1 //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the ScheduleDAG class, which is a base class used by 11 // scheduling implementation classes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ScheduleDAGSDNodes.h" 16 #include "InstrEmitter.h" 17 #include "SDNodeDbgValue.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/TargetInstrInfo.h" 27 #include "llvm/CodeGen/TargetLowering.h" 28 #include "llvm/CodeGen/TargetRegisterInfo.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/MC/MCInstrItineraries.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "pre-RA-sched" 38 39 STATISTIC(LoadsClustered, "Number of loads clustered together"); 40 41 // This allows the latency-based scheduler to notice high latency instructions 42 // without a target itinerary. The choice of number here has more to do with 43 // balancing scheduler heuristics than with the actual machine latency. 44 static cl::opt<int> HighLatencyCycles( 45 "sched-high-latency-cycles", cl::Hidden, cl::init(10), 46 cl::desc("Roughly estimate the number of cycles that 'long latency'" 47 "instructions take for targets with no itinerary")); 48 49 ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf) 50 : ScheduleDAG(mf), BB(nullptr), DAG(nullptr), 51 InstrItins(mf.getSubtarget().getInstrItineraryData()) {} 52 53 /// Run - perform scheduling. 54 /// 55 void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) { 56 BB = bb; 57 DAG = dag; 58 59 // Clear the scheduler's SUnit DAG. 60 ScheduleDAG::clearDAG(); 61 Sequence.clear(); 62 63 // Invoke the target's selection of scheduler. 64 Schedule(); 65 } 66 67 /// NewSUnit - Creates a new SUnit and return a ptr to it. 68 /// 69 SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) { 70 #ifndef NDEBUG 71 const SUnit *Addr = nullptr; 72 if (!SUnits.empty()) 73 Addr = &SUnits[0]; 74 #endif 75 SUnits.emplace_back(N, (unsigned)SUnits.size()); 76 assert((Addr == nullptr || Addr == &SUnits[0]) && 77 "SUnits std::vector reallocated on the fly!"); 78 SUnits.back().OrigNode = &SUnits.back(); 79 SUnit *SU = &SUnits.back(); 80 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 81 if (!N || 82 (N->isMachineOpcode() && 83 N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF)) 84 SU->SchedulingPref = Sched::None; 85 else 86 SU->SchedulingPref = TLI.getSchedulingPreference(N); 87 return SU; 88 } 89 90 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) { 91 SUnit *SU = newSUnit(Old->getNode()); 92 SU->OrigNode = Old->OrigNode; 93 SU->Latency = Old->Latency; 94 SU->isVRegCycle = Old->isVRegCycle; 95 SU->isCall = Old->isCall; 96 SU->isCallOp = Old->isCallOp; 97 SU->isTwoAddress = Old->isTwoAddress; 98 SU->isCommutable = Old->isCommutable; 99 SU->hasPhysRegDefs = Old->hasPhysRegDefs; 100 SU->hasPhysRegClobbers = Old->hasPhysRegClobbers; 101 SU->isScheduleHigh = Old->isScheduleHigh; 102 SU->isScheduleLow = Old->isScheduleLow; 103 SU->SchedulingPref = Old->SchedulingPref; 104 Old->isCloned = true; 105 return SU; 106 } 107 108 /// CheckForPhysRegDependency - Check if the dependency between def and use of 109 /// a specified operand is a physical register dependency. If so, returns the 110 /// register and the cost of copying the register. 111 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, 112 const TargetRegisterInfo *TRI, 113 const TargetInstrInfo *TII, 114 unsigned &PhysReg, int &Cost) { 115 if (Op != 2 || User->getOpcode() != ISD::CopyToReg) 116 return; 117 118 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 119 if (TargetRegisterInfo::isVirtualRegister(Reg)) 120 return; 121 122 unsigned ResNo = User->getOperand(2).getResNo(); 123 if (Def->getOpcode() == ISD::CopyFromReg && 124 cast<RegisterSDNode>(Def->getOperand(1))->getReg() == Reg) { 125 PhysReg = Reg; 126 } else if (Def->isMachineOpcode()) { 127 const MCInstrDesc &II = TII->get(Def->getMachineOpcode()); 128 if (ResNo >= II.getNumDefs() && 129 II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) 130 PhysReg = Reg; 131 } 132 133 if (PhysReg != 0) { 134 const TargetRegisterClass *RC = 135 TRI->getMinimalPhysRegClass(Reg, Def->getSimpleValueType(ResNo)); 136 Cost = RC->getCopyCost(); 137 } 138 } 139 140 // Helper for AddGlue to clone node operands. 141 static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG, ArrayRef<EVT> VTs, 142 SDValue ExtraOper = SDValue()) { 143 SmallVector<SDValue, 8> Ops(N->op_begin(), N->op_end()); 144 if (ExtraOper.getNode()) 145 Ops.push_back(ExtraOper); 146 147 SDVTList VTList = DAG->getVTList(VTs); 148 MachineSDNode *MN = dyn_cast<MachineSDNode>(N); 149 150 // Store memory references. 151 SmallVector<MachineMemOperand *, 2> MMOs; 152 if (MN) 153 MMOs.assign(MN->memoperands_begin(), MN->memoperands_end()); 154 155 DAG->MorphNodeTo(N, N->getOpcode(), VTList, Ops); 156 157 // Reset the memory references 158 if (MN) 159 DAG->setNodeMemRefs(MN, MMOs); 160 } 161 162 static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) { 163 SDNode *GlueDestNode = Glue.getNode(); 164 165 // Don't add glue from a node to itself. 166 if (GlueDestNode == N) return false; 167 168 // Don't add a glue operand to something that already uses glue. 169 if (GlueDestNode && 170 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) { 171 return false; 172 } 173 // Don't add glue to something that already has a glue value. 174 if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false; 175 176 SmallVector<EVT, 4> VTs(N->value_begin(), N->value_end()); 177 if (AddGlue) 178 VTs.push_back(MVT::Glue); 179 180 CloneNodeWithValues(N, DAG, VTs, Glue); 181 182 return true; 183 } 184 185 // Cleanup after unsuccessful AddGlue. Use the standard method of morphing the 186 // node even though simply shrinking the value list is sufficient. 187 static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) { 188 assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue && 189 !N->hasAnyUseOfValue(N->getNumValues() - 1)) && 190 "expected an unused glue value"); 191 192 CloneNodeWithValues(N, DAG, 193 makeArrayRef(N->value_begin(), N->getNumValues() - 1)); 194 } 195 196 /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them. 197 /// This function finds loads of the same base and different offsets. If the 198 /// offsets are not far apart (target specific), it add MVT::Glue inputs and 199 /// outputs to ensure they are scheduled together and in order. This 200 /// optimization may benefit some targets by improving cache locality. 201 void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) { 202 SDNode *Chain = nullptr; 203 unsigned NumOps = Node->getNumOperands(); 204 if (Node->getOperand(NumOps-1).getValueType() == MVT::Other) 205 Chain = Node->getOperand(NumOps-1).getNode(); 206 if (!Chain) 207 return; 208 209 // Look for other loads of the same chain. Find loads that are loading from 210 // the same base pointer and different offsets. 211 SmallPtrSet<SDNode*, 16> Visited; 212 SmallVector<int64_t, 4> Offsets; 213 DenseMap<long long, SDNode*> O2SMap; // Map from offset to SDNode. 214 bool Cluster = false; 215 SDNode *Base = Node; 216 // This algorithm requires a reasonably low use count before finding a match 217 // to avoid uselessly blowing up compile time in large blocks. 218 unsigned UseCount = 0; 219 for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end(); 220 I != E && UseCount < 100; ++I, ++UseCount) { 221 SDNode *User = *I; 222 if (User == Node || !Visited.insert(User).second) 223 continue; 224 int64_t Offset1, Offset2; 225 if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) || 226 Offset1 == Offset2) 227 // FIXME: Should be ok if they addresses are identical. But earlier 228 // optimizations really should have eliminated one of the loads. 229 continue; 230 if (O2SMap.insert(std::make_pair(Offset1, Base)).second) 231 Offsets.push_back(Offset1); 232 O2SMap.insert(std::make_pair(Offset2, User)); 233 Offsets.push_back(Offset2); 234 if (Offset2 < Offset1) 235 Base = User; 236 Cluster = true; 237 // Reset UseCount to allow more matches. 238 UseCount = 0; 239 } 240 241 if (!Cluster) 242 return; 243 244 // Sort them in increasing order. 245 llvm::sort(Offsets); 246 247 // Check if the loads are close enough. 248 SmallVector<SDNode*, 4> Loads; 249 unsigned NumLoads = 0; 250 int64_t BaseOff = Offsets[0]; 251 SDNode *BaseLoad = O2SMap[BaseOff]; 252 Loads.push_back(BaseLoad); 253 for (unsigned i = 1, e = Offsets.size(); i != e; ++i) { 254 int64_t Offset = Offsets[i]; 255 SDNode *Load = O2SMap[Offset]; 256 if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads)) 257 break; // Stop right here. Ignore loads that are further away. 258 Loads.push_back(Load); 259 ++NumLoads; 260 } 261 262 if (NumLoads == 0) 263 return; 264 265 // Cluster loads by adding MVT::Glue outputs and inputs. This also 266 // ensure they are scheduled in order of increasing addresses. 267 SDNode *Lead = Loads[0]; 268 SDValue InGlue = SDValue(nullptr, 0); 269 if (AddGlue(Lead, InGlue, true, DAG)) 270 InGlue = SDValue(Lead, Lead->getNumValues() - 1); 271 for (unsigned I = 1, E = Loads.size(); I != E; ++I) { 272 bool OutGlue = I < E - 1; 273 SDNode *Load = Loads[I]; 274 275 // If AddGlue fails, we could leave an unsused glue value. This should not 276 // cause any 277 if (AddGlue(Load, InGlue, OutGlue, DAG)) { 278 if (OutGlue) 279 InGlue = SDValue(Load, Load->getNumValues() - 1); 280 281 ++LoadsClustered; 282 } 283 else if (!OutGlue && InGlue.getNode()) 284 RemoveUnusedGlue(InGlue.getNode(), DAG); 285 } 286 } 287 288 /// ClusterNodes - Cluster certain nodes which should be scheduled together. 289 /// 290 void ScheduleDAGSDNodes::ClusterNodes() { 291 for (SDNode &NI : DAG->allnodes()) { 292 SDNode *Node = &NI; 293 if (!Node || !Node->isMachineOpcode()) 294 continue; 295 296 unsigned Opc = Node->getMachineOpcode(); 297 const MCInstrDesc &MCID = TII->get(Opc); 298 if (MCID.mayLoad()) 299 // Cluster loads from "near" addresses into combined SUnits. 300 ClusterNeighboringLoads(Node); 301 } 302 } 303 304 void ScheduleDAGSDNodes::BuildSchedUnits() { 305 // During scheduling, the NodeId field of SDNode is used to map SDNodes 306 // to their associated SUnits by holding SUnits table indices. A value 307 // of -1 means the SDNode does not yet have an associated SUnit. 308 unsigned NumNodes = 0; 309 for (SDNode &NI : DAG->allnodes()) { 310 NI.setNodeId(-1); 311 ++NumNodes; 312 } 313 314 // Reserve entries in the vector for each of the SUnits we are creating. This 315 // ensure that reallocation of the vector won't happen, so SUnit*'s won't get 316 // invalidated. 317 // FIXME: Multiply by 2 because we may clone nodes during scheduling. 318 // This is a temporary workaround. 319 SUnits.reserve(NumNodes * 2); 320 321 // Add all nodes in depth first order. 322 SmallVector<SDNode*, 64> Worklist; 323 SmallPtrSet<SDNode*, 32> Visited; 324 Worklist.push_back(DAG->getRoot().getNode()); 325 Visited.insert(DAG->getRoot().getNode()); 326 327 SmallVector<SUnit*, 8> CallSUnits; 328 while (!Worklist.empty()) { 329 SDNode *NI = Worklist.pop_back_val(); 330 331 // Add all operands to the worklist unless they've already been added. 332 for (const SDValue &Op : NI->op_values()) 333 if (Visited.insert(Op.getNode()).second) 334 Worklist.push_back(Op.getNode()); 335 336 if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate. 337 continue; 338 339 // If this node has already been processed, stop now. 340 if (NI->getNodeId() != -1) continue; 341 342 SUnit *NodeSUnit = newSUnit(NI); 343 344 // See if anything is glued to this node, if so, add them to glued 345 // nodes. Nodes can have at most one glue input and one glue output. Glue 346 // is required to be the last operand and result of a node. 347 348 // Scan up to find glued preds. 349 SDNode *N = NI; 350 while (N->getNumOperands() && 351 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) { 352 N = N->getOperand(N->getNumOperands()-1).getNode(); 353 assert(N->getNodeId() == -1 && "Node already inserted!"); 354 N->setNodeId(NodeSUnit->NodeNum); 355 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) 356 NodeSUnit->isCall = true; 357 } 358 359 // Scan down to find any glued succs. 360 N = NI; 361 while (N->getValueType(N->getNumValues()-1) == MVT::Glue) { 362 SDValue GlueVal(N, N->getNumValues()-1); 363 364 // There are either zero or one users of the Glue result. 365 bool HasGlueUse = false; 366 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 367 UI != E; ++UI) 368 if (GlueVal.isOperandOf(*UI)) { 369 HasGlueUse = true; 370 assert(N->getNodeId() == -1 && "Node already inserted!"); 371 N->setNodeId(NodeSUnit->NodeNum); 372 N = *UI; 373 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) 374 NodeSUnit->isCall = true; 375 break; 376 } 377 if (!HasGlueUse) break; 378 } 379 380 if (NodeSUnit->isCall) 381 CallSUnits.push_back(NodeSUnit); 382 383 // Schedule zero-latency TokenFactor below any nodes that may increase the 384 // schedule height. Otherwise, ancestors of the TokenFactor may appear to 385 // have false stalls. 386 if (NI->getOpcode() == ISD::TokenFactor) 387 NodeSUnit->isScheduleLow = true; 388 389 // If there are glue operands involved, N is now the bottom-most node 390 // of the sequence of nodes that are glued together. 391 // Update the SUnit. 392 NodeSUnit->setNode(N); 393 assert(N->getNodeId() == -1 && "Node already inserted!"); 394 N->setNodeId(NodeSUnit->NodeNum); 395 396 // Compute NumRegDefsLeft. This must be done before AddSchedEdges. 397 InitNumRegDefsLeft(NodeSUnit); 398 399 // Assign the Latency field of NodeSUnit using target-provided information. 400 computeLatency(NodeSUnit); 401 } 402 403 // Find all call operands. 404 while (!CallSUnits.empty()) { 405 SUnit *SU = CallSUnits.pop_back_val(); 406 for (const SDNode *SUNode = SU->getNode(); SUNode; 407 SUNode = SUNode->getGluedNode()) { 408 if (SUNode->getOpcode() != ISD::CopyToReg) 409 continue; 410 SDNode *SrcN = SUNode->getOperand(2).getNode(); 411 if (isPassiveNode(SrcN)) continue; // Not scheduled. 412 SUnit *SrcSU = &SUnits[SrcN->getNodeId()]; 413 SrcSU->isCallOp = true; 414 } 415 } 416 } 417 418 void ScheduleDAGSDNodes::AddSchedEdges() { 419 const TargetSubtargetInfo &ST = MF.getSubtarget(); 420 421 // Check to see if the scheduler cares about latencies. 422 bool UnitLatencies = forceUnitLatencies(); 423 424 // Pass 2: add the preds, succs, etc. 425 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) { 426 SUnit *SU = &SUnits[su]; 427 SDNode *MainNode = SU->getNode(); 428 429 if (MainNode->isMachineOpcode()) { 430 unsigned Opc = MainNode->getMachineOpcode(); 431 const MCInstrDesc &MCID = TII->get(Opc); 432 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) { 433 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) { 434 SU->isTwoAddress = true; 435 break; 436 } 437 } 438 if (MCID.isCommutable()) 439 SU->isCommutable = true; 440 } 441 442 // Find all predecessors and successors of the group. 443 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) { 444 if (N->isMachineOpcode() && 445 TII->get(N->getMachineOpcode()).getImplicitDefs()) { 446 SU->hasPhysRegClobbers = true; 447 unsigned NumUsed = InstrEmitter::CountResults(N); 448 while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1)) 449 --NumUsed; // Skip over unused values at the end. 450 if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs()) 451 SU->hasPhysRegDefs = true; 452 } 453 454 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 455 SDNode *OpN = N->getOperand(i).getNode(); 456 if (isPassiveNode(OpN)) continue; // Not scheduled. 457 SUnit *OpSU = &SUnits[OpN->getNodeId()]; 458 assert(OpSU && "Node has no SUnit!"); 459 if (OpSU == SU) continue; // In the same group. 460 461 EVT OpVT = N->getOperand(i).getValueType(); 462 assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!"); 463 bool isChain = OpVT == MVT::Other; 464 465 unsigned PhysReg = 0; 466 int Cost = 1; 467 // Determine if this is a physical register dependency. 468 CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost); 469 assert((PhysReg == 0 || !isChain) && 470 "Chain dependence via physreg data?"); 471 // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler 472 // emits a copy from the physical register to a virtual register unless 473 // it requires a cross class copy (cost < 0). That means we are only 474 // treating "expensive to copy" register dependency as physical register 475 // dependency. This may change in the future though. 476 if (Cost >= 0 && !StressSched) 477 PhysReg = 0; 478 479 // If this is a ctrl dep, latency is 1. 480 unsigned OpLatency = isChain ? 1 : OpSU->Latency; 481 // Special-case TokenFactor chains as zero-latency. 482 if(isChain && OpN->getOpcode() == ISD::TokenFactor) 483 OpLatency = 0; 484 485 SDep Dep = isChain ? SDep(OpSU, SDep::Barrier) 486 : SDep(OpSU, SDep::Data, PhysReg); 487 Dep.setLatency(OpLatency); 488 if (!isChain && !UnitLatencies) { 489 computeOperandLatency(OpN, N, i, Dep); 490 ST.adjustSchedDependency(OpSU, SU, Dep); 491 } 492 493 if (!SU->addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) { 494 // Multiple register uses are combined in the same SUnit. For example, 495 // we could have a set of glued nodes with all their defs consumed by 496 // another set of glued nodes. Register pressure tracking sees this as 497 // a single use, so to keep pressure balanced we reduce the defs. 498 // 499 // We can't tell (without more book-keeping) if this results from 500 // glued nodes or duplicate operands. As long as we don't reduce 501 // NumRegDefsLeft to zero, we handle the common cases well. 502 --OpSU->NumRegDefsLeft; 503 } 504 } 505 } 506 } 507 } 508 509 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we 510 /// are input. This SUnit graph is similar to the SelectionDAG, but 511 /// excludes nodes that aren't interesting to scheduling, and represents 512 /// glued together nodes with a single SUnit. 513 void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) { 514 // Cluster certain nodes which should be scheduled together. 515 ClusterNodes(); 516 // Populate the SUnits array. 517 BuildSchedUnits(); 518 // Compute all the scheduling dependencies between nodes. 519 AddSchedEdges(); 520 } 521 522 // Initialize NumNodeDefs for the current Node's opcode. 523 void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() { 524 // Check for phys reg copy. 525 if (!Node) 526 return; 527 528 if (!Node->isMachineOpcode()) { 529 if (Node->getOpcode() == ISD::CopyFromReg) 530 NodeNumDefs = 1; 531 else 532 NodeNumDefs = 0; 533 return; 534 } 535 unsigned POpc = Node->getMachineOpcode(); 536 if (POpc == TargetOpcode::IMPLICIT_DEF) { 537 // No register need be allocated for this. 538 NodeNumDefs = 0; 539 return; 540 } 541 if (POpc == TargetOpcode::PATCHPOINT && 542 Node->getValueType(0) == MVT::Other) { 543 // PATCHPOINT is defined to have one result, but it might really have none 544 // if we're not using CallingConv::AnyReg. Don't mistake the chain for a 545 // real definition. 546 NodeNumDefs = 0; 547 return; 548 } 549 unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs(); 550 // Some instructions define regs that are not represented in the selection DAG 551 // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues. 552 NodeNumDefs = std::min(Node->getNumValues(), NRegDefs); 553 DefIdx = 0; 554 } 555 556 // Construct a RegDefIter for this SUnit and find the first valid value. 557 ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU, 558 const ScheduleDAGSDNodes *SD) 559 : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) { 560 InitNodeNumDefs(); 561 Advance(); 562 } 563 564 // Advance to the next valid value defined by the SUnit. 565 void ScheduleDAGSDNodes::RegDefIter::Advance() { 566 for (;Node;) { // Visit all glued nodes. 567 for (;DefIdx < NodeNumDefs; ++DefIdx) { 568 if (!Node->hasAnyUseOfValue(DefIdx)) 569 continue; 570 ValueType = Node->getSimpleValueType(DefIdx); 571 ++DefIdx; 572 return; // Found a normal regdef. 573 } 574 Node = Node->getGluedNode(); 575 if (!Node) { 576 return; // No values left to visit. 577 } 578 InitNodeNumDefs(); 579 } 580 } 581 582 void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) { 583 assert(SU->NumRegDefsLeft == 0 && "expect a new node"); 584 for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) { 585 assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected"); 586 ++SU->NumRegDefsLeft; 587 } 588 } 589 590 void ScheduleDAGSDNodes::computeLatency(SUnit *SU) { 591 SDNode *N = SU->getNode(); 592 593 // TokenFactor operands are considered zero latency, and some schedulers 594 // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero 595 // whenever node latency is nonzero. 596 if (N && N->getOpcode() == ISD::TokenFactor) { 597 SU->Latency = 0; 598 return; 599 } 600 601 // Check to see if the scheduler cares about latencies. 602 if (forceUnitLatencies()) { 603 SU->Latency = 1; 604 return; 605 } 606 607 if (!InstrItins || InstrItins->isEmpty()) { 608 if (N && N->isMachineOpcode() && 609 TII->isHighLatencyDef(N->getMachineOpcode())) 610 SU->Latency = HighLatencyCycles; 611 else 612 SU->Latency = 1; 613 return; 614 } 615 616 // Compute the latency for the node. We use the sum of the latencies for 617 // all nodes glued together into this SUnit. 618 SU->Latency = 0; 619 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) 620 if (N->isMachineOpcode()) 621 SU->Latency += TII->getInstrLatency(InstrItins, N); 622 } 623 624 void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use, 625 unsigned OpIdx, SDep& dep) const{ 626 // Check to see if the scheduler cares about latencies. 627 if (forceUnitLatencies()) 628 return; 629 630 if (dep.getKind() != SDep::Data) 631 return; 632 633 unsigned DefIdx = Use->getOperand(OpIdx).getResNo(); 634 if (Use->isMachineOpcode()) 635 // Adjust the use operand index by num of defs. 636 OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs(); 637 int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx); 638 if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg && 639 !BB->succ_empty()) { 640 unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg(); 641 if (TargetRegisterInfo::isVirtualRegister(Reg)) 642 // This copy is a liveout value. It is likely coalesced, so reduce the 643 // latency so not to penalize the def. 644 // FIXME: need target specific adjustment here? 645 Latency = (Latency > 1) ? Latency - 1 : 1; 646 } 647 if (Latency >= 0) 648 dep.setLatency(Latency); 649 } 650 651 void ScheduleDAGSDNodes::dumpNode(const SUnit &SU) const { 652 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 653 dumpNodeName(SU); 654 dbgs() << ": "; 655 656 if (!SU.getNode()) { 657 dbgs() << "PHYS REG COPY\n"; 658 return; 659 } 660 661 SU.getNode()->dump(DAG); 662 dbgs() << "\n"; 663 SmallVector<SDNode *, 4> GluedNodes; 664 for (SDNode *N = SU.getNode()->getGluedNode(); N; N = N->getGluedNode()) 665 GluedNodes.push_back(N); 666 while (!GluedNodes.empty()) { 667 dbgs() << " "; 668 GluedNodes.back()->dump(DAG); 669 dbgs() << "\n"; 670 GluedNodes.pop_back(); 671 } 672 #endif 673 } 674 675 void ScheduleDAGSDNodes::dump() const { 676 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 677 if (EntrySU.getNode() != nullptr) 678 dumpNodeAll(EntrySU); 679 for (const SUnit &SU : SUnits) 680 dumpNodeAll(SU); 681 if (ExitSU.getNode() != nullptr) 682 dumpNodeAll(ExitSU); 683 #endif 684 } 685 686 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 687 void ScheduleDAGSDNodes::dumpSchedule() const { 688 for (unsigned i = 0, e = Sequence.size(); i != e; i++) { 689 if (SUnit *SU = Sequence[i]) 690 dumpNode(*SU); 691 else 692 dbgs() << "**** NOOP ****\n"; 693 } 694 } 695 #endif 696 697 #ifndef NDEBUG 698 /// VerifyScheduledSequence - Verify that all SUnits were scheduled and that 699 /// their state is consistent with the nodes listed in Sequence. 700 /// 701 void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) { 702 unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp); 703 unsigned Noops = 0; 704 for (unsigned i = 0, e = Sequence.size(); i != e; ++i) 705 if (!Sequence[i]) 706 ++Noops; 707 assert(Sequence.size() - Noops == ScheduledNodes && 708 "The number of nodes scheduled doesn't match the expected number!"); 709 } 710 #endif // NDEBUG 711 712 /// ProcessSDDbgValues - Process SDDbgValues associated with this node. 713 static void 714 ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter, 715 SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders, 716 DenseMap<SDValue, unsigned> &VRBaseMap, unsigned Order) { 717 if (!N->getHasDebugValue()) 718 return; 719 720 // Opportunistically insert immediate dbg_value uses, i.e. those with the same 721 // source order number as N. 722 MachineBasicBlock *BB = Emitter.getBlock(); 723 MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos(); 724 for (auto DV : DAG->GetDbgValues(N)) { 725 if (DV->isEmitted()) 726 continue; 727 unsigned DVOrder = DV->getOrder(); 728 if (!Order || DVOrder == Order) { 729 MachineInstr *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap); 730 if (DbgMI) { 731 Orders.push_back({DVOrder, DbgMI}); 732 BB->insert(InsertPos, DbgMI); 733 } 734 } 735 } 736 } 737 738 // ProcessSourceNode - Process nodes with source order numbers. These are added 739 // to a vector which EmitSchedule uses to determine how to insert dbg_value 740 // instructions in the right order. 741 static void 742 ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter, 743 DenseMap<SDValue, unsigned> &VRBaseMap, 744 SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders, 745 SmallSet<unsigned, 8> &Seen) { 746 unsigned Order = N->getIROrder(); 747 if (!Order || !Seen.insert(Order).second) { 748 // Process any valid SDDbgValues even if node does not have any order 749 // assigned. 750 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0); 751 return; 752 } 753 754 MachineBasicBlock *BB = Emitter.getBlock(); 755 auto IP = Emitter.getInsertPos(); 756 if (IP == BB->begin() || BB->back().isPHI() || 757 // Fast-isel may have inserted some instructions, in which case the 758 // BB->back().isPHI() test will not fire when we want it to. 759 std::prev(IP)->isPHI()) { 760 // Did not insert any instruction. 761 Orders.push_back({Order, (MachineInstr *)nullptr}); 762 return; 763 } 764 765 Orders.push_back({Order, &*std::prev(IP)}); 766 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order); 767 } 768 769 void ScheduleDAGSDNodes:: 770 EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap, 771 MachineBasicBlock::iterator InsertPos) { 772 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 773 I != E; ++I) { 774 if (I->isCtrl()) continue; // ignore chain preds 775 if (I->getSUnit()->CopyDstRC) { 776 // Copy to physical register. 777 DenseMap<SUnit*, unsigned>::iterator VRI = VRBaseMap.find(I->getSUnit()); 778 assert(VRI != VRBaseMap.end() && "Node emitted out of order - late"); 779 // Find the destination physical register. 780 unsigned Reg = 0; 781 for (SUnit::const_succ_iterator II = SU->Succs.begin(), 782 EE = SU->Succs.end(); II != EE; ++II) { 783 if (II->isCtrl()) continue; // ignore chain preds 784 if (II->getReg()) { 785 Reg = II->getReg(); 786 break; 787 } 788 } 789 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg) 790 .addReg(VRI->second); 791 } else { 792 // Copy from physical register. 793 assert(I->getReg() && "Unknown physical register!"); 794 unsigned VRBase = MRI.createVirtualRegister(SU->CopyDstRC); 795 bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second; 796 (void)isNew; // Silence compiler warning. 797 assert(isNew && "Node emitted out of order - early"); 798 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase) 799 .addReg(I->getReg()); 800 } 801 break; 802 } 803 } 804 805 /// EmitSchedule - Emit the machine code in scheduled order. Return the new 806 /// InsertPos and MachineBasicBlock that contains this insertion 807 /// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does 808 /// not necessarily refer to returned BB. The emitter may split blocks. 809 MachineBasicBlock *ScheduleDAGSDNodes:: 810 EmitSchedule(MachineBasicBlock::iterator &InsertPos) { 811 InstrEmitter Emitter(BB, InsertPos); 812 DenseMap<SDValue, unsigned> VRBaseMap; 813 DenseMap<SUnit*, unsigned> CopyVRBaseMap; 814 SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders; 815 SmallSet<unsigned, 8> Seen; 816 bool HasDbg = DAG->hasDebugValues(); 817 818 // If this is the first BB, emit byval parameter dbg_value's. 819 if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) { 820 SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin(); 821 SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd(); 822 for (; PDI != PDE; ++PDI) { 823 MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap); 824 if (DbgMI) { 825 BB->insert(InsertPos, DbgMI); 826 // We re-emit the dbg_value closer to its use, too, after instructions 827 // are emitted to the BB. 828 (*PDI)->clearIsEmitted(); 829 } 830 } 831 } 832 833 for (unsigned i = 0, e = Sequence.size(); i != e; i++) { 834 SUnit *SU = Sequence[i]; 835 if (!SU) { 836 // Null SUnit* is a noop. 837 TII->insertNoop(*Emitter.getBlock(), InsertPos); 838 continue; 839 } 840 841 // For pre-regalloc scheduling, create instructions corresponding to the 842 // SDNode and any glued SDNodes and append them to the block. 843 if (!SU->getNode()) { 844 // Emit a copy. 845 EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos); 846 continue; 847 } 848 849 SmallVector<SDNode *, 4> GluedNodes; 850 for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode()) 851 GluedNodes.push_back(N); 852 while (!GluedNodes.empty()) { 853 SDNode *N = GluedNodes.back(); 854 Emitter.EmitNode(N, SU->OrigNode != SU, SU->isCloned, VRBaseMap); 855 // Remember the source order of the inserted instruction. 856 if (HasDbg) 857 ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen); 858 GluedNodes.pop_back(); 859 } 860 Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, 861 VRBaseMap); 862 // Remember the source order of the inserted instruction. 863 if (HasDbg) 864 ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders, 865 Seen); 866 } 867 868 // Insert all the dbg_values which have not already been inserted in source 869 // order sequence. 870 if (HasDbg) { 871 MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI(); 872 873 // Sort the source order instructions and use the order to insert debug 874 // values. Use stable_sort so that DBG_VALUEs are inserted in the same order 875 // regardless of the host's implementation fo std::sort. 876 std::stable_sort(Orders.begin(), Orders.end(), less_first()); 877 std::stable_sort(DAG->DbgBegin(), DAG->DbgEnd(), 878 [](const SDDbgValue *LHS, const SDDbgValue *RHS) { 879 return LHS->getOrder() < RHS->getOrder(); 880 }); 881 882 SDDbgInfo::DbgIterator DI = DAG->DbgBegin(); 883 SDDbgInfo::DbgIterator DE = DAG->DbgEnd(); 884 // Now emit the rest according to source order. 885 unsigned LastOrder = 0; 886 for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) { 887 unsigned Order = Orders[i].first; 888 MachineInstr *MI = Orders[i].second; 889 // Insert all SDDbgValue's whose order(s) are before "Order". 890 if (!MI) 891 continue; 892 for (; DI != DE; ++DI) { 893 if ((*DI)->getOrder() < LastOrder || (*DI)->getOrder() >= Order) 894 break; 895 if ((*DI)->isEmitted()) 896 continue; 897 898 MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap); 899 if (DbgMI) { 900 if (!LastOrder) 901 // Insert to start of the BB (after PHIs). 902 BB->insert(BBBegin, DbgMI); 903 else { 904 // Insert at the instruction, which may be in a different 905 // block, if the block was split by a custom inserter. 906 MachineBasicBlock::iterator Pos = MI; 907 MI->getParent()->insert(Pos, DbgMI); 908 } 909 } 910 } 911 LastOrder = Order; 912 } 913 // Add trailing DbgValue's before the terminator. FIXME: May want to add 914 // some of them before one or more conditional branches? 915 SmallVector<MachineInstr*, 8> DbgMIs; 916 for (; DI != DE; ++DI) { 917 if ((*DI)->isEmitted()) 918 continue; 919 assert((*DI)->getOrder() >= LastOrder && 920 "emitting DBG_VALUE out of order"); 921 if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap)) 922 DbgMIs.push_back(DbgMI); 923 } 924 925 MachineBasicBlock *InsertBB = Emitter.getBlock(); 926 MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator(); 927 InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end()); 928 929 SDDbgInfo::DbgLabelIterator DLI = DAG->DbgLabelBegin(); 930 SDDbgInfo::DbgLabelIterator DLE = DAG->DbgLabelEnd(); 931 // Now emit the rest according to source order. 932 LastOrder = 0; 933 for (const auto &InstrOrder : Orders) { 934 unsigned Order = InstrOrder.first; 935 MachineInstr *MI = InstrOrder.second; 936 if (!MI) 937 continue; 938 939 // Insert all SDDbgLabel's whose order(s) are before "Order". 940 for (; DLI != DLE && 941 (*DLI)->getOrder() >= LastOrder && (*DLI)->getOrder() < Order; 942 ++DLI) { 943 MachineInstr *DbgMI = Emitter.EmitDbgLabel(*DLI); 944 if (DbgMI) { 945 if (!LastOrder) 946 // Insert to start of the BB (after PHIs). 947 BB->insert(BBBegin, DbgMI); 948 else { 949 // Insert at the instruction, which may be in a different 950 // block, if the block was split by a custom inserter. 951 MachineBasicBlock::iterator Pos = MI; 952 MI->getParent()->insert(Pos, DbgMI); 953 } 954 } 955 } 956 if (DLI == DLE) 957 break; 958 959 LastOrder = Order; 960 } 961 } 962 963 InsertPos = Emitter.getInsertPos(); 964 return Emitter.getBlock(); 965 } 966 967 /// Return the basic block label. 968 std::string ScheduleDAGSDNodes::getDAGName() const { 969 return "sunit-dag." + BB->getFullName(); 970 } 971