1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating functions from LLVM IR into 11 // Machine IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "function-lowering-info" 16 #include "llvm/CodeGen/FunctionLoweringInfo.h" 17 #include "llvm/ADT/PostOrderIterator.h" 18 #include "llvm/CodeGen/Analysis.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineModuleInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/DebugInfo.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 #include "llvm/Target/TargetFrameLowering.h" 37 #include "llvm/Target/TargetLowering.h" 38 #include "llvm/Target/TargetOptions.h" 39 #include "llvm/Target/TargetRegisterInfo.h" 40 #include <algorithm> 41 using namespace llvm; 42 43 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 44 /// PHI nodes or outside of the basic block that defines it, or used by a 45 /// switch or atomic instruction, which may expand to multiple basic blocks. 46 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 47 if (I->use_empty()) return false; 48 if (isa<PHINode>(I)) return true; 49 const BasicBlock *BB = I->getParent(); 50 for (Value::const_use_iterator UI = I->use_begin(), E = I->use_end(); 51 UI != E; ++UI) { 52 const User *U = *UI; 53 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 54 return true; 55 } 56 return false; 57 } 58 59 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, 60 SelectionDAG *DAG) { 61 const TargetLowering *TLI = TM.getTargetLowering(); 62 63 Fn = &fn; 64 MF = &mf; 65 RegInfo = &MF->getRegInfo(); 66 67 // Check whether the function can return without sret-demotion. 68 SmallVector<ISD::OutputArg, 4> Outs; 69 GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI); 70 CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF, 71 Fn->isVarArg(), 72 Outs, Fn->getContext()); 73 74 // Initialize the mapping of values to registers. This is only set up for 75 // instruction values that are used outside of the block that defines 76 // them. 77 Function::const_iterator BB = Fn->begin(), EB = Fn->end(); 78 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) 79 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) 80 if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) { 81 Type *Ty = AI->getAllocatedType(); 82 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 83 unsigned Align = 84 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 85 AI->getAlignment()); 86 87 TySize *= CUI->getZExtValue(); // Get total allocated size. 88 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 89 90 // The object may need to be placed onto the stack near the stack 91 // protector if one exists. Determine here if this object is a suitable 92 // candidate. I.e., it would trigger the creation of a stack protector. 93 bool MayNeedSP = 94 (AI->isArrayAllocation() || 95 (TySize >= 8 && isa<ArrayType>(Ty) && 96 cast<ArrayType>(Ty)->getElementType()->isIntegerTy(8))); 97 StaticAllocaMap[AI] = 98 MF->getFrameInfo()->CreateStackObject(TySize, Align, false, 99 MayNeedSP, AI); 100 } 101 102 for (; BB != EB; ++BB) 103 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 104 I != E; ++I) { 105 // Look for dynamic allocas. 106 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 107 if (!AI->isStaticAlloca()) { 108 unsigned Align = std::max( 109 (unsigned)TLI->getDataLayout()->getPrefTypeAlignment( 110 AI->getAllocatedType()), 111 AI->getAlignment()); 112 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 113 if (Align <= StackAlign) 114 Align = 0; 115 // Inform the Frame Information that we have variable-sized objects. 116 MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI); 117 } 118 } 119 120 // Look for inline asm that clobbers the SP register. 121 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 122 ImmutableCallSite CS(I); 123 if (const InlineAsm *IA = dyn_cast<InlineAsm>(CS.getCalledValue())) { 124 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 125 std::vector<TargetLowering::AsmOperandInfo> Ops = 126 TLI->ParseConstraints(CS); 127 for (size_t I = 0, E = Ops.size(); I != E; ++I) { 128 TargetLowering::AsmOperandInfo &Op = Ops[I]; 129 if (Op.Type == InlineAsm::isClobber) { 130 // Clobbers don't have SDValue operands, hence SDValue(). 131 TLI->ComputeConstraintToUse(Op, SDValue(), DAG); 132 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 133 TLI->getRegForInlineAsmConstraint(Op.ConstraintCode, 134 Op.ConstraintVT); 135 if (PhysReg.first == SP) 136 MF->getFrameInfo()->setHasInlineAsmWithSPAdjust(true); 137 } 138 } 139 } 140 } 141 142 // Mark values used outside their block as exported, by allocating 143 // a virtual register for them. 144 if (isUsedOutsideOfDefiningBlock(I)) 145 if (!isa<AllocaInst>(I) || 146 !StaticAllocaMap.count(cast<AllocaInst>(I))) 147 InitializeRegForValue(I); 148 149 // Collect llvm.dbg.declare information. This is done now instead of 150 // during the initial isel pass through the IR so that it is done 151 // in a predictable order. 152 if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) { 153 MachineModuleInfo &MMI = MF->getMMI(); 154 DIVariable DIVar(DI->getVariable()); 155 assert((!DIVar || DIVar.isVariable()) && 156 "Variable in DbgDeclareInst should be either null or a DIVariable."); 157 if (MMI.hasDebugInfo() && 158 DIVar && 159 !DI->getDebugLoc().isUnknown()) { 160 // Don't handle byval struct arguments or VLAs, for example. 161 // Non-byval arguments are handled here (they refer to the stack 162 // temporary alloca at this point). 163 const Value *Address = DI->getAddress(); 164 if (Address) { 165 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 166 Address = BCI->getOperand(0); 167 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 168 DenseMap<const AllocaInst *, int>::iterator SI = 169 StaticAllocaMap.find(AI); 170 if (SI != StaticAllocaMap.end()) { // Check for VLAs. 171 int FI = SI->second; 172 MMI.setVariableDbgInfo(DI->getVariable(), 173 FI, DI->getDebugLoc()); 174 } 175 } 176 } 177 } 178 } 179 } 180 181 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 182 // also creates the initial PHI MachineInstrs, though none of the input 183 // operands are populated. 184 for (BB = Fn->begin(); BB != EB; ++BB) { 185 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); 186 MBBMap[BB] = MBB; 187 MF->push_back(MBB); 188 189 // Transfer the address-taken flag. This is necessary because there could 190 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 191 // the first one should be marked. 192 if (BB->hasAddressTaken()) 193 MBB->setHasAddressTaken(); 194 195 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 196 // appropriate. 197 for (BasicBlock::const_iterator I = BB->begin(); 198 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 199 if (PN->use_empty()) continue; 200 201 // Skip empty types 202 if (PN->getType()->isEmptyTy()) 203 continue; 204 205 DebugLoc DL = PN->getDebugLoc(); 206 unsigned PHIReg = ValueMap[PN]; 207 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 208 209 SmallVector<EVT, 4> ValueVTs; 210 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 211 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 212 EVT VT = ValueVTs[vti]; 213 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 214 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 215 for (unsigned i = 0; i != NumRegisters; ++i) 216 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 217 PHIReg += NumRegisters; 218 } 219 } 220 } 221 222 // Mark landing pad blocks. 223 for (BB = Fn->begin(); BB != EB; ++BB) 224 if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator())) 225 MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); 226 } 227 228 /// clear - Clear out all the function-specific state. This returns this 229 /// FunctionLoweringInfo to an empty state, ready to be used for a 230 /// different function. 231 void FunctionLoweringInfo::clear() { 232 assert(CatchInfoFound.size() == CatchInfoLost.size() && 233 "Not all catch info was assigned to a landing pad!"); 234 235 MBBMap.clear(); 236 ValueMap.clear(); 237 StaticAllocaMap.clear(); 238 #ifndef NDEBUG 239 CatchInfoLost.clear(); 240 CatchInfoFound.clear(); 241 #endif 242 LiveOutRegInfo.clear(); 243 VisitedBBs.clear(); 244 ArgDbgValues.clear(); 245 ByValArgFrameIndexMap.clear(); 246 RegFixups.clear(); 247 } 248 249 /// CreateReg - Allocate a single virtual register for the given type. 250 unsigned FunctionLoweringInfo::CreateReg(MVT VT) { 251 return RegInfo-> 252 createVirtualRegister(TM.getTargetLowering()->getRegClassFor(VT)); 253 } 254 255 /// CreateRegs - Allocate the appropriate number of virtual registers of 256 /// the correctly promoted or expanded types. Assign these registers 257 /// consecutive vreg numbers and return the first assigned number. 258 /// 259 /// In the case that the given value has struct or array type, this function 260 /// will assign registers for each member or element. 261 /// 262 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) { 263 const TargetLowering *TLI = TM.getTargetLowering(); 264 265 SmallVector<EVT, 4> ValueVTs; 266 ComputeValueVTs(*TLI, Ty, ValueVTs); 267 268 unsigned FirstReg = 0; 269 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 270 EVT ValueVT = ValueVTs[Value]; 271 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); 272 273 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); 274 for (unsigned i = 0; i != NumRegs; ++i) { 275 unsigned R = CreateReg(RegisterVT); 276 if (!FirstReg) FirstReg = R; 277 } 278 } 279 return FirstReg; 280 } 281 282 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 283 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 284 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 285 /// the larger bit width by zero extension. The bit width must be no smaller 286 /// than the LiveOutInfo's existing bit width. 287 const FunctionLoweringInfo::LiveOutInfo * 288 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { 289 if (!LiveOutRegInfo.inBounds(Reg)) 290 return NULL; 291 292 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 293 if (!LOI->IsValid) 294 return NULL; 295 296 if (BitWidth > LOI->KnownZero.getBitWidth()) { 297 LOI->NumSignBits = 1; 298 LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth); 299 LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth); 300 } 301 302 return LOI; 303 } 304 305 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 306 /// register based on the LiveOutInfo of its operands. 307 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 308 Type *Ty = PN->getType(); 309 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 310 return; 311 312 const TargetLowering *TLI = TM.getTargetLowering(); 313 314 SmallVector<EVT, 1> ValueVTs; 315 ComputeValueVTs(*TLI, Ty, ValueVTs); 316 assert(ValueVTs.size() == 1 && 317 "PHIs with non-vector integer types should have a single VT."); 318 EVT IntVT = ValueVTs[0]; 319 320 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) 321 return; 322 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); 323 unsigned BitWidth = IntVT.getSizeInBits(); 324 325 unsigned DestReg = ValueMap[PN]; 326 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 327 return; 328 LiveOutRegInfo.grow(DestReg); 329 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 330 331 Value *V = PN->getIncomingValue(0); 332 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 333 DestLOI.NumSignBits = 1; 334 APInt Zero(BitWidth, 0); 335 DestLOI.KnownZero = Zero; 336 DestLOI.KnownOne = Zero; 337 return; 338 } 339 340 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 341 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 342 DestLOI.NumSignBits = Val.getNumSignBits(); 343 DestLOI.KnownZero = ~Val; 344 DestLOI.KnownOne = Val; 345 } else { 346 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 347 "CopyToReg node was created."); 348 unsigned SrcReg = ValueMap[V]; 349 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 350 DestLOI.IsValid = false; 351 return; 352 } 353 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 354 if (!SrcLOI) { 355 DestLOI.IsValid = false; 356 return; 357 } 358 DestLOI = *SrcLOI; 359 } 360 361 assert(DestLOI.KnownZero.getBitWidth() == BitWidth && 362 DestLOI.KnownOne.getBitWidth() == BitWidth && 363 "Masks should have the same bit width as the type."); 364 365 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 366 Value *V = PN->getIncomingValue(i); 367 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 368 DestLOI.NumSignBits = 1; 369 APInt Zero(BitWidth, 0); 370 DestLOI.KnownZero = Zero; 371 DestLOI.KnownOne = Zero; 372 return; 373 } 374 375 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 376 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 377 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 378 DestLOI.KnownZero &= ~Val; 379 DestLOI.KnownOne &= Val; 380 continue; 381 } 382 383 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 384 "its CopyToReg node was created."); 385 unsigned SrcReg = ValueMap[V]; 386 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 387 DestLOI.IsValid = false; 388 return; 389 } 390 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 391 if (!SrcLOI) { 392 DestLOI.IsValid = false; 393 return; 394 } 395 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 396 DestLOI.KnownZero &= SrcLOI->KnownZero; 397 DestLOI.KnownOne &= SrcLOI->KnownOne; 398 } 399 } 400 401 /// setArgumentFrameIndex - Record frame index for the byval 402 /// argument. This overrides previous frame index entry for this argument, 403 /// if any. 404 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, 405 int FI) { 406 ByValArgFrameIndexMap[A] = FI; 407 } 408 409 /// getArgumentFrameIndex - Get frame index for the byval argument. 410 /// If the argument does not have any assigned frame index then 0 is 411 /// returned. 412 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { 413 DenseMap<const Argument *, int>::iterator I = 414 ByValArgFrameIndexMap.find(A); 415 if (I != ByValArgFrameIndexMap.end()) 416 return I->second; 417 DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); 418 return 0; 419 } 420 421 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are 422 /// being passed to this variadic function, and set the MachineModuleInfo's 423 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined 424 /// reference to _fltused on Windows, which will link in MSVCRT's 425 /// floating-point support. 426 void llvm::ComputeUsesVAFloatArgument(const CallInst &I, 427 MachineModuleInfo *MMI) 428 { 429 FunctionType *FT = cast<FunctionType>( 430 I.getCalledValue()->getType()->getContainedType(0)); 431 if (FT->isVarArg() && !MMI->usesVAFloatArgument()) { 432 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 433 Type* T = I.getArgOperand(i)->getType(); 434 for (po_iterator<Type*> i = po_begin(T), e = po_end(T); 435 i != e; ++i) { 436 if (i->isFloatingPointTy()) { 437 MMI->setUsesVAFloatArgument(true); 438 return; 439 } 440 } 441 } 442 } 443 } 444 445 /// AddCatchInfo - Extract the personality and type infos from an eh.selector 446 /// call, and add them to the specified machine basic block. 447 void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI, 448 MachineBasicBlock *MBB) { 449 // Inform the MachineModuleInfo of the personality for this landing pad. 450 const ConstantExpr *CE = cast<ConstantExpr>(I.getArgOperand(1)); 451 assert(CE->getOpcode() == Instruction::BitCast && 452 isa<Function>(CE->getOperand(0)) && 453 "Personality should be a function"); 454 MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0))); 455 456 // Gather all the type infos for this landing pad and pass them along to 457 // MachineModuleInfo. 458 std::vector<const GlobalVariable *> TyInfo; 459 unsigned N = I.getNumArgOperands(); 460 461 for (unsigned i = N - 1; i > 1; --i) { 462 if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(i))) { 463 unsigned FilterLength = CI->getZExtValue(); 464 unsigned FirstCatch = i + FilterLength + !FilterLength; 465 assert(FirstCatch <= N && "Invalid filter length"); 466 467 if (FirstCatch < N) { 468 TyInfo.reserve(N - FirstCatch); 469 for (unsigned j = FirstCatch; j < N; ++j) 470 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 471 MMI->addCatchTypeInfo(MBB, TyInfo); 472 TyInfo.clear(); 473 } 474 475 if (!FilterLength) { 476 // Cleanup. 477 MMI->addCleanup(MBB); 478 } else { 479 // Filter. 480 TyInfo.reserve(FilterLength - 1); 481 for (unsigned j = i + 1; j < FirstCatch; ++j) 482 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 483 MMI->addFilterTypeInfo(MBB, TyInfo); 484 TyInfo.clear(); 485 } 486 487 N = i; 488 } 489 } 490 491 if (N > 2) { 492 TyInfo.reserve(N - 2); 493 for (unsigned j = 2; j < N; ++j) 494 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 495 MMI->addCatchTypeInfo(MBB, TyInfo); 496 } 497 } 498 499 /// AddLandingPadInfo - Extract the exception handling information from the 500 /// landingpad instruction and add them to the specified machine module info. 501 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI, 502 MachineBasicBlock *MBB) { 503 MMI.addPersonality(MBB, 504 cast<Function>(I.getPersonalityFn()->stripPointerCasts())); 505 506 if (I.isCleanup()) 507 MMI.addCleanup(MBB); 508 509 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct, 510 // but we need to do it this way because of how the DWARF EH emitter 511 // processes the clauses. 512 for (unsigned i = I.getNumClauses(); i != 0; --i) { 513 Value *Val = I.getClause(i - 1); 514 if (I.isCatch(i - 1)) { 515 MMI.addCatchTypeInfo(MBB, 516 dyn_cast<GlobalVariable>(Val->stripPointerCasts())); 517 } else { 518 // Add filters in a list. 519 Constant *CVal = cast<Constant>(Val); 520 SmallVector<const GlobalVariable*, 4> FilterList; 521 for (User::op_iterator 522 II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) 523 FilterList.push_back(cast<GlobalVariable>((*II)->stripPointerCasts())); 524 525 MMI.addFilterTypeInfo(MBB, FilterList); 526 } 527 } 528 } 529