1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file includes support code use by SelectionDAGBuilder when lowering a 11 // statepoint sequence in SelectionDAG IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "StatepointLowering.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/FunctionLoweringInfo.h" 25 #include "llvm/CodeGen/GCMetadata.h" 26 #include "llvm/CodeGen/GCStrategy.h" 27 #include "llvm/CodeGen/ISDOpcodes.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/RuntimeLibcalls.h" 32 #include "llvm/CodeGen/SelectionDAG.h" 33 #include "llvm/CodeGen/SelectionDAGNodes.h" 34 #include "llvm/CodeGen/StackMaps.h" 35 #include "llvm/CodeGen/TargetLowering.h" 36 #include "llvm/CodeGen/TargetOpcodes.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Statepoint.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/MachineValueType.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <cassert> 49 #include <cstddef> 50 #include <cstdint> 51 #include <iterator> 52 #include <tuple> 53 #include <utility> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "statepoint-lowering" 58 59 STATISTIC(NumSlotsAllocatedForStatepoints, 60 "Number of stack slots allocated for statepoints"); 61 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 62 STATISTIC(StatepointMaxSlotsRequired, 63 "Maximum number of stack slots required for a singe statepoint"); 64 65 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 66 SelectionDAGBuilder &Builder, uint64_t Value) { 67 SDLoc L = Builder.getCurSDLoc(); 68 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 69 MVT::i64)); 70 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 71 } 72 73 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 74 // Consistency check 75 assert(PendingGCRelocateCalls.empty() && 76 "Trying to visit statepoint before finished processing previous one"); 77 Locations.clear(); 78 NextSlotToAllocate = 0; 79 // Need to resize this on each safepoint - we need the two to stay in sync and 80 // the clear patterns of a SelectionDAGBuilder have no relation to 81 // FunctionLoweringInfo. Also need to ensure used bits get cleared. 82 AllocatedStackSlots.clear(); 83 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 84 } 85 86 void StatepointLoweringState::clear() { 87 Locations.clear(); 88 AllocatedStackSlots.clear(); 89 assert(PendingGCRelocateCalls.empty() && 90 "cleared before statepoint sequence completed"); 91 } 92 93 SDValue 94 StatepointLoweringState::allocateStackSlot(EVT ValueType, 95 SelectionDAGBuilder &Builder) { 96 NumSlotsAllocatedForStatepoints++; 97 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 98 99 unsigned SpillSize = ValueType.getStoreSize(); 100 assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?"); 101 102 // First look for a previously created stack slot which is not in 103 // use (accounting for the fact arbitrary slots may already be 104 // reserved), or to create a new stack slot and use it. 105 106 const size_t NumSlots = AllocatedStackSlots.size(); 107 assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); 108 109 assert(AllocatedStackSlots.size() == 110 Builder.FuncInfo.StatepointStackSlots.size() && 111 "Broken invariant"); 112 113 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { 114 if (!AllocatedStackSlots.test(NextSlotToAllocate)) { 115 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 116 if (MFI.getObjectSize(FI) == SpillSize) { 117 AllocatedStackSlots.set(NextSlotToAllocate); 118 // TODO: Is ValueType the right thing to use here? 119 return Builder.DAG.getFrameIndex(FI, ValueType); 120 } 121 } 122 } 123 124 // Couldn't find a free slot, so create a new one: 125 126 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 127 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 128 MFI.markAsStatepointSpillSlotObjectIndex(FI); 129 130 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 131 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true); 132 assert(AllocatedStackSlots.size() == 133 Builder.FuncInfo.StatepointStackSlots.size() && 134 "Broken invariant"); 135 136 StatepointMaxSlotsRequired.updateMax( 137 Builder.FuncInfo.StatepointStackSlots.size()); 138 139 return SpillSlot; 140 } 141 142 /// Utility function for reservePreviousStackSlotForValue. Tries to find 143 /// stack slot index to which we have spilled value for previous statepoints. 144 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 145 static Optional<int> findPreviousSpillSlot(const Value *Val, 146 SelectionDAGBuilder &Builder, 147 int LookUpDepth) { 148 // Can not look any further - give up now 149 if (LookUpDepth <= 0) 150 return None; 151 152 // Spill location is known for gc relocates 153 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { 154 const auto &SpillMap = 155 Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()]; 156 157 auto It = SpillMap.find(Relocate->getDerivedPtr()); 158 if (It == SpillMap.end()) 159 return None; 160 161 return It->second; 162 } 163 164 // Look through bitcast instructions. 165 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) 166 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 167 168 // Look through phi nodes 169 // All incoming values should have same known stack slot, otherwise result 170 // is unknown. 171 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 172 Optional<int> MergedResult = None; 173 174 for (auto &IncomingValue : Phi->incoming_values()) { 175 Optional<int> SpillSlot = 176 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 177 if (!SpillSlot.hasValue()) 178 return None; 179 180 if (MergedResult.hasValue() && *MergedResult != *SpillSlot) 181 return None; 182 183 MergedResult = SpillSlot; 184 } 185 return MergedResult; 186 } 187 188 // TODO: We can do better for PHI nodes. In cases like this: 189 // ptr = phi(relocated_pointer, not_relocated_pointer) 190 // statepoint(ptr) 191 // We will return that stack slot for ptr is unknown. And later we might 192 // assign different stack slots for ptr and relocated_pointer. This limits 193 // llvm's ability to remove redundant stores. 194 // Unfortunately it's hard to accomplish in current infrastructure. 195 // We use this function to eliminate spill store completely, while 196 // in example we still need to emit store, but instead of any location 197 // we need to use special "preferred" location. 198 199 // TODO: handle simple updates. If a value is modified and the original 200 // value is no longer live, it would be nice to put the modified value in the 201 // same slot. This allows folding of the memory accesses for some 202 // instructions types (like an increment). 203 // statepoint (i) 204 // i1 = i+1 205 // statepoint (i1) 206 // However we need to be careful for cases like this: 207 // statepoint(i) 208 // i1 = i+1 209 // statepoint(i, i1) 210 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 211 // put handling of simple modifications in this function like it's done 212 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 213 // which we visit values is unspecified. 214 215 // Don't know any information about this instruction 216 return None; 217 } 218 219 /// Try to find existing copies of the incoming values in stack slots used for 220 /// statepoint spilling. If we can find a spill slot for the incoming value, 221 /// mark that slot as allocated, and reuse the same slot for this safepoint. 222 /// This helps to avoid series of loads and stores that only serve to reshuffle 223 /// values on the stack between calls. 224 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 225 SelectionDAGBuilder &Builder) { 226 SDValue Incoming = Builder.getValue(IncomingValue); 227 228 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { 229 // We won't need to spill this, so no need to check for previously 230 // allocated stack slots 231 return; 232 } 233 234 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 235 if (OldLocation.getNode()) 236 // Duplicates in input 237 return; 238 239 const int LookUpDepth = 6; 240 Optional<int> Index = 241 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 242 if (!Index.hasValue()) 243 return; 244 245 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; 246 247 auto SlotIt = find(StatepointSlots, *Index); 248 assert(SlotIt != StatepointSlots.end() && 249 "Value spilled to the unknown stack slot"); 250 251 // This is one of our dedicated lowering slots 252 const int Offset = std::distance(StatepointSlots.begin(), SlotIt); 253 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 254 // stack slot already assigned to someone else, can't use it! 255 // TODO: currently we reserve space for gc arguments after doing 256 // normal allocation for deopt arguments. We should reserve for 257 // _all_ deopt and gc arguments, then start allocating. This 258 // will prevent some moves being inserted when vm state changes, 259 // but gc state doesn't between two calls. 260 return; 261 } 262 // Reserve this stack slot 263 Builder.StatepointLowering.reserveStackSlot(Offset); 264 265 // Cache this slot so we find it when going through the normal 266 // assignment loop. 267 SDValue Loc = 268 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy()); 269 Builder.StatepointLowering.setLocation(Incoming, Loc); 270 } 271 272 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This 273 /// is not required for correctness. It's purpose is to reduce the size of 274 /// StackMap section. It has no effect on the number of spill slots required 275 /// or the actual lowering. 276 static void 277 removeDuplicateGCPtrs(SmallVectorImpl<const Value *> &Bases, 278 SmallVectorImpl<const Value *> &Ptrs, 279 SmallVectorImpl<const GCRelocateInst *> &Relocs, 280 SelectionDAGBuilder &Builder, 281 FunctionLoweringInfo::StatepointSpillMap &SSM) { 282 DenseMap<SDValue, const Value *> Seen; 283 284 SmallVector<const Value *, 64> NewBases, NewPtrs; 285 SmallVector<const GCRelocateInst *, 64> NewRelocs; 286 for (size_t i = 0, e = Ptrs.size(); i < e; i++) { 287 SDValue SD = Builder.getValue(Ptrs[i]); 288 auto SeenIt = Seen.find(SD); 289 290 if (SeenIt == Seen.end()) { 291 // Only add non-duplicates 292 NewBases.push_back(Bases[i]); 293 NewPtrs.push_back(Ptrs[i]); 294 NewRelocs.push_back(Relocs[i]); 295 Seen[SD] = Ptrs[i]; 296 } else { 297 // Duplicate pointer found, note in SSM and move on: 298 SSM.DuplicateMap[Ptrs[i]] = SeenIt->second; 299 } 300 } 301 assert(Bases.size() >= NewBases.size()); 302 assert(Ptrs.size() >= NewPtrs.size()); 303 assert(Relocs.size() >= NewRelocs.size()); 304 Bases = NewBases; 305 Ptrs = NewPtrs; 306 Relocs = NewRelocs; 307 assert(Ptrs.size() == Bases.size()); 308 assert(Ptrs.size() == Relocs.size()); 309 } 310 311 /// Extract call from statepoint, lower it and return pointer to the 312 /// call node. Also update NodeMap so that getValue(statepoint) will 313 /// reference lowered call result 314 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( 315 SelectionDAGBuilder::StatepointLoweringInfo &SI, 316 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) { 317 SDValue ReturnValue, CallEndVal; 318 std::tie(ReturnValue, CallEndVal) = 319 Builder.lowerInvokable(SI.CLI, SI.EHPadBB); 320 SDNode *CallEnd = CallEndVal.getNode(); 321 322 // Get a call instruction from the call sequence chain. Tail calls are not 323 // allowed. The following code is essentially reverse engineering X86's 324 // LowerCallTo. 325 // 326 // We are expecting DAG to have the following form: 327 // 328 // ch = eh_label (only in case of invoke statepoint) 329 // ch, glue = callseq_start ch 330 // ch, glue = X86::Call ch, glue 331 // ch, glue = callseq_end ch, glue 332 // get_return_value ch, glue 333 // 334 // get_return_value can either be a sequence of CopyFromReg instructions 335 // to grab the return value from the return register(s), or it can be a LOAD 336 // to load a value returned by reference via a stack slot. 337 338 bool HasDef = !SI.CLI.RetTy->isVoidTy(); 339 if (HasDef) { 340 if (CallEnd->getOpcode() == ISD::LOAD) 341 CallEnd = CallEnd->getOperand(0).getNode(); 342 else 343 while (CallEnd->getOpcode() == ISD::CopyFromReg) 344 CallEnd = CallEnd->getOperand(0).getNode(); 345 } 346 347 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 348 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); 349 } 350 351 /// Spill a value incoming to the statepoint. It might be either part of 352 /// vmstate 353 /// or gcstate. In both cases unconditionally spill it on the stack unless it 354 /// is a null constant. Return pair with first element being frame index 355 /// containing saved value and second element with outgoing chain from the 356 /// emitted store 357 static std::pair<SDValue, SDValue> 358 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 359 SelectionDAGBuilder &Builder) { 360 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 361 362 // Emit new store if we didn't do it for this ptr before 363 if (!Loc.getNode()) { 364 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 365 Builder); 366 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 367 // We use TargetFrameIndex so that isel will not select it into LEA 368 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy()); 369 370 // TODO: We can create TokenFactor node instead of 371 // chaining stores one after another, this may allow 372 // a bit more optimal scheduling for them 373 374 #ifndef NDEBUG 375 // Right now we always allocate spill slots that are of the same 376 // size as the value we're about to spill (the size of spillee can 377 // vary since we spill vectors of pointers too). At some point we 378 // can consider allowing spills of smaller values to larger slots 379 // (i.e. change the '==' in the assert below to a '>='). 380 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 381 assert((MFI.getObjectSize(Index) * 8) == Incoming.getValueSizeInBits() && 382 "Bad spill: stack slot does not match!"); 383 #endif 384 385 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 386 MachinePointerInfo::getFixedStack( 387 Builder.DAG.getMachineFunction(), Index)); 388 389 Builder.StatepointLowering.setLocation(Incoming, Loc); 390 } 391 392 assert(Loc.getNode()); 393 return std::make_pair(Loc, Chain); 394 } 395 396 /// Lower a single value incoming to a statepoint node. This value can be 397 /// either a deopt value or a gc value, the handling is the same. We special 398 /// case constants and allocas, then fall back to spilling if required. 399 static void lowerIncomingStatepointValue(SDValue Incoming, bool LiveInOnly, 400 SmallVectorImpl<SDValue> &Ops, 401 SelectionDAGBuilder &Builder) { 402 SDValue Chain = Builder.getRoot(); 403 404 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 405 // If the original value was a constant, make sure it gets recorded as 406 // such in the stackmap. This is required so that the consumer can 407 // parse any internal format to the deopt state. It also handles null 408 // pointers and other constant pointers in GC states. Note the constant 409 // vectors do not appear to actually hit this path and that anything larger 410 // than an i64 value (not type!) will fail asserts here. 411 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 412 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 413 // This handles allocas as arguments to the statepoint (this is only 414 // really meaningful for a deopt value. For GC, we'd be trying to 415 // relocate the address of the alloca itself?) 416 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 417 "Incoming value is a frame index!"); 418 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 419 Builder.getFrameIndexTy())); 420 } else if (LiveInOnly) { 421 // If this value is live in (not live-on-return, or live-through), we can 422 // treat it the same way patchpoint treats it's "live in" values. We'll 423 // end up folding some of these into stack references, but they'll be 424 // handled by the register allocator. Note that we do not have the notion 425 // of a late use so these values might be placed in registers which are 426 // clobbered by the call. This is fine for live-in. 427 Ops.push_back(Incoming); 428 } else { 429 // Otherwise, locate a spill slot and explicitly spill it so it 430 // can be found by the runtime later. We currently do not support 431 // tracking values through callee saved registers to their eventual 432 // spill location. This would be a useful optimization, but would 433 // need to be optional since it requires a lot of complexity on the 434 // runtime side which not all would support. 435 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); 436 Ops.push_back(Res.first); 437 Chain = Res.second; 438 } 439 440 Builder.DAG.setRoot(Chain); 441 } 442 443 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 444 /// lowering is described in lowerIncomingStatepointValue. This function is 445 /// responsible for lowering everything in the right position and playing some 446 /// tricks to avoid redundant stack manipulation where possible. On 447 /// completion, 'Ops' will contain ready to use operands for machine code 448 /// statepoint. The chain nodes will have already been created and the DAG root 449 /// will be set to the last value spilled (if any were). 450 static void 451 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 452 SelectionDAGBuilder::StatepointLoweringInfo &SI, 453 SelectionDAGBuilder &Builder) { 454 // Lower the deopt and gc arguments for this statepoint. Layout will be: 455 // deopt argument length, deopt arguments.., gc arguments... 456 #ifndef NDEBUG 457 if (auto *GFI = Builder.GFI) { 458 // Check that each of the gc pointer and bases we've gotten out of the 459 // safepoint is something the strategy thinks might be a pointer (or vector 460 // of pointers) into the GC heap. This is basically just here to help catch 461 // errors during statepoint insertion. TODO: This should actually be in the 462 // Verifier, but we can't get to the GCStrategy from there (yet). 463 GCStrategy &S = GFI->getStrategy(); 464 for (const Value *V : SI.Bases) { 465 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 466 if (Opt.hasValue()) { 467 assert(Opt.getValue() && 468 "non gc managed base pointer found in statepoint"); 469 } 470 } 471 for (const Value *V : SI.Ptrs) { 472 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 473 if (Opt.hasValue()) { 474 assert(Opt.getValue() && 475 "non gc managed derived pointer found in statepoint"); 476 } 477 } 478 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!"); 479 } else { 480 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!"); 481 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!"); 482 } 483 #endif 484 485 // Figure out what lowering strategy we're going to use for each part 486 // Note: Is is conservatively correct to lower both "live-in" and "live-out" 487 // as "live-through". A "live-through" variable is one which is "live-in", 488 // "live-out", and live throughout the lifetime of the call (i.e. we can find 489 // it from any PC within the transitive callee of the statepoint). In 490 // particular, if the callee spills callee preserved registers we may not 491 // be able to find a value placed in that register during the call. This is 492 // fine for live-out, but not for live-through. If we were willing to make 493 // assumptions about the code generator producing the callee, we could 494 // potentially allow live-through values in callee saved registers. 495 const bool LiveInDeopt = 496 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn; 497 498 auto isGCValue =[&](const Value *V) { 499 return is_contained(SI.Ptrs, V) || is_contained(SI.Bases, V); 500 }; 501 502 // Before we actually start lowering (and allocating spill slots for values), 503 // reserve any stack slots which we judge to be profitable to reuse for a 504 // particular value. This is purely an optimization over the code below and 505 // doesn't change semantics at all. It is important for performance that we 506 // reserve slots for both deopt and gc values before lowering either. 507 for (const Value *V : SI.DeoptState) { 508 if (!LiveInDeopt || isGCValue(V)) 509 reservePreviousStackSlotForValue(V, Builder); 510 } 511 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 512 reservePreviousStackSlotForValue(SI.Bases[i], Builder); 513 reservePreviousStackSlotForValue(SI.Ptrs[i], Builder); 514 } 515 516 // First, prefix the list with the number of unique values to be 517 // lowered. Note that this is the number of *Values* not the 518 // number of SDValues required to lower them. 519 const int NumVMSArgs = SI.DeoptState.size(); 520 pushStackMapConstant(Ops, Builder, NumVMSArgs); 521 522 // The vm state arguments are lowered in an opaque manner. We do not know 523 // what type of values are contained within. 524 for (const Value *V : SI.DeoptState) { 525 SDValue Incoming; 526 // If this is a function argument at a static frame index, generate it as 527 // the frame index. 528 if (const Argument *Arg = dyn_cast<Argument>(V)) { 529 int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg); 530 if (FI != INT_MAX) 531 Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy()); 532 } 533 if (!Incoming.getNode()) 534 Incoming = Builder.getValue(V); 535 const bool LiveInValue = LiveInDeopt && !isGCValue(V); 536 lowerIncomingStatepointValue(Incoming, LiveInValue, Ops, Builder); 537 } 538 539 // Finally, go ahead and lower all the gc arguments. There's no prefixed 540 // length for this one. After lowering, we'll have the base and pointer 541 // arrays interwoven with each (lowered) base pointer immediately followed by 542 // it's (lowered) derived pointer. i.e 543 // (base[0], ptr[0], base[1], ptr[1], ...) 544 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 545 const Value *Base = SI.Bases[i]; 546 lowerIncomingStatepointValue(Builder.getValue(Base), /*LiveInOnly*/ false, 547 Ops, Builder); 548 549 const Value *Ptr = SI.Ptrs[i]; 550 lowerIncomingStatepointValue(Builder.getValue(Ptr), /*LiveInOnly*/ false, 551 Ops, Builder); 552 } 553 554 // If there are any explicit spill slots passed to the statepoint, record 555 // them, but otherwise do not do anything special. These are user provided 556 // allocas and give control over placement to the consumer. In this case, 557 // it is the contents of the slot which may get updated, not the pointer to 558 // the alloca 559 for (Value *V : SI.GCArgs) { 560 SDValue Incoming = Builder.getValue(V); 561 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 562 // This handles allocas as arguments to the statepoint 563 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 564 "Incoming value is a frame index!"); 565 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 566 Builder.getFrameIndexTy())); 567 } 568 } 569 570 // Record computed locations for all lowered values. 571 // This can not be embedded in lowering loops as we need to record *all* 572 // values, while previous loops account only values with unique SDValues. 573 const Instruction *StatepointInstr = SI.StatepointInstr; 574 auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr]; 575 576 for (const GCRelocateInst *Relocate : SI.GCRelocates) { 577 const Value *V = Relocate->getDerivedPtr(); 578 SDValue SDV = Builder.getValue(V); 579 SDValue Loc = Builder.StatepointLowering.getLocation(SDV); 580 581 if (Loc.getNode()) { 582 SpillMap.SlotMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); 583 } else { 584 // Record value as visited, but not spilled. This is case for allocas 585 // and constants. For this values we can avoid emitting spill load while 586 // visiting corresponding gc_relocate. 587 // Actually we do not need to record them in this map at all. 588 // We do this only to check that we are not relocating any unvisited 589 // value. 590 SpillMap.SlotMap[V] = None; 591 592 // Default llvm mechanisms for exporting values which are used in 593 // different basic blocks does not work for gc relocates. 594 // Note that it would be incorrect to teach llvm that all relocates are 595 // uses of the corresponding values so that it would automatically 596 // export them. Relocates of the spilled values does not use original 597 // value. 598 if (Relocate->getParent() != StatepointInstr->getParent()) 599 Builder.ExportFromCurrentBlock(V); 600 } 601 } 602 } 603 604 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( 605 SelectionDAGBuilder::StatepointLoweringInfo &SI) { 606 // The basic scheme here is that information about both the original call and 607 // the safepoint is encoded in the CallInst. We create a temporary call and 608 // lower it, then reverse engineer the calling sequence. 609 610 NumOfStatepoints++; 611 // Clear state 612 StatepointLowering.startNewStatepoint(*this); 613 614 #ifndef NDEBUG 615 // We schedule gc relocates before removeDuplicateGCPtrs since we _will_ 616 // encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs. 617 for (auto *Reloc : SI.GCRelocates) 618 if (Reloc->getParent() == SI.StatepointInstr->getParent()) 619 StatepointLowering.scheduleRelocCall(*Reloc); 620 #endif 621 622 // Remove any redundant llvm::Values which map to the same SDValue as another 623 // input. Also has the effect of removing duplicates in the original 624 // llvm::Value input list as well. This is a useful optimization for 625 // reducing the size of the StackMap section. It has no other impact. 626 removeDuplicateGCPtrs(SI.Bases, SI.Ptrs, SI.GCRelocates, *this, 627 FuncInfo.StatepointSpillMaps[SI.StatepointInstr]); 628 assert(SI.Bases.size() == SI.Ptrs.size() && 629 SI.Ptrs.size() == SI.GCRelocates.size()); 630 631 // Lower statepoint vmstate and gcstate arguments 632 SmallVector<SDValue, 10> LoweredMetaArgs; 633 lowerStatepointMetaArgs(LoweredMetaArgs, SI, *this); 634 635 // Now that we've emitted the spills, we need to update the root so that the 636 // call sequence is ordered correctly. 637 SI.CLI.setChain(getRoot()); 638 639 // Get call node, we will replace it later with statepoint 640 SDValue ReturnVal; 641 SDNode *CallNode; 642 std::tie(ReturnVal, CallNode) = 643 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports); 644 645 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 646 // nodes with all the appropriate arguments and return values. 647 648 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 649 SDValue Chain = CallNode->getOperand(0); 650 651 SDValue Glue; 652 bool CallHasIncomingGlue = CallNode->getGluedNode(); 653 if (CallHasIncomingGlue) { 654 // Glue is always last operand 655 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 656 } 657 658 // Build the GC_TRANSITION_START node if necessary. 659 // 660 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 661 // order in which they appear in the call to the statepoint intrinsic. If 662 // any of the operands is a pointer-typed, that operand is immediately 663 // followed by a SRCVALUE for the pointer that may be used during lowering 664 // (e.g. to form MachinePointerInfo values for loads/stores). 665 const bool IsGCTransition = 666 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == 667 (uint64_t)StatepointFlags::GCTransition; 668 if (IsGCTransition) { 669 SmallVector<SDValue, 8> TSOps; 670 671 // Add chain 672 TSOps.push_back(Chain); 673 674 // Add GC transition arguments 675 for (const Value *V : SI.GCTransitionArgs) { 676 TSOps.push_back(getValue(V)); 677 if (V->getType()->isPointerTy()) 678 TSOps.push_back(DAG.getSrcValue(V)); 679 } 680 681 // Add glue if necessary 682 if (CallHasIncomingGlue) 683 TSOps.push_back(Glue); 684 685 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 686 687 SDValue GCTransitionStart = 688 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 689 690 Chain = GCTransitionStart.getValue(0); 691 Glue = GCTransitionStart.getValue(1); 692 } 693 694 // TODO: Currently, all of these operands are being marked as read/write in 695 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 696 // and flags to be read-only. 697 SmallVector<SDValue, 40> Ops; 698 699 // Add the <id> and <numBytes> constants. 700 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); 701 Ops.push_back( 702 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); 703 704 // Calculate and push starting position of vmstate arguments 705 // Get number of arguments incoming directly into call node 706 unsigned NumCallRegArgs = 707 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 708 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 709 710 // Add call target 711 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 712 Ops.push_back(CallTarget); 713 714 // Add call arguments 715 // Get position of register mask in the call 716 SDNode::op_iterator RegMaskIt; 717 if (CallHasIncomingGlue) 718 RegMaskIt = CallNode->op_end() - 2; 719 else 720 RegMaskIt = CallNode->op_end() - 1; 721 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 722 723 // Add a constant argument for the calling convention 724 pushStackMapConstant(Ops, *this, SI.CLI.CallConv); 725 726 // Add a constant argument for the flags 727 uint64_t Flags = SI.StatepointFlags; 728 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && 729 "Unknown flag used"); 730 pushStackMapConstant(Ops, *this, Flags); 731 732 // Insert all vmstate and gcstate arguments 733 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); 734 735 // Add register mask from call node 736 Ops.push_back(*RegMaskIt); 737 738 // Add chain 739 Ops.push_back(Chain); 740 741 // Same for the glue, but we add it only if original call had it 742 if (Glue.getNode()) 743 Ops.push_back(Glue); 744 745 // Compute return values. Provide a glue output since we consume one as 746 // input. This allows someone else to chain off us as needed. 747 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 748 749 SDNode *StatepointMCNode = 750 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 751 752 SDNode *SinkNode = StatepointMCNode; 753 754 // Build the GC_TRANSITION_END node if necessary. 755 // 756 // See the comment above regarding GC_TRANSITION_START for the layout of 757 // the operands to the GC_TRANSITION_END node. 758 if (IsGCTransition) { 759 SmallVector<SDValue, 8> TEOps; 760 761 // Add chain 762 TEOps.push_back(SDValue(StatepointMCNode, 0)); 763 764 // Add GC transition arguments 765 for (const Value *V : SI.GCTransitionArgs) { 766 TEOps.push_back(getValue(V)); 767 if (V->getType()->isPointerTy()) 768 TEOps.push_back(DAG.getSrcValue(V)); 769 } 770 771 // Add glue 772 TEOps.push_back(SDValue(StatepointMCNode, 1)); 773 774 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 775 776 SDValue GCTransitionStart = 777 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 778 779 SinkNode = GCTransitionStart.getNode(); 780 } 781 782 // Replace original call 783 DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root 784 // Remove original call node 785 DAG.DeleteNode(CallNode); 786 787 // DON'T set the root - under the assumption that it's already set past the 788 // inserted node we created. 789 790 // TODO: A better future implementation would be to emit a single variable 791 // argument, variable return value STATEPOINT node here and then hookup the 792 // return value of each gc.relocate to the respective output of the 793 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 794 // to actually be possible today. 795 796 return ReturnVal; 797 } 798 799 void 800 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP, 801 const BasicBlock *EHPadBB /*= nullptr*/) { 802 assert(ISP.getCallSite().getCallingConv() != CallingConv::AnyReg && 803 "anyregcc is not supported on statepoints!"); 804 805 #ifndef NDEBUG 806 // If this is a malformed statepoint, report it early to simplify debugging. 807 // This should catch any IR level mistake that's made when constructing or 808 // transforming statepoints. 809 ISP.verify(); 810 811 // Check that the associated GCStrategy expects to encounter statepoints. 812 assert(GFI->getStrategy().useStatepoints() && 813 "GCStrategy does not expect to encounter statepoints"); 814 #endif 815 816 SDValue ActualCallee; 817 818 if (ISP.getNumPatchBytes() > 0) { 819 // If we've been asked to emit a nop sequence instead of a call instruction 820 // for this statepoint then don't lower the call target, but use a constant 821 // `null` instead. Not lowering the call target lets statepoint clients get 822 // away without providing a physical address for the symbolic call target at 823 // link time. 824 825 const auto &TLI = DAG.getTargetLoweringInfo(); 826 const auto &DL = DAG.getDataLayout(); 827 828 unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace(); 829 ActualCallee = DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS)); 830 } else { 831 ActualCallee = getValue(ISP.getCalledValue()); 832 } 833 834 StatepointLoweringInfo SI(DAG); 835 populateCallLoweringInfo(SI.CLI, ISP.getCallSite(), 836 ImmutableStatepoint::CallArgsBeginPos, 837 ISP.getNumCallArgs(), ActualCallee, 838 ISP.getActualReturnType(), false /* IsPatchPoint */); 839 840 for (const GCRelocateInst *Relocate : ISP.getRelocates()) { 841 SI.GCRelocates.push_back(Relocate); 842 SI.Bases.push_back(Relocate->getBasePtr()); 843 SI.Ptrs.push_back(Relocate->getDerivedPtr()); 844 } 845 846 SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); 847 SI.StatepointInstr = ISP.getInstruction(); 848 SI.GCTransitionArgs = 849 ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); 850 SI.ID = ISP.getID(); 851 SI.DeoptState = ArrayRef<const Use>(ISP.deopt_begin(), ISP.deopt_end()); 852 SI.StatepointFlags = ISP.getFlags(); 853 SI.NumPatchBytes = ISP.getNumPatchBytes(); 854 SI.EHPadBB = EHPadBB; 855 856 SDValue ReturnValue = LowerAsSTATEPOINT(SI); 857 858 // Export the result value if needed 859 const GCResultInst *GCResult = ISP.getGCResult(); 860 Type *RetTy = ISP.getActualReturnType(); 861 if (!RetTy->isVoidTy() && GCResult) { 862 if (GCResult->getParent() != ISP.getCallSite().getParent()) { 863 // Result value will be used in a different basic block so we need to 864 // export it now. Default exporting mechanism will not work here because 865 // statepoint call has a different type than the actual call. It means 866 // that by default llvm will create export register of the wrong type 867 // (always i32 in our case). So instead we need to create export register 868 // with correct type manually. 869 // TODO: To eliminate this problem we can remove gc.result intrinsics 870 // completely and make statepoint call to return a tuple. 871 unsigned Reg = FuncInfo.CreateRegs(RetTy); 872 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 873 DAG.getDataLayout(), Reg, RetTy, 874 ISP.getCallSite().getCallingConv()); 875 SDValue Chain = DAG.getEntryNode(); 876 877 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); 878 PendingExports.push_back(Chain); 879 FuncInfo.ValueMap[ISP.getInstruction()] = Reg; 880 } else { 881 // Result value will be used in a same basic block. Don't export it or 882 // perform any explicit register copies. 883 // We'll replace the actuall call node shortly. gc_result will grab 884 // this value. 885 setValue(ISP.getInstruction(), ReturnValue); 886 } 887 } else { 888 // The token value is never used from here on, just generate a poison value 889 setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc())); 890 } 891 } 892 893 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( 894 ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB, 895 bool VarArgDisallowed, bool ForceVoidReturnTy) { 896 StatepointLoweringInfo SI(DAG); 897 unsigned ArgBeginIndex = CS.arg_begin() - CS.getInstruction()->op_begin(); 898 populateCallLoweringInfo( 899 SI.CLI, CS, ArgBeginIndex, CS.getNumArgOperands(), Callee, 900 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : CS.getType(), 901 false); 902 if (!VarArgDisallowed) 903 SI.CLI.IsVarArg = CS.getFunctionType()->isVarArg(); 904 905 auto DeoptBundle = *CS.getOperandBundle(LLVMContext::OB_deopt); 906 907 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; 908 909 auto SD = parseStatepointDirectivesFromAttrs(CS.getAttributes()); 910 SI.ID = SD.StatepointID.getValueOr(DefaultID); 911 SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0); 912 913 SI.DeoptState = 914 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); 915 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); 916 SI.EHPadBB = EHPadBB; 917 918 // NB! The GC arguments are deliberately left empty. 919 920 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { 921 const Instruction *Inst = CS.getInstruction(); 922 ReturnVal = lowerRangeToAssertZExt(DAG, *Inst, ReturnVal); 923 setValue(Inst, ReturnVal); 924 } 925 } 926 927 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( 928 ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB) { 929 LowerCallSiteWithDeoptBundleImpl(CS, Callee, EHPadBB, 930 /* VarArgDisallowed = */ false, 931 /* ForceVoidReturnTy = */ false); 932 } 933 934 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { 935 // The result value of the gc_result is simply the result of the actual 936 // call. We've already emitted this, so just grab the value. 937 const Instruction *I = CI.getStatepoint(); 938 939 if (I->getParent() != CI.getParent()) { 940 // Statepoint is in different basic block so we should have stored call 941 // result in a virtual register. 942 // We can not use default getValue() functionality to copy value from this 943 // register because statepoint and actual call return types can be 944 // different, and getValue() will use CopyFromReg of the wrong type, 945 // which is always i32 in our case. 946 PointerType *CalleeType = cast<PointerType>( 947 ImmutableStatepoint(I).getCalledValue()->getType()); 948 Type *RetTy = 949 cast<FunctionType>(CalleeType->getElementType())->getReturnType(); 950 SDValue CopyFromReg = getCopyFromRegs(I, RetTy); 951 952 assert(CopyFromReg.getNode()); 953 setValue(&CI, CopyFromReg); 954 } else { 955 setValue(&CI, getValue(I)); 956 } 957 } 958 959 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { 960 #ifndef NDEBUG 961 // Consistency check 962 // We skip this check for relocates not in the same basic block as their 963 // statepoint. It would be too expensive to preserve validation info through 964 // different basic blocks. 965 if (Relocate.getStatepoint()->getParent() == Relocate.getParent()) 966 StatepointLowering.relocCallVisited(Relocate); 967 968 auto *Ty = Relocate.getType()->getScalarType(); 969 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 970 assert(*IsManaged && "Non gc managed pointer relocated!"); 971 #endif 972 973 const Value *DerivedPtr = Relocate.getDerivedPtr(); 974 SDValue SD = getValue(DerivedPtr); 975 976 auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()]; 977 auto SlotIt = SpillMap.find(DerivedPtr); 978 assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value"); 979 Optional<int> DerivedPtrLocation = SlotIt->second; 980 981 // We didn't need to spill these special cases (constants and allocas). 982 // See the handling in spillIncomingValueForStatepoint for detail. 983 if (!DerivedPtrLocation) { 984 setValue(&Relocate, SD); 985 return; 986 } 987 988 SDValue SpillSlot = 989 DAG.getTargetFrameIndex(*DerivedPtrLocation, getFrameIndexTy()); 990 991 // Be conservative: flush all pending loads 992 // TODO: Probably we can be less restrictive on this, 993 // it may allow more scheduling opportunities. 994 SDValue Chain = getRoot(); 995 996 SDValue SpillLoad = 997 DAG.getLoad(DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 998 Relocate.getType()), 999 getCurSDLoc(), Chain, SpillSlot, 1000 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 1001 *DerivedPtrLocation)); 1002 1003 // Again, be conservative, don't emit pending loads 1004 DAG.setRoot(SpillLoad.getValue(1)); 1005 1006 assert(SpillLoad.getNode()); 1007 setValue(&Relocate, SpillLoad); 1008 } 1009 1010 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { 1011 const auto &TLI = DAG.getTargetLoweringInfo(); 1012 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), 1013 TLI.getPointerTy(DAG.getDataLayout())); 1014 1015 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular 1016 // call. We also do not lower the return value to any virtual register, and 1017 // change the immediately following return to a trap instruction. 1018 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, 1019 /* VarArgDisallowed = */ true, 1020 /* ForceVoidReturnTy = */ true); 1021 } 1022 1023 void SelectionDAGBuilder::LowerDeoptimizingReturn() { 1024 // We do not lower the return value from llvm.deoptimize to any virtual 1025 // register, and change the immediately following return to a trap 1026 // instruction. 1027 if (DAG.getTarget().Options.TrapUnreachable) 1028 DAG.setRoot( 1029 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 1030 } 1031