1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/CallingConvLower.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Target/TargetLoweringObjectFile.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include "llvm/Target/TargetSubtargetInfo.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function *F = DAG.getMachineFunction().getFunction(); 55 56 // Conservatively require the attributes of the call to match those of 57 // the return. Ignore noalias because it doesn't affect the call sequence. 58 AttributeSet CallerAttrs = F->getAttributes(); 59 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) 60 .removeAttribute(Attribute::NoAlias).hasAttributes()) 61 return false; 62 63 // It's not safe to eliminate the sign / zero extension of the return value. 64 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 65 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 66 return false; 67 68 // Check if the only use is a function return node. 69 return isUsedByReturnOnly(Node, Chain); 70 } 71 72 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 73 const uint32_t *CallerPreservedMask, 74 const SmallVectorImpl<CCValAssign> &ArgLocs, 75 const SmallVectorImpl<SDValue> &OutVals) const { 76 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 77 const CCValAssign &ArgLoc = ArgLocs[I]; 78 if (!ArgLoc.isRegLoc()) 79 continue; 80 unsigned Reg = ArgLoc.getLocReg(); 81 // Only look at callee saved registers. 82 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 83 continue; 84 // Check that we pass the value used for the caller. 85 // (We look for a CopyFromReg reading a virtual register that is used 86 // for the function live-in value of register Reg) 87 SDValue Value = OutVals[I]; 88 if (Value->getOpcode() != ISD::CopyFromReg) 89 return false; 90 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 91 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 92 return false; 93 } 94 return true; 95 } 96 97 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 98 /// and called function attributes. 99 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS, 100 unsigned AttrIdx) { 101 isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 102 isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 103 isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 104 isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 105 isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 106 isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 107 isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 108 isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 109 isSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf); 110 isSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError); 111 Alignment = CS->getParamAlignment(AttrIdx); 112 } 113 114 /// Generate a libcall taking the given operands as arguments and returning a 115 /// result of type RetVT. 116 std::pair<SDValue, SDValue> 117 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 118 ArrayRef<SDValue> Ops, bool isSigned, 119 const SDLoc &dl, bool doesNotReturn, 120 bool isReturnValueUsed) const { 121 TargetLowering::ArgListTy Args; 122 Args.reserve(Ops.size()); 123 124 TargetLowering::ArgListEntry Entry; 125 for (SDValue Op : Ops) { 126 Entry.Node = Op; 127 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 128 Entry.isSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 129 Entry.isZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 130 Args.push_back(Entry); 131 } 132 133 if (LC == RTLIB::UNKNOWN_LIBCALL) 134 report_fatal_error("Unsupported library call operation!"); 135 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 136 getPointerTy(DAG.getDataLayout())); 137 138 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 139 TargetLowering::CallLoweringInfo CLI(DAG); 140 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 141 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) 142 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 143 .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed) 144 .setSExtResult(signExtend).setZExtResult(!signExtend); 145 return LowerCallTo(CLI); 146 } 147 148 /// Soften the operands of a comparison. This code is shared among BR_CC, 149 /// SELECT_CC, and SETCC handlers. 150 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 151 SDValue &NewLHS, SDValue &NewRHS, 152 ISD::CondCode &CCCode, 153 const SDLoc &dl) const { 154 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 155 && "Unsupported setcc type!"); 156 157 // Expand into one or more soft-fp libcall(s). 158 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 159 bool ShouldInvertCC = false; 160 switch (CCCode) { 161 case ISD::SETEQ: 162 case ISD::SETOEQ: 163 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 164 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 165 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 166 break; 167 case ISD::SETNE: 168 case ISD::SETUNE: 169 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 170 (VT == MVT::f64) ? RTLIB::UNE_F64 : 171 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 172 break; 173 case ISD::SETGE: 174 case ISD::SETOGE: 175 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 176 (VT == MVT::f64) ? RTLIB::OGE_F64 : 177 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 178 break; 179 case ISD::SETLT: 180 case ISD::SETOLT: 181 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 182 (VT == MVT::f64) ? RTLIB::OLT_F64 : 183 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 184 break; 185 case ISD::SETLE: 186 case ISD::SETOLE: 187 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 188 (VT == MVT::f64) ? RTLIB::OLE_F64 : 189 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 190 break; 191 case ISD::SETGT: 192 case ISD::SETOGT: 193 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 194 (VT == MVT::f64) ? RTLIB::OGT_F64 : 195 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 196 break; 197 case ISD::SETUO: 198 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 199 (VT == MVT::f64) ? RTLIB::UO_F64 : 200 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 201 break; 202 case ISD::SETO: 203 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 204 (VT == MVT::f64) ? RTLIB::O_F64 : 205 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 206 break; 207 case ISD::SETONE: 208 // SETONE = SETOLT | SETOGT 209 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 210 (VT == MVT::f64) ? RTLIB::OLT_F64 : 211 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 212 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 213 (VT == MVT::f64) ? RTLIB::OGT_F64 : 214 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 215 break; 216 case ISD::SETUEQ: 217 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 218 (VT == MVT::f64) ? RTLIB::UO_F64 : 219 (VT == MVT::f128) ? RTLIB::UO_F64 : RTLIB::UO_PPCF128; 220 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 221 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 222 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 223 break; 224 default: 225 // Invert CC for unordered comparisons 226 ShouldInvertCC = true; 227 switch (CCCode) { 228 case ISD::SETULT: 229 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 230 (VT == MVT::f64) ? RTLIB::OGE_F64 : 231 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 232 break; 233 case ISD::SETULE: 234 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 235 (VT == MVT::f64) ? RTLIB::OGT_F64 : 236 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 237 break; 238 case ISD::SETUGT: 239 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 240 (VT == MVT::f64) ? RTLIB::OLE_F64 : 241 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 242 break; 243 case ISD::SETUGE: 244 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 245 (VT == MVT::f64) ? RTLIB::OLT_F64 : 246 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 247 break; 248 default: llvm_unreachable("Do not know how to soften this setcc!"); 249 } 250 } 251 252 // Use the target specific return value for comparions lib calls. 253 EVT RetVT = getCmpLibcallReturnType(); 254 SDValue Ops[2] = {NewLHS, NewRHS}; 255 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 256 dl).first; 257 NewRHS = DAG.getConstant(0, dl, RetVT); 258 259 CCCode = getCmpLibcallCC(LC1); 260 if (ShouldInvertCC) 261 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 262 263 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 264 SDValue Tmp = DAG.getNode( 265 ISD::SETCC, dl, 266 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 267 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 268 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 269 dl).first; 270 NewLHS = DAG.getNode( 271 ISD::SETCC, dl, 272 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 273 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 274 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 275 NewRHS = SDValue(); 276 } 277 } 278 279 /// Return the entry encoding for a jump table in the current function. The 280 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 281 unsigned TargetLowering::getJumpTableEncoding() const { 282 // In non-pic modes, just use the address of a block. 283 if (!isPositionIndependent()) 284 return MachineJumpTableInfo::EK_BlockAddress; 285 286 // In PIC mode, if the target supports a GPRel32 directive, use it. 287 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 288 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 289 290 // Otherwise, use a label difference. 291 return MachineJumpTableInfo::EK_LabelDifference32; 292 } 293 294 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 295 SelectionDAG &DAG) const { 296 // If our PIC model is GP relative, use the global offset table as the base. 297 unsigned JTEncoding = getJumpTableEncoding(); 298 299 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 300 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 301 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 302 303 return Table; 304 } 305 306 /// This returns the relocation base for the given PIC jumptable, the same as 307 /// getPICJumpTableRelocBase, but as an MCExpr. 308 const MCExpr * 309 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 310 unsigned JTI,MCContext &Ctx) const{ 311 // The normal PIC reloc base is the label at the start of the jump table. 312 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 313 } 314 315 bool 316 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 317 const TargetMachine &TM = getTargetMachine(); 318 const GlobalValue *GV = GA->getGlobal(); 319 320 // If the address is not even local to this DSO we will have to load it from 321 // a got and then add the offset. 322 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 323 return false; 324 325 // If the code is position independent we will have to add a base register. 326 if (isPositionIndependent()) 327 return false; 328 329 // Otherwise we can do it. 330 return true; 331 } 332 333 //===----------------------------------------------------------------------===// 334 // Optimization Methods 335 //===----------------------------------------------------------------------===// 336 337 /// Check to see if the specified operand of the specified instruction is a 338 /// constant integer. If so, check to see if there are any bits set in the 339 /// constant that are not demanded. If so, shrink the constant and return true. 340 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 341 const APInt &Demanded) { 342 SDLoc dl(Op); 343 344 // FIXME: ISD::SELECT, ISD::SELECT_CC 345 switch (Op.getOpcode()) { 346 default: break; 347 case ISD::XOR: 348 case ISD::AND: 349 case ISD::OR: { 350 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 351 if (!C) return false; 352 353 if (Op.getOpcode() == ISD::XOR && 354 (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) 355 return false; 356 357 // if we can expand it to have all bits set, do it 358 if (C->getAPIntValue().intersects(~Demanded)) { 359 EVT VT = Op.getValueType(); 360 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), 361 DAG.getConstant(Demanded & 362 C->getAPIntValue(), 363 dl, VT)); 364 return CombineTo(Op, New); 365 } 366 367 break; 368 } 369 } 370 371 return false; 372 } 373 374 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 375 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 376 /// generalized for targets with other types of implicit widening casts. 377 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 378 unsigned BitWidth, 379 const APInt &Demanded, 380 const SDLoc &dl) { 381 assert(Op.getNumOperands() == 2 && 382 "ShrinkDemandedOp only supports binary operators!"); 383 assert(Op.getNode()->getNumValues() == 1 && 384 "ShrinkDemandedOp only supports nodes with one result!"); 385 386 // Early return, as this function cannot handle vector types. 387 if (Op.getValueType().isVector()) 388 return false; 389 390 // Don't do this if the node has another user, which may require the 391 // full value. 392 if (!Op.getNode()->hasOneUse()) 393 return false; 394 395 // Search for the smallest integer type with free casts to and from 396 // Op's type. For expedience, just check power-of-2 integer types. 397 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 398 unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); 399 unsigned SmallVTBits = DemandedSize; 400 if (!isPowerOf2_32(SmallVTBits)) 401 SmallVTBits = NextPowerOf2(SmallVTBits); 402 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 403 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 404 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 405 TLI.isZExtFree(SmallVT, Op.getValueType())) { 406 // We found a type with free casts. 407 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 408 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 409 Op.getNode()->getOperand(0)), 410 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 411 Op.getNode()->getOperand(1))); 412 bool NeedZext = DemandedSize > SmallVTBits; 413 SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, 414 dl, Op.getValueType(), X); 415 return CombineTo(Op, Z); 416 } 417 } 418 return false; 419 } 420 421 /// Look at Op. At this point, we know that only the DemandedMask bits of the 422 /// result of Op are ever used downstream. If we can use this information to 423 /// simplify Op, create a new simplified DAG node and return true, returning the 424 /// original and new nodes in Old and New. Otherwise, analyze the expression and 425 /// return a mask of KnownOne and KnownZero bits for the expression (used to 426 /// simplify the caller). The KnownZero/One bits may only be accurate for those 427 /// bits in the DemandedMask. 428 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 429 const APInt &DemandedMask, 430 APInt &KnownZero, 431 APInt &KnownOne, 432 TargetLoweringOpt &TLO, 433 unsigned Depth) const { 434 unsigned BitWidth = DemandedMask.getBitWidth(); 435 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth && 436 "Mask size mismatches value type size!"); 437 APInt NewMask = DemandedMask; 438 SDLoc dl(Op); 439 auto &DL = TLO.DAG.getDataLayout(); 440 441 // Don't know anything. 442 KnownZero = KnownOne = APInt(BitWidth, 0); 443 444 // Other users may use these bits. 445 if (!Op.getNode()->hasOneUse()) { 446 if (Depth != 0) { 447 // If not at the root, Just compute the KnownZero/KnownOne bits to 448 // simplify things downstream. 449 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 450 return false; 451 } 452 // If this is the root being simplified, allow it to have multiple uses, 453 // just set the NewMask to all bits. 454 NewMask = APInt::getAllOnesValue(BitWidth); 455 } else if (DemandedMask == 0) { 456 // Not demanding any bits from Op. 457 if (!Op.isUndef()) 458 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 459 return false; 460 } else if (Depth == 6) { // Limit search depth. 461 return false; 462 } 463 464 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 465 switch (Op.getOpcode()) { 466 case ISD::Constant: 467 // We know all of the bits for a constant! 468 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 469 KnownZero = ~KnownOne; 470 return false; // Don't fall through, will infinitely loop. 471 case ISD::AND: 472 // If the RHS is a constant, check to see if the LHS would be zero without 473 // using the bits from the RHS. Below, we use knowledge about the RHS to 474 // simplify the LHS, here we're using information from the LHS to simplify 475 // the RHS. 476 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 477 APInt LHSZero, LHSOne; 478 // Do not increment Depth here; that can cause an infinite loop. 479 TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth); 480 // If the LHS already has zeros where RHSC does, this and is dead. 481 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 482 return TLO.CombineTo(Op, Op.getOperand(0)); 483 // If any of the set bits in the RHS are known zero on the LHS, shrink 484 // the constant. 485 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 486 return true; 487 } 488 489 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 490 KnownOne, TLO, Depth+1)) 491 return true; 492 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 493 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 494 KnownZero2, KnownOne2, TLO, Depth+1)) 495 return true; 496 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 497 498 // If all of the demanded bits are known one on one side, return the other. 499 // These bits cannot contribute to the result of the 'and'. 500 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 501 return TLO.CombineTo(Op, Op.getOperand(0)); 502 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 503 return TLO.CombineTo(Op, Op.getOperand(1)); 504 // If all of the demanded bits in the inputs are known zeros, return zero. 505 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 506 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType())); 507 // If the RHS is a constant, see if we can simplify it. 508 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 509 return true; 510 // If the operation can be done in a smaller type, do so. 511 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 512 return true; 513 514 // Output known-1 bits are only known if set in both the LHS & RHS. 515 KnownOne &= KnownOne2; 516 // Output known-0 are known to be clear if zero in either the LHS | RHS. 517 KnownZero |= KnownZero2; 518 break; 519 case ISD::OR: 520 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 521 KnownOne, TLO, Depth+1)) 522 return true; 523 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 524 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 525 KnownZero2, KnownOne2, TLO, Depth+1)) 526 return true; 527 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 528 529 // If all of the demanded bits are known zero on one side, return the other. 530 // These bits cannot contribute to the result of the 'or'. 531 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 532 return TLO.CombineTo(Op, Op.getOperand(0)); 533 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 534 return TLO.CombineTo(Op, Op.getOperand(1)); 535 // If all of the potentially set bits on one side are known to be set on 536 // the other side, just use the 'other' side. 537 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 538 return TLO.CombineTo(Op, Op.getOperand(0)); 539 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 540 return TLO.CombineTo(Op, Op.getOperand(1)); 541 // If the RHS is a constant, see if we can simplify it. 542 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 543 return true; 544 // If the operation can be done in a smaller type, do so. 545 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 546 return true; 547 548 // Output known-0 bits are only known if clear in both the LHS & RHS. 549 KnownZero &= KnownZero2; 550 // Output known-1 are known to be set if set in either the LHS | RHS. 551 KnownOne |= KnownOne2; 552 break; 553 case ISD::XOR: 554 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 555 KnownOne, TLO, Depth+1)) 556 return true; 557 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 558 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 559 KnownOne2, TLO, Depth+1)) 560 return true; 561 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 562 563 // If all of the demanded bits are known zero on one side, return the other. 564 // These bits cannot contribute to the result of the 'xor'. 565 if ((KnownZero & NewMask) == NewMask) 566 return TLO.CombineTo(Op, Op.getOperand(0)); 567 if ((KnownZero2 & NewMask) == NewMask) 568 return TLO.CombineTo(Op, Op.getOperand(1)); 569 // If the operation can be done in a smaller type, do so. 570 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 571 return true; 572 573 // If all of the unknown bits are known to be zero on one side or the other 574 // (but not both) turn this into an *inclusive* or. 575 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 576 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 577 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 578 Op.getOperand(0), 579 Op.getOperand(1))); 580 581 // Output known-0 bits are known if clear or set in both the LHS & RHS. 582 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 583 // Output known-1 are known to be set if set in only one of the LHS, RHS. 584 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 585 586 // If all of the demanded bits on one side are known, and all of the set 587 // bits on that side are also known to be set on the other side, turn this 588 // into an AND, as we know the bits will be cleared. 589 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 590 // NB: it is okay if more bits are known than are requested 591 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side 592 if (KnownOne == KnownOne2) { // set bits are the same on both sides 593 EVT VT = Op.getValueType(); 594 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT); 595 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 596 Op.getOperand(0), ANDC)); 597 } 598 } 599 600 // If the RHS is a constant, see if we can simplify it. 601 // for XOR, we prefer to force bits to 1 if they will make a -1. 602 // if we can't force bits, try to shrink constant 603 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 604 APInt Expanded = C->getAPIntValue() | (~NewMask); 605 // if we can expand it to have all bits set, do it 606 if (Expanded.isAllOnesValue()) { 607 if (Expanded != C->getAPIntValue()) { 608 EVT VT = Op.getValueType(); 609 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 610 TLO.DAG.getConstant(Expanded, dl, VT)); 611 return TLO.CombineTo(Op, New); 612 } 613 // if it already has all the bits set, nothing to change 614 // but don't shrink either! 615 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 616 return true; 617 } 618 } 619 620 KnownZero = KnownZeroOut; 621 KnownOne = KnownOneOut; 622 break; 623 case ISD::SELECT: 624 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 625 KnownOne, TLO, Depth+1)) 626 return true; 627 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 628 KnownOne2, TLO, Depth+1)) 629 return true; 630 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 631 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 632 633 // If the operands are constants, see if we can simplify them. 634 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 635 return true; 636 637 // Only known if known in both the LHS and RHS. 638 KnownOne &= KnownOne2; 639 KnownZero &= KnownZero2; 640 break; 641 case ISD::SELECT_CC: 642 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 643 KnownOne, TLO, Depth+1)) 644 return true; 645 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 646 KnownOne2, TLO, Depth+1)) 647 return true; 648 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 649 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 650 651 // If the operands are constants, see if we can simplify them. 652 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 653 return true; 654 655 // Only known if known in both the LHS and RHS. 656 KnownOne &= KnownOne2; 657 KnownZero &= KnownZero2; 658 break; 659 case ISD::SHL: 660 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 661 unsigned ShAmt = SA->getZExtValue(); 662 SDValue InOp = Op.getOperand(0); 663 664 // If the shift count is an invalid immediate, don't do anything. 665 if (ShAmt >= BitWidth) 666 break; 667 668 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 669 // single shift. We can do this if the bottom bits (which are shifted 670 // out) are never demanded. 671 if (InOp.getOpcode() == ISD::SRL && 672 isa<ConstantSDNode>(InOp.getOperand(1))) { 673 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 674 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 675 unsigned Opc = ISD::SHL; 676 int Diff = ShAmt-C1; 677 if (Diff < 0) { 678 Diff = -Diff; 679 Opc = ISD::SRL; 680 } 681 682 SDValue NewSA = 683 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 684 EVT VT = Op.getValueType(); 685 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 686 InOp.getOperand(0), NewSA)); 687 } 688 } 689 690 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 691 KnownZero, KnownOne, TLO, Depth+1)) 692 return true; 693 694 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 695 // are not demanded. This will likely allow the anyext to be folded away. 696 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 697 SDValue InnerOp = InOp.getNode()->getOperand(0); 698 EVT InnerVT = InnerOp.getValueType(); 699 unsigned InnerBits = InnerVT.getSizeInBits(); 700 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && 701 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 702 EVT ShTy = getShiftAmountTy(InnerVT, DL); 703 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 704 ShTy = InnerVT; 705 SDValue NarrowShl = 706 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 707 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 708 return 709 TLO.CombineTo(Op, 710 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 711 NarrowShl)); 712 } 713 // Repeat the SHL optimization above in cases where an extension 714 // intervenes: (shl (anyext (shr x, c1)), c2) to 715 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 716 // aren't demanded (as above) and that the shifted upper c1 bits of 717 // x aren't demanded. 718 if (InOp.hasOneUse() && 719 InnerOp.getOpcode() == ISD::SRL && 720 InnerOp.hasOneUse() && 721 isa<ConstantSDNode>(InnerOp.getOperand(1))) { 722 uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) 723 ->getZExtValue(); 724 if (InnerShAmt < ShAmt && 725 InnerShAmt < InnerBits && 726 NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && 727 NewMask.trunc(ShAmt) == 0) { 728 SDValue NewSA = 729 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 730 Op.getOperand(1).getValueType()); 731 EVT VT = Op.getValueType(); 732 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 733 InnerOp.getOperand(0)); 734 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 735 NewExt, NewSA)); 736 } 737 } 738 } 739 740 KnownZero <<= SA->getZExtValue(); 741 KnownOne <<= SA->getZExtValue(); 742 // low bits known zero. 743 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); 744 } 745 break; 746 case ISD::SRL: 747 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 748 EVT VT = Op.getValueType(); 749 unsigned ShAmt = SA->getZExtValue(); 750 unsigned VTSize = VT.getSizeInBits(); 751 SDValue InOp = Op.getOperand(0); 752 753 // If the shift count is an invalid immediate, don't do anything. 754 if (ShAmt >= BitWidth) 755 break; 756 757 APInt InDemandedMask = (NewMask << ShAmt); 758 759 // If the shift is exact, then it does demand the low bits (and knows that 760 // they are zero). 761 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 762 InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); 763 764 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 765 // single shift. We can do this if the top bits (which are shifted out) 766 // are never demanded. 767 if (InOp.getOpcode() == ISD::SHL && 768 isa<ConstantSDNode>(InOp.getOperand(1))) { 769 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 770 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 771 unsigned Opc = ISD::SRL; 772 int Diff = ShAmt-C1; 773 if (Diff < 0) { 774 Diff = -Diff; 775 Opc = ISD::SHL; 776 } 777 778 SDValue NewSA = 779 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 780 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 781 InOp.getOperand(0), NewSA)); 782 } 783 } 784 785 // Compute the new bits that are at the top now. 786 if (SimplifyDemandedBits(InOp, InDemandedMask, 787 KnownZero, KnownOne, TLO, Depth+1)) 788 return true; 789 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 790 KnownZero = KnownZero.lshr(ShAmt); 791 KnownOne = KnownOne.lshr(ShAmt); 792 793 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 794 KnownZero |= HighBits; // High bits known zero. 795 } 796 break; 797 case ISD::SRA: 798 // If this is an arithmetic shift right and only the low-bit is set, we can 799 // always convert this into a logical shr, even if the shift amount is 800 // variable. The low bit of the shift cannot be an input sign bit unless 801 // the shift amount is >= the size of the datatype, which is undefined. 802 if (NewMask == 1) 803 return TLO.CombineTo(Op, 804 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 805 Op.getOperand(0), Op.getOperand(1))); 806 807 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 808 EVT VT = Op.getValueType(); 809 unsigned ShAmt = SA->getZExtValue(); 810 811 // If the shift count is an invalid immediate, don't do anything. 812 if (ShAmt >= BitWidth) 813 break; 814 815 APInt InDemandedMask = (NewMask << ShAmt); 816 817 // If the shift is exact, then it does demand the low bits (and knows that 818 // they are zero). 819 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 820 InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); 821 822 // If any of the demanded bits are produced by the sign extension, we also 823 // demand the input sign bit. 824 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 825 if (HighBits.intersects(NewMask)) 826 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits()); 827 828 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 829 KnownZero, KnownOne, TLO, Depth+1)) 830 return true; 831 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 832 KnownZero = KnownZero.lshr(ShAmt); 833 KnownOne = KnownOne.lshr(ShAmt); 834 835 // Handle the sign bit, adjusted to where it is now in the mask. 836 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 837 838 // If the input sign bit is known to be zero, or if none of the top bits 839 // are demanded, turn this into an unsigned shift right. 840 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) { 841 SDNodeFlags Flags; 842 Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()); 843 return TLO.CombineTo(Op, 844 TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), 845 Op.getOperand(1), &Flags)); 846 } 847 848 int Log2 = NewMask.exactLogBase2(); 849 if (Log2 >= 0) { 850 // The bit must come from the sign. 851 SDValue NewSA = 852 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, 853 Op.getOperand(1).getValueType()); 854 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 855 Op.getOperand(0), NewSA)); 856 } 857 858 if (KnownOne.intersects(SignBit)) 859 // New bits are known one. 860 KnownOne |= HighBits; 861 } 862 break; 863 case ISD::SIGN_EXTEND_INREG: { 864 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 865 866 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 867 // If we only care about the highest bit, don't bother shifting right. 868 if (MsbMask == NewMask) { 869 unsigned ShAmt = ExVT.getScalarType().getSizeInBits(); 870 SDValue InOp = Op.getOperand(0); 871 unsigned VTBits = Op->getValueType(0).getScalarType().getSizeInBits(); 872 bool AlreadySignExtended = 873 TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1; 874 // However if the input is already sign extended we expect the sign 875 // extension to be dropped altogether later and do not simplify. 876 if (!AlreadySignExtended) { 877 // Compute the correct shift amount type, which must be getShiftAmountTy 878 // for scalar types after legalization. 879 EVT ShiftAmtTy = Op.getValueType(); 880 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 881 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 882 883 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl, 884 ShiftAmtTy); 885 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 886 Op.getValueType(), InOp, 887 ShiftAmt)); 888 } 889 } 890 891 // Sign extension. Compute the demanded bits in the result that are not 892 // present in the input. 893 APInt NewBits = 894 APInt::getHighBitsSet(BitWidth, 895 BitWidth - ExVT.getScalarType().getSizeInBits()); 896 897 // If none of the extended bits are demanded, eliminate the sextinreg. 898 if ((NewBits & NewMask) == 0) 899 return TLO.CombineTo(Op, Op.getOperand(0)); 900 901 APInt InSignBit = 902 APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth); 903 APInt InputDemandedBits = 904 APInt::getLowBitsSet(BitWidth, 905 ExVT.getScalarType().getSizeInBits()) & 906 NewMask; 907 908 // Since the sign extended bits are demanded, we know that the sign 909 // bit is demanded. 910 InputDemandedBits |= InSignBit; 911 912 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 913 KnownZero, KnownOne, TLO, Depth+1)) 914 return true; 915 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 916 917 // If the sign bit of the input is known set or clear, then we know the 918 // top bits of the result. 919 920 // If the input sign bit is known zero, convert this into a zero extension. 921 if (KnownZero.intersects(InSignBit)) 922 return TLO.CombineTo(Op, 923 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT)); 924 925 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 926 KnownOne |= NewBits; 927 KnownZero &= ~NewBits; 928 } else { // Input sign bit unknown 929 KnownZero &= ~NewBits; 930 KnownOne &= ~NewBits; 931 } 932 break; 933 } 934 case ISD::BUILD_PAIR: { 935 EVT HalfVT = Op.getOperand(0).getValueType(); 936 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 937 938 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 939 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 940 941 APInt KnownZeroLo, KnownOneLo; 942 APInt KnownZeroHi, KnownOneHi; 943 944 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo, 945 KnownOneLo, TLO, Depth + 1)) 946 return true; 947 948 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi, 949 KnownOneHi, TLO, Depth + 1)) 950 return true; 951 952 KnownZero = KnownZeroLo.zext(BitWidth) | 953 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth); 954 955 KnownOne = KnownOneLo.zext(BitWidth) | 956 KnownOneHi.zext(BitWidth).shl(HalfBitWidth); 957 break; 958 } 959 case ISD::ZERO_EXTEND: { 960 unsigned OperandBitWidth = 961 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 962 APInt InMask = NewMask.trunc(OperandBitWidth); 963 964 // If none of the top bits are demanded, convert this into an any_extend. 965 APInt NewBits = 966 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 967 if (!NewBits.intersects(NewMask)) 968 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 969 Op.getValueType(), 970 Op.getOperand(0))); 971 972 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 973 KnownZero, KnownOne, TLO, Depth+1)) 974 return true; 975 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 976 KnownZero = KnownZero.zext(BitWidth); 977 KnownOne = KnownOne.zext(BitWidth); 978 KnownZero |= NewBits; 979 break; 980 } 981 case ISD::SIGN_EXTEND: { 982 EVT InVT = Op.getOperand(0).getValueType(); 983 unsigned InBits = InVT.getScalarType().getSizeInBits(); 984 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 985 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); 986 APInt NewBits = ~InMask & NewMask; 987 988 // If none of the top bits are demanded, convert this into an any_extend. 989 if (NewBits == 0) 990 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 991 Op.getValueType(), 992 Op.getOperand(0))); 993 994 // Since some of the sign extended bits are demanded, we know that the sign 995 // bit is demanded. 996 APInt InDemandedBits = InMask & NewMask; 997 InDemandedBits |= InSignBit; 998 InDemandedBits = InDemandedBits.trunc(InBits); 999 1000 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 1001 KnownOne, TLO, Depth+1)) 1002 return true; 1003 KnownZero = KnownZero.zext(BitWidth); 1004 KnownOne = KnownOne.zext(BitWidth); 1005 1006 // If the sign bit is known zero, convert this to a zero extend. 1007 if (KnownZero.intersects(InSignBit)) 1008 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 1009 Op.getValueType(), 1010 Op.getOperand(0))); 1011 1012 // If the sign bit is known one, the top bits match. 1013 if (KnownOne.intersects(InSignBit)) { 1014 KnownOne |= NewBits; 1015 assert((KnownZero & NewBits) == 0); 1016 } else { // Otherwise, top bits aren't known. 1017 assert((KnownOne & NewBits) == 0); 1018 assert((KnownZero & NewBits) == 0); 1019 } 1020 break; 1021 } 1022 case ISD::ANY_EXTEND: { 1023 unsigned OperandBitWidth = 1024 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 1025 APInt InMask = NewMask.trunc(OperandBitWidth); 1026 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 1027 KnownZero, KnownOne, TLO, Depth+1)) 1028 return true; 1029 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1030 KnownZero = KnownZero.zext(BitWidth); 1031 KnownOne = KnownOne.zext(BitWidth); 1032 break; 1033 } 1034 case ISD::TRUNCATE: { 1035 // Simplify the input, using demanded bit information, and compute the known 1036 // zero/one bits live out. 1037 unsigned OperandBitWidth = 1038 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 1039 APInt TruncMask = NewMask.zext(OperandBitWidth); 1040 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 1041 KnownZero, KnownOne, TLO, Depth+1)) 1042 return true; 1043 KnownZero = KnownZero.trunc(BitWidth); 1044 KnownOne = KnownOne.trunc(BitWidth); 1045 1046 // If the input is only used by this truncate, see if we can shrink it based 1047 // on the known demanded bits. 1048 if (Op.getOperand(0).getNode()->hasOneUse()) { 1049 SDValue In = Op.getOperand(0); 1050 switch (In.getOpcode()) { 1051 default: break; 1052 case ISD::SRL: 1053 // Shrink SRL by a constant if none of the high bits shifted in are 1054 // demanded. 1055 if (TLO.LegalTypes() && 1056 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 1057 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1058 // undesirable. 1059 break; 1060 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 1061 if (!ShAmt) 1062 break; 1063 SDValue Shift = In.getOperand(1); 1064 if (TLO.LegalTypes()) { 1065 uint64_t ShVal = ShAmt->getZExtValue(); 1066 Shift = TLO.DAG.getConstant(ShVal, dl, 1067 getShiftAmountTy(Op.getValueType(), DL)); 1068 } 1069 1070 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1071 OperandBitWidth - BitWidth); 1072 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 1073 1074 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 1075 // None of the shifted in bits are needed. Add a truncate of the 1076 // shift input, then shift it. 1077 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 1078 Op.getValueType(), 1079 In.getOperand(0)); 1080 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 1081 Op.getValueType(), 1082 NewTrunc, 1083 Shift)); 1084 } 1085 break; 1086 } 1087 } 1088 1089 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1090 break; 1091 } 1092 case ISD::AssertZext: { 1093 // AssertZext demands all of the high bits, plus any of the low bits 1094 // demanded by its users. 1095 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1096 APInt InMask = APInt::getLowBitsSet(BitWidth, 1097 VT.getSizeInBits()); 1098 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1099 KnownZero, KnownOne, TLO, Depth+1)) 1100 return true; 1101 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1102 1103 KnownZero |= ~InMask & NewMask; 1104 break; 1105 } 1106 case ISD::BITCAST: 1107 // If this is an FP->Int bitcast and if the sign bit is the only 1108 // thing demanded, turn this into a FGETSIGN. 1109 if (!TLO.LegalOperations() && 1110 !Op.getValueType().isVector() && 1111 !Op.getOperand(0).getValueType().isVector() && 1112 NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) && 1113 Op.getOperand(0).getValueType().isFloatingPoint()) { 1114 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1115 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1116 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() && 1117 Op.getOperand(0).getValueType() != MVT::f128) { 1118 // Cannot eliminate/lower SHL for f128 yet. 1119 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1120 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1121 // place. We expect the SHL to be eliminated by other optimizations. 1122 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1123 unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits(); 1124 if (!OpVTLegal && OpVTSizeInBits > 32) 1125 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1126 unsigned ShVal = Op.getValueType().getSizeInBits()-1; 1127 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType()); 1128 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1129 Op.getValueType(), 1130 Sign, ShAmt)); 1131 } 1132 } 1133 break; 1134 case ISD::ADD: 1135 case ISD::MUL: 1136 case ISD::SUB: { 1137 // Add, Sub, and Mul don't demand any bits in positions beyond that 1138 // of the highest bit demanded of them. 1139 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1140 BitWidth - NewMask.countLeadingZeros()); 1141 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 1142 KnownOne2, TLO, Depth+1)) 1143 return true; 1144 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 1145 KnownOne2, TLO, Depth+1)) 1146 return true; 1147 // See if the operation should be performed at a smaller bit width. 1148 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1149 return true; 1150 } 1151 // FALL THROUGH 1152 default: 1153 // Just use computeKnownBits to compute output bits. 1154 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 1155 break; 1156 } 1157 1158 // If we know the value of all of the demanded bits, return this as a 1159 // constant. 1160 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { 1161 // Avoid folding to a constant if any OpaqueConstant is involved. 1162 const SDNode *N = Op.getNode(); 1163 for (SDNodeIterator I = SDNodeIterator::begin(N), 1164 E = SDNodeIterator::end(N); I != E; ++I) { 1165 SDNode *Op = *I; 1166 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1167 if (C->isOpaque()) 1168 return false; 1169 } 1170 return TLO.CombineTo(Op, 1171 TLO.DAG.getConstant(KnownOne, dl, Op.getValueType())); 1172 } 1173 1174 return false; 1175 } 1176 1177 /// Determine which of the bits specified in Mask are known to be either zero or 1178 /// one and return them in the KnownZero/KnownOne bitsets. 1179 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1180 APInt &KnownZero, 1181 APInt &KnownOne, 1182 const SelectionDAG &DAG, 1183 unsigned Depth) const { 1184 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1185 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1186 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1187 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1188 "Should use MaskedValueIsZero if you don't know whether Op" 1189 " is a target node!"); 1190 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); 1191 } 1192 1193 /// This method can be implemented by targets that want to expose additional 1194 /// information about sign bits to the DAG Combiner. 1195 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1196 const SelectionDAG &, 1197 unsigned Depth) const { 1198 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1199 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1200 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1201 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1202 "Should use ComputeNumSignBits if you don't know whether Op" 1203 " is a target node!"); 1204 return 1; 1205 } 1206 1207 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1208 if (!N) 1209 return false; 1210 1211 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1212 if (!CN) { 1213 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1214 if (!BV) 1215 return false; 1216 1217 BitVector UndefElements; 1218 CN = BV->getConstantSplatNode(&UndefElements); 1219 // Only interested in constant splats, and we don't try to handle undef 1220 // elements in identifying boolean constants. 1221 if (!CN || UndefElements.none()) 1222 return false; 1223 } 1224 1225 switch (getBooleanContents(N->getValueType(0))) { 1226 case UndefinedBooleanContent: 1227 return CN->getAPIntValue()[0]; 1228 case ZeroOrOneBooleanContent: 1229 return CN->isOne(); 1230 case ZeroOrNegativeOneBooleanContent: 1231 return CN->isAllOnesValue(); 1232 } 1233 1234 llvm_unreachable("Invalid boolean contents"); 1235 } 1236 1237 SDValue TargetLowering::getConstTrueVal(SelectionDAG &DAG, EVT VT, 1238 const SDLoc &DL) const { 1239 unsigned ElementWidth = VT.getScalarSizeInBits(); 1240 APInt TrueInt = 1241 getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent 1242 ? APInt(ElementWidth, 1) 1243 : APInt::getAllOnesValue(ElementWidth); 1244 return DAG.getConstant(TrueInt, DL, VT); 1245 } 1246 1247 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1248 if (!N) 1249 return false; 1250 1251 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1252 if (!CN) { 1253 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1254 if (!BV) 1255 return false; 1256 1257 BitVector UndefElements; 1258 CN = BV->getConstantSplatNode(&UndefElements); 1259 // Only interested in constant splats, and we don't try to handle undef 1260 // elements in identifying boolean constants. 1261 if (!CN || UndefElements.none()) 1262 return false; 1263 } 1264 1265 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1266 return !CN->getAPIntValue()[0]; 1267 1268 return CN->isNullValue(); 1269 } 1270 1271 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 1272 bool SExt) const { 1273 if (VT == MVT::i1) 1274 return N->isOne(); 1275 1276 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 1277 switch (Cnt) { 1278 case TargetLowering::ZeroOrOneBooleanContent: 1279 // An extended value of 1 is always true, unless its original type is i1, 1280 // in which case it will be sign extended to -1. 1281 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 1282 case TargetLowering::UndefinedBooleanContent: 1283 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1284 return N->isAllOnesValue() && SExt; 1285 } 1286 llvm_unreachable("Unexpected enumeration."); 1287 } 1288 1289 /// This helper function of SimplifySetCC tries to optimize the comparison when 1290 /// either operand of the SetCC node is a bitwise-and instruction. 1291 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 1292 ISD::CondCode Cond, 1293 DAGCombinerInfo &DCI, 1294 const SDLoc &DL) const { 1295 // Match these patterns in any of their permutations: 1296 // (X & Y) == Y 1297 // (X & Y) != Y 1298 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 1299 std::swap(N0, N1); 1300 1301 EVT OpVT = N0.getValueType(); 1302 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 1303 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 1304 return SDValue(); 1305 1306 SDValue X, Y; 1307 if (N0.getOperand(0) == N1) { 1308 X = N0.getOperand(1); 1309 Y = N0.getOperand(0); 1310 } else if (N0.getOperand(1) == N1) { 1311 X = N0.getOperand(0); 1312 Y = N0.getOperand(1); 1313 } else { 1314 return SDValue(); 1315 } 1316 1317 SelectionDAG &DAG = DCI.DAG; 1318 SDValue Zero = DAG.getConstant(0, DL, OpVT); 1319 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 1320 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 1321 // Note that where Y is variable and is known to have at most one bit set 1322 // (for example, if it is Z & 1) we cannot do this; the expressions are not 1323 // equivalent when Y == 0. 1324 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1325 if (DCI.isBeforeLegalizeOps() || 1326 isCondCodeLegal(Cond, N0.getSimpleValueType())) 1327 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 1328 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 1329 // If the target supports an 'and-not' or 'and-complement' logic operation, 1330 // try to use that to make a comparison operation more efficient. 1331 // But don't do this transform if the mask is a single bit because there are 1332 // more efficient ways to deal with that case (for example, 'bt' on x86 or 1333 // 'rlwinm' on PPC). 1334 1335 // Bail out if the compare operand that we want to turn into a zero is 1336 // already a zero (otherwise, infinite loop). 1337 auto *YConst = dyn_cast<ConstantSDNode>(Y); 1338 if (YConst && YConst->isNullValue()) 1339 return SDValue(); 1340 1341 // Transform this into: ~X & Y == 0. 1342 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 1343 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 1344 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 1345 } 1346 1347 return SDValue(); 1348 } 1349 1350 /// Try to simplify a setcc built with the specified operands and cc. If it is 1351 /// unable to simplify it, return a null SDValue. 1352 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1353 ISD::CondCode Cond, bool foldBooleans, 1354 DAGCombinerInfo &DCI, 1355 const SDLoc &dl) const { 1356 SelectionDAG &DAG = DCI.DAG; 1357 1358 // These setcc operations always fold. 1359 switch (Cond) { 1360 default: break; 1361 case ISD::SETFALSE: 1362 case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT); 1363 case ISD::SETTRUE: 1364 case ISD::SETTRUE2: { 1365 TargetLowering::BooleanContent Cnt = 1366 getBooleanContents(N0->getValueType(0)); 1367 return DAG.getConstant( 1368 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1369 VT); 1370 } 1371 } 1372 1373 // Ensure that the constant occurs on the RHS, and fold constant 1374 // comparisons. 1375 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1376 if (isa<ConstantSDNode>(N0.getNode()) && 1377 (DCI.isBeforeLegalizeOps() || 1378 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1379 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1380 1381 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1382 const APInt &C1 = N1C->getAPIntValue(); 1383 1384 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1385 // equality comparison, then we're just comparing whether X itself is 1386 // zero. 1387 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1388 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1389 N0.getOperand(1).getOpcode() == ISD::Constant) { 1390 const APInt &ShAmt 1391 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1392 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1393 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) { 1394 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1395 // (srl (ctlz x), 5) == 0 -> X != 0 1396 // (srl (ctlz x), 5) != 1 -> X != 0 1397 Cond = ISD::SETNE; 1398 } else { 1399 // (srl (ctlz x), 5) != 0 -> X == 0 1400 // (srl (ctlz x), 5) == 1 -> X == 0 1401 Cond = ISD::SETEQ; 1402 } 1403 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 1404 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1405 Zero, Cond); 1406 } 1407 } 1408 1409 SDValue CTPOP = N0; 1410 // Look through truncs that don't change the value of a ctpop. 1411 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1412 CTPOP = N0.getOperand(0); 1413 1414 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1415 (N0 == CTPOP || N0.getValueType().getSizeInBits() > 1416 Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) { 1417 EVT CTVT = CTPOP.getValueType(); 1418 SDValue CTOp = CTPOP.getOperand(0); 1419 1420 // (ctpop x) u< 2 -> (x & x-1) == 0 1421 // (ctpop x) u> 1 -> (x & x-1) != 0 1422 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1423 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1424 DAG.getConstant(1, dl, CTVT)); 1425 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1426 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1427 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 1428 } 1429 1430 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1431 } 1432 1433 // (zext x) == C --> x == (trunc C) 1434 // (sext x) == C --> x == (trunc C) 1435 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1436 DCI.isBeforeLegalize() && N0->hasOneUse()) { 1437 unsigned MinBits = N0.getValueSizeInBits(); 1438 SDValue PreExt; 1439 bool Signed = false; 1440 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1441 // ZExt 1442 MinBits = N0->getOperand(0).getValueSizeInBits(); 1443 PreExt = N0->getOperand(0); 1444 } else if (N0->getOpcode() == ISD::AND) { 1445 // DAGCombine turns costly ZExts into ANDs 1446 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1447 if ((C->getAPIntValue()+1).isPowerOf2()) { 1448 MinBits = C->getAPIntValue().countTrailingOnes(); 1449 PreExt = N0->getOperand(0); 1450 } 1451 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 1452 // SExt 1453 MinBits = N0->getOperand(0).getValueSizeInBits(); 1454 PreExt = N0->getOperand(0); 1455 Signed = true; 1456 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 1457 // ZEXTLOAD / SEXTLOAD 1458 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1459 MinBits = LN0->getMemoryVT().getSizeInBits(); 1460 PreExt = N0; 1461 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 1462 Signed = true; 1463 MinBits = LN0->getMemoryVT().getSizeInBits(); 1464 PreExt = N0; 1465 } 1466 } 1467 1468 // Figure out how many bits we need to preserve this constant. 1469 unsigned ReqdBits = Signed ? 1470 C1.getBitWidth() - C1.getNumSignBits() + 1 : 1471 C1.getActiveBits(); 1472 1473 // Make sure we're not losing bits from the constant. 1474 if (MinBits > 0 && 1475 MinBits < C1.getBitWidth() && 1476 MinBits >= ReqdBits) { 1477 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1478 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1479 // Will get folded away. 1480 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 1481 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 1482 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1483 } 1484 1485 // If truncating the setcc operands is not desirable, we can still 1486 // simplify the expression in some cases: 1487 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 1488 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 1489 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 1490 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 1491 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 1492 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 1493 SDValue TopSetCC = N0->getOperand(0); 1494 unsigned N0Opc = N0->getOpcode(); 1495 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 1496 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 1497 TopSetCC.getOpcode() == ISD::SETCC && 1498 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 1499 (isConstFalseVal(N1C) || 1500 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 1501 1502 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 1503 (!N1C->isNullValue() && Cond == ISD::SETNE); 1504 1505 if (!Inverse) 1506 return TopSetCC; 1507 1508 ISD::CondCode InvCond = ISD::getSetCCInverse( 1509 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 1510 TopSetCC.getOperand(0).getValueType().isInteger()); 1511 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 1512 TopSetCC.getOperand(1), 1513 InvCond); 1514 1515 } 1516 } 1517 } 1518 1519 // If the LHS is '(and load, const)', the RHS is 0, 1520 // the test is for equality or unsigned, and all 1 bits of the const are 1521 // in the same partial word, see if we can shorten the load. 1522 if (DCI.isBeforeLegalize() && 1523 !ISD::isSignedIntSetCC(Cond) && 1524 N0.getOpcode() == ISD::AND && C1 == 0 && 1525 N0.getNode()->hasOneUse() && 1526 isa<LoadSDNode>(N0.getOperand(0)) && 1527 N0.getOperand(0).getNode()->hasOneUse() && 1528 isa<ConstantSDNode>(N0.getOperand(1))) { 1529 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1530 APInt bestMask; 1531 unsigned bestWidth = 0, bestOffset = 0; 1532 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1533 unsigned origWidth = N0.getValueType().getSizeInBits(); 1534 unsigned maskWidth = origWidth; 1535 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1536 // 8 bits, but have to be careful... 1537 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1538 origWidth = Lod->getMemoryVT().getSizeInBits(); 1539 const APInt &Mask = 1540 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1541 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1542 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1543 for (unsigned offset=0; offset<origWidth/width; offset++) { 1544 if ((newMask & Mask) == Mask) { 1545 if (!DAG.getDataLayout().isLittleEndian()) 1546 bestOffset = (origWidth/width - offset - 1) * (width/8); 1547 else 1548 bestOffset = (uint64_t)offset * (width/8); 1549 bestMask = Mask.lshr(offset * (width/8) * 8); 1550 bestWidth = width; 1551 break; 1552 } 1553 newMask = newMask << width; 1554 } 1555 } 1556 } 1557 if (bestWidth) { 1558 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1559 if (newVT.isRound()) { 1560 EVT PtrType = Lod->getOperand(1).getValueType(); 1561 SDValue Ptr = Lod->getBasePtr(); 1562 if (bestOffset != 0) 1563 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1564 DAG.getConstant(bestOffset, dl, PtrType)); 1565 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1566 SDValue NewLoad = DAG.getLoad( 1567 newVT, dl, Lod->getChain(), Ptr, 1568 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 1569 return DAG.getSetCC(dl, VT, 1570 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1571 DAG.getConstant(bestMask.trunc(bestWidth), 1572 dl, newVT)), 1573 DAG.getConstant(0LL, dl, newVT), Cond); 1574 } 1575 } 1576 } 1577 1578 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1579 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1580 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits(); 1581 1582 // If the comparison constant has bits in the upper part, the 1583 // zero-extended value could never match. 1584 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1585 C1.getBitWidth() - InSize))) { 1586 switch (Cond) { 1587 case ISD::SETUGT: 1588 case ISD::SETUGE: 1589 case ISD::SETEQ: return DAG.getConstant(0, dl, VT); 1590 case ISD::SETULT: 1591 case ISD::SETULE: 1592 case ISD::SETNE: return DAG.getConstant(1, dl, VT); 1593 case ISD::SETGT: 1594 case ISD::SETGE: 1595 // True if the sign bit of C1 is set. 1596 return DAG.getConstant(C1.isNegative(), dl, VT); 1597 case ISD::SETLT: 1598 case ISD::SETLE: 1599 // True if the sign bit of C1 isn't set. 1600 return DAG.getConstant(C1.isNonNegative(), dl, VT); 1601 default: 1602 break; 1603 } 1604 } 1605 1606 // Otherwise, we can perform the comparison with the low bits. 1607 switch (Cond) { 1608 case ISD::SETEQ: 1609 case ISD::SETNE: 1610 case ISD::SETUGT: 1611 case ISD::SETUGE: 1612 case ISD::SETULT: 1613 case ISD::SETULE: { 1614 EVT newVT = N0.getOperand(0).getValueType(); 1615 if (DCI.isBeforeLegalizeOps() || 1616 (isOperationLegal(ISD::SETCC, newVT) && 1617 getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) { 1618 EVT NewSetCCVT = 1619 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 1620 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 1621 1622 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 1623 NewConst, Cond); 1624 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 1625 } 1626 break; 1627 } 1628 default: 1629 break; // todo, be more careful with signed comparisons 1630 } 1631 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 1632 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1633 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 1634 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 1635 EVT ExtDstTy = N0.getValueType(); 1636 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 1637 1638 // If the constant doesn't fit into the number of bits for the source of 1639 // the sign extension, it is impossible for both sides to be equal. 1640 if (C1.getMinSignedBits() > ExtSrcTyBits) 1641 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 1642 1643 SDValue ZextOp; 1644 EVT Op0Ty = N0.getOperand(0).getValueType(); 1645 if (Op0Ty == ExtSrcTy) { 1646 ZextOp = N0.getOperand(0); 1647 } else { 1648 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 1649 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 1650 DAG.getConstant(Imm, dl, Op0Ty)); 1651 } 1652 if (!DCI.isCalledByLegalizer()) 1653 DCI.AddToWorklist(ZextOp.getNode()); 1654 // Otherwise, make this a use of a zext. 1655 return DAG.getSetCC(dl, VT, ZextOp, 1656 DAG.getConstant(C1 & APInt::getLowBitsSet( 1657 ExtDstTyBits, 1658 ExtSrcTyBits), 1659 dl, ExtDstTy), 1660 Cond); 1661 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 1662 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1663 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 1664 if (N0.getOpcode() == ISD::SETCC && 1665 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 1666 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 1667 if (TrueWhenTrue) 1668 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 1669 // Invert the condition. 1670 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 1671 CC = ISD::getSetCCInverse(CC, 1672 N0.getOperand(0).getValueType().isInteger()); 1673 if (DCI.isBeforeLegalizeOps() || 1674 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 1675 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 1676 } 1677 1678 if ((N0.getOpcode() == ISD::XOR || 1679 (N0.getOpcode() == ISD::AND && 1680 N0.getOperand(0).getOpcode() == ISD::XOR && 1681 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 1682 isa<ConstantSDNode>(N0.getOperand(1)) && 1683 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 1684 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 1685 // can only do this if the top bits are known zero. 1686 unsigned BitWidth = N0.getValueSizeInBits(); 1687 if (DAG.MaskedValueIsZero(N0, 1688 APInt::getHighBitsSet(BitWidth, 1689 BitWidth-1))) { 1690 // Okay, get the un-inverted input value. 1691 SDValue Val; 1692 if (N0.getOpcode() == ISD::XOR) 1693 Val = N0.getOperand(0); 1694 else { 1695 assert(N0.getOpcode() == ISD::AND && 1696 N0.getOperand(0).getOpcode() == ISD::XOR); 1697 // ((X^1)&1)^1 -> X & 1 1698 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 1699 N0.getOperand(0).getOperand(0), 1700 N0.getOperand(1)); 1701 } 1702 1703 return DAG.getSetCC(dl, VT, Val, N1, 1704 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1705 } 1706 } else if (N1C->getAPIntValue() == 1 && 1707 (VT == MVT::i1 || 1708 getBooleanContents(N0->getValueType(0)) == 1709 ZeroOrOneBooleanContent)) { 1710 SDValue Op0 = N0; 1711 if (Op0.getOpcode() == ISD::TRUNCATE) 1712 Op0 = Op0.getOperand(0); 1713 1714 if ((Op0.getOpcode() == ISD::XOR) && 1715 Op0.getOperand(0).getOpcode() == ISD::SETCC && 1716 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 1717 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 1718 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 1719 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 1720 Cond); 1721 } 1722 if (Op0.getOpcode() == ISD::AND && 1723 isa<ConstantSDNode>(Op0.getOperand(1)) && 1724 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 1725 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 1726 if (Op0.getValueType().bitsGT(VT)) 1727 Op0 = DAG.getNode(ISD::AND, dl, VT, 1728 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 1729 DAG.getConstant(1, dl, VT)); 1730 else if (Op0.getValueType().bitsLT(VT)) 1731 Op0 = DAG.getNode(ISD::AND, dl, VT, 1732 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 1733 DAG.getConstant(1, dl, VT)); 1734 1735 return DAG.getSetCC(dl, VT, Op0, 1736 DAG.getConstant(0, dl, Op0.getValueType()), 1737 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1738 } 1739 if (Op0.getOpcode() == ISD::AssertZext && 1740 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 1741 return DAG.getSetCC(dl, VT, Op0, 1742 DAG.getConstant(0, dl, Op0.getValueType()), 1743 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1744 } 1745 } 1746 1747 APInt MinVal, MaxVal; 1748 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 1749 if (ISD::isSignedIntSetCC(Cond)) { 1750 MinVal = APInt::getSignedMinValue(OperandBitSize); 1751 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 1752 } else { 1753 MinVal = APInt::getMinValue(OperandBitSize); 1754 MaxVal = APInt::getMaxValue(OperandBitSize); 1755 } 1756 1757 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 1758 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 1759 if (C1 == MinVal) return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1760 // X >= C0 --> X > (C0 - 1) 1761 APInt C = C1 - 1; 1762 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 1763 if ((DCI.isBeforeLegalizeOps() || 1764 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1765 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1766 isLegalICmpImmediate(C.getSExtValue())))) { 1767 return DAG.getSetCC(dl, VT, N0, 1768 DAG.getConstant(C, dl, N1.getValueType()), 1769 NewCC); 1770 } 1771 } 1772 1773 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 1774 if (C1 == MaxVal) return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1775 // X <= C0 --> X < (C0 + 1) 1776 APInt C = C1 + 1; 1777 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 1778 if ((DCI.isBeforeLegalizeOps() || 1779 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1780 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1781 isLegalICmpImmediate(C.getSExtValue())))) { 1782 return DAG.getSetCC(dl, VT, N0, 1783 DAG.getConstant(C, dl, N1.getValueType()), 1784 NewCC); 1785 } 1786 } 1787 1788 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 1789 return DAG.getConstant(0, dl, VT); // X < MIN --> false 1790 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 1791 return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1792 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 1793 return DAG.getConstant(0, dl, VT); // X > MAX --> false 1794 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 1795 return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1796 1797 // Canonicalize setgt X, Min --> setne X, Min 1798 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 1799 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1800 // Canonicalize setlt X, Max --> setne X, Max 1801 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 1802 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1803 1804 // If we have setult X, 1, turn it into seteq X, 0 1805 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 1806 return DAG.getSetCC(dl, VT, N0, 1807 DAG.getConstant(MinVal, dl, N0.getValueType()), 1808 ISD::SETEQ); 1809 // If we have setugt X, Max-1, turn it into seteq X, Max 1810 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 1811 return DAG.getSetCC(dl, VT, N0, 1812 DAG.getConstant(MaxVal, dl, N0.getValueType()), 1813 ISD::SETEQ); 1814 1815 // If we have "setcc X, C0", check to see if we can shrink the immediate 1816 // by changing cc. 1817 1818 // SETUGT X, SINTMAX -> SETLT X, 0 1819 if (Cond == ISD::SETUGT && 1820 C1 == APInt::getSignedMaxValue(OperandBitSize)) 1821 return DAG.getSetCC(dl, VT, N0, 1822 DAG.getConstant(0, dl, N1.getValueType()), 1823 ISD::SETLT); 1824 1825 // SETULT X, SINTMIN -> SETGT X, -1 1826 if (Cond == ISD::SETULT && 1827 C1 == APInt::getSignedMinValue(OperandBitSize)) { 1828 SDValue ConstMinusOne = 1829 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 1830 N1.getValueType()); 1831 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 1832 } 1833 1834 // Fold bit comparisons when we can. 1835 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1836 (VT == N0.getValueType() || 1837 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 1838 N0.getOpcode() == ISD::AND) { 1839 auto &DL = DAG.getDataLayout(); 1840 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1841 EVT ShiftTy = DCI.isBeforeLegalize() 1842 ? getPointerTy(DL) 1843 : getShiftAmountTy(N0.getValueType(), DL); 1844 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 1845 // Perform the xform if the AND RHS is a single bit. 1846 if (AndRHS->getAPIntValue().isPowerOf2()) { 1847 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1848 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1849 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 1850 ShiftTy))); 1851 } 1852 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 1853 // (X & 8) == 8 --> (X & 8) >> 3 1854 // Perform the xform if C1 is a single bit. 1855 if (C1.isPowerOf2()) { 1856 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1857 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1858 DAG.getConstant(C1.logBase2(), dl, 1859 ShiftTy))); 1860 } 1861 } 1862 } 1863 } 1864 1865 if (C1.getMinSignedBits() <= 64 && 1866 !isLegalICmpImmediate(C1.getSExtValue())) { 1867 // (X & -256) == 256 -> (X >> 8) == 1 1868 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1869 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 1870 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1871 const APInt &AndRHSC = AndRHS->getAPIntValue(); 1872 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 1873 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 1874 auto &DL = DAG.getDataLayout(); 1875 EVT ShiftTy = DCI.isBeforeLegalize() 1876 ? getPointerTy(DL) 1877 : getShiftAmountTy(N0.getValueType(), DL); 1878 EVT CmpTy = N0.getValueType(); 1879 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 1880 DAG.getConstant(ShiftBits, dl, 1881 ShiftTy)); 1882 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 1883 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 1884 } 1885 } 1886 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 1887 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 1888 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 1889 // X < 0x100000000 -> (X >> 32) < 1 1890 // X >= 0x100000000 -> (X >> 32) >= 1 1891 // X <= 0x0ffffffff -> (X >> 32) < 1 1892 // X > 0x0ffffffff -> (X >> 32) >= 1 1893 unsigned ShiftBits; 1894 APInt NewC = C1; 1895 ISD::CondCode NewCond = Cond; 1896 if (AdjOne) { 1897 ShiftBits = C1.countTrailingOnes(); 1898 NewC = NewC + 1; 1899 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 1900 } else { 1901 ShiftBits = C1.countTrailingZeros(); 1902 } 1903 NewC = NewC.lshr(ShiftBits); 1904 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 1905 isLegalICmpImmediate(NewC.getSExtValue())) { 1906 auto &DL = DAG.getDataLayout(); 1907 EVT ShiftTy = DCI.isBeforeLegalize() 1908 ? getPointerTy(DL) 1909 : getShiftAmountTy(N0.getValueType(), DL); 1910 EVT CmpTy = N0.getValueType(); 1911 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 1912 DAG.getConstant(ShiftBits, dl, ShiftTy)); 1913 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 1914 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 1915 } 1916 } 1917 } 1918 } 1919 1920 if (isa<ConstantFPSDNode>(N0.getNode())) { 1921 // Constant fold or commute setcc. 1922 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 1923 if (O.getNode()) return O; 1924 } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 1925 // If the RHS of an FP comparison is a constant, simplify it away in 1926 // some cases. 1927 if (CFP->getValueAPF().isNaN()) { 1928 // If an operand is known to be a nan, we can fold it. 1929 switch (ISD::getUnorderedFlavor(Cond)) { 1930 default: llvm_unreachable("Unknown flavor!"); 1931 case 0: // Known false. 1932 return DAG.getConstant(0, dl, VT); 1933 case 1: // Known true. 1934 return DAG.getConstant(1, dl, VT); 1935 case 2: // Undefined. 1936 return DAG.getUNDEF(VT); 1937 } 1938 } 1939 1940 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 1941 // constant if knowing that the operand is non-nan is enough. We prefer to 1942 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 1943 // materialize 0.0. 1944 if (Cond == ISD::SETO || Cond == ISD::SETUO) 1945 return DAG.getSetCC(dl, VT, N0, N0, Cond); 1946 1947 // If the condition is not legal, see if we can find an equivalent one 1948 // which is legal. 1949 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1950 // If the comparison was an awkward floating-point == or != and one of 1951 // the comparison operands is infinity or negative infinity, convert the 1952 // condition to a less-awkward <= or >=. 1953 if (CFP->getValueAPF().isInfinity()) { 1954 if (CFP->getValueAPF().isNegative()) { 1955 if (Cond == ISD::SETOEQ && 1956 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1957 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 1958 if (Cond == ISD::SETUEQ && 1959 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1960 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 1961 if (Cond == ISD::SETUNE && 1962 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1963 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 1964 if (Cond == ISD::SETONE && 1965 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1966 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 1967 } else { 1968 if (Cond == ISD::SETOEQ && 1969 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1970 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 1971 if (Cond == ISD::SETUEQ && 1972 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1973 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 1974 if (Cond == ISD::SETUNE && 1975 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1976 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 1977 if (Cond == ISD::SETONE && 1978 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1979 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 1980 } 1981 } 1982 } 1983 } 1984 1985 if (N0 == N1) { 1986 // The sext(setcc()) => setcc() optimization relies on the appropriate 1987 // constant being emitted. 1988 uint64_t EqVal = 0; 1989 switch (getBooleanContents(N0.getValueType())) { 1990 case UndefinedBooleanContent: 1991 case ZeroOrOneBooleanContent: 1992 EqVal = ISD::isTrueWhenEqual(Cond); 1993 break; 1994 case ZeroOrNegativeOneBooleanContent: 1995 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; 1996 break; 1997 } 1998 1999 // We can always fold X == X for integer setcc's. 2000 if (N0.getValueType().isInteger()) { 2001 return DAG.getConstant(EqVal, dl, VT); 2002 } 2003 unsigned UOF = ISD::getUnorderedFlavor(Cond); 2004 if (UOF == 2) // FP operators that are undefined on NaNs. 2005 return DAG.getConstant(EqVal, dl, VT); 2006 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 2007 return DAG.getConstant(EqVal, dl, VT); 2008 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 2009 // if it is not already. 2010 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 2011 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || 2012 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) 2013 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 2014 } 2015 2016 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2017 N0.getValueType().isInteger()) { 2018 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 2019 N0.getOpcode() == ISD::XOR) { 2020 // Simplify (X+Y) == (X+Z) --> Y == Z 2021 if (N0.getOpcode() == N1.getOpcode()) { 2022 if (N0.getOperand(0) == N1.getOperand(0)) 2023 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 2024 if (N0.getOperand(1) == N1.getOperand(1)) 2025 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 2026 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 2027 // If X op Y == Y op X, try other combinations. 2028 if (N0.getOperand(0) == N1.getOperand(1)) 2029 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 2030 Cond); 2031 if (N0.getOperand(1) == N1.getOperand(0)) 2032 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 2033 Cond); 2034 } 2035 } 2036 2037 // If RHS is a legal immediate value for a compare instruction, we need 2038 // to be careful about increasing register pressure needlessly. 2039 bool LegalRHSImm = false; 2040 2041 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 2042 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2043 // Turn (X+C1) == C2 --> X == C2-C1 2044 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 2045 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2046 DAG.getConstant(RHSC->getAPIntValue()- 2047 LHSR->getAPIntValue(), 2048 dl, N0.getValueType()), Cond); 2049 } 2050 2051 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 2052 if (N0.getOpcode() == ISD::XOR) 2053 // If we know that all of the inverted bits are zero, don't bother 2054 // performing the inversion. 2055 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 2056 return 2057 DAG.getSetCC(dl, VT, N0.getOperand(0), 2058 DAG.getConstant(LHSR->getAPIntValue() ^ 2059 RHSC->getAPIntValue(), 2060 dl, N0.getValueType()), 2061 Cond); 2062 } 2063 2064 // Turn (C1-X) == C2 --> X == C1-C2 2065 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 2066 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 2067 return 2068 DAG.getSetCC(dl, VT, N0.getOperand(1), 2069 DAG.getConstant(SUBC->getAPIntValue() - 2070 RHSC->getAPIntValue(), 2071 dl, N0.getValueType()), 2072 Cond); 2073 } 2074 } 2075 2076 // Could RHSC fold directly into a compare? 2077 if (RHSC->getValueType(0).getSizeInBits() <= 64) 2078 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 2079 } 2080 2081 // Simplify (X+Z) == X --> Z == 0 2082 // Don't do this if X is an immediate that can fold into a cmp 2083 // instruction and X+Z has other uses. It could be an induction variable 2084 // chain, and the transform would increase register pressure. 2085 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 2086 if (N0.getOperand(0) == N1) 2087 return DAG.getSetCC(dl, VT, N0.getOperand(1), 2088 DAG.getConstant(0, dl, N0.getValueType()), Cond); 2089 if (N0.getOperand(1) == N1) { 2090 if (DAG.isCommutativeBinOp(N0.getOpcode())) 2091 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2092 DAG.getConstant(0, dl, N0.getValueType()), 2093 Cond); 2094 if (N0.getNode()->hasOneUse()) { 2095 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 2096 auto &DL = DAG.getDataLayout(); 2097 // (Z-X) == X --> Z == X<<1 2098 SDValue SH = DAG.getNode( 2099 ISD::SHL, dl, N1.getValueType(), N1, 2100 DAG.getConstant(1, dl, 2101 getShiftAmountTy(N1.getValueType(), DL))); 2102 if (!DCI.isCalledByLegalizer()) 2103 DCI.AddToWorklist(SH.getNode()); 2104 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 2105 } 2106 } 2107 } 2108 } 2109 2110 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 2111 N1.getOpcode() == ISD::XOR) { 2112 // Simplify X == (X+Z) --> Z == 0 2113 if (N1.getOperand(0) == N0) 2114 return DAG.getSetCC(dl, VT, N1.getOperand(1), 2115 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2116 if (N1.getOperand(1) == N0) { 2117 if (DAG.isCommutativeBinOp(N1.getOpcode())) 2118 return DAG.getSetCC(dl, VT, N1.getOperand(0), 2119 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2120 if (N1.getNode()->hasOneUse()) { 2121 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 2122 auto &DL = DAG.getDataLayout(); 2123 // X == (Z-X) --> X<<1 == Z 2124 SDValue SH = DAG.getNode( 2125 ISD::SHL, dl, N1.getValueType(), N0, 2126 DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL))); 2127 if (!DCI.isCalledByLegalizer()) 2128 DCI.AddToWorklist(SH.getNode()); 2129 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 2130 } 2131 } 2132 } 2133 2134 if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl)) 2135 return V; 2136 } 2137 2138 // Fold away ALL boolean setcc's. 2139 SDValue Temp; 2140 if (N0.getValueType() == MVT::i1 && foldBooleans) { 2141 switch (Cond) { 2142 default: llvm_unreachable("Unknown integer setcc!"); 2143 case ISD::SETEQ: // X == Y -> ~(X^Y) 2144 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2145 N0 = DAG.getNOT(dl, Temp, MVT::i1); 2146 if (!DCI.isCalledByLegalizer()) 2147 DCI.AddToWorklist(Temp.getNode()); 2148 break; 2149 case ISD::SETNE: // X != Y --> (X^Y) 2150 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2151 break; 2152 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2153 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2154 Temp = DAG.getNOT(dl, N0, MVT::i1); 2155 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 2156 if (!DCI.isCalledByLegalizer()) 2157 DCI.AddToWorklist(Temp.getNode()); 2158 break; 2159 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2160 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2161 Temp = DAG.getNOT(dl, N1, MVT::i1); 2162 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 2163 if (!DCI.isCalledByLegalizer()) 2164 DCI.AddToWorklist(Temp.getNode()); 2165 break; 2166 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2167 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2168 Temp = DAG.getNOT(dl, N0, MVT::i1); 2169 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 2170 if (!DCI.isCalledByLegalizer()) 2171 DCI.AddToWorklist(Temp.getNode()); 2172 break; 2173 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2174 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2175 Temp = DAG.getNOT(dl, N1, MVT::i1); 2176 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 2177 break; 2178 } 2179 if (VT != MVT::i1) { 2180 if (!DCI.isCalledByLegalizer()) 2181 DCI.AddToWorklist(N0.getNode()); 2182 // FIXME: If running after legalize, we probably can't do this. 2183 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 2184 } 2185 return N0; 2186 } 2187 2188 // Could not fold it. 2189 return SDValue(); 2190 } 2191 2192 /// Returns true (and the GlobalValue and the offset) if the node is a 2193 /// GlobalAddress + offset. 2194 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2195 int64_t &Offset) const { 2196 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 2197 GA = GASD->getGlobal(); 2198 Offset += GASD->getOffset(); 2199 return true; 2200 } 2201 2202 if (N->getOpcode() == ISD::ADD) { 2203 SDValue N1 = N->getOperand(0); 2204 SDValue N2 = N->getOperand(1); 2205 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2206 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 2207 Offset += V->getSExtValue(); 2208 return true; 2209 } 2210 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2211 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 2212 Offset += V->getSExtValue(); 2213 return true; 2214 } 2215 } 2216 } 2217 2218 return false; 2219 } 2220 2221 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 2222 DAGCombinerInfo &DCI) const { 2223 // Default implementation: no optimization. 2224 return SDValue(); 2225 } 2226 2227 //===----------------------------------------------------------------------===// 2228 // Inline Assembler Implementation Methods 2229 //===----------------------------------------------------------------------===// 2230 2231 TargetLowering::ConstraintType 2232 TargetLowering::getConstraintType(StringRef Constraint) const { 2233 unsigned S = Constraint.size(); 2234 2235 if (S == 1) { 2236 switch (Constraint[0]) { 2237 default: break; 2238 case 'r': return C_RegisterClass; 2239 case 'm': // memory 2240 case 'o': // offsetable 2241 case 'V': // not offsetable 2242 return C_Memory; 2243 case 'i': // Simple Integer or Relocatable Constant 2244 case 'n': // Simple Integer 2245 case 'E': // Floating Point Constant 2246 case 'F': // Floating Point Constant 2247 case 's': // Relocatable Constant 2248 case 'p': // Address. 2249 case 'X': // Allow ANY value. 2250 case 'I': // Target registers. 2251 case 'J': 2252 case 'K': 2253 case 'L': 2254 case 'M': 2255 case 'N': 2256 case 'O': 2257 case 'P': 2258 case '<': 2259 case '>': 2260 return C_Other; 2261 } 2262 } 2263 2264 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2265 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 2266 return C_Memory; 2267 return C_Register; 2268 } 2269 return C_Unknown; 2270 } 2271 2272 /// Try to replace an X constraint, which matches anything, with another that 2273 /// has more specific requirements based on the type of the corresponding 2274 /// operand. 2275 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2276 if (ConstraintVT.isInteger()) 2277 return "r"; 2278 if (ConstraintVT.isFloatingPoint()) 2279 return "f"; // works for many targets 2280 return nullptr; 2281 } 2282 2283 /// Lower the specified operand into the Ops vector. 2284 /// If it is invalid, don't add anything to Ops. 2285 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2286 std::string &Constraint, 2287 std::vector<SDValue> &Ops, 2288 SelectionDAG &DAG) const { 2289 2290 if (Constraint.length() > 1) return; 2291 2292 char ConstraintLetter = Constraint[0]; 2293 switch (ConstraintLetter) { 2294 default: break; 2295 case 'X': // Allows any operand; labels (basic block) use this. 2296 if (Op.getOpcode() == ISD::BasicBlock) { 2297 Ops.push_back(Op); 2298 return; 2299 } 2300 // fall through 2301 case 'i': // Simple Integer or Relocatable Constant 2302 case 'n': // Simple Integer 2303 case 's': { // Relocatable Constant 2304 // These operands are interested in values of the form (GV+C), where C may 2305 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2306 // is possible and fine if either GV or C are missing. 2307 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2308 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2309 2310 // If we have "(add GV, C)", pull out GV/C 2311 if (Op.getOpcode() == ISD::ADD) { 2312 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2313 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2314 if (!C || !GA) { 2315 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2316 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2317 } 2318 if (!C || !GA) { 2319 C = nullptr; 2320 GA = nullptr; 2321 } 2322 } 2323 2324 // If we find a valid operand, map to the TargetXXX version so that the 2325 // value itself doesn't get selected. 2326 if (GA) { // Either &GV or &GV+C 2327 if (ConstraintLetter != 'n') { 2328 int64_t Offs = GA->getOffset(); 2329 if (C) Offs += C->getZExtValue(); 2330 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2331 C ? SDLoc(C) : SDLoc(), 2332 Op.getValueType(), Offs)); 2333 } 2334 return; 2335 } 2336 if (C) { // just C, no GV. 2337 // Simple constants are not allowed for 's'. 2338 if (ConstraintLetter != 's') { 2339 // gcc prints these as sign extended. Sign extend value to 64 bits 2340 // now; without this it would get ZExt'd later in 2341 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2342 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 2343 SDLoc(C), MVT::i64)); 2344 } 2345 return; 2346 } 2347 break; 2348 } 2349 } 2350 } 2351 2352 std::pair<unsigned, const TargetRegisterClass *> 2353 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 2354 StringRef Constraint, 2355 MVT VT) const { 2356 if (Constraint.empty() || Constraint[0] != '{') 2357 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 2358 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2359 2360 // Remove the braces from around the name. 2361 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2362 2363 std::pair<unsigned, const TargetRegisterClass*> R = 2364 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 2365 2366 // Figure out which register class contains this reg. 2367 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), 2368 E = RI->regclass_end(); RCI != E; ++RCI) { 2369 const TargetRegisterClass *RC = *RCI; 2370 2371 // If none of the value types for this register class are valid, we 2372 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2373 if (!isLegalRC(RC)) 2374 continue; 2375 2376 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2377 I != E; ++I) { 2378 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 2379 std::pair<unsigned, const TargetRegisterClass*> S = 2380 std::make_pair(*I, RC); 2381 2382 // If this register class has the requested value type, return it, 2383 // otherwise keep searching and return the first class found 2384 // if no other is found which explicitly has the requested type. 2385 if (RC->hasType(VT)) 2386 return S; 2387 else if (!R.second) 2388 R = S; 2389 } 2390 } 2391 } 2392 2393 return R; 2394 } 2395 2396 //===----------------------------------------------------------------------===// 2397 // Constraint Selection. 2398 2399 /// Return true of this is an input operand that is a matching constraint like 2400 /// "4". 2401 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2402 assert(!ConstraintCode.empty() && "No known constraint!"); 2403 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2404 } 2405 2406 /// If this is an input matching constraint, this method returns the output 2407 /// operand it matches. 2408 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2409 assert(!ConstraintCode.empty() && "No known constraint!"); 2410 return atoi(ConstraintCode.c_str()); 2411 } 2412 2413 /// Split up the constraint string from the inline assembly value into the 2414 /// specific constraints and their prefixes, and also tie in the associated 2415 /// operand values. 2416 /// If this returns an empty vector, and if the constraint string itself 2417 /// isn't empty, there was an error parsing. 2418 TargetLowering::AsmOperandInfoVector 2419 TargetLowering::ParseConstraints(const DataLayout &DL, 2420 const TargetRegisterInfo *TRI, 2421 ImmutableCallSite CS) const { 2422 /// Information about all of the constraints. 2423 AsmOperandInfoVector ConstraintOperands; 2424 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2425 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2426 2427 // Do a prepass over the constraints, canonicalizing them, and building up the 2428 // ConstraintOperands list. 2429 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2430 unsigned ResNo = 0; // ResNo - The result number of the next output. 2431 2432 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2433 ConstraintOperands.emplace_back(std::move(CI)); 2434 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2435 2436 // Update multiple alternative constraint count. 2437 if (OpInfo.multipleAlternatives.size() > maCount) 2438 maCount = OpInfo.multipleAlternatives.size(); 2439 2440 OpInfo.ConstraintVT = MVT::Other; 2441 2442 // Compute the value type for each operand. 2443 switch (OpInfo.Type) { 2444 case InlineAsm::isOutput: 2445 // Indirect outputs just consume an argument. 2446 if (OpInfo.isIndirect) { 2447 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2448 break; 2449 } 2450 2451 // The return value of the call is this value. As such, there is no 2452 // corresponding argument. 2453 assert(!CS.getType()->isVoidTy() && 2454 "Bad inline asm!"); 2455 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2456 OpInfo.ConstraintVT = 2457 getSimpleValueType(DL, STy->getElementType(ResNo)); 2458 } else { 2459 assert(ResNo == 0 && "Asm only has one result!"); 2460 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 2461 } 2462 ++ResNo; 2463 break; 2464 case InlineAsm::isInput: 2465 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2466 break; 2467 case InlineAsm::isClobber: 2468 // Nothing to do. 2469 break; 2470 } 2471 2472 if (OpInfo.CallOperandVal) { 2473 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2474 if (OpInfo.isIndirect) { 2475 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2476 if (!PtrTy) 2477 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2478 OpTy = PtrTy->getElementType(); 2479 } 2480 2481 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2482 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2483 if (STy->getNumElements() == 1) 2484 OpTy = STy->getElementType(0); 2485 2486 // If OpTy is not a single value, it may be a struct/union that we 2487 // can tile with integers. 2488 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2489 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 2490 switch (BitSize) { 2491 default: break; 2492 case 1: 2493 case 8: 2494 case 16: 2495 case 32: 2496 case 64: 2497 case 128: 2498 OpInfo.ConstraintVT = 2499 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2500 break; 2501 } 2502 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2503 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 2504 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 2505 } else { 2506 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2507 } 2508 } 2509 } 2510 2511 // If we have multiple alternative constraints, select the best alternative. 2512 if (!ConstraintOperands.empty()) { 2513 if (maCount) { 2514 unsigned bestMAIndex = 0; 2515 int bestWeight = -1; 2516 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2517 int weight = -1; 2518 unsigned maIndex; 2519 // Compute the sums of the weights for each alternative, keeping track 2520 // of the best (highest weight) one so far. 2521 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2522 int weightSum = 0; 2523 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2524 cIndex != eIndex; ++cIndex) { 2525 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2526 if (OpInfo.Type == InlineAsm::isClobber) 2527 continue; 2528 2529 // If this is an output operand with a matching input operand, 2530 // look up the matching input. If their types mismatch, e.g. one 2531 // is an integer, the other is floating point, or their sizes are 2532 // different, flag it as an maCantMatch. 2533 if (OpInfo.hasMatchingInput()) { 2534 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2535 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2536 if ((OpInfo.ConstraintVT.isInteger() != 2537 Input.ConstraintVT.isInteger()) || 2538 (OpInfo.ConstraintVT.getSizeInBits() != 2539 Input.ConstraintVT.getSizeInBits())) { 2540 weightSum = -1; // Can't match. 2541 break; 2542 } 2543 } 2544 } 2545 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2546 if (weight == -1) { 2547 weightSum = -1; 2548 break; 2549 } 2550 weightSum += weight; 2551 } 2552 // Update best. 2553 if (weightSum > bestWeight) { 2554 bestWeight = weightSum; 2555 bestMAIndex = maIndex; 2556 } 2557 } 2558 2559 // Now select chosen alternative in each constraint. 2560 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2561 cIndex != eIndex; ++cIndex) { 2562 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2563 if (cInfo.Type == InlineAsm::isClobber) 2564 continue; 2565 cInfo.selectAlternative(bestMAIndex); 2566 } 2567 } 2568 } 2569 2570 // Check and hook up tied operands, choose constraint code to use. 2571 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2572 cIndex != eIndex; ++cIndex) { 2573 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2574 2575 // If this is an output operand with a matching input operand, look up the 2576 // matching input. If their types mismatch, e.g. one is an integer, the 2577 // other is floating point, or their sizes are different, flag it as an 2578 // error. 2579 if (OpInfo.hasMatchingInput()) { 2580 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2581 2582 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2583 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 2584 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 2585 OpInfo.ConstraintVT); 2586 std::pair<unsigned, const TargetRegisterClass *> InputRC = 2587 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 2588 Input.ConstraintVT); 2589 if ((OpInfo.ConstraintVT.isInteger() != 2590 Input.ConstraintVT.isInteger()) || 2591 (MatchRC.second != InputRC.second)) { 2592 report_fatal_error("Unsupported asm: input constraint" 2593 " with a matching output constraint of" 2594 " incompatible type!"); 2595 } 2596 } 2597 } 2598 } 2599 2600 return ConstraintOperands; 2601 } 2602 2603 /// Return an integer indicating how general CT is. 2604 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2605 switch (CT) { 2606 case TargetLowering::C_Other: 2607 case TargetLowering::C_Unknown: 2608 return 0; 2609 case TargetLowering::C_Register: 2610 return 1; 2611 case TargetLowering::C_RegisterClass: 2612 return 2; 2613 case TargetLowering::C_Memory: 2614 return 3; 2615 } 2616 llvm_unreachable("Invalid constraint type"); 2617 } 2618 2619 /// Examine constraint type and operand type and determine a weight value. 2620 /// This object must already have been set up with the operand type 2621 /// and the current alternative constraint selected. 2622 TargetLowering::ConstraintWeight 2623 TargetLowering::getMultipleConstraintMatchWeight( 2624 AsmOperandInfo &info, int maIndex) const { 2625 InlineAsm::ConstraintCodeVector *rCodes; 2626 if (maIndex >= (int)info.multipleAlternatives.size()) 2627 rCodes = &info.Codes; 2628 else 2629 rCodes = &info.multipleAlternatives[maIndex].Codes; 2630 ConstraintWeight BestWeight = CW_Invalid; 2631 2632 // Loop over the options, keeping track of the most general one. 2633 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 2634 ConstraintWeight weight = 2635 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 2636 if (weight > BestWeight) 2637 BestWeight = weight; 2638 } 2639 2640 return BestWeight; 2641 } 2642 2643 /// Examine constraint type and operand type and determine a weight value. 2644 /// This object must already have been set up with the operand type 2645 /// and the current alternative constraint selected. 2646 TargetLowering::ConstraintWeight 2647 TargetLowering::getSingleConstraintMatchWeight( 2648 AsmOperandInfo &info, const char *constraint) const { 2649 ConstraintWeight weight = CW_Invalid; 2650 Value *CallOperandVal = info.CallOperandVal; 2651 // If we don't have a value, we can't do a match, 2652 // but allow it at the lowest weight. 2653 if (!CallOperandVal) 2654 return CW_Default; 2655 // Look at the constraint type. 2656 switch (*constraint) { 2657 case 'i': // immediate integer. 2658 case 'n': // immediate integer with a known value. 2659 if (isa<ConstantInt>(CallOperandVal)) 2660 weight = CW_Constant; 2661 break; 2662 case 's': // non-explicit intregal immediate. 2663 if (isa<GlobalValue>(CallOperandVal)) 2664 weight = CW_Constant; 2665 break; 2666 case 'E': // immediate float if host format. 2667 case 'F': // immediate float. 2668 if (isa<ConstantFP>(CallOperandVal)) 2669 weight = CW_Constant; 2670 break; 2671 case '<': // memory operand with autodecrement. 2672 case '>': // memory operand with autoincrement. 2673 case 'm': // memory operand. 2674 case 'o': // offsettable memory operand 2675 case 'V': // non-offsettable memory operand 2676 weight = CW_Memory; 2677 break; 2678 case 'r': // general register. 2679 case 'g': // general register, memory operand or immediate integer. 2680 // note: Clang converts "g" to "imr". 2681 if (CallOperandVal->getType()->isIntegerTy()) 2682 weight = CW_Register; 2683 break; 2684 case 'X': // any operand. 2685 default: 2686 weight = CW_Default; 2687 break; 2688 } 2689 return weight; 2690 } 2691 2692 /// If there are multiple different constraints that we could pick for this 2693 /// operand (e.g. "imr") try to pick the 'best' one. 2694 /// This is somewhat tricky: constraints fall into four classes: 2695 /// Other -> immediates and magic values 2696 /// Register -> one specific register 2697 /// RegisterClass -> a group of regs 2698 /// Memory -> memory 2699 /// Ideally, we would pick the most specific constraint possible: if we have 2700 /// something that fits into a register, we would pick it. The problem here 2701 /// is that if we have something that could either be in a register or in 2702 /// memory that use of the register could cause selection of *other* 2703 /// operands to fail: they might only succeed if we pick memory. Because of 2704 /// this the heuristic we use is: 2705 /// 2706 /// 1) If there is an 'other' constraint, and if the operand is valid for 2707 /// that constraint, use it. This makes us take advantage of 'i' 2708 /// constraints when available. 2709 /// 2) Otherwise, pick the most general constraint present. This prefers 2710 /// 'm' over 'r', for example. 2711 /// 2712 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 2713 const TargetLowering &TLI, 2714 SDValue Op, SelectionDAG *DAG) { 2715 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 2716 unsigned BestIdx = 0; 2717 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 2718 int BestGenerality = -1; 2719 2720 // Loop over the options, keeping track of the most general one. 2721 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 2722 TargetLowering::ConstraintType CType = 2723 TLI.getConstraintType(OpInfo.Codes[i]); 2724 2725 // If this is an 'other' constraint, see if the operand is valid for it. 2726 // For example, on X86 we might have an 'rI' constraint. If the operand 2727 // is an integer in the range [0..31] we want to use I (saving a load 2728 // of a register), otherwise we must use 'r'. 2729 if (CType == TargetLowering::C_Other && Op.getNode()) { 2730 assert(OpInfo.Codes[i].size() == 1 && 2731 "Unhandled multi-letter 'other' constraint"); 2732 std::vector<SDValue> ResultOps; 2733 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 2734 ResultOps, *DAG); 2735 if (!ResultOps.empty()) { 2736 BestType = CType; 2737 BestIdx = i; 2738 break; 2739 } 2740 } 2741 2742 // Things with matching constraints can only be registers, per gcc 2743 // documentation. This mainly affects "g" constraints. 2744 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 2745 continue; 2746 2747 // This constraint letter is more general than the previous one, use it. 2748 int Generality = getConstraintGenerality(CType); 2749 if (Generality > BestGenerality) { 2750 BestType = CType; 2751 BestIdx = i; 2752 BestGenerality = Generality; 2753 } 2754 } 2755 2756 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 2757 OpInfo.ConstraintType = BestType; 2758 } 2759 2760 /// Determines the constraint code and constraint type to use for the specific 2761 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 2762 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2763 SDValue Op, 2764 SelectionDAG *DAG) const { 2765 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 2766 2767 // Single-letter constraints ('r') are very common. 2768 if (OpInfo.Codes.size() == 1) { 2769 OpInfo.ConstraintCode = OpInfo.Codes[0]; 2770 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2771 } else { 2772 ChooseConstraint(OpInfo, *this, Op, DAG); 2773 } 2774 2775 // 'X' matches anything. 2776 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 2777 // Labels and constants are handled elsewhere ('X' is the only thing 2778 // that matches labels). For Functions, the type here is the type of 2779 // the result, which is not what we want to look at; leave them alone. 2780 Value *v = OpInfo.CallOperandVal; 2781 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 2782 OpInfo.CallOperandVal = v; 2783 return; 2784 } 2785 2786 // Otherwise, try to resolve it to something we know about by looking at 2787 // the actual operand type. 2788 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 2789 OpInfo.ConstraintCode = Repl; 2790 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2791 } 2792 } 2793 } 2794 2795 /// \brief Given an exact SDIV by a constant, create a multiplication 2796 /// with the multiplicative inverse of the constant. 2797 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d, 2798 const SDLoc &dl, SelectionDAG &DAG, 2799 std::vector<SDNode *> &Created) { 2800 assert(d != 0 && "Division by zero!"); 2801 2802 // Shift the value upfront if it is even, so the LSB is one. 2803 unsigned ShAmt = d.countTrailingZeros(); 2804 if (ShAmt) { 2805 // TODO: For UDIV use SRL instead of SRA. 2806 SDValue Amt = 2807 DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(), 2808 DAG.getDataLayout())); 2809 SDNodeFlags Flags; 2810 Flags.setExact(true); 2811 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags); 2812 Created.push_back(Op1.getNode()); 2813 d = d.ashr(ShAmt); 2814 } 2815 2816 // Calculate the multiplicative inverse, using Newton's method. 2817 APInt t, xn = d; 2818 while ((t = d*xn) != 1) 2819 xn *= APInt(d.getBitWidth(), 2) - t; 2820 2821 SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType()); 2822 SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 2823 Created.push_back(Mul.getNode()); 2824 return Mul; 2825 } 2826 2827 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 2828 SelectionDAG &DAG, 2829 std::vector<SDNode *> *Created) const { 2830 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2831 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2832 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 2833 return SDValue(N,0); // Lower SDIV as SDIV 2834 return SDValue(); 2835 } 2836 2837 /// \brief Given an ISD::SDIV node expressing a divide by constant, 2838 /// return a DAG expression to select that will generate the same value by 2839 /// multiplying by a magic number. 2840 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2841 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, 2842 SelectionDAG &DAG, bool IsAfterLegalization, 2843 std::vector<SDNode *> *Created) const { 2844 assert(Created && "No vector to hold sdiv ops."); 2845 2846 EVT VT = N->getValueType(0); 2847 SDLoc dl(N); 2848 2849 // Check to see if we can do this. 2850 // FIXME: We should be more aggressive here. 2851 if (!isTypeLegal(VT)) 2852 return SDValue(); 2853 2854 // If the sdiv has an 'exact' bit we can use a simpler lowering. 2855 if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact()) 2856 return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created); 2857 2858 APInt::ms magics = Divisor.magic(); 2859 2860 // Multiply the numerator (operand 0) by the magic value 2861 // FIXME: We should support doing a MUL in a wider type 2862 SDValue Q; 2863 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 2864 isOperationLegalOrCustom(ISD::MULHS, VT)) 2865 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 2866 DAG.getConstant(magics.m, dl, VT)); 2867 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 2868 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 2869 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 2870 N->getOperand(0), 2871 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 2872 else 2873 return SDValue(); // No mulhs or equvialent 2874 // If d > 0 and m < 0, add the numerator 2875 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 2876 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 2877 Created->push_back(Q.getNode()); 2878 } 2879 // If d < 0 and m > 0, subtract the numerator. 2880 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 2881 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 2882 Created->push_back(Q.getNode()); 2883 } 2884 auto &DL = DAG.getDataLayout(); 2885 // Shift right algebraic if shift value is nonzero 2886 if (magics.s > 0) { 2887 Q = DAG.getNode( 2888 ISD::SRA, dl, VT, Q, 2889 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 2890 Created->push_back(Q.getNode()); 2891 } 2892 // Extract the sign bit and add it to the quotient 2893 SDValue T = 2894 DAG.getNode(ISD::SRL, dl, VT, Q, 2895 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, 2896 getShiftAmountTy(Q.getValueType(), DL))); 2897 Created->push_back(T.getNode()); 2898 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 2899 } 2900 2901 /// \brief Given an ISD::UDIV node expressing a divide by constant, 2902 /// return a DAG expression to select that will generate the same value by 2903 /// multiplying by a magic number. 2904 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2905 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, 2906 SelectionDAG &DAG, bool IsAfterLegalization, 2907 std::vector<SDNode *> *Created) const { 2908 assert(Created && "No vector to hold udiv ops."); 2909 2910 EVT VT = N->getValueType(0); 2911 SDLoc dl(N); 2912 auto &DL = DAG.getDataLayout(); 2913 2914 // Check to see if we can do this. 2915 // FIXME: We should be more aggressive here. 2916 if (!isTypeLegal(VT)) 2917 return SDValue(); 2918 2919 // FIXME: We should use a narrower constant when the upper 2920 // bits are known to be zero. 2921 APInt::mu magics = Divisor.magicu(); 2922 2923 SDValue Q = N->getOperand(0); 2924 2925 // If the divisor is even, we can avoid using the expensive fixup by shifting 2926 // the divided value upfront. 2927 if (magics.a != 0 && !Divisor[0]) { 2928 unsigned Shift = Divisor.countTrailingZeros(); 2929 Q = DAG.getNode( 2930 ISD::SRL, dl, VT, Q, 2931 DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL))); 2932 Created->push_back(Q.getNode()); 2933 2934 // Get magic number for the shifted divisor. 2935 magics = Divisor.lshr(Shift).magicu(Shift); 2936 assert(magics.a == 0 && "Should use cheap fixup now"); 2937 } 2938 2939 // Multiply the numerator (operand 0) by the magic value 2940 // FIXME: We should support doing a MUL in a wider type 2941 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 2942 isOperationLegalOrCustom(ISD::MULHU, VT)) 2943 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT)); 2944 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 2945 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 2946 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 2947 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 2948 else 2949 return SDValue(); // No mulhu or equvialent 2950 2951 Created->push_back(Q.getNode()); 2952 2953 if (magics.a == 0) { 2954 assert(magics.s < Divisor.getBitWidth() && 2955 "We shouldn't generate an undefined shift!"); 2956 return DAG.getNode( 2957 ISD::SRL, dl, VT, Q, 2958 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 2959 } else { 2960 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 2961 Created->push_back(NPQ.getNode()); 2962 NPQ = DAG.getNode( 2963 ISD::SRL, dl, VT, NPQ, 2964 DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL))); 2965 Created->push_back(NPQ.getNode()); 2966 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 2967 Created->push_back(NPQ.getNode()); 2968 return DAG.getNode( 2969 ISD::SRL, dl, VT, NPQ, 2970 DAG.getConstant(magics.s - 1, dl, 2971 getShiftAmountTy(NPQ.getValueType(), DL))); 2972 } 2973 } 2974 2975 bool TargetLowering:: 2976 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 2977 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 2978 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 2979 "be a constant integer"); 2980 return true; 2981 } 2982 2983 return false; 2984 } 2985 2986 //===----------------------------------------------------------------------===// 2987 // Legalization Utilities 2988 //===----------------------------------------------------------------------===// 2989 2990 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 2991 SelectionDAG &DAG, SDValue LL, SDValue LH, 2992 SDValue RL, SDValue RH) const { 2993 EVT VT = N->getValueType(0); 2994 SDLoc dl(N); 2995 2996 bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 2997 bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 2998 bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 2999 bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 3000 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 3001 unsigned OuterBitSize = VT.getSizeInBits(); 3002 unsigned InnerBitSize = HiLoVT.getSizeInBits(); 3003 unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0)); 3004 unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1)); 3005 3006 // LL, LH, RL, and RH must be either all NULL or all set to a value. 3007 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 3008 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 3009 3010 if (!LL.getNode() && !RL.getNode() && 3011 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3012 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0)); 3013 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1)); 3014 } 3015 3016 if (!LL.getNode()) 3017 return false; 3018 3019 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 3020 if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) && 3021 DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) { 3022 // The inputs are both zero-extended. 3023 if (HasUMUL_LOHI) { 3024 // We can emit a umul_lohi. 3025 Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 3026 RL); 3027 Hi = SDValue(Lo.getNode(), 1); 3028 return true; 3029 } 3030 if (HasMULHU) { 3031 // We can emit a mulhu+mul. 3032 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 3033 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 3034 return true; 3035 } 3036 } 3037 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { 3038 // The input values are both sign-extended. 3039 if (HasSMUL_LOHI) { 3040 // We can emit a smul_lohi. 3041 Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 3042 RL); 3043 Hi = SDValue(Lo.getNode(), 1); 3044 return true; 3045 } 3046 if (HasMULHS) { 3047 // We can emit a mulhs+mul. 3048 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 3049 Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL); 3050 return true; 3051 } 3052 } 3053 3054 if (!LH.getNode() && !RH.getNode() && 3055 isOperationLegalOrCustom(ISD::SRL, VT) && 3056 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3057 auto &DL = DAG.getDataLayout(); 3058 unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits(); 3059 SDValue Shift = DAG.getConstant(ShiftAmt, dl, getShiftAmountTy(VT, DL)); 3060 LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift); 3061 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 3062 RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift); 3063 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 3064 } 3065 3066 if (!LH.getNode()) 3067 return false; 3068 3069 if (HasUMUL_LOHI) { 3070 // Lo,Hi = umul LHS, RHS. 3071 SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl, 3072 DAG.getVTList(HiLoVT, HiLoVT), LL, RL); 3073 Lo = UMulLOHI; 3074 Hi = UMulLOHI.getValue(1); 3075 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3076 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3077 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3078 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3079 return true; 3080 } 3081 if (HasMULHU) { 3082 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 3083 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 3084 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3085 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3086 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3087 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3088 return true; 3089 } 3090 } 3091 return false; 3092 } 3093 3094 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 3095 SelectionDAG &DAG) const { 3096 EVT VT = Node->getOperand(0).getValueType(); 3097 EVT NVT = Node->getValueType(0); 3098 SDLoc dl(SDValue(Node, 0)); 3099 3100 // FIXME: Only f32 to i64 conversions are supported. 3101 if (VT != MVT::f32 || NVT != MVT::i64) 3102 return false; 3103 3104 // Expand f32 -> i64 conversion 3105 // This algorithm comes from compiler-rt's implementation of fixsfdi: 3106 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 3107 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), 3108 VT.getSizeInBits()); 3109 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 3110 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 3111 SDValue Bias = DAG.getConstant(127, dl, IntVT); 3112 SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl, 3113 IntVT); 3114 SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); 3115 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 3116 3117 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); 3118 3119 auto &DL = DAG.getDataLayout(); 3120 SDValue ExponentBits = DAG.getNode( 3121 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 3122 DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL))); 3123 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 3124 3125 SDValue Sign = DAG.getNode( 3126 ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 3127 DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL))); 3128 Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); 3129 3130 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 3131 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 3132 DAG.getConstant(0x00800000, dl, IntVT)); 3133 3134 R = DAG.getZExtOrTrunc(R, dl, NVT); 3135 3136 R = DAG.getSelectCC( 3137 dl, Exponent, ExponentLoBit, 3138 DAG.getNode(ISD::SHL, dl, NVT, R, 3139 DAG.getZExtOrTrunc( 3140 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 3141 dl, getShiftAmountTy(IntVT, DL))), 3142 DAG.getNode(ISD::SRL, dl, NVT, R, 3143 DAG.getZExtOrTrunc( 3144 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 3145 dl, getShiftAmountTy(IntVT, DL))), 3146 ISD::SETGT); 3147 3148 SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, 3149 DAG.getNode(ISD::XOR, dl, NVT, R, Sign), 3150 Sign); 3151 3152 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 3153 DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT); 3154 return true; 3155 } 3156 3157 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 3158 SelectionDAG &DAG) const { 3159 SDLoc SL(LD); 3160 SDValue Chain = LD->getChain(); 3161 SDValue BasePTR = LD->getBasePtr(); 3162 EVT SrcVT = LD->getMemoryVT(); 3163 ISD::LoadExtType ExtType = LD->getExtensionType(); 3164 3165 unsigned NumElem = SrcVT.getVectorNumElements(); 3166 3167 EVT SrcEltVT = SrcVT.getScalarType(); 3168 EVT DstEltVT = LD->getValueType(0).getScalarType(); 3169 3170 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 3171 assert(SrcEltVT.isByteSized()); 3172 3173 EVT PtrVT = BasePTR.getValueType(); 3174 3175 SmallVector<SDValue, 8> Vals; 3176 SmallVector<SDValue, 8> LoadChains; 3177 3178 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3179 SDValue ScalarLoad = 3180 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 3181 LD->getPointerInfo().getWithOffset(Idx * Stride), 3182 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 3183 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3184 3185 BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR, 3186 DAG.getConstant(Stride, SL, PtrVT)); 3187 3188 Vals.push_back(ScalarLoad.getValue(0)); 3189 LoadChains.push_back(ScalarLoad.getValue(1)); 3190 } 3191 3192 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 3193 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, SL, LD->getValueType(0), Vals); 3194 3195 return DAG.getMergeValues({ Value, NewChain }, SL); 3196 } 3197 3198 // FIXME: This relies on each element having a byte size, otherwise the stride 3199 // is 0 and just overwrites the same location. ExpandStore currently expects 3200 // this broken behavior. 3201 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 3202 SelectionDAG &DAG) const { 3203 SDLoc SL(ST); 3204 3205 SDValue Chain = ST->getChain(); 3206 SDValue BasePtr = ST->getBasePtr(); 3207 SDValue Value = ST->getValue(); 3208 EVT StVT = ST->getMemoryVT(); 3209 3210 // The type of the data we want to save 3211 EVT RegVT = Value.getValueType(); 3212 EVT RegSclVT = RegVT.getScalarType(); 3213 3214 // The type of data as saved in memory. 3215 EVT MemSclVT = StVT.getScalarType(); 3216 3217 EVT PtrVT = BasePtr.getValueType(); 3218 3219 // Store Stride in bytes 3220 unsigned Stride = MemSclVT.getSizeInBits() / 8; 3221 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 3222 unsigned NumElem = StVT.getVectorNumElements(); 3223 3224 // Extract each of the elements from the original vector and save them into 3225 // memory individually. 3226 SmallVector<SDValue, 8> Stores; 3227 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3228 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 3229 DAG.getConstant(Idx, SL, IdxVT)); 3230 3231 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 3232 DAG.getConstant(Idx * Stride, SL, PtrVT)); 3233 3234 // This scalar TruncStore may be illegal, but we legalize it later. 3235 SDValue Store = DAG.getTruncStore( 3236 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 3237 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 3238 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 3239 3240 Stores.push_back(Store); 3241 } 3242 3243 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 3244 } 3245 3246 std::pair<SDValue, SDValue> 3247 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 3248 assert(LD->getAddressingMode() == ISD::UNINDEXED && 3249 "unaligned indexed loads not implemented!"); 3250 SDValue Chain = LD->getChain(); 3251 SDValue Ptr = LD->getBasePtr(); 3252 EVT VT = LD->getValueType(0); 3253 EVT LoadedVT = LD->getMemoryVT(); 3254 SDLoc dl(LD); 3255 if (VT.isFloatingPoint() || VT.isVector()) { 3256 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 3257 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 3258 if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) { 3259 // Scalarize the load and let the individual components be handled. 3260 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 3261 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 3262 } 3263 3264 // Expand to a (misaligned) integer load of the same size, 3265 // then bitconvert to floating point or vector. 3266 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 3267 LD->getMemOperand()); 3268 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 3269 if (LoadedVT != VT) 3270 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 3271 ISD::ANY_EXTEND, dl, VT, Result); 3272 3273 return std::make_pair(Result, newLoad.getValue(1)); 3274 } 3275 3276 // Copy the value to a (aligned) stack slot using (unaligned) integer 3277 // loads and stores, then do a (aligned) load from the stack slot. 3278 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 3279 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 3280 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3281 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 3282 3283 // Make sure the stack slot is also aligned for the register type. 3284 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 3285 3286 SmallVector<SDValue, 8> Stores; 3287 SDValue StackPtr = StackBase; 3288 unsigned Offset = 0; 3289 3290 EVT PtrVT = Ptr.getValueType(); 3291 EVT StackPtrVT = StackPtr.getValueType(); 3292 3293 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 3294 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 3295 3296 // Do all but one copies using the full register width. 3297 for (unsigned i = 1; i < NumRegs; i++) { 3298 // Load one integer register's worth from the original location. 3299 SDValue Load = DAG.getLoad( 3300 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 3301 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 3302 LD->getAAInfo()); 3303 // Follow the load with a store to the stack slot. Remember the store. 3304 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 3305 MachinePointerInfo())); 3306 // Increment the pointers. 3307 Offset += RegBytes; 3308 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); 3309 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr, 3310 StackPtrIncrement); 3311 } 3312 3313 // The last copy may be partial. Do an extending load. 3314 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 3315 8 * (LoadedBytes - Offset)); 3316 SDValue Load = 3317 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 3318 LD->getPointerInfo().getWithOffset(Offset), MemVT, 3319 MinAlign(LD->getAlignment(), Offset), 3320 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3321 // Follow the load with a store to the stack slot. Remember the store. 3322 // On big-endian machines this requires a truncating store to ensure 3323 // that the bits end up in the right place. 3324 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 3325 MachinePointerInfo(), MemVT)); 3326 3327 // The order of the stores doesn't matter - say it with a TokenFactor. 3328 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 3329 3330 // Finally, perform the original load only redirected to the stack slot. 3331 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 3332 MachinePointerInfo(), LoadedVT); 3333 3334 // Callers expect a MERGE_VALUES node. 3335 return std::make_pair(Load, TF); 3336 } 3337 3338 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 3339 "Unaligned load of unsupported type."); 3340 3341 // Compute the new VT that is half the size of the old one. This is an 3342 // integer MVT. 3343 unsigned NumBits = LoadedVT.getSizeInBits(); 3344 EVT NewLoadedVT; 3345 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 3346 NumBits >>= 1; 3347 3348 unsigned Alignment = LD->getAlignment(); 3349 unsigned IncrementSize = NumBits / 8; 3350 ISD::LoadExtType HiExtType = LD->getExtensionType(); 3351 3352 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 3353 if (HiExtType == ISD::NON_EXTLOAD) 3354 HiExtType = ISD::ZEXTLOAD; 3355 3356 // Load the value in two parts 3357 SDValue Lo, Hi; 3358 if (DAG.getDataLayout().isLittleEndian()) { 3359 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3360 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 3361 LD->getAAInfo()); 3362 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 3363 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 3364 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 3365 LD->getPointerInfo().getWithOffset(IncrementSize), 3366 NewLoadedVT, MinAlign(Alignment, IncrementSize), 3367 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3368 } else { 3369 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3370 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 3371 LD->getAAInfo()); 3372 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 3373 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 3374 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 3375 LD->getPointerInfo().getWithOffset(IncrementSize), 3376 NewLoadedVT, MinAlign(Alignment, IncrementSize), 3377 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3378 } 3379 3380 // aggregate the two parts 3381 SDValue ShiftAmount = 3382 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 3383 DAG.getDataLayout())); 3384 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 3385 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 3386 3387 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 3388 Hi.getValue(1)); 3389 3390 return std::make_pair(Result, TF); 3391 } 3392 3393 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 3394 SelectionDAG &DAG) const { 3395 assert(ST->getAddressingMode() == ISD::UNINDEXED && 3396 "unaligned indexed stores not implemented!"); 3397 SDValue Chain = ST->getChain(); 3398 SDValue Ptr = ST->getBasePtr(); 3399 SDValue Val = ST->getValue(); 3400 EVT VT = Val.getValueType(); 3401 int Alignment = ST->getAlignment(); 3402 3403 SDLoc dl(ST); 3404 if (ST->getMemoryVT().isFloatingPoint() || 3405 ST->getMemoryVT().isVector()) { 3406 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 3407 if (isTypeLegal(intVT)) { 3408 if (!isOperationLegalOrCustom(ISD::STORE, intVT)) { 3409 // Scalarize the store and let the individual components be handled. 3410 SDValue Result = scalarizeVectorStore(ST, DAG); 3411 3412 return Result; 3413 } 3414 // Expand to a bitconvert of the value to the integer type of the 3415 // same size, then a (misaligned) int store. 3416 // FIXME: Does not handle truncating floating point stores! 3417 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 3418 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 3419 Alignment, ST->getMemOperand()->getFlags()); 3420 return Result; 3421 } 3422 // Do a (aligned) store to a stack slot, then copy from the stack slot 3423 // to the final destination using (unaligned) integer loads and stores. 3424 EVT StoredVT = ST->getMemoryVT(); 3425 MVT RegVT = 3426 getRegisterType(*DAG.getContext(), 3427 EVT::getIntegerVT(*DAG.getContext(), 3428 StoredVT.getSizeInBits())); 3429 EVT PtrVT = Ptr.getValueType(); 3430 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 3431 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3432 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 3433 3434 // Make sure the stack slot is also aligned for the register type. 3435 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 3436 3437 // Perform the original store, only redirected to the stack slot. 3438 SDValue Store = DAG.getTruncStore(Chain, dl, Val, StackPtr, 3439 MachinePointerInfo(), StoredVT); 3440 3441 EVT StackPtrVT = StackPtr.getValueType(); 3442 3443 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 3444 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 3445 SmallVector<SDValue, 8> Stores; 3446 unsigned Offset = 0; 3447 3448 // Do all but one copies using the full register width. 3449 for (unsigned i = 1; i < NumRegs; i++) { 3450 // Load one integer register's worth from the stack slot. 3451 SDValue Load = 3452 DAG.getLoad(RegVT, dl, Store, StackPtr, MachinePointerInfo()); 3453 // Store it to the final location. Remember the store. 3454 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 3455 ST->getPointerInfo().getWithOffset(Offset), 3456 MinAlign(ST->getAlignment(), Offset), 3457 ST->getMemOperand()->getFlags())); 3458 // Increment the pointers. 3459 Offset += RegBytes; 3460 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, 3461 StackPtr, StackPtrIncrement); 3462 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); 3463 } 3464 3465 // The last store may be partial. Do a truncating store. On big-endian 3466 // machines this requires an extending load from the stack slot to ensure 3467 // that the bits are in the right place. 3468 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 3469 8 * (StoredBytes - Offset)); 3470 3471 // Load from the stack slot. 3472 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 3473 MachinePointerInfo(), MemVT); 3474 3475 Stores.push_back( 3476 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 3477 ST->getPointerInfo().getWithOffset(Offset), MemVT, 3478 MinAlign(ST->getAlignment(), Offset), 3479 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 3480 // The order of the stores doesn't matter - say it with a TokenFactor. 3481 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 3482 return Result; 3483 } 3484 3485 assert(ST->getMemoryVT().isInteger() && 3486 !ST->getMemoryVT().isVector() && 3487 "Unaligned store of unknown type."); 3488 // Get the half-size VT 3489 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 3490 int NumBits = NewStoredVT.getSizeInBits(); 3491 int IncrementSize = NumBits / 8; 3492 3493 // Divide the stored value in two parts. 3494 SDValue ShiftAmount = 3495 DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), 3496 DAG.getDataLayout())); 3497 SDValue Lo = Val; 3498 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 3499 3500 // Store the two parts 3501 SDValue Store1, Store2; 3502 Store1 = DAG.getTruncStore(Chain, dl, 3503 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 3504 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 3505 ST->getMemOperand()->getFlags()); 3506 3507 EVT PtrVT = Ptr.getValueType(); 3508 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3509 DAG.getConstant(IncrementSize, dl, PtrVT)); 3510 Alignment = MinAlign(Alignment, IncrementSize); 3511 Store2 = DAG.getTruncStore( 3512 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 3513 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 3514 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 3515 3516 SDValue Result = 3517 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 3518 return Result; 3519 } 3520 3521 //===----------------------------------------------------------------------===// 3522 // Implementation of Emulated TLS Model 3523 //===----------------------------------------------------------------------===// 3524 3525 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 3526 SelectionDAG &DAG) const { 3527 // Access to address of TLS varialbe xyz is lowered to a function call: 3528 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 3529 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3530 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 3531 SDLoc dl(GA); 3532 3533 ArgListTy Args; 3534 ArgListEntry Entry; 3535 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 3536 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 3537 StringRef EmuTlsVarName(NameString); 3538 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 3539 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 3540 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 3541 Entry.Ty = VoidPtrType; 3542 Args.push_back(Entry); 3543 3544 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 3545 3546 TargetLowering::CallLoweringInfo CLI(DAG); 3547 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 3548 CLI.setCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 3549 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3550 3551 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 3552 // At last for X86 targets, maybe good for other targets too? 3553 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 3554 MFI->setAdjustsStack(true); // Is this only for X86 target? 3555 MFI->setHasCalls(true); 3556 3557 assert((GA->getOffset() == 0) && 3558 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 3559 return CallResult.first; 3560 } 3561