1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::LegalizeVectors method. 11 // 12 // The vector legalizer looks for vector operations which might need to be 13 // scalarized and legalizes them. This is a separate step from Legalize because 14 // scalarizing can introduce illegal types. For example, suppose we have an 15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 17 // operation, which introduces nodes with the illegal type i64 which must be 18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 19 // the operation must be unrolled, which introduces nodes with the illegal 20 // type i8 which must be promoted. 21 // 22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 23 // or operations that happen to take a vector which are custom-lowered; 24 // the legalization for such operations never produces nodes 25 // with illegal types, so it's okay to put off legalizing them until 26 // SelectionDAG::Legalize runs. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/Target/TargetLowering.h" 32 using namespace llvm; 33 34 namespace { 35 class VectorLegalizer { 36 SelectionDAG& DAG; 37 const TargetLowering &TLI; 38 bool Changed; // Keep track of whether anything changed 39 40 /// For nodes that are of legal width, and that have more than one use, this 41 /// map indicates what regularized operand to use. This allows us to avoid 42 /// legalizing the same thing more than once. 43 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 44 45 /// \brief Adds a node to the translation cache. 46 void AddLegalizedOperand(SDValue From, SDValue To) { 47 LegalizedNodes.insert(std::make_pair(From, To)); 48 // If someone requests legalization of the new node, return itself. 49 if (From != To) 50 LegalizedNodes.insert(std::make_pair(To, To)); 51 } 52 53 /// \brief Legalizes the given node. 54 SDValue LegalizeOp(SDValue Op); 55 56 /// \brief Assuming the node is legal, "legalize" the results. 57 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 58 59 /// \brief Implements unrolling a VSETCC. 60 SDValue UnrollVSETCC(SDValue Op); 61 62 /// \brief Implement expand-based legalization of vector operations. 63 /// 64 /// This is just a high-level routine to dispatch to specific code paths for 65 /// operations to legalize them. 66 SDValue Expand(SDValue Op); 67 68 /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if 69 /// FSUB isn't legal. 70 /// 71 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 72 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 73 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 74 75 /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 76 SDValue ExpandSEXTINREG(SDValue Op); 77 78 /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG. 79 /// 80 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 81 /// type. The contents of the bits in the extended part of each element are 82 /// undef. 83 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 84 85 /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG. 86 /// 87 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 88 /// type, then shifts left and arithmetic shifts right to introduce a sign 89 /// extension. 90 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 91 92 /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG. 93 /// 94 /// Shuffles the low lanes of the operand into place and blends zeros into 95 /// the remaining lanes, finally bitcasting to the proper type. 96 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 97 98 /// \brief Expand bswap of vectors into a shuffle if legal. 99 SDValue ExpandBSWAP(SDValue Op); 100 101 /// \brief Implement vselect in terms of XOR, AND, OR when blend is not 102 /// supported by the target. 103 SDValue ExpandVSELECT(SDValue Op); 104 SDValue ExpandSELECT(SDValue Op); 105 SDValue ExpandLoad(SDValue Op); 106 SDValue ExpandStore(SDValue Op); 107 SDValue ExpandFNEG(SDValue Op); 108 109 /// \brief Implements vector promotion. 110 /// 111 /// This is essentially just bitcasting the operands to a different type and 112 /// bitcasting the result back to the original type. 113 SDValue Promote(SDValue Op); 114 115 /// \brief Implements [SU]INT_TO_FP vector promotion. 116 /// 117 /// This is a [zs]ext of the input operand to the next size up. 118 SDValue PromoteINT_TO_FP(SDValue Op); 119 120 /// \brief Implements FP_TO_[SU]INT vector promotion of the result type. 121 /// 122 /// It is promoted to the next size up integer type. The result is then 123 /// truncated back to the original type. 124 SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned); 125 126 public: 127 /// \brief Begin legalizer the vector operations in the DAG. 128 bool Run(); 129 VectorLegalizer(SelectionDAG& dag) : 130 DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {} 131 }; 132 133 bool VectorLegalizer::Run() { 134 // Before we start legalizing vector nodes, check if there are any vectors. 135 bool HasVectors = false; 136 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 137 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 138 // Check if the values of the nodes contain vectors. We don't need to check 139 // the operands because we are going to check their values at some point. 140 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 141 J != E; ++J) 142 HasVectors |= J->isVector(); 143 144 // If we found a vector node we can start the legalization. 145 if (HasVectors) 146 break; 147 } 148 149 // If this basic block has no vectors then no need to legalize vectors. 150 if (!HasVectors) 151 return false; 152 153 // The legalize process is inherently a bottom-up recursive process (users 154 // legalize their uses before themselves). Given infinite stack space, we 155 // could just start legalizing on the root and traverse the whole graph. In 156 // practice however, this causes us to run out of stack space on large basic 157 // blocks. To avoid this problem, compute an ordering of the nodes where each 158 // node is only legalized after all of its operands are legalized. 159 DAG.AssignTopologicalOrder(); 160 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 161 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 162 LegalizeOp(SDValue(I, 0)); 163 164 // Finally, it's possible the root changed. Get the new root. 165 SDValue OldRoot = DAG.getRoot(); 166 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 167 DAG.setRoot(LegalizedNodes[OldRoot]); 168 169 LegalizedNodes.clear(); 170 171 // Remove dead nodes now. 172 DAG.RemoveDeadNodes(); 173 174 return Changed; 175 } 176 177 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 178 // Generic legalization: just pass the operand through. 179 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 180 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 181 return Result.getValue(Op.getResNo()); 182 } 183 184 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 185 // Note that LegalizeOp may be reentered even from single-use nodes, which 186 // means that we always must cache transformed nodes. 187 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 188 if (I != LegalizedNodes.end()) return I->second; 189 190 SDNode* Node = Op.getNode(); 191 192 // Legalize the operands 193 SmallVector<SDValue, 8> Ops; 194 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 195 Ops.push_back(LegalizeOp(Node->getOperand(i))); 196 197 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0); 198 199 if (Op.getOpcode() == ISD::LOAD) { 200 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 201 ISD::LoadExtType ExtType = LD->getExtensionType(); 202 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) 203 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 204 LD->getMemoryVT())) { 205 default: llvm_unreachable("This action is not supported yet!"); 206 case TargetLowering::Legal: 207 return TranslateLegalizeResults(Op, Result); 208 case TargetLowering::Custom: 209 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 210 Changed = true; 211 if (Lowered->getNumValues() != Op->getNumValues()) { 212 // This expanded to something other than the load. Assume the 213 // lowering code took care of any chain values, and just handle the 214 // returned value. 215 assert(Result.getValue(1).use_empty() && 216 "There are still live users of the old chain!"); 217 return LegalizeOp(Lowered); 218 } else { 219 return TranslateLegalizeResults(Op, Lowered); 220 } 221 } 222 case TargetLowering::Expand: 223 Changed = true; 224 return LegalizeOp(ExpandLoad(Op)); 225 } 226 } else if (Op.getOpcode() == ISD::STORE) { 227 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 228 EVT StVT = ST->getMemoryVT(); 229 MVT ValVT = ST->getValue().getSimpleValueType(); 230 if (StVT.isVector() && ST->isTruncatingStore()) 231 switch (TLI.getTruncStoreAction(ValVT, StVT.getSimpleVT())) { 232 default: llvm_unreachable("This action is not supported yet!"); 233 case TargetLowering::Legal: 234 return TranslateLegalizeResults(Op, Result); 235 case TargetLowering::Custom: 236 Changed = true; 237 return TranslateLegalizeResults(Op, TLI.LowerOperation(Result, DAG)); 238 case TargetLowering::Expand: 239 Changed = true; 240 return LegalizeOp(ExpandStore(Op)); 241 } 242 } 243 244 bool HasVectorValue = false; 245 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); 246 J != E; 247 ++J) 248 HasVectorValue |= J->isVector(); 249 if (!HasVectorValue) 250 return TranslateLegalizeResults(Op, Result); 251 252 EVT QueryType; 253 switch (Op.getOpcode()) { 254 default: 255 return TranslateLegalizeResults(Op, Result); 256 case ISD::ADD: 257 case ISD::SUB: 258 case ISD::MUL: 259 case ISD::SDIV: 260 case ISD::UDIV: 261 case ISD::SREM: 262 case ISD::UREM: 263 case ISD::FADD: 264 case ISD::FSUB: 265 case ISD::FMUL: 266 case ISD::FDIV: 267 case ISD::FREM: 268 case ISD::AND: 269 case ISD::OR: 270 case ISD::XOR: 271 case ISD::SHL: 272 case ISD::SRA: 273 case ISD::SRL: 274 case ISD::ROTL: 275 case ISD::ROTR: 276 case ISD::BSWAP: 277 case ISD::CTLZ: 278 case ISD::CTTZ: 279 case ISD::CTLZ_ZERO_UNDEF: 280 case ISD::CTTZ_ZERO_UNDEF: 281 case ISD::CTPOP: 282 case ISD::SELECT: 283 case ISD::VSELECT: 284 case ISD::SELECT_CC: 285 case ISD::SETCC: 286 case ISD::ZERO_EXTEND: 287 case ISD::ANY_EXTEND: 288 case ISD::TRUNCATE: 289 case ISD::SIGN_EXTEND: 290 case ISD::FP_TO_SINT: 291 case ISD::FP_TO_UINT: 292 case ISD::FNEG: 293 case ISD::FABS: 294 case ISD::FMINNUM: 295 case ISD::FMAXNUM: 296 case ISD::FCOPYSIGN: 297 case ISD::FSQRT: 298 case ISD::FSIN: 299 case ISD::FCOS: 300 case ISD::FPOWI: 301 case ISD::FPOW: 302 case ISD::FLOG: 303 case ISD::FLOG2: 304 case ISD::FLOG10: 305 case ISD::FEXP: 306 case ISD::FEXP2: 307 case ISD::FCEIL: 308 case ISD::FTRUNC: 309 case ISD::FRINT: 310 case ISD::FNEARBYINT: 311 case ISD::FROUND: 312 case ISD::FFLOOR: 313 case ISD::FP_ROUND: 314 case ISD::FP_EXTEND: 315 case ISD::FMA: 316 case ISD::SIGN_EXTEND_INREG: 317 case ISD::ANY_EXTEND_VECTOR_INREG: 318 case ISD::SIGN_EXTEND_VECTOR_INREG: 319 case ISD::ZERO_EXTEND_VECTOR_INREG: 320 QueryType = Node->getValueType(0); 321 break; 322 case ISD::FP_ROUND_INREG: 323 QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 324 break; 325 case ISD::SINT_TO_FP: 326 case ISD::UINT_TO_FP: 327 QueryType = Node->getOperand(0).getValueType(); 328 break; 329 } 330 331 switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) { 332 case TargetLowering::Promote: 333 Result = Promote(Op); 334 Changed = true; 335 break; 336 case TargetLowering::Legal: 337 break; 338 case TargetLowering::Custom: { 339 SDValue Tmp1 = TLI.LowerOperation(Op, DAG); 340 if (Tmp1.getNode()) { 341 Result = Tmp1; 342 break; 343 } 344 // FALL THROUGH 345 } 346 case TargetLowering::Expand: 347 Result = Expand(Op); 348 } 349 350 // Make sure that the generated code is itself legal. 351 if (Result != Op) { 352 Result = LegalizeOp(Result); 353 Changed = true; 354 } 355 356 // Note that LegalizeOp may be reentered even from single-use nodes, which 357 // means that we always must cache transformed nodes. 358 AddLegalizedOperand(Op, Result); 359 return Result; 360 } 361 362 SDValue VectorLegalizer::Promote(SDValue Op) { 363 // For a few operations there is a specific concept for promotion based on 364 // the operand's type. 365 switch (Op.getOpcode()) { 366 case ISD::SINT_TO_FP: 367 case ISD::UINT_TO_FP: 368 // "Promote" the operation by extending the operand. 369 return PromoteINT_TO_FP(Op); 370 case ISD::FP_TO_UINT: 371 case ISD::FP_TO_SINT: 372 // Promote the operation by extending the operand. 373 return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT); 374 } 375 376 // There are currently two cases of vector promotion: 377 // 1) Bitcasting a vector of integers to a different type to a vector of the 378 // same overall length. For example, x86 promotes ISD::AND on v2i32 to v1i64. 379 // 2) Extending a vector of floats to a vector of the same number oflarger 380 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 381 MVT VT = Op.getSimpleValueType(); 382 assert(Op.getNode()->getNumValues() == 1 && 383 "Can't promote a vector with multiple results!"); 384 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 385 SDLoc dl(Op); 386 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 387 388 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 389 if (Op.getOperand(j).getValueType().isVector()) 390 if (Op.getOperand(j) 391 .getValueType() 392 .getVectorElementType() 393 .isFloatingPoint() && 394 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 395 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 396 else 397 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 398 else 399 Operands[j] = Op.getOperand(j); 400 } 401 402 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands); 403 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 404 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 405 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 406 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0)); 407 else 408 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 409 } 410 411 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 412 // INT_TO_FP operations may require the input operand be promoted even 413 // when the type is otherwise legal. 414 EVT VT = Op.getOperand(0).getValueType(); 415 assert(Op.getNode()->getNumValues() == 1 && 416 "Can't promote a vector with multiple results!"); 417 418 // Normal getTypeToPromoteTo() doesn't work here, as that will promote 419 // by widening the vector w/ the same element width and twice the number 420 // of elements. We want the other way around, the same number of elements, 421 // each twice the width. 422 // 423 // Increase the bitwidth of the element to the next pow-of-two 424 // (which is greater than 8 bits). 425 426 EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 427 assert(NVT.isSimple() && "Promoting to a non-simple vector type!"); 428 SDLoc dl(Op); 429 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 430 431 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 432 ISD::SIGN_EXTEND; 433 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 434 if (Op.getOperand(j).getValueType().isVector()) 435 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 436 else 437 Operands[j] = Op.getOperand(j); 438 } 439 440 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 441 } 442 443 // For FP_TO_INT we promote the result type to a vector type with wider 444 // elements and then truncate the result. This is different from the default 445 // PromoteVector which uses bitcast to promote thus assumning that the 446 // promoted vector type has the same overall size. 447 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) { 448 assert(Op.getNode()->getNumValues() == 1 && 449 "Can't promote a vector with multiple results!"); 450 EVT VT = Op.getValueType(); 451 452 EVT NewVT; 453 unsigned NewOpc; 454 while (1) { 455 NewVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 456 assert(NewVT.isSimple() && "Promoting to a non-simple vector type!"); 457 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) { 458 NewOpc = ISD::FP_TO_SINT; 459 break; 460 } 461 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) { 462 NewOpc = ISD::FP_TO_UINT; 463 break; 464 } 465 } 466 467 SDLoc loc(Op); 468 SDValue promoted = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0)); 469 return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted); 470 } 471 472 473 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 474 SDLoc dl(Op); 475 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 476 SDValue Chain = LD->getChain(); 477 SDValue BasePTR = LD->getBasePtr(); 478 EVT SrcVT = LD->getMemoryVT(); 479 ISD::LoadExtType ExtType = LD->getExtensionType(); 480 481 SmallVector<SDValue, 8> Vals; 482 SmallVector<SDValue, 8> LoadChains; 483 unsigned NumElem = SrcVT.getVectorNumElements(); 484 485 EVT SrcEltVT = SrcVT.getScalarType(); 486 EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType(); 487 488 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 489 // When elements in a vector is not byte-addressable, we cannot directly 490 // load each element by advancing pointer, which could only address bytes. 491 // Instead, we load all significant words, mask bits off, and concatenate 492 // them to form each element. Finally, they are extended to destination 493 // scalar type to build the destination vector. 494 EVT WideVT = TLI.getPointerTy(); 495 496 assert(WideVT.isRound() && 497 "Could not handle the sophisticated case when the widest integer is" 498 " not power of 2."); 499 assert(WideVT.bitsGE(SrcEltVT) && 500 "Type is not legalized?"); 501 502 unsigned WideBytes = WideVT.getStoreSize(); 503 unsigned Offset = 0; 504 unsigned RemainingBytes = SrcVT.getStoreSize(); 505 SmallVector<SDValue, 8> LoadVals; 506 507 while (RemainingBytes > 0) { 508 SDValue ScalarLoad; 509 unsigned LoadBytes = WideBytes; 510 511 if (RemainingBytes >= LoadBytes) { 512 ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR, 513 LD->getPointerInfo().getWithOffset(Offset), 514 LD->isVolatile(), LD->isNonTemporal(), 515 LD->isInvariant(), LD->getAlignment(), 516 LD->getAAInfo()); 517 } else { 518 EVT LoadVT = WideVT; 519 while (RemainingBytes < LoadBytes) { 520 LoadBytes >>= 1; // Reduce the load size by half. 521 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 522 } 523 ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 524 LD->getPointerInfo().getWithOffset(Offset), 525 LoadVT, LD->isVolatile(), 526 LD->isNonTemporal(), LD->isInvariant(), 527 LD->getAlignment(), LD->getAAInfo()); 528 } 529 530 RemainingBytes -= LoadBytes; 531 Offset += LoadBytes; 532 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 533 DAG.getConstant(LoadBytes, BasePTR.getValueType())); 534 535 LoadVals.push_back(ScalarLoad.getValue(0)); 536 LoadChains.push_back(ScalarLoad.getValue(1)); 537 } 538 539 // Extract bits, pack and extend/trunc them into destination type. 540 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 541 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, WideVT); 542 543 unsigned BitOffset = 0; 544 unsigned WideIdx = 0; 545 unsigned WideBits = WideVT.getSizeInBits(); 546 547 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 548 SDValue Lo, Hi, ShAmt; 549 550 if (BitOffset < WideBits) { 551 ShAmt = DAG.getConstant(BitOffset, TLI.getShiftAmountTy(WideVT)); 552 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 553 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 554 } 555 556 BitOffset += SrcEltBits; 557 if (BitOffset >= WideBits) { 558 WideIdx++; 559 BitOffset -= WideBits; 560 if (BitOffset > 0) { 561 ShAmt = DAG.getConstant(SrcEltBits - BitOffset, 562 TLI.getShiftAmountTy(WideVT)); 563 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 564 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask); 565 } 566 } 567 568 if (Hi.getNode()) 569 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 570 571 switch (ExtType) { 572 default: llvm_unreachable("Unknown extended-load op!"); 573 case ISD::EXTLOAD: 574 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 575 break; 576 case ISD::ZEXTLOAD: 577 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 578 break; 579 case ISD::SEXTLOAD: 580 ShAmt = DAG.getConstant(WideBits - SrcEltBits, 581 TLI.getShiftAmountTy(WideVT)); 582 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 583 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 584 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 585 break; 586 } 587 Vals.push_back(Lo); 588 } 589 } else { 590 unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8; 591 592 for (unsigned Idx=0; Idx<NumElem; Idx++) { 593 SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl, 594 Op.getNode()->getValueType(0).getScalarType(), 595 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride), 596 SrcVT.getScalarType(), 597 LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), 598 LD->getAlignment(), LD->getAAInfo()); 599 600 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 601 DAG.getConstant(Stride, BasePTR.getValueType())); 602 603 Vals.push_back(ScalarLoad.getValue(0)); 604 LoadChains.push_back(ScalarLoad.getValue(1)); 605 } 606 } 607 608 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 609 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, 610 Op.getNode()->getValueType(0), Vals); 611 612 AddLegalizedOperand(Op.getValue(0), Value); 613 AddLegalizedOperand(Op.getValue(1), NewChain); 614 615 return (Op.getResNo() ? NewChain : Value); 616 } 617 618 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 619 SDLoc dl(Op); 620 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 621 SDValue Chain = ST->getChain(); 622 SDValue BasePTR = ST->getBasePtr(); 623 SDValue Value = ST->getValue(); 624 EVT StVT = ST->getMemoryVT(); 625 626 unsigned Alignment = ST->getAlignment(); 627 bool isVolatile = ST->isVolatile(); 628 bool isNonTemporal = ST->isNonTemporal(); 629 AAMDNodes AAInfo = ST->getAAInfo(); 630 631 unsigned NumElem = StVT.getVectorNumElements(); 632 // The type of the data we want to save 633 EVT RegVT = Value.getValueType(); 634 EVT RegSclVT = RegVT.getScalarType(); 635 // The type of data as saved in memory. 636 EVT MemSclVT = StVT.getScalarType(); 637 638 // Cast floats into integers 639 unsigned ScalarSize = MemSclVT.getSizeInBits(); 640 641 // Round odd types to the next pow of two. 642 if (!isPowerOf2_32(ScalarSize)) 643 ScalarSize = NextPowerOf2(ScalarSize); 644 645 // Store Stride in bytes 646 unsigned Stride = ScalarSize/8; 647 // Extract each of the elements from the original vector 648 // and save them into memory individually. 649 SmallVector<SDValue, 8> Stores; 650 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 651 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 652 RegSclVT, Value, DAG.getConstant(Idx, TLI.getVectorIdxTy())); 653 654 // This scalar TruncStore may be illegal, but we legalize it later. 655 SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR, 656 ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT, 657 isVolatile, isNonTemporal, Alignment, AAInfo); 658 659 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 660 DAG.getConstant(Stride, BasePTR.getValueType())); 661 662 Stores.push_back(Store); 663 } 664 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 665 AddLegalizedOperand(Op, TF); 666 return TF; 667 } 668 669 SDValue VectorLegalizer::Expand(SDValue Op) { 670 switch (Op->getOpcode()) { 671 case ISD::SIGN_EXTEND_INREG: 672 return ExpandSEXTINREG(Op); 673 case ISD::ANY_EXTEND_VECTOR_INREG: 674 return ExpandANY_EXTEND_VECTOR_INREG(Op); 675 case ISD::SIGN_EXTEND_VECTOR_INREG: 676 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 677 case ISD::ZERO_EXTEND_VECTOR_INREG: 678 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 679 case ISD::BSWAP: 680 return ExpandBSWAP(Op); 681 case ISD::VSELECT: 682 return ExpandVSELECT(Op); 683 case ISD::SELECT: 684 return ExpandSELECT(Op); 685 case ISD::UINT_TO_FP: 686 return ExpandUINT_TO_FLOAT(Op); 687 case ISD::FNEG: 688 return ExpandFNEG(Op); 689 case ISD::SETCC: 690 return UnrollVSETCC(Op); 691 default: 692 return DAG.UnrollVectorOp(Op.getNode()); 693 } 694 } 695 696 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 697 // Lower a select instruction where the condition is a scalar and the 698 // operands are vectors. Lower this select to VSELECT and implement it 699 // using XOR AND OR. The selector bit is broadcasted. 700 EVT VT = Op.getValueType(); 701 SDLoc DL(Op); 702 703 SDValue Mask = Op.getOperand(0); 704 SDValue Op1 = Op.getOperand(1); 705 SDValue Op2 = Op.getOperand(2); 706 707 assert(VT.isVector() && !Mask.getValueType().isVector() 708 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 709 710 unsigned NumElem = VT.getVectorNumElements(); 711 712 // If we can't even use the basic vector operations of 713 // AND,OR,XOR, we will have to scalarize the op. 714 // Notice that the operation may be 'promoted' which means that it is 715 // 'bitcasted' to another type which is handled. 716 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 717 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 718 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 719 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 720 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 721 return DAG.UnrollVectorOp(Op.getNode()); 722 723 // Generate a mask operand. 724 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 725 726 // What is the size of each element in the vector mask. 727 EVT BitTy = MaskTy.getScalarType(); 728 729 Mask = DAG.getSelect(DL, BitTy, Mask, 730 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), BitTy), 731 DAG.getConstant(0, BitTy)); 732 733 // Broadcast the mask so that the entire vector is all-one or all zero. 734 SmallVector<SDValue, 8> Ops(NumElem, Mask); 735 Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops); 736 737 // Bitcast the operands to be the same type as the mask. 738 // This is needed when we select between FP types because 739 // the mask is a vector of integers. 740 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 741 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 742 743 SDValue AllOnes = DAG.getConstant( 744 APInt::getAllOnesValue(BitTy.getSizeInBits()), MaskTy); 745 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 746 747 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 748 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 749 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 750 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 751 } 752 753 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 754 EVT VT = Op.getValueType(); 755 756 // Make sure that the SRA and SHL instructions are available. 757 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 758 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 759 return DAG.UnrollVectorOp(Op.getNode()); 760 761 SDLoc DL(Op); 762 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 763 764 unsigned BW = VT.getScalarType().getSizeInBits(); 765 unsigned OrigBW = OrigTy.getScalarType().getSizeInBits(); 766 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, VT); 767 768 Op = Op.getOperand(0); 769 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 770 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 771 } 772 773 // Generically expand a vector anyext in register to a shuffle of the relevant 774 // lanes into the appropriate locations, with other lanes left undef. 775 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 776 SDLoc DL(Op); 777 EVT VT = Op.getValueType(); 778 int NumElements = VT.getVectorNumElements(); 779 SDValue Src = Op.getOperand(0); 780 EVT SrcVT = Src.getValueType(); 781 int NumSrcElements = SrcVT.getVectorNumElements(); 782 783 // Build a base mask of undef shuffles. 784 SmallVector<int, 16> ShuffleMask; 785 ShuffleMask.resize(NumSrcElements, -1); 786 787 // Place the extended lanes into the correct locations. 788 int ExtLaneScale = NumSrcElements / NumElements; 789 int EndianOffset = TLI.isBigEndian() ? ExtLaneScale - 1 : 0; 790 for (int i = 0; i < NumElements; ++i) 791 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 792 793 return DAG.getNode( 794 ISD::BITCAST, DL, VT, 795 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 796 } 797 798 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 799 SDLoc DL(Op); 800 EVT VT = Op.getValueType(); 801 SDValue Src = Op.getOperand(0); 802 EVT SrcVT = Src.getValueType(); 803 804 // First build an any-extend node which can be legalized above when we 805 // recurse through it. 806 Op = DAG.getAnyExtendVectorInReg(Src, DL, VT); 807 808 // Now we need sign extend. Do this by shifting the elements. Even if these 809 // aren't legal operations, they have a better chance of being legalized 810 // without full scalarization than the sign extension does. 811 unsigned EltWidth = VT.getVectorElementType().getSizeInBits(); 812 unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits(); 813 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, VT); 814 return DAG.getNode(ISD::SRA, DL, VT, 815 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 816 ShiftAmount); 817 } 818 819 // Generically expand a vector zext in register to a shuffle of the relevant 820 // lanes into the appropriate locations, a blend of zero into the high bits, 821 // and a bitcast to the wider element type. 822 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 823 SDLoc DL(Op); 824 EVT VT = Op.getValueType(); 825 int NumElements = VT.getVectorNumElements(); 826 SDValue Src = Op.getOperand(0); 827 EVT SrcVT = Src.getValueType(); 828 int NumSrcElements = SrcVT.getVectorNumElements(); 829 830 // Build up a zero vector to blend into this one. 831 EVT SrcScalarVT = SrcVT.getScalarType(); 832 SDValue ScalarZero = DAG.getTargetConstant(0, SrcScalarVT); 833 SmallVector<SDValue, 4> BuildVectorOperands(NumSrcElements, ScalarZero); 834 SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, DL, SrcVT, BuildVectorOperands); 835 836 // Shuffle the incoming lanes into the correct position, and pull all other 837 // lanes from the zero vector. 838 SmallVector<int, 16> ShuffleMask; 839 ShuffleMask.reserve(NumSrcElements); 840 for (int i = 0; i < NumSrcElements; ++i) 841 ShuffleMask.push_back(i); 842 843 int ExtLaneScale = NumSrcElements / NumElements; 844 int EndianOffset = TLI.isBigEndian() ? ExtLaneScale - 1 : 0; 845 for (int i = 0; i < NumElements; ++i) 846 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 847 848 return DAG.getNode(ISD::BITCAST, DL, VT, 849 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 850 } 851 852 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 853 EVT VT = Op.getValueType(); 854 855 // Generate a byte wise shuffle mask for the BSWAP. 856 SmallVector<int, 16> ShuffleMask; 857 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 858 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 859 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 860 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 861 862 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 863 864 // Only emit a shuffle if the mask is legal. 865 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 866 return DAG.UnrollVectorOp(Op.getNode()); 867 868 SDLoc DL(Op); 869 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 870 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 871 ShuffleMask.data()); 872 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 873 } 874 875 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 876 // Implement VSELECT in terms of XOR, AND, OR 877 // on platforms which do not support blend natively. 878 SDLoc DL(Op); 879 880 SDValue Mask = Op.getOperand(0); 881 SDValue Op1 = Op.getOperand(1); 882 SDValue Op2 = Op.getOperand(2); 883 884 EVT VT = Mask.getValueType(); 885 886 // If we can't even use the basic vector operations of 887 // AND,OR,XOR, we will have to scalarize the op. 888 // Notice that the operation may be 'promoted' which means that it is 889 // 'bitcasted' to another type which is handled. 890 // This operation also isn't safe with AND, OR, XOR when the boolean 891 // type is 0/1 as we need an all ones vector constant to mask with. 892 // FIXME: Sign extend 1 to all ones if thats legal on the target. 893 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 894 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 895 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 896 TLI.getBooleanContents(Op1.getValueType()) != 897 TargetLowering::ZeroOrNegativeOneBooleanContent) 898 return DAG.UnrollVectorOp(Op.getNode()); 899 900 // If the mask and the type are different sizes, unroll the vector op. This 901 // can occur when getSetCCResultType returns something that is different in 902 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 903 if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits()) 904 return DAG.UnrollVectorOp(Op.getNode()); 905 906 // Bitcast the operands to be the same type as the mask. 907 // This is needed when we select between FP types because 908 // the mask is a vector of integers. 909 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 910 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 911 912 SDValue AllOnes = DAG.getConstant( 913 APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), VT); 914 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 915 916 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 917 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 918 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 919 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 920 } 921 922 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 923 EVT VT = Op.getOperand(0).getValueType(); 924 SDLoc DL(Op); 925 926 // Make sure that the SINT_TO_FP and SRL instructions are available. 927 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 928 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 929 return DAG.UnrollVectorOp(Op.getNode()); 930 931 EVT SVT = VT.getScalarType(); 932 assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) && 933 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 934 935 unsigned BW = SVT.getSizeInBits(); 936 SDValue HalfWord = DAG.getConstant(BW/2, VT); 937 938 // Constants to clear the upper part of the word. 939 // Notice that we can also use SHL+SHR, but using a constant is slightly 940 // faster on x86. 941 uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF; 942 SDValue HalfWordMask = DAG.getConstant(HWMask, VT); 943 944 // Two to the power of half-word-size. 945 SDValue TWOHW = DAG.getConstantFP((1<<(BW/2)), Op.getValueType()); 946 947 // Clear upper part of LO, lower HI 948 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 949 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 950 951 // Convert hi and lo to floats 952 // Convert the hi part back to the upper values 953 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 954 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 955 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 956 957 // Add the two halves 958 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 959 } 960 961 962 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 963 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 964 SDValue Zero = DAG.getConstantFP(-0.0, Op.getValueType()); 965 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 966 Zero, Op.getOperand(0)); 967 } 968 return DAG.UnrollVectorOp(Op.getNode()); 969 } 970 971 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 972 EVT VT = Op.getValueType(); 973 unsigned NumElems = VT.getVectorNumElements(); 974 EVT EltVT = VT.getVectorElementType(); 975 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 976 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 977 SDLoc dl(Op); 978 SmallVector<SDValue, 8> Ops(NumElems); 979 for (unsigned i = 0; i < NumElems; ++i) { 980 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 981 DAG.getConstant(i, TLI.getVectorIdxTy())); 982 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 983 DAG.getConstant(i, TLI.getVectorIdxTy())); 984 Ops[i] = DAG.getNode(ISD::SETCC, dl, 985 TLI.getSetCCResultType(*DAG.getContext(), TmpEltVT), 986 LHSElem, RHSElem, CC); 987 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 988 DAG.getConstant(APInt::getAllOnesValue 989 (EltVT.getSizeInBits()), EltVT), 990 DAG.getConstant(0, EltVT)); 991 } 992 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 993 } 994 995 } 996 997 bool SelectionDAG::LegalizeVectors() { 998 return VectorLegalizer(*this).Run(); 999 } 1000