() { 251 return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F) 252 << "Stack protection applied to function " 253 << ore::NV("Function", F) 254 << " due to a function attribute or command-line switch"; 255 }); 256 NeedsProtector = true; 257 Strong = true; // Use the same heuristic as strong to determine SSPLayout 258 } else if (F->hasFnAttribute(Attribute::StackProtectStrong)) 259 Strong = true; 260 else if (HasPrologue) 261 NeedsProtector = true; 262 else if (!F->hasFnAttribute(Attribute::StackProtect)) 263 return false; 264 265 for (const BasicBlock &BB : *F) { 266 for (const Instruction &I : BB) { 267 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 268 if (AI->isArrayAllocation()) { 269 auto RemarkBuilder = [&]() { 270 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray", 271 &I) 272 << "Stack protection applied to function " 273 << ore::NV("Function", F) 274 << " due to a call to alloca or use of a variable length " 275 "array"; 276 }; 277 if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) { 278 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) { 279 // A call to alloca with size >= SSPBufferSize requires 280 // stack protectors. 281 Layout.insert(std::make_pair(AI, SSPLK_LargeArray)); 282 ORE.emit(RemarkBuilder); 283 NeedsProtector = true; 284 } else if (Strong) { 285 // Require protectors for all alloca calls in strong mode. 286 Layout.insert(std::make_pair(AI, SSPLK_SmallArray)); 287 ORE.emit(RemarkBuilder); 288 NeedsProtector = true; 289 } 290 } else { 291 // A call to alloca with a variable size requires protectors. 292 Layout.insert(std::make_pair(AI, SSPLK_LargeArray)); 293 ORE.emit(RemarkBuilder); 294 NeedsProtector = true; 295 } 296 continue; 297 } 298 299 bool IsLarge = false; 300 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) { 301 Layout.insert(std::make_pair(AI, IsLarge ? SSPLK_LargeArray 302 : SSPLK_SmallArray)); 303 ORE.emit([&]() { 304 return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I) 305 << "Stack protection applied to function " 306 << ore::NV("Function", F) 307 << " due to a stack allocated buffer or struct containing a " 308 "buffer"; 309 }); 310 NeedsProtector = true; 311 continue; 312 } 313 314 if (Strong && HasAddressTaken(AI)) { 315 ++NumAddrTaken; 316 Layout.insert(std::make_pair(AI, SSPLK_AddrOf)); 317 ORE.emit([&]() { 318 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken", 319 &I) 320 << "Stack protection applied to function " 321 << ore::NV("Function", F) 322 << " due to the address of a local variable being taken"; 323 }); 324 NeedsProtector = true; 325 } 326 } 327 } 328 } 329 330 return NeedsProtector; 331 } 332 333 /// Create a stack guard loading and populate whether SelectionDAG SSP is 334 /// supported. 335 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M, 336 IRBuilder<> &B, 337 bool *SupportsSelectionDAGSP = nullptr) { 338 if (Value *Guard = TLI->getIRStackGuard(B)) 339 return B.CreateLoad(Guard, true, "StackGuard"); 340 341 // Use SelectionDAG SSP handling, since there isn't an IR guard. 342 // 343 // This is more or less weird, since we optionally output whether we 344 // should perform a SelectionDAG SP here. The reason is that it's strictly 345 // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also 346 // mutating. There is no way to get this bit without mutating the IR, so 347 // getting this bit has to happen in this right time. 348 // 349 // We could have define a new function TLI::supportsSelectionDAGSP(), but that 350 // will put more burden on the backends' overriding work, especially when it 351 // actually conveys the same information getIRStackGuard() already gives. 352 if (SupportsSelectionDAGSP) 353 *SupportsSelectionDAGSP = true; 354 TLI->insertSSPDeclarations(*M); 355 return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard)); 356 } 357 358 /// Insert code into the entry block that stores the stack guard 359 /// variable onto the stack: 360 /// 361 /// entry: 362 /// StackGuardSlot = alloca i8* 363 /// StackGuard = <stack guard> 364 /// call void @llvm.stackprotector(StackGuard, StackGuardSlot) 365 /// 366 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo 367 /// node. 368 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI, 369 const TargetLoweringBase *TLI, AllocaInst *&AI) { 370 bool SupportsSelectionDAGSP = false; 371 IRBuilder<> B(&F->getEntryBlock().front()); 372 PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext()); 373 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot"); 374 375 Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP); 376 B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), 377 {GuardSlot, AI}); 378 return SupportsSelectionDAGSP; 379 } 380 381 /// InsertStackProtectors - Insert code into the prologue and epilogue of the 382 /// function. 383 /// 384 /// - The prologue code loads and stores the stack guard onto the stack. 385 /// - The epilogue checks the value stored in the prologue against the original 386 /// value. It calls __stack_chk_fail if they differ. 387 bool StackProtector::InsertStackProtectors() { 388 // If the target wants to XOR the frame pointer into the guard value, it's 389 // impossible to emit the check in IR, so the target *must* support stack 390 // protection in SDAG. 391 bool SupportsSelectionDAGSP = 392 TLI->useStackGuardXorFP() || 393 (EnableSelectionDAGSP && !TM->Options.EnableFastISel); 394 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard. 395 396 for (Function::iterator I = F->begin(), E = F->end(); I != E;) { 397 BasicBlock *BB = &*I++; 398 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 399 if (!RI) 400 continue; 401 402 // Generate prologue instrumentation if not already generated. 403 if (!HasPrologue) { 404 HasPrologue = true; 405 SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI); 406 } 407 408 // SelectionDAG based code generation. Nothing else needs to be done here. 409 // The epilogue instrumentation is postponed to SelectionDAG. 410 if (SupportsSelectionDAGSP) 411 break; 412 413 // Set HasIRCheck to true, so that SelectionDAG will not generate its own 414 // version. SelectionDAG called 'shouldEmitSDCheck' to check whether 415 // instrumentation has already been generated. 416 HasIRCheck = true; 417 418 // Generate epilogue instrumentation. The epilogue intrumentation can be 419 // function-based or inlined depending on which mechanism the target is 420 // providing. 421 if (Value* GuardCheck = TLI->getSSPStackGuardCheck(*M)) { 422 // Generate the function-based epilogue instrumentation. 423 // The target provides a guard check function, generate a call to it. 424 IRBuilder<> B(RI); 425 LoadInst *Guard = B.CreateLoad(AI, true, "Guard"); 426 CallInst *Call = B.CreateCall(GuardCheck, {Guard}); 427 llvm::Function *Function = cast<llvm::Function>(GuardCheck); 428 Call->setAttributes(Function->getAttributes()); 429 Call->setCallingConv(Function->getCallingConv()); 430 } else { 431 // Generate the epilogue with inline instrumentation. 432 // If we do not support SelectionDAG based tail calls, generate IR level 433 // tail calls. 434 // 435 // For each block with a return instruction, convert this: 436 // 437 // return: 438 // ... 439 // ret ... 440 // 441 // into this: 442 // 443 // return: 444 // ... 445 // %1 = <stack guard> 446 // %2 = load StackGuardSlot 447 // %3 = cmp i1 %1, %2 448 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk 449 // 450 // SP_return: 451 // ret ... 452 // 453 // CallStackCheckFailBlk: 454 // call void @__stack_chk_fail() 455 // unreachable 456 457 // Create the FailBB. We duplicate the BB every time since the MI tail 458 // merge pass will merge together all of the various BB into one including 459 // fail BB generated by the stack protector pseudo instruction. 460 BasicBlock *FailBB = CreateFailBB(); 461 462 // Split the basic block before the return instruction. 463 BasicBlock *NewBB = BB->splitBasicBlock(RI->getIterator(), "SP_return"); 464 465 // Update the dominator tree if we need to. 466 if (DT && DT->isReachableFromEntry(BB)) { 467 DT->addNewBlock(NewBB, BB); 468 DT->addNewBlock(FailBB, BB); 469 } 470 471 // Remove default branch instruction to the new BB. 472 BB->getTerminator()->eraseFromParent(); 473 474 // Move the newly created basic block to the point right after the old 475 // basic block so that it's in the "fall through" position. 476 NewBB->moveAfter(BB); 477 478 // Generate the stack protector instructions in the old basic block. 479 IRBuilder<> B(BB); 480 Value *Guard = getStackGuard(TLI, M, B); 481 LoadInst *LI2 = B.CreateLoad(AI, true); 482 Value *Cmp = B.CreateICmpEQ(Guard, LI2); 483 auto SuccessProb = 484 BranchProbabilityInfo::getBranchProbStackProtector(true); 485 auto FailureProb = 486 BranchProbabilityInfo::getBranchProbStackProtector(false); 487 MDNode *Weights = MDBuilder(F->getContext()) 488 .createBranchWeights(SuccessProb.getNumerator(), 489 FailureProb.getNumerator()); 490 B.CreateCondBr(Cmp, NewBB, FailBB, Weights); 491 } 492 } 493 494 // Return if we didn't modify any basic blocks. i.e., there are no return 495 // statements in the function. 496 return HasPrologue; 497 } 498 499 /// CreateFailBB - Create a basic block to jump to when the stack protector 500 /// check fails. 501 BasicBlock *StackProtector::CreateFailBB() { 502 LLVMContext &Context = F->getContext(); 503 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F); 504 IRBuilder<> B(FailBB); 505 B.SetCurrentDebugLocation(DebugLoc::get(0, 0, F->getSubprogram())); 506 if (Trip.isOSOpenBSD()) { 507 Constant *StackChkFail = 508 M->getOrInsertFunction("__stack_smash_handler", 509 Type::getVoidTy(Context), 510 Type::getInt8PtrTy(Context)); 511 512 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH")); 513 } else { 514 Constant *StackChkFail = 515 M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context)); 516 517 B.CreateCall(StackChkFail, {}); 518 } 519 B.CreateUnreachable(); 520 return FailBB; 521 } 522 523 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const { 524 return HasPrologue && !HasIRCheck && dyn_cast<ReturnInst>(BB.getTerminator()); 525 } 526