1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the FastISel class. 11 // 12 // "Fast" instruction selection is designed to emit very poor code quickly. 13 // Also, it is not designed to be able to do much lowering, so most illegal 14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15 // also not intended to be able to do much optimization, except in a few cases 16 // where doing optimizations reduces overall compile time. For example, folding 17 // constants into immediate fields is often done, because it's cheap and it 18 // reduces the number of instructions later phases have to examine. 19 // 20 // "Fast" instruction selection is able to fail gracefully and transfer 21 // control to the SelectionDAG selector for operations that it doesn't 22 // support. In many cases, this allows us to avoid duplicating a lot of 23 // the complicated lowering logic that SelectionDAG currently has. 24 // 25 // The intended use for "fast" instruction selection is "-O0" mode 26 // compilation, where the quality of the generated code is irrelevant when 27 // weighed against the speed at which the code can be generated. Also, 28 // at -O0, the LLVM optimizers are not running, and this makes the 29 // compile time of codegen a much higher portion of the overall compile 30 // time. Despite its limitations, "fast" instruction selection is able to 31 // handle enough code on its own to provide noticeable overall speedups 32 // in -O0 compiles. 33 // 34 // Basic operations are supported in a target-independent way, by reading 35 // the same instruction descriptions that the SelectionDAG selector reads, 36 // and identifying simple arithmetic operations that can be directly selected 37 // from simple operators. More complicated operations currently require 38 // target-specific code. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/CodeGen/FastISel.h" 43 #include "llvm/ADT/APFloat.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/DenseMap.h" 46 #include "llvm/ADT/Optional.h" 47 #include "llvm/ADT/SmallPtrSet.h" 48 #include "llvm/ADT/SmallString.h" 49 #include "llvm/ADT/SmallVector.h" 50 #include "llvm/ADT/Statistic.h" 51 #include "llvm/Analysis/BranchProbabilityInfo.h" 52 #include "llvm/Analysis/TargetLibraryInfo.h" 53 #include "llvm/CodeGen/Analysis.h" 54 #include "llvm/CodeGen/FunctionLoweringInfo.h" 55 #include "llvm/CodeGen/ISDOpcodes.h" 56 #include "llvm/CodeGen/MachineBasicBlock.h" 57 #include "llvm/CodeGen/MachineFrameInfo.h" 58 #include "llvm/CodeGen/MachineInstr.h" 59 #include "llvm/CodeGen/MachineInstrBuilder.h" 60 #include "llvm/CodeGen/MachineMemOperand.h" 61 #include "llvm/CodeGen/MachineModuleInfo.h" 62 #include "llvm/CodeGen/MachineOperand.h" 63 #include "llvm/CodeGen/MachineRegisterInfo.h" 64 #include "llvm/CodeGen/StackMaps.h" 65 #include "llvm/CodeGen/TargetInstrInfo.h" 66 #include "llvm/CodeGen/TargetLowering.h" 67 #include "llvm/CodeGen/TargetSubtargetInfo.h" 68 #include "llvm/CodeGen/ValueTypes.h" 69 #include "llvm/IR/Argument.h" 70 #include "llvm/IR/Attributes.h" 71 #include "llvm/IR/BasicBlock.h" 72 #include "llvm/IR/CallSite.h" 73 #include "llvm/IR/CallingConv.h" 74 #include "llvm/IR/Constant.h" 75 #include "llvm/IR/Constants.h" 76 #include "llvm/IR/DataLayout.h" 77 #include "llvm/IR/DebugInfo.h" 78 #include "llvm/IR/DebugLoc.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/Function.h" 81 #include "llvm/IR/GetElementPtrTypeIterator.h" 82 #include "llvm/IR/GlobalValue.h" 83 #include "llvm/IR/InlineAsm.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/LLVMContext.h" 89 #include "llvm/IR/Mangler.h" 90 #include "llvm/IR/Metadata.h" 91 #include "llvm/IR/Operator.h" 92 #include "llvm/IR/PatternMatch.h" 93 #include "llvm/IR/Type.h" 94 #include "llvm/IR/User.h" 95 #include "llvm/IR/Value.h" 96 #include "llvm/MC/MCContext.h" 97 #include "llvm/MC/MCInstrDesc.h" 98 #include "llvm/MC/MCRegisterInfo.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/Debug.h" 101 #include "llvm/Support/ErrorHandling.h" 102 #include "llvm/Support/MachineValueType.h" 103 #include "llvm/Support/MathExtras.h" 104 #include "llvm/Support/raw_ostream.h" 105 #include "llvm/Target/TargetMachine.h" 106 #include "llvm/Target/TargetOptions.h" 107 #include <algorithm> 108 #include <cassert> 109 #include <cstdint> 110 #include <iterator> 111 #include <utility> 112 113 using namespace llvm; 114 using namespace PatternMatch; 115 116 #define DEBUG_TYPE "isel" 117 118 // FIXME: Remove this after the feature has proven reliable. 119 static cl::opt<bool> SinkLocalValues("fast-isel-sink-local-values", 120 cl::init(true), cl::Hidden, 121 cl::desc("Sink local values in FastISel")); 122 123 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 124 "target-independent selector"); 125 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 126 "target-specific selector"); 127 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 128 129 /// Set the current block to which generated machine instructions will be 130 /// appended. 131 void FastISel::startNewBlock() { 132 assert(LocalValueMap.empty() && 133 "local values should be cleared after finishing a BB"); 134 135 // Instructions are appended to FuncInfo.MBB. If the basic block already 136 // contains labels or copies, use the last instruction as the last local 137 // value. 138 EmitStartPt = nullptr; 139 if (!FuncInfo.MBB->empty()) 140 EmitStartPt = &FuncInfo.MBB->back(); 141 LastLocalValue = EmitStartPt; 142 } 143 144 /// Flush the local CSE map and sink anything we can. 145 void FastISel::finishBasicBlock() { flushLocalValueMap(); } 146 147 bool FastISel::lowerArguments() { 148 if (!FuncInfo.CanLowerReturn) 149 // Fallback to SDISel argument lowering code to deal with sret pointer 150 // parameter. 151 return false; 152 153 if (!fastLowerArguments()) 154 return false; 155 156 // Enter arguments into ValueMap for uses in non-entry BBs. 157 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 158 E = FuncInfo.Fn->arg_end(); 159 I != E; ++I) { 160 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I); 161 assert(VI != LocalValueMap.end() && "Missed an argument?"); 162 FuncInfo.ValueMap[&*I] = VI->second; 163 } 164 return true; 165 } 166 167 /// Return the defined register if this instruction defines exactly one 168 /// virtual register and uses no other virtual registers. Otherwise return 0. 169 static unsigned findSinkableLocalRegDef(MachineInstr &MI) { 170 unsigned RegDef = 0; 171 for (const MachineOperand &MO : MI.operands()) { 172 if (!MO.isReg()) 173 continue; 174 if (MO.isDef()) { 175 if (RegDef) 176 return 0; 177 RegDef = MO.getReg(); 178 } else if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 179 // This is another use of a vreg. Don't try to sink it. 180 return 0; 181 } 182 } 183 return RegDef; 184 } 185 186 void FastISel::flushLocalValueMap() { 187 // Try to sink local values down to their first use so that we can give them a 188 // better debug location. This has the side effect of shrinking local value 189 // live ranges, which helps out fast regalloc. 190 if (SinkLocalValues && LastLocalValue != EmitStartPt) { 191 // Sink local value materialization instructions between EmitStartPt and 192 // LastLocalValue. Visit them bottom-up, starting from LastLocalValue, to 193 // avoid inserting into the range that we're iterating over. 194 MachineBasicBlock::reverse_iterator RE = 195 EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt) 196 : FuncInfo.MBB->rend(); 197 MachineBasicBlock::reverse_iterator RI(LastLocalValue); 198 199 InstOrderMap OrderMap; 200 for (; RI != RE;) { 201 MachineInstr &LocalMI = *RI; 202 ++RI; 203 bool Store = true; 204 if (!LocalMI.isSafeToMove(nullptr, Store)) 205 continue; 206 unsigned DefReg = findSinkableLocalRegDef(LocalMI); 207 if (DefReg == 0) 208 continue; 209 210 sinkLocalValueMaterialization(LocalMI, DefReg, OrderMap); 211 } 212 } 213 214 LocalValueMap.clear(); 215 LastLocalValue = EmitStartPt; 216 recomputeInsertPt(); 217 SavedInsertPt = FuncInfo.InsertPt; 218 LastFlushPoint = FuncInfo.InsertPt; 219 } 220 221 static bool isRegUsedByPhiNodes(unsigned DefReg, 222 FunctionLoweringInfo &FuncInfo) { 223 for (auto &P : FuncInfo.PHINodesToUpdate) 224 if (P.second == DefReg) 225 return true; 226 return false; 227 } 228 229 /// Build a map of instruction orders. Return the first terminator and its 230 /// order. Consider EH_LABEL instructions to be terminators as well, since local 231 /// values for phis after invokes must be materialized before the call. 232 void FastISel::InstOrderMap::initialize( 233 MachineBasicBlock *MBB, MachineBasicBlock::iterator LastFlushPoint) { 234 unsigned Order = 0; 235 for (MachineInstr &I : *MBB) { 236 if (!FirstTerminator && 237 (I.isTerminator() || (I.isEHLabel() && &I != &MBB->front()))) { 238 FirstTerminator = &I; 239 FirstTerminatorOrder = Order; 240 } 241 Orders[&I] = Order++; 242 243 // We don't need to order instructions past the last flush point. 244 if (I.getIterator() == LastFlushPoint) 245 break; 246 } 247 } 248 249 void FastISel::sinkLocalValueMaterialization(MachineInstr &LocalMI, 250 unsigned DefReg, 251 InstOrderMap &OrderMap) { 252 // If this register is used by a register fixup, MRI will not contain all 253 // the uses until after register fixups, so don't attempt to sink or DCE 254 // this instruction. Register fixups typically come from no-op cast 255 // instructions, which replace the cast instruction vreg with the local 256 // value vreg. 257 if (FuncInfo.RegsWithFixups.count(DefReg)) 258 return; 259 260 // We can DCE this instruction if there are no uses and it wasn't a 261 // materialized for a successor PHI node. 262 bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo); 263 if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) { 264 if (EmitStartPt == &LocalMI) 265 EmitStartPt = EmitStartPt->getPrevNode(); 266 LLVM_DEBUG(dbgs() << "removing dead local value materialization " 267 << LocalMI); 268 OrderMap.Orders.erase(&LocalMI); 269 LocalMI.eraseFromParent(); 270 return; 271 } 272 273 // Number the instructions if we haven't yet so we can efficiently find the 274 // earliest use. 275 if (OrderMap.Orders.empty()) 276 OrderMap.initialize(FuncInfo.MBB, LastFlushPoint); 277 278 // Find the first user in the BB. 279 MachineInstr *FirstUser = nullptr; 280 unsigned FirstOrder = std::numeric_limits<unsigned>::max(); 281 for (MachineInstr &UseInst : MRI.use_nodbg_instructions(DefReg)) { 282 auto I = OrderMap.Orders.find(&UseInst); 283 assert(I != OrderMap.Orders.end() && 284 "local value used by instruction outside local region"); 285 unsigned UseOrder = I->second; 286 if (UseOrder < FirstOrder) { 287 FirstOrder = UseOrder; 288 FirstUser = &UseInst; 289 } 290 } 291 292 // The insertion point will be the first terminator or the first user, 293 // whichever came first. If there was no terminator, this must be a 294 // fallthrough block and the insertion point is the end of the block. 295 MachineBasicBlock::instr_iterator SinkPos; 296 if (UsedByPHI && OrderMap.FirstTerminatorOrder < FirstOrder) { 297 FirstOrder = OrderMap.FirstTerminatorOrder; 298 SinkPos = OrderMap.FirstTerminator->getIterator(); 299 } else if (FirstUser) { 300 SinkPos = FirstUser->getIterator(); 301 } else { 302 assert(UsedByPHI && "must be users if not used by a phi"); 303 SinkPos = FuncInfo.MBB->instr_end(); 304 } 305 306 // Collect all DBG_VALUEs before the new insertion position so that we can 307 // sink them. 308 SmallVector<MachineInstr *, 1> DbgValues; 309 for (MachineInstr &DbgVal : MRI.use_instructions(DefReg)) { 310 if (!DbgVal.isDebugValue()) 311 continue; 312 unsigned UseOrder = OrderMap.Orders[&DbgVal]; 313 if (UseOrder < FirstOrder) 314 DbgValues.push_back(&DbgVal); 315 } 316 317 // Sink LocalMI before SinkPos and assign it the same DebugLoc. 318 LLVM_DEBUG(dbgs() << "sinking local value to first use " << LocalMI); 319 FuncInfo.MBB->remove(&LocalMI); 320 FuncInfo.MBB->insert(SinkPos, &LocalMI); 321 if (SinkPos != FuncInfo.MBB->end()) 322 LocalMI.setDebugLoc(SinkPos->getDebugLoc()); 323 324 // Sink any debug values that we've collected. 325 for (MachineInstr *DI : DbgValues) { 326 FuncInfo.MBB->remove(DI); 327 FuncInfo.MBB->insert(SinkPos, DI); 328 } 329 } 330 331 bool FastISel::hasTrivialKill(const Value *V) { 332 // Don't consider constants or arguments to have trivial kills. 333 const Instruction *I = dyn_cast<Instruction>(V); 334 if (!I) 335 return false; 336 337 // No-op casts are trivially coalesced by fast-isel. 338 if (const auto *Cast = dyn_cast<CastInst>(I)) 339 if (Cast->isNoopCast(DL) && !hasTrivialKill(Cast->getOperand(0))) 340 return false; 341 342 // Even the value might have only one use in the LLVM IR, it is possible that 343 // FastISel might fold the use into another instruction and now there is more 344 // than one use at the Machine Instruction level. 345 unsigned Reg = lookUpRegForValue(V); 346 if (Reg && !MRI.use_empty(Reg)) 347 return false; 348 349 // GEPs with all zero indices are trivially coalesced by fast-isel. 350 if (const auto *GEP = dyn_cast<GetElementPtrInst>(I)) 351 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 352 return false; 353 354 // Only instructions with a single use in the same basic block are considered 355 // to have trivial kills. 356 return I->hasOneUse() && 357 !(I->getOpcode() == Instruction::BitCast || 358 I->getOpcode() == Instruction::PtrToInt || 359 I->getOpcode() == Instruction::IntToPtr) && 360 cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); 361 } 362 363 unsigned FastISel::getRegForValue(const Value *V) { 364 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); 365 // Don't handle non-simple values in FastISel. 366 if (!RealVT.isSimple()) 367 return 0; 368 369 // Ignore illegal types. We must do this before looking up the value 370 // in ValueMap because Arguments are given virtual registers regardless 371 // of whether FastISel can handle them. 372 MVT VT = RealVT.getSimpleVT(); 373 if (!TLI.isTypeLegal(VT)) { 374 // Handle integer promotions, though, because they're common and easy. 375 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 376 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 377 else 378 return 0; 379 } 380 381 // Look up the value to see if we already have a register for it. 382 unsigned Reg = lookUpRegForValue(V); 383 if (Reg) 384 return Reg; 385 386 // In bottom-up mode, just create the virtual register which will be used 387 // to hold the value. It will be materialized later. 388 if (isa<Instruction>(V) && 389 (!isa<AllocaInst>(V) || 390 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 391 return FuncInfo.InitializeRegForValue(V); 392 393 SavePoint SaveInsertPt = enterLocalValueArea(); 394 395 // Materialize the value in a register. Emit any instructions in the 396 // local value area. 397 Reg = materializeRegForValue(V, VT); 398 399 leaveLocalValueArea(SaveInsertPt); 400 401 return Reg; 402 } 403 404 unsigned FastISel::materializeConstant(const Value *V, MVT VT) { 405 unsigned Reg = 0; 406 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 407 if (CI->getValue().getActiveBits() <= 64) 408 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 409 } else if (isa<AllocaInst>(V)) 410 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 411 else if (isa<ConstantPointerNull>(V)) 412 // Translate this as an integer zero so that it can be 413 // local-CSE'd with actual integer zeros. 414 Reg = getRegForValue( 415 Constant::getNullValue(DL.getIntPtrType(V->getContext()))); 416 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 417 if (CF->isNullValue()) 418 Reg = fastMaterializeFloatZero(CF); 419 else 420 // Try to emit the constant directly. 421 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 422 423 if (!Reg) { 424 // Try to emit the constant by using an integer constant with a cast. 425 const APFloat &Flt = CF->getValueAPF(); 426 EVT IntVT = TLI.getPointerTy(DL); 427 uint32_t IntBitWidth = IntVT.getSizeInBits(); 428 APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false); 429 bool isExact; 430 (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact); 431 if (isExact) { 432 unsigned IntegerReg = 433 getRegForValue(ConstantInt::get(V->getContext(), SIntVal)); 434 if (IntegerReg != 0) 435 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg, 436 /*Kill=*/false); 437 } 438 } 439 } else if (const auto *Op = dyn_cast<Operator>(V)) { 440 if (!selectOperator(Op, Op->getOpcode())) 441 if (!isa<Instruction>(Op) || 442 !fastSelectInstruction(cast<Instruction>(Op))) 443 return 0; 444 Reg = lookUpRegForValue(Op); 445 } else if (isa<UndefValue>(V)) { 446 Reg = createResultReg(TLI.getRegClassFor(VT)); 447 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 448 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 449 } 450 return Reg; 451 } 452 453 /// Helper for getRegForValue. This function is called when the value isn't 454 /// already available in a register and must be materialized with new 455 /// instructions. 456 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 457 unsigned Reg = 0; 458 // Give the target-specific code a try first. 459 if (isa<Constant>(V)) 460 Reg = fastMaterializeConstant(cast<Constant>(V)); 461 462 // If target-specific code couldn't or didn't want to handle the value, then 463 // give target-independent code a try. 464 if (!Reg) 465 Reg = materializeConstant(V, VT); 466 467 // Don't cache constant materializations in the general ValueMap. 468 // To do so would require tracking what uses they dominate. 469 if (Reg) { 470 LocalValueMap[V] = Reg; 471 LastLocalValue = MRI.getVRegDef(Reg); 472 } 473 return Reg; 474 } 475 476 unsigned FastISel::lookUpRegForValue(const Value *V) { 477 // Look up the value to see if we already have a register for it. We 478 // cache values defined by Instructions across blocks, and other values 479 // only locally. This is because Instructions already have the SSA 480 // def-dominates-use requirement enforced. 481 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 482 if (I != FuncInfo.ValueMap.end()) 483 return I->second; 484 return LocalValueMap[V]; 485 } 486 487 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 488 if (!isa<Instruction>(I)) { 489 LocalValueMap[I] = Reg; 490 return; 491 } 492 493 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 494 if (AssignedReg == 0) 495 // Use the new register. 496 AssignedReg = Reg; 497 else if (Reg != AssignedReg) { 498 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 499 for (unsigned i = 0; i < NumRegs; i++) { 500 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 501 FuncInfo.RegsWithFixups.insert(Reg + i); 502 } 503 504 AssignedReg = Reg; 505 } 506 } 507 508 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 509 unsigned IdxN = getRegForValue(Idx); 510 if (IdxN == 0) 511 // Unhandled operand. Halt "fast" selection and bail. 512 return std::pair<unsigned, bool>(0, false); 513 514 bool IdxNIsKill = hasTrivialKill(Idx); 515 516 // If the index is smaller or larger than intptr_t, truncate or extend it. 517 MVT PtrVT = TLI.getPointerTy(DL); 518 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 519 if (IdxVT.bitsLT(PtrVT)) { 520 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN, 521 IdxNIsKill); 522 IdxNIsKill = true; 523 } else if (IdxVT.bitsGT(PtrVT)) { 524 IdxN = 525 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill); 526 IdxNIsKill = true; 527 } 528 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 529 } 530 531 void FastISel::recomputeInsertPt() { 532 if (getLastLocalValue()) { 533 FuncInfo.InsertPt = getLastLocalValue(); 534 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 535 ++FuncInfo.InsertPt; 536 } else 537 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 538 539 // Now skip past any EH_LABELs, which must remain at the beginning. 540 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 541 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 542 ++FuncInfo.InsertPt; 543 } 544 545 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 546 MachineBasicBlock::iterator E) { 547 assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 && 548 "Invalid iterator!"); 549 while (I != E) { 550 if (LastFlushPoint == I) 551 LastFlushPoint = E; 552 if (SavedInsertPt == I) 553 SavedInsertPt = E; 554 if (EmitStartPt == I) 555 EmitStartPt = E.isValid() ? &*E : nullptr; 556 if (LastLocalValue == I) 557 LastLocalValue = E.isValid() ? &*E : nullptr; 558 559 MachineInstr *Dead = &*I; 560 ++I; 561 Dead->eraseFromParent(); 562 ++NumFastIselDead; 563 } 564 recomputeInsertPt(); 565 } 566 567 FastISel::SavePoint FastISel::enterLocalValueArea() { 568 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 569 DebugLoc OldDL = DbgLoc; 570 recomputeInsertPt(); 571 DbgLoc = DebugLoc(); 572 SavePoint SP = {OldInsertPt, OldDL}; 573 return SP; 574 } 575 576 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 577 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 578 LastLocalValue = &*std::prev(FuncInfo.InsertPt); 579 580 // Restore the previous insert position. 581 FuncInfo.InsertPt = OldInsertPt.InsertPt; 582 DbgLoc = OldInsertPt.DL; 583 } 584 585 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 586 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 587 if (VT == MVT::Other || !VT.isSimple()) 588 // Unhandled type. Halt "fast" selection and bail. 589 return false; 590 591 // We only handle legal types. For example, on x86-32 the instruction 592 // selector contains all of the 64-bit instructions from x86-64, 593 // under the assumption that i64 won't be used if the target doesn't 594 // support it. 595 if (!TLI.isTypeLegal(VT)) { 596 // MVT::i1 is special. Allow AND, OR, or XOR because they 597 // don't require additional zeroing, which makes them easy. 598 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 599 ISDOpcode == ISD::XOR)) 600 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 601 else 602 return false; 603 } 604 605 // Check if the first operand is a constant, and handle it as "ri". At -O0, 606 // we don't have anything that canonicalizes operand order. 607 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 608 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 609 unsigned Op1 = getRegForValue(I->getOperand(1)); 610 if (!Op1) 611 return false; 612 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 613 614 unsigned ResultReg = 615 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill, 616 CI->getZExtValue(), VT.getSimpleVT()); 617 if (!ResultReg) 618 return false; 619 620 // We successfully emitted code for the given LLVM Instruction. 621 updateValueMap(I, ResultReg); 622 return true; 623 } 624 625 unsigned Op0 = getRegForValue(I->getOperand(0)); 626 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 627 return false; 628 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 629 630 // Check if the second operand is a constant and handle it appropriately. 631 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 632 uint64_t Imm = CI->getSExtValue(); 633 634 // Transform "sdiv exact X, 8" -> "sra X, 3". 635 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 636 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 637 Imm = Log2_64(Imm); 638 ISDOpcode = ISD::SRA; 639 } 640 641 // Transform "urem x, pow2" -> "and x, pow2-1". 642 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 643 isPowerOf2_64(Imm)) { 644 --Imm; 645 ISDOpcode = ISD::AND; 646 } 647 648 unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 649 Op0IsKill, Imm, VT.getSimpleVT()); 650 if (!ResultReg) 651 return false; 652 653 // We successfully emitted code for the given LLVM Instruction. 654 updateValueMap(I, ResultReg); 655 return true; 656 } 657 658 unsigned Op1 = getRegForValue(I->getOperand(1)); 659 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 660 return false; 661 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 662 663 // Now we have both operands in registers. Emit the instruction. 664 unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 665 ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill); 666 if (!ResultReg) 667 // Target-specific code wasn't able to find a machine opcode for 668 // the given ISD opcode and type. Halt "fast" selection and bail. 669 return false; 670 671 // We successfully emitted code for the given LLVM Instruction. 672 updateValueMap(I, ResultReg); 673 return true; 674 } 675 676 bool FastISel::selectGetElementPtr(const User *I) { 677 unsigned N = getRegForValue(I->getOperand(0)); 678 if (!N) // Unhandled operand. Halt "fast" selection and bail. 679 return false; 680 bool NIsKill = hasTrivialKill(I->getOperand(0)); 681 682 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 683 // into a single N = N + TotalOffset. 684 uint64_t TotalOffs = 0; 685 // FIXME: What's a good SWAG number for MaxOffs? 686 uint64_t MaxOffs = 2048; 687 MVT VT = TLI.getPointerTy(DL); 688 for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); 689 GTI != E; ++GTI) { 690 const Value *Idx = GTI.getOperand(); 691 if (StructType *StTy = GTI.getStructTypeOrNull()) { 692 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); 693 if (Field) { 694 // N = N + Offset 695 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 696 if (TotalOffs >= MaxOffs) { 697 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 698 if (!N) // Unhandled operand. Halt "fast" selection and bail. 699 return false; 700 NIsKill = true; 701 TotalOffs = 0; 702 } 703 } 704 } else { 705 Type *Ty = GTI.getIndexedType(); 706 707 // If this is a constant subscript, handle it quickly. 708 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 709 if (CI->isZero()) 710 continue; 711 // N = N + Offset 712 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); 713 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN; 714 if (TotalOffs >= MaxOffs) { 715 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 716 if (!N) // Unhandled operand. Halt "fast" selection and bail. 717 return false; 718 NIsKill = true; 719 TotalOffs = 0; 720 } 721 continue; 722 } 723 if (TotalOffs) { 724 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 725 if (!N) // Unhandled operand. Halt "fast" selection and bail. 726 return false; 727 NIsKill = true; 728 TotalOffs = 0; 729 } 730 731 // N = N + Idx * ElementSize; 732 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 733 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 734 unsigned IdxN = Pair.first; 735 bool IdxNIsKill = Pair.second; 736 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 737 return false; 738 739 if (ElementSize != 1) { 740 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 741 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 742 return false; 743 IdxNIsKill = true; 744 } 745 N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 746 if (!N) // Unhandled operand. Halt "fast" selection and bail. 747 return false; 748 } 749 } 750 if (TotalOffs) { 751 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 752 if (!N) // Unhandled operand. Halt "fast" selection and bail. 753 return false; 754 } 755 756 // We successfully emitted code for the given LLVM Instruction. 757 updateValueMap(I, N); 758 return true; 759 } 760 761 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 762 const CallInst *CI, unsigned StartIdx) { 763 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 764 Value *Val = CI->getArgOperand(i); 765 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 766 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 767 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 768 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 769 } else if (isa<ConstantPointerNull>(Val)) { 770 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 771 Ops.push_back(MachineOperand::CreateImm(0)); 772 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 773 // Values coming from a stack location also require a special encoding, 774 // but that is added later on by the target specific frame index 775 // elimination implementation. 776 auto SI = FuncInfo.StaticAllocaMap.find(AI); 777 if (SI != FuncInfo.StaticAllocaMap.end()) 778 Ops.push_back(MachineOperand::CreateFI(SI->second)); 779 else 780 return false; 781 } else { 782 unsigned Reg = getRegForValue(Val); 783 if (!Reg) 784 return false; 785 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 786 } 787 } 788 return true; 789 } 790 791 bool FastISel::selectStackmap(const CallInst *I) { 792 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 793 // [live variables...]) 794 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 795 "Stackmap cannot return a value."); 796 797 // The stackmap intrinsic only records the live variables (the arguments 798 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 799 // intrinsic, this won't be lowered to a function call. This means we don't 800 // have to worry about calling conventions and target-specific lowering code. 801 // Instead we perform the call lowering right here. 802 // 803 // CALLSEQ_START(0, 0...) 804 // STACKMAP(id, nbytes, ...) 805 // CALLSEQ_END(0, 0) 806 // 807 SmallVector<MachineOperand, 32> Ops; 808 809 // Add the <id> and <numBytes> constants. 810 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 811 "Expected a constant integer."); 812 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 813 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 814 815 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 816 "Expected a constant integer."); 817 const auto *NumBytes = 818 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 819 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 820 821 // Push live variables for the stack map (skipping the first two arguments 822 // <id> and <numBytes>). 823 if (!addStackMapLiveVars(Ops, I, 2)) 824 return false; 825 826 // We are not adding any register mask info here, because the stackmap doesn't 827 // clobber anything. 828 829 // Add scratch registers as implicit def and early clobber. 830 CallingConv::ID CC = I->getCallingConv(); 831 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 832 for (unsigned i = 0; ScratchRegs[i]; ++i) 833 Ops.push_back(MachineOperand::CreateReg( 834 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 835 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 836 837 // Issue CALLSEQ_START 838 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 839 auto Builder = 840 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)); 841 const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); 842 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) 843 Builder.addImm(0); 844 845 // Issue STACKMAP. 846 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 847 TII.get(TargetOpcode::STACKMAP)); 848 for (auto const &MO : Ops) 849 MIB.add(MO); 850 851 // Issue CALLSEQ_END 852 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 853 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 854 .addImm(0) 855 .addImm(0); 856 857 // Inform the Frame Information that we have a stackmap in this function. 858 FuncInfo.MF->getFrameInfo().setHasStackMap(); 859 860 return true; 861 } 862 863 /// Lower an argument list according to the target calling convention. 864 /// 865 /// This is a helper for lowering intrinsics that follow a target calling 866 /// convention or require stack pointer adjustment. Only a subset of the 867 /// intrinsic's operands need to participate in the calling convention. 868 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 869 unsigned NumArgs, const Value *Callee, 870 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 871 ArgListTy Args; 872 Args.reserve(NumArgs); 873 874 // Populate the argument list. 875 ImmutableCallSite CS(CI); 876 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) { 877 Value *V = CI->getOperand(ArgI); 878 879 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 880 881 ArgListEntry Entry; 882 Entry.Val = V; 883 Entry.Ty = V->getType(); 884 Entry.setAttributes(&CS, ArgI); 885 Args.push_back(Entry); 886 } 887 888 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 889 : CI->getType(); 890 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 891 892 return lowerCallTo(CLI); 893 } 894 895 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( 896 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, 897 StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) { 898 SmallString<32> MangledName; 899 Mangler::getNameWithPrefix(MangledName, Target, DL); 900 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 901 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); 902 } 903 904 bool FastISel::selectPatchpoint(const CallInst *I) { 905 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 906 // i32 <numBytes>, 907 // i8* <target>, 908 // i32 <numArgs>, 909 // [Args...], 910 // [live variables...]) 911 CallingConv::ID CC = I->getCallingConv(); 912 bool IsAnyRegCC = CC == CallingConv::AnyReg; 913 bool HasDef = !I->getType()->isVoidTy(); 914 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); 915 916 // Get the real number of arguments participating in the call <numArgs> 917 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 918 "Expected a constant integer."); 919 const auto *NumArgsVal = 920 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 921 unsigned NumArgs = NumArgsVal->getZExtValue(); 922 923 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 924 // This includes all meta-operands up to but not including CC. 925 unsigned NumMetaOpers = PatchPointOpers::CCPos; 926 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 927 "Not enough arguments provided to the patchpoint intrinsic"); 928 929 // For AnyRegCC the arguments are lowered later on manually. 930 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 931 CallLoweringInfo CLI; 932 CLI.setIsPatchPoint(); 933 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 934 return false; 935 936 assert(CLI.Call && "No call instruction specified."); 937 938 SmallVector<MachineOperand, 32> Ops; 939 940 // Add an explicit result reg if we use the anyreg calling convention. 941 if (IsAnyRegCC && HasDef) { 942 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 943 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 944 CLI.NumResultRegs = 1; 945 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true)); 946 } 947 948 // Add the <id> and <numBytes> constants. 949 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 950 "Expected a constant integer."); 951 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 952 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 953 954 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 955 "Expected a constant integer."); 956 const auto *NumBytes = 957 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 958 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 959 960 // Add the call target. 961 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { 962 uint64_t CalleeConstAddr = 963 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 964 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 965 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 966 if (C->getOpcode() == Instruction::IntToPtr) { 967 uint64_t CalleeConstAddr = 968 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 969 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 970 } else 971 llvm_unreachable("Unsupported ConstantExpr."); 972 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { 973 Ops.push_back(MachineOperand::CreateGA(GV, 0)); 974 } else if (isa<ConstantPointerNull>(Callee)) 975 Ops.push_back(MachineOperand::CreateImm(0)); 976 else 977 llvm_unreachable("Unsupported callee address."); 978 979 // Adjust <numArgs> to account for any arguments that have been passed on 980 // the stack instead. 981 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 982 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 983 984 // Add the calling convention 985 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 986 987 // Add the arguments we omitted previously. The register allocator should 988 // place these in any free register. 989 if (IsAnyRegCC) { 990 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 991 unsigned Reg = getRegForValue(I->getArgOperand(i)); 992 if (!Reg) 993 return false; 994 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 995 } 996 } 997 998 // Push the arguments from the call instruction. 999 for (auto Reg : CLI.OutRegs) 1000 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 1001 1002 // Push live variables for the stack map. 1003 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 1004 return false; 1005 1006 // Push the register mask info. 1007 Ops.push_back(MachineOperand::CreateRegMask( 1008 TRI.getCallPreservedMask(*FuncInfo.MF, CC))); 1009 1010 // Add scratch registers as implicit def and early clobber. 1011 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 1012 for (unsigned i = 0; ScratchRegs[i]; ++i) 1013 Ops.push_back(MachineOperand::CreateReg( 1014 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 1015 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 1016 1017 // Add implicit defs (return values). 1018 for (auto Reg : CLI.InRegs) 1019 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true, 1020 /*IsImpl=*/true)); 1021 1022 // Insert the patchpoint instruction before the call generated by the target. 1023 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 1024 TII.get(TargetOpcode::PATCHPOINT)); 1025 1026 for (auto &MO : Ops) 1027 MIB.add(MO); 1028 1029 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1030 1031 // Delete the original call instruction. 1032 CLI.Call->eraseFromParent(); 1033 1034 // Inform the Frame Information that we have a patchpoint in this function. 1035 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 1036 1037 if (CLI.NumResultRegs) 1038 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 1039 return true; 1040 } 1041 1042 bool FastISel::selectXRayCustomEvent(const CallInst *I) { 1043 const auto &Triple = TM.getTargetTriple(); 1044 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 1045 return true; // don't do anything to this instruction. 1046 SmallVector<MachineOperand, 8> Ops; 1047 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 1048 /*IsDef=*/false)); 1049 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 1050 /*IsDef=*/false)); 1051 MachineInstrBuilder MIB = 1052 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1053 TII.get(TargetOpcode::PATCHABLE_EVENT_CALL)); 1054 for (auto &MO : Ops) 1055 MIB.add(MO); 1056 1057 // Insert the Patchable Event Call instruction, that gets lowered properly. 1058 return true; 1059 } 1060 1061 bool FastISel::selectXRayTypedEvent(const CallInst *I) { 1062 const auto &Triple = TM.getTargetTriple(); 1063 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 1064 return true; // don't do anything to this instruction. 1065 SmallVector<MachineOperand, 8> Ops; 1066 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 1067 /*IsDef=*/false)); 1068 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 1069 /*IsDef=*/false)); 1070 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)), 1071 /*IsDef=*/false)); 1072 MachineInstrBuilder MIB = 1073 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1074 TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL)); 1075 for (auto &MO : Ops) 1076 MIB.add(MO); 1077 1078 // Insert the Patchable Typed Event Call instruction, that gets lowered properly. 1079 return true; 1080 } 1081 1082 /// Returns an AttributeList representing the attributes applied to the return 1083 /// value of the given call. 1084 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 1085 SmallVector<Attribute::AttrKind, 2> Attrs; 1086 if (CLI.RetSExt) 1087 Attrs.push_back(Attribute::SExt); 1088 if (CLI.RetZExt) 1089 Attrs.push_back(Attribute::ZExt); 1090 if (CLI.IsInReg) 1091 Attrs.push_back(Attribute::InReg); 1092 1093 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 1094 Attrs); 1095 } 1096 1097 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 1098 unsigned NumArgs) { 1099 MCContext &Ctx = MF->getContext(); 1100 SmallString<32> MangledName; 1101 Mangler::getNameWithPrefix(MangledName, SymName, DL); 1102 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 1103 return lowerCallTo(CI, Sym, NumArgs); 1104 } 1105 1106 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, 1107 unsigned NumArgs) { 1108 ImmutableCallSite CS(CI); 1109 1110 FunctionType *FTy = CS.getFunctionType(); 1111 Type *RetTy = CS.getType(); 1112 1113 ArgListTy Args; 1114 Args.reserve(NumArgs); 1115 1116 // Populate the argument list. 1117 // Attributes for args start at offset 1, after the return attribute. 1118 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 1119 Value *V = CI->getOperand(ArgI); 1120 1121 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 1122 1123 ArgListEntry Entry; 1124 Entry.Val = V; 1125 Entry.Ty = V->getType(); 1126 Entry.setAttributes(&CS, ArgI); 1127 Args.push_back(Entry); 1128 } 1129 TLI.markLibCallAttributes(MF, CS.getCallingConv(), Args); 1130 1131 CallLoweringInfo CLI; 1132 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs); 1133 1134 return lowerCallTo(CLI); 1135 } 1136 1137 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 1138 // Handle the incoming return values from the call. 1139 CLI.clearIns(); 1140 SmallVector<EVT, 4> RetTys; 1141 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); 1142 1143 SmallVector<ISD::OutputArg, 4> Outs; 1144 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); 1145 1146 bool CanLowerReturn = TLI.CanLowerReturn( 1147 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 1148 1149 // FIXME: sret demotion isn't supported yet - bail out. 1150 if (!CanLowerReturn) 1151 return false; 1152 1153 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 1154 EVT VT = RetTys[I]; 1155 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 1156 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 1157 for (unsigned i = 0; i != NumRegs; ++i) { 1158 ISD::InputArg MyFlags; 1159 MyFlags.VT = RegisterVT; 1160 MyFlags.ArgVT = VT; 1161 MyFlags.Used = CLI.IsReturnValueUsed; 1162 if (CLI.RetSExt) 1163 MyFlags.Flags.setSExt(); 1164 if (CLI.RetZExt) 1165 MyFlags.Flags.setZExt(); 1166 if (CLI.IsInReg) 1167 MyFlags.Flags.setInReg(); 1168 CLI.Ins.push_back(MyFlags); 1169 } 1170 } 1171 1172 // Handle all of the outgoing arguments. 1173 CLI.clearOuts(); 1174 for (auto &Arg : CLI.getArgs()) { 1175 Type *FinalType = Arg.Ty; 1176 if (Arg.IsByVal) 1177 FinalType = cast<PointerType>(Arg.Ty)->getElementType(); 1178 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1179 FinalType, CLI.CallConv, CLI.IsVarArg); 1180 1181 ISD::ArgFlagsTy Flags; 1182 if (Arg.IsZExt) 1183 Flags.setZExt(); 1184 if (Arg.IsSExt) 1185 Flags.setSExt(); 1186 if (Arg.IsInReg) 1187 Flags.setInReg(); 1188 if (Arg.IsSRet) 1189 Flags.setSRet(); 1190 if (Arg.IsSwiftSelf) 1191 Flags.setSwiftSelf(); 1192 if (Arg.IsSwiftError) 1193 Flags.setSwiftError(); 1194 if (Arg.IsByVal) 1195 Flags.setByVal(); 1196 if (Arg.IsInAlloca) { 1197 Flags.setInAlloca(); 1198 // Set the byval flag for CCAssignFn callbacks that don't know about 1199 // inalloca. This way we can know how many bytes we should've allocated 1200 // and how many bytes a callee cleanup function will pop. If we port 1201 // inalloca to more targets, we'll have to add custom inalloca handling in 1202 // the various CC lowering callbacks. 1203 Flags.setByVal(); 1204 } 1205 if (Arg.IsByVal || Arg.IsInAlloca) { 1206 PointerType *Ty = cast<PointerType>(Arg.Ty); 1207 Type *ElementTy = Ty->getElementType(); 1208 unsigned FrameSize = DL.getTypeAllocSize(ElementTy); 1209 // For ByVal, alignment should come from FE. BE will guess if this info is 1210 // not there, but there are cases it cannot get right. 1211 unsigned FrameAlign = Arg.Alignment; 1212 if (!FrameAlign) 1213 FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL); 1214 Flags.setByValSize(FrameSize); 1215 Flags.setByValAlign(FrameAlign); 1216 } 1217 if (Arg.IsNest) 1218 Flags.setNest(); 1219 if (NeedsRegBlock) 1220 Flags.setInConsecutiveRegs(); 1221 unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty); 1222 Flags.setOrigAlign(OriginalAlignment); 1223 1224 CLI.OutVals.push_back(Arg.Val); 1225 CLI.OutFlags.push_back(Flags); 1226 } 1227 1228 if (!fastLowerCall(CLI)) 1229 return false; 1230 1231 // Set all unused physreg defs as dead. 1232 assert(CLI.Call && "No call instruction specified."); 1233 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1234 1235 if (CLI.NumResultRegs && CLI.CS) 1236 updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs); 1237 1238 return true; 1239 } 1240 1241 bool FastISel::lowerCall(const CallInst *CI) { 1242 ImmutableCallSite CS(CI); 1243 1244 FunctionType *FuncTy = CS.getFunctionType(); 1245 Type *RetTy = CS.getType(); 1246 1247 ArgListTy Args; 1248 ArgListEntry Entry; 1249 Args.reserve(CS.arg_size()); 1250 1251 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1252 i != e; ++i) { 1253 Value *V = *i; 1254 1255 // Skip empty types 1256 if (V->getType()->isEmptyTy()) 1257 continue; 1258 1259 Entry.Val = V; 1260 Entry.Ty = V->getType(); 1261 1262 // Skip the first return-type Attribute to get to params. 1263 Entry.setAttributes(&CS, i - CS.arg_begin()); 1264 Args.push_back(Entry); 1265 } 1266 1267 // Check if target-independent constraints permit a tail call here. 1268 // Target-dependent constraints are checked within fastLowerCall. 1269 bool IsTailCall = CI->isTailCall(); 1270 if (IsTailCall && !isInTailCallPosition(CS, TM)) 1271 IsTailCall = false; 1272 1273 CallLoweringInfo CLI; 1274 CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS) 1275 .setTailCall(IsTailCall); 1276 1277 return lowerCallTo(CLI); 1278 } 1279 1280 bool FastISel::selectCall(const User *I) { 1281 const CallInst *Call = cast<CallInst>(I); 1282 1283 // Handle simple inline asms. 1284 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 1285 // If the inline asm has side effects, then make sure that no local value 1286 // lives across by flushing the local value map. 1287 if (IA->hasSideEffects()) 1288 flushLocalValueMap(); 1289 1290 // Don't attempt to handle constraints. 1291 if (!IA->getConstraintString().empty()) 1292 return false; 1293 1294 unsigned ExtraInfo = 0; 1295 if (IA->hasSideEffects()) 1296 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1297 if (IA->isAlignStack()) 1298 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1299 1300 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1301 TII.get(TargetOpcode::INLINEASM)) 1302 .addExternalSymbol(IA->getAsmString().c_str()) 1303 .addImm(ExtraInfo); 1304 return true; 1305 } 1306 1307 MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); 1308 computeUsesVAFloatArgument(*Call, MMI); 1309 1310 // Handle intrinsic function calls. 1311 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1312 return selectIntrinsicCall(II); 1313 1314 // Usually, it does not make sense to initialize a value, 1315 // make an unrelated function call and use the value, because 1316 // it tends to be spilled on the stack. So, we move the pointer 1317 // to the last local value to the beginning of the block, so that 1318 // all the values which have already been materialized, 1319 // appear after the call. It also makes sense to skip intrinsics 1320 // since they tend to be inlined. 1321 flushLocalValueMap(); 1322 1323 return lowerCall(Call); 1324 } 1325 1326 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1327 switch (II->getIntrinsicID()) { 1328 default: 1329 break; 1330 // At -O0 we don't care about the lifetime intrinsics. 1331 case Intrinsic::lifetime_start: 1332 case Intrinsic::lifetime_end: 1333 // The donothing intrinsic does, well, nothing. 1334 case Intrinsic::donothing: 1335 // Neither does the sideeffect intrinsic. 1336 case Intrinsic::sideeffect: 1337 // Neither does the assume intrinsic; it's also OK not to codegen its operand. 1338 case Intrinsic::assume: 1339 return true; 1340 case Intrinsic::dbg_declare: { 1341 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1342 assert(DI->getVariable() && "Missing variable"); 1343 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1344 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1345 return true; 1346 } 1347 1348 const Value *Address = DI->getAddress(); 1349 if (!Address || isa<UndefValue>(Address)) { 1350 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1351 return true; 1352 } 1353 1354 // Byval arguments with frame indices were already handled after argument 1355 // lowering and before isel. 1356 const auto *Arg = 1357 dyn_cast<Argument>(Address->stripInBoundsConstantOffsets()); 1358 if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX) 1359 return true; 1360 1361 Optional<MachineOperand> Op; 1362 if (unsigned Reg = lookUpRegForValue(Address)) 1363 Op = MachineOperand::CreateReg(Reg, false); 1364 1365 // If we have a VLA that has a "use" in a metadata node that's then used 1366 // here but it has no other uses, then we have a problem. E.g., 1367 // 1368 // int foo (const int *x) { 1369 // char a[*x]; 1370 // return 0; 1371 // } 1372 // 1373 // If we assign 'a' a vreg and fast isel later on has to use the selection 1374 // DAG isel, it will want to copy the value to the vreg. However, there are 1375 // no uses, which goes counter to what selection DAG isel expects. 1376 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1377 (!isa<AllocaInst>(Address) || 1378 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1379 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1380 false); 1381 1382 if (Op) { 1383 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1384 "Expected inlined-at fields to agree"); 1385 // A dbg.declare describes the address of a source variable, so lower it 1386 // into an indirect DBG_VALUE. 1387 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1388 TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, 1389 *Op, DI->getVariable(), DI->getExpression()); 1390 } else { 1391 // We can't yet handle anything else here because it would require 1392 // generating code, thus altering codegen because of debug info. 1393 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1394 } 1395 return true; 1396 } 1397 case Intrinsic::dbg_value: { 1398 // This form of DBG_VALUE is target-independent. 1399 const DbgValueInst *DI = cast<DbgValueInst>(II); 1400 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1401 const Value *V = DI->getValue(); 1402 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1403 "Expected inlined-at fields to agree"); 1404 if (!V) { 1405 // Currently the optimizer can produce this; insert an undef to 1406 // help debugging. Probably the optimizer should not do this. 1407 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U, 1408 DI->getVariable(), DI->getExpression()); 1409 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1410 if (CI->getBitWidth() > 64) 1411 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1412 .addCImm(CI) 1413 .addImm(0U) 1414 .addMetadata(DI->getVariable()) 1415 .addMetadata(DI->getExpression()); 1416 else 1417 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1418 .addImm(CI->getZExtValue()) 1419 .addImm(0U) 1420 .addMetadata(DI->getVariable()) 1421 .addMetadata(DI->getExpression()); 1422 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1423 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1424 .addFPImm(CF) 1425 .addImm(0U) 1426 .addMetadata(DI->getVariable()) 1427 .addMetadata(DI->getExpression()); 1428 } else if (unsigned Reg = lookUpRegForValue(V)) { 1429 // FIXME: This does not handle register-indirect values at offset 0. 1430 bool IsIndirect = false; 1431 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg, 1432 DI->getVariable(), DI->getExpression()); 1433 } else { 1434 // We can't yet handle anything else here because it would require 1435 // generating code, thus altering codegen because of debug info. 1436 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1437 } 1438 return true; 1439 } 1440 case Intrinsic::dbg_label: { 1441 const DbgLabelInst *DI = cast<DbgLabelInst>(II); 1442 assert(DI->getLabel() && "Missing label"); 1443 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1444 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1445 return true; 1446 } 1447 1448 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1449 TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel()); 1450 return true; 1451 } 1452 case Intrinsic::objectsize: { 1453 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); 1454 unsigned long long Res = CI->isZero() ? -1ULL : 0; 1455 Constant *ResCI = ConstantInt::get(II->getType(), Res); 1456 unsigned ResultReg = getRegForValue(ResCI); 1457 if (!ResultReg) 1458 return false; 1459 updateValueMap(II, ResultReg); 1460 return true; 1461 } 1462 case Intrinsic::is_constant: { 1463 Constant *ResCI = ConstantInt::get(II->getType(), 0); 1464 unsigned ResultReg = getRegForValue(ResCI); 1465 if (!ResultReg) 1466 return false; 1467 updateValueMap(II, ResultReg); 1468 return true; 1469 } 1470 case Intrinsic::launder_invariant_group: 1471 case Intrinsic::strip_invariant_group: 1472 case Intrinsic::expect: { 1473 unsigned ResultReg = getRegForValue(II->getArgOperand(0)); 1474 if (!ResultReg) 1475 return false; 1476 updateValueMap(II, ResultReg); 1477 return true; 1478 } 1479 case Intrinsic::experimental_stackmap: 1480 return selectStackmap(II); 1481 case Intrinsic::experimental_patchpoint_void: 1482 case Intrinsic::experimental_patchpoint_i64: 1483 return selectPatchpoint(II); 1484 1485 case Intrinsic::xray_customevent: 1486 return selectXRayCustomEvent(II); 1487 case Intrinsic::xray_typedevent: 1488 return selectXRayTypedEvent(II); 1489 } 1490 1491 return fastLowerIntrinsicCall(II); 1492 } 1493 1494 bool FastISel::selectCast(const User *I, unsigned Opcode) { 1495 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1496 EVT DstVT = TLI.getValueType(DL, I->getType()); 1497 1498 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1499 !DstVT.isSimple()) 1500 // Unhandled type. Halt "fast" selection and bail. 1501 return false; 1502 1503 // Check if the destination type is legal. 1504 if (!TLI.isTypeLegal(DstVT)) 1505 return false; 1506 1507 // Check if the source operand is legal. 1508 if (!TLI.isTypeLegal(SrcVT)) 1509 return false; 1510 1511 unsigned InputReg = getRegForValue(I->getOperand(0)); 1512 if (!InputReg) 1513 // Unhandled operand. Halt "fast" selection and bail. 1514 return false; 1515 1516 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 1517 1518 unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1519 Opcode, InputReg, InputRegIsKill); 1520 if (!ResultReg) 1521 return false; 1522 1523 updateValueMap(I, ResultReg); 1524 return true; 1525 } 1526 1527 bool FastISel::selectBitCast(const User *I) { 1528 // If the bitcast doesn't change the type, just use the operand value. 1529 if (I->getType() == I->getOperand(0)->getType()) { 1530 unsigned Reg = getRegForValue(I->getOperand(0)); 1531 if (!Reg) 1532 return false; 1533 updateValueMap(I, Reg); 1534 return true; 1535 } 1536 1537 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1538 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1539 EVT DstEVT = TLI.getValueType(DL, I->getType()); 1540 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1541 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1542 // Unhandled type. Halt "fast" selection and bail. 1543 return false; 1544 1545 MVT SrcVT = SrcEVT.getSimpleVT(); 1546 MVT DstVT = DstEVT.getSimpleVT(); 1547 unsigned Op0 = getRegForValue(I->getOperand(0)); 1548 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1549 return false; 1550 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 1551 1552 // First, try to perform the bitcast by inserting a reg-reg copy. 1553 unsigned ResultReg = 0; 1554 if (SrcVT == DstVT) { 1555 const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT); 1556 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 1557 // Don't attempt a cross-class copy. It will likely fail. 1558 if (SrcClass == DstClass) { 1559 ResultReg = createResultReg(DstClass); 1560 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1561 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1562 } 1563 } 1564 1565 // If the reg-reg copy failed, select a BITCAST opcode. 1566 if (!ResultReg) 1567 ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 1568 1569 if (!ResultReg) 1570 return false; 1571 1572 updateValueMap(I, ResultReg); 1573 return true; 1574 } 1575 1576 // Remove local value instructions starting from the instruction after 1577 // SavedLastLocalValue to the current function insert point. 1578 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) 1579 { 1580 MachineInstr *CurLastLocalValue = getLastLocalValue(); 1581 if (CurLastLocalValue != SavedLastLocalValue) { 1582 // Find the first local value instruction to be deleted. 1583 // This is the instruction after SavedLastLocalValue if it is non-NULL. 1584 // Otherwise it's the first instruction in the block. 1585 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); 1586 if (SavedLastLocalValue) 1587 ++FirstDeadInst; 1588 else 1589 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); 1590 setLastLocalValue(SavedLastLocalValue); 1591 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); 1592 } 1593 } 1594 1595 bool FastISel::selectInstruction(const Instruction *I) { 1596 MachineInstr *SavedLastLocalValue = getLastLocalValue(); 1597 // Just before the terminator instruction, insert instructions to 1598 // feed PHI nodes in successor blocks. 1599 if (I->isTerminator()) { 1600 if (!handlePHINodesInSuccessorBlocks(I->getParent())) { 1601 // PHI node handling may have generated local value instructions, 1602 // even though it failed to handle all PHI nodes. 1603 // We remove these instructions because SelectionDAGISel will generate 1604 // them again. 1605 removeDeadLocalValueCode(SavedLastLocalValue); 1606 return false; 1607 } 1608 } 1609 1610 // FastISel does not handle any operand bundles except OB_funclet. 1611 if (ImmutableCallSite CS = ImmutableCallSite(I)) 1612 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) 1613 if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet) 1614 return false; 1615 1616 DbgLoc = I->getDebugLoc(); 1617 1618 SavedInsertPt = FuncInfo.InsertPt; 1619 1620 if (const auto *Call = dyn_cast<CallInst>(I)) { 1621 const Function *F = Call->getCalledFunction(); 1622 LibFunc Func; 1623 1624 // As a special case, don't handle calls to builtin library functions that 1625 // may be translated directly to target instructions. 1626 if (F && !F->hasLocalLinkage() && F->hasName() && 1627 LibInfo->getLibFunc(F->getName(), Func) && 1628 LibInfo->hasOptimizedCodeGen(Func)) 1629 return false; 1630 1631 // Don't handle Intrinsic::trap if a trap function is specified. 1632 if (F && F->getIntrinsicID() == Intrinsic::trap && 1633 Call->hasFnAttr("trap-func-name")) 1634 return false; 1635 } 1636 1637 // First, try doing target-independent selection. 1638 if (!SkipTargetIndependentISel) { 1639 if (selectOperator(I, I->getOpcode())) { 1640 ++NumFastIselSuccessIndependent; 1641 DbgLoc = DebugLoc(); 1642 return true; 1643 } 1644 // Remove dead code. 1645 recomputeInsertPt(); 1646 if (SavedInsertPt != FuncInfo.InsertPt) 1647 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1648 SavedInsertPt = FuncInfo.InsertPt; 1649 } 1650 // Next, try calling the target to attempt to handle the instruction. 1651 if (fastSelectInstruction(I)) { 1652 ++NumFastIselSuccessTarget; 1653 DbgLoc = DebugLoc(); 1654 return true; 1655 } 1656 // Remove dead code. 1657 recomputeInsertPt(); 1658 if (SavedInsertPt != FuncInfo.InsertPt) 1659 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1660 1661 DbgLoc = DebugLoc(); 1662 // Undo phi node updates, because they will be added again by SelectionDAG. 1663 if (I->isTerminator()) { 1664 // PHI node handling may have generated local value instructions. 1665 // We remove them because SelectionDAGISel will generate them again. 1666 removeDeadLocalValueCode(SavedLastLocalValue); 1667 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1668 } 1669 return false; 1670 } 1671 1672 /// Emit an unconditional branch to the given block, unless it is the immediate 1673 /// (fall-through) successor, and update the CFG. 1674 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, 1675 const DebugLoc &DbgLoc) { 1676 if (FuncInfo.MBB->getBasicBlock()->size() > 1 && 1677 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1678 // For more accurate line information if this is the only instruction 1679 // in the block then emit it, otherwise we have the unconditional 1680 // fall-through case, which needs no instructions. 1681 } else { 1682 // The unconditional branch case. 1683 TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr, 1684 SmallVector<MachineOperand, 0>(), DbgLoc); 1685 } 1686 if (FuncInfo.BPI) { 1687 auto BranchProbability = FuncInfo.BPI->getEdgeProbability( 1688 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); 1689 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); 1690 } else 1691 FuncInfo.MBB->addSuccessorWithoutProb(MSucc); 1692 } 1693 1694 void FastISel::finishCondBranch(const BasicBlock *BranchBB, 1695 MachineBasicBlock *TrueMBB, 1696 MachineBasicBlock *FalseMBB) { 1697 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can 1698 // happen in degenerate IR and MachineIR forbids to have a block twice in the 1699 // successor/predecessor lists. 1700 if (TrueMBB != FalseMBB) { 1701 if (FuncInfo.BPI) { 1702 auto BranchProbability = 1703 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); 1704 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); 1705 } else 1706 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); 1707 } 1708 1709 fastEmitBranch(FalseMBB, DbgLoc); 1710 } 1711 1712 /// Emit an FNeg operation. 1713 bool FastISel::selectFNeg(const User *I) { 1714 Value *X; 1715 if (!match(I, m_FNeg(m_Value(X)))) 1716 return false; 1717 unsigned OpReg = getRegForValue(X); 1718 if (!OpReg) 1719 return false; 1720 bool OpRegIsKill = hasTrivialKill(I); 1721 1722 // If the target has ISD::FNEG, use it. 1723 EVT VT = TLI.getValueType(DL, I->getType()); 1724 unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1725 OpReg, OpRegIsKill); 1726 if (ResultReg) { 1727 updateValueMap(I, ResultReg); 1728 return true; 1729 } 1730 1731 // Bitcast the value to integer, twiddle the sign bit with xor, 1732 // and then bitcast it back to floating-point. 1733 if (VT.getSizeInBits() > 64) 1734 return false; 1735 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1736 if (!TLI.isTypeLegal(IntVT)) 1737 return false; 1738 1739 unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1740 ISD::BITCAST, OpReg, OpRegIsKill); 1741 if (!IntReg) 1742 return false; 1743 1744 unsigned IntResultReg = fastEmit_ri_( 1745 IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true, 1746 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1747 if (!IntResultReg) 1748 return false; 1749 1750 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1751 IntResultReg, /*IsKill=*/true); 1752 if (!ResultReg) 1753 return false; 1754 1755 updateValueMap(I, ResultReg); 1756 return true; 1757 } 1758 1759 bool FastISel::selectExtractValue(const User *U) { 1760 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1761 if (!EVI) 1762 return false; 1763 1764 // Make sure we only try to handle extracts with a legal result. But also 1765 // allow i1 because it's easy. 1766 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); 1767 if (!RealVT.isSimple()) 1768 return false; 1769 MVT VT = RealVT.getSimpleVT(); 1770 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1771 return false; 1772 1773 const Value *Op0 = EVI->getOperand(0); 1774 Type *AggTy = Op0->getType(); 1775 1776 // Get the base result register. 1777 unsigned ResultReg; 1778 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 1779 if (I != FuncInfo.ValueMap.end()) 1780 ResultReg = I->second; 1781 else if (isa<Instruction>(Op0)) 1782 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1783 else 1784 return false; // fast-isel can't handle aggregate constants at the moment 1785 1786 // Get the actual result register, which is an offset from the base register. 1787 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1788 1789 SmallVector<EVT, 4> AggValueVTs; 1790 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); 1791 1792 for (unsigned i = 0; i < VTIndex; i++) 1793 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1794 1795 updateValueMap(EVI, ResultReg); 1796 return true; 1797 } 1798 1799 bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1800 switch (Opcode) { 1801 case Instruction::Add: 1802 return selectBinaryOp(I, ISD::ADD); 1803 case Instruction::FAdd: 1804 return selectBinaryOp(I, ISD::FADD); 1805 case Instruction::Sub: 1806 return selectBinaryOp(I, ISD::SUB); 1807 case Instruction::FSub: 1808 // FNeg is currently represented in LLVM IR as a special case of FSub. 1809 return selectFNeg(I) || selectBinaryOp(I, ISD::FSUB); 1810 case Instruction::Mul: 1811 return selectBinaryOp(I, ISD::MUL); 1812 case Instruction::FMul: 1813 return selectBinaryOp(I, ISD::FMUL); 1814 case Instruction::SDiv: 1815 return selectBinaryOp(I, ISD::SDIV); 1816 case Instruction::UDiv: 1817 return selectBinaryOp(I, ISD::UDIV); 1818 case Instruction::FDiv: 1819 return selectBinaryOp(I, ISD::FDIV); 1820 case Instruction::SRem: 1821 return selectBinaryOp(I, ISD::SREM); 1822 case Instruction::URem: 1823 return selectBinaryOp(I, ISD::UREM); 1824 case Instruction::FRem: 1825 return selectBinaryOp(I, ISD::FREM); 1826 case Instruction::Shl: 1827 return selectBinaryOp(I, ISD::SHL); 1828 case Instruction::LShr: 1829 return selectBinaryOp(I, ISD::SRL); 1830 case Instruction::AShr: 1831 return selectBinaryOp(I, ISD::SRA); 1832 case Instruction::And: 1833 return selectBinaryOp(I, ISD::AND); 1834 case Instruction::Or: 1835 return selectBinaryOp(I, ISD::OR); 1836 case Instruction::Xor: 1837 return selectBinaryOp(I, ISD::XOR); 1838 1839 case Instruction::GetElementPtr: 1840 return selectGetElementPtr(I); 1841 1842 case Instruction::Br: { 1843 const BranchInst *BI = cast<BranchInst>(I); 1844 1845 if (BI->isUnconditional()) { 1846 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1847 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1848 fastEmitBranch(MSucc, BI->getDebugLoc()); 1849 return true; 1850 } 1851 1852 // Conditional branches are not handed yet. 1853 // Halt "fast" selection and bail. 1854 return false; 1855 } 1856 1857 case Instruction::Unreachable: 1858 if (TM.Options.TrapUnreachable) 1859 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1860 else 1861 return true; 1862 1863 case Instruction::Alloca: 1864 // FunctionLowering has the static-sized case covered. 1865 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1866 return true; 1867 1868 // Dynamic-sized alloca is not handled yet. 1869 return false; 1870 1871 case Instruction::Call: 1872 return selectCall(I); 1873 1874 case Instruction::BitCast: 1875 return selectBitCast(I); 1876 1877 case Instruction::FPToSI: 1878 return selectCast(I, ISD::FP_TO_SINT); 1879 case Instruction::ZExt: 1880 return selectCast(I, ISD::ZERO_EXTEND); 1881 case Instruction::SExt: 1882 return selectCast(I, ISD::SIGN_EXTEND); 1883 case Instruction::Trunc: 1884 return selectCast(I, ISD::TRUNCATE); 1885 case Instruction::SIToFP: 1886 return selectCast(I, ISD::SINT_TO_FP); 1887 1888 case Instruction::IntToPtr: // Deliberate fall-through. 1889 case Instruction::PtrToInt: { 1890 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1891 EVT DstVT = TLI.getValueType(DL, I->getType()); 1892 if (DstVT.bitsGT(SrcVT)) 1893 return selectCast(I, ISD::ZERO_EXTEND); 1894 if (DstVT.bitsLT(SrcVT)) 1895 return selectCast(I, ISD::TRUNCATE); 1896 unsigned Reg = getRegForValue(I->getOperand(0)); 1897 if (!Reg) 1898 return false; 1899 updateValueMap(I, Reg); 1900 return true; 1901 } 1902 1903 case Instruction::ExtractValue: 1904 return selectExtractValue(I); 1905 1906 case Instruction::PHI: 1907 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1908 1909 default: 1910 // Unhandled instruction. Halt "fast" selection and bail. 1911 return false; 1912 } 1913 } 1914 1915 FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1916 const TargetLibraryInfo *LibInfo, 1917 bool SkipTargetIndependentISel) 1918 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1919 MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1920 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), 1921 TII(*MF->getSubtarget().getInstrInfo()), 1922 TLI(*MF->getSubtarget().getTargetLowering()), 1923 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1924 SkipTargetIndependentISel(SkipTargetIndependentISel) {} 1925 1926 FastISel::~FastISel() = default; 1927 1928 bool FastISel::fastLowerArguments() { return false; } 1929 1930 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1931 1932 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1933 return false; 1934 } 1935 1936 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 1937 1938 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/, 1939 bool /*Op0IsKill*/) { 1940 return 0; 1941 } 1942 1943 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 1944 bool /*Op0IsKill*/, unsigned /*Op1*/, 1945 bool /*Op1IsKill*/) { 1946 return 0; 1947 } 1948 1949 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1950 return 0; 1951 } 1952 1953 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 1954 const ConstantFP * /*FPImm*/) { 1955 return 0; 1956 } 1957 1958 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 1959 bool /*Op0IsKill*/, uint64_t /*Imm*/) { 1960 return 0; 1961 } 1962 1963 /// This method is a wrapper of fastEmit_ri. It first tries to emit an 1964 /// instruction with an immediate operand using fastEmit_ri. 1965 /// If that fails, it materializes the immediate into a register and try 1966 /// fastEmit_rr instead. 1967 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 1968 bool Op0IsKill, uint64_t Imm, MVT ImmType) { 1969 // If this is a multiply by a power of two, emit this as a shift left. 1970 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1971 Opcode = ISD::SHL; 1972 Imm = Log2_64(Imm); 1973 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1974 // div x, 8 -> srl x, 3 1975 Opcode = ISD::SRL; 1976 Imm = Log2_64(Imm); 1977 } 1978 1979 // Horrible hack (to be removed), check to make sure shift amounts are 1980 // in-range. 1981 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1982 Imm >= VT.getSizeInBits()) 1983 return 0; 1984 1985 // First check if immediate type is legal. If not, we can't use the ri form. 1986 unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1987 if (ResultReg) 1988 return ResultReg; 1989 unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1990 bool IsImmKill = true; 1991 if (!MaterialReg) { 1992 // This is a bit ugly/slow, but failing here means falling out of 1993 // fast-isel, which would be very slow. 1994 IntegerType *ITy = 1995 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 1996 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1997 if (!MaterialReg) 1998 return 0; 1999 // FIXME: If the materialized register here has no uses yet then this 2000 // will be the first use and we should be able to mark it as killed. 2001 // However, the local value area for materialising constant expressions 2002 // grows down, not up, which means that any constant expressions we generate 2003 // later which also use 'Imm' could be after this instruction and therefore 2004 // after this kill. 2005 IsImmKill = false; 2006 } 2007 return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill); 2008 } 2009 2010 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) { 2011 return MRI.createVirtualRegister(RC); 2012 } 2013 2014 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op, 2015 unsigned OpNum) { 2016 if (TargetRegisterInfo::isVirtualRegister(Op)) { 2017 const TargetRegisterClass *RegClass = 2018 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 2019 if (!MRI.constrainRegClass(Op, RegClass)) { 2020 // If it's not legal to COPY between the register classes, something 2021 // has gone very wrong before we got here. 2022 unsigned NewOp = createResultReg(RegClass); 2023 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2024 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 2025 return NewOp; 2026 } 2027 } 2028 return Op; 2029 } 2030 2031 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode, 2032 const TargetRegisterClass *RC) { 2033 unsigned ResultReg = createResultReg(RC); 2034 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2035 2036 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 2037 return ResultReg; 2038 } 2039 2040 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2041 const TargetRegisterClass *RC, unsigned Op0, 2042 bool Op0IsKill) { 2043 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2044 2045 unsigned ResultReg = createResultReg(RC); 2046 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2047 2048 if (II.getNumDefs() >= 1) 2049 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2050 .addReg(Op0, getKillRegState(Op0IsKill)); 2051 else { 2052 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2053 .addReg(Op0, getKillRegState(Op0IsKill)); 2054 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2055 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2056 } 2057 2058 return ResultReg; 2059 } 2060 2061 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2062 const TargetRegisterClass *RC, unsigned Op0, 2063 bool Op0IsKill, unsigned Op1, 2064 bool Op1IsKill) { 2065 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2066 2067 unsigned ResultReg = createResultReg(RC); 2068 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2069 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2070 2071 if (II.getNumDefs() >= 1) 2072 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2073 .addReg(Op0, getKillRegState(Op0IsKill)) 2074 .addReg(Op1, getKillRegState(Op1IsKill)); 2075 else { 2076 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2077 .addReg(Op0, getKillRegState(Op0IsKill)) 2078 .addReg(Op1, getKillRegState(Op1IsKill)); 2079 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2080 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2081 } 2082 return ResultReg; 2083 } 2084 2085 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 2086 const TargetRegisterClass *RC, unsigned Op0, 2087 bool Op0IsKill, unsigned Op1, 2088 bool Op1IsKill, unsigned Op2, 2089 bool Op2IsKill) { 2090 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2091 2092 unsigned ResultReg = createResultReg(RC); 2093 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2094 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2095 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 2096 2097 if (II.getNumDefs() >= 1) 2098 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2099 .addReg(Op0, getKillRegState(Op0IsKill)) 2100 .addReg(Op1, getKillRegState(Op1IsKill)) 2101 .addReg(Op2, getKillRegState(Op2IsKill)); 2102 else { 2103 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2104 .addReg(Op0, getKillRegState(Op0IsKill)) 2105 .addReg(Op1, getKillRegState(Op1IsKill)) 2106 .addReg(Op2, getKillRegState(Op2IsKill)); 2107 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2108 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2109 } 2110 return ResultReg; 2111 } 2112 2113 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2114 const TargetRegisterClass *RC, unsigned Op0, 2115 bool Op0IsKill, uint64_t Imm) { 2116 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2117 2118 unsigned ResultReg = createResultReg(RC); 2119 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2120 2121 if (II.getNumDefs() >= 1) 2122 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2123 .addReg(Op0, getKillRegState(Op0IsKill)) 2124 .addImm(Imm); 2125 else { 2126 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2127 .addReg(Op0, getKillRegState(Op0IsKill)) 2128 .addImm(Imm); 2129 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2130 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2131 } 2132 return ResultReg; 2133 } 2134 2135 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 2136 const TargetRegisterClass *RC, unsigned Op0, 2137 bool Op0IsKill, uint64_t Imm1, 2138 uint64_t Imm2) { 2139 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2140 2141 unsigned ResultReg = createResultReg(RC); 2142 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2143 2144 if (II.getNumDefs() >= 1) 2145 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2146 .addReg(Op0, getKillRegState(Op0IsKill)) 2147 .addImm(Imm1) 2148 .addImm(Imm2); 2149 else { 2150 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2151 .addReg(Op0, getKillRegState(Op0IsKill)) 2152 .addImm(Imm1) 2153 .addImm(Imm2); 2154 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2155 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2156 } 2157 return ResultReg; 2158 } 2159 2160 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode, 2161 const TargetRegisterClass *RC, 2162 const ConstantFP *FPImm) { 2163 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2164 2165 unsigned ResultReg = createResultReg(RC); 2166 2167 if (II.getNumDefs() >= 1) 2168 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2169 .addFPImm(FPImm); 2170 else { 2171 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2172 .addFPImm(FPImm); 2173 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2174 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2175 } 2176 return ResultReg; 2177 } 2178 2179 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 2180 const TargetRegisterClass *RC, unsigned Op0, 2181 bool Op0IsKill, unsigned Op1, 2182 bool Op1IsKill, uint64_t Imm) { 2183 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2184 2185 unsigned ResultReg = createResultReg(RC); 2186 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2187 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2188 2189 if (II.getNumDefs() >= 1) 2190 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2191 .addReg(Op0, getKillRegState(Op0IsKill)) 2192 .addReg(Op1, getKillRegState(Op1IsKill)) 2193 .addImm(Imm); 2194 else { 2195 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2196 .addReg(Op0, getKillRegState(Op0IsKill)) 2197 .addReg(Op1, getKillRegState(Op1IsKill)) 2198 .addImm(Imm); 2199 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2200 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2201 } 2202 return ResultReg; 2203 } 2204 2205 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 2206 const TargetRegisterClass *RC, uint64_t Imm) { 2207 unsigned ResultReg = createResultReg(RC); 2208 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2209 2210 if (II.getNumDefs() >= 1) 2211 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2212 .addImm(Imm); 2213 else { 2214 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 2215 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2216 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2217 } 2218 return ResultReg; 2219 } 2220 2221 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 2222 bool Op0IsKill, uint32_t Idx) { 2223 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 2224 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 2225 "Cannot yet extract from physregs"); 2226 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 2227 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 2228 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 2229 ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx); 2230 return ResultReg; 2231 } 2232 2233 /// Emit MachineInstrs to compute the value of Op with all but the least 2234 /// significant bit set to zero. 2235 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 2236 return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 2237 } 2238 2239 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 2240 /// Emit code to ensure constants are copied into registers when needed. 2241 /// Remember the virtual registers that need to be added to the Machine PHI 2242 /// nodes as input. We cannot just directly add them, because expansion 2243 /// might result in multiple MBB's for one BB. As such, the start of the 2244 /// BB might correspond to a different MBB than the end. 2245 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 2246 const Instruction *TI = LLVMBB->getTerminator(); 2247 2248 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 2249 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 2250 2251 // Check successor nodes' PHI nodes that expect a constant to be available 2252 // from this block. 2253 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 2254 const BasicBlock *SuccBB = TI->getSuccessor(succ); 2255 if (!isa<PHINode>(SuccBB->begin())) 2256 continue; 2257 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2258 2259 // If this terminator has multiple identical successors (common for 2260 // switches), only handle each succ once. 2261 if (!SuccsHandled.insert(SuccMBB).second) 2262 continue; 2263 2264 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2265 2266 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2267 // nodes and Machine PHI nodes, but the incoming operands have not been 2268 // emitted yet. 2269 for (const PHINode &PN : SuccBB->phis()) { 2270 // Ignore dead phi's. 2271 if (PN.use_empty()) 2272 continue; 2273 2274 // Only handle legal types. Two interesting things to note here. First, 2275 // by bailing out early, we may leave behind some dead instructions, 2276 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2277 // own moves. Second, this check is necessary because FastISel doesn't 2278 // use CreateRegs to create registers, so it always creates 2279 // exactly one register for each non-void instruction. 2280 EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true); 2281 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2282 // Handle integer promotions, though, because they're common and easy. 2283 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2284 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2285 return false; 2286 } 2287 } 2288 2289 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 2290 2291 // Set the DebugLoc for the copy. Prefer the location of the operand 2292 // if there is one; use the location of the PHI otherwise. 2293 DbgLoc = PN.getDebugLoc(); 2294 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2295 DbgLoc = Inst->getDebugLoc(); 2296 2297 unsigned Reg = getRegForValue(PHIOp); 2298 if (!Reg) { 2299 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2300 return false; 2301 } 2302 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg)); 2303 DbgLoc = DebugLoc(); 2304 } 2305 } 2306 2307 return true; 2308 } 2309 2310 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2311 assert(LI->hasOneUse() && 2312 "tryToFoldLoad expected a LoadInst with a single use"); 2313 // We know that the load has a single use, but don't know what it is. If it 2314 // isn't one of the folded instructions, then we can't succeed here. Handle 2315 // this by scanning the single-use users of the load until we get to FoldInst. 2316 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2317 2318 const Instruction *TheUser = LI->user_back(); 2319 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2320 // Stay in the right block. 2321 TheUser->getParent() == FoldInst->getParent() && 2322 --MaxUsers) { // Don't scan too far. 2323 // If there are multiple or no uses of this instruction, then bail out. 2324 if (!TheUser->hasOneUse()) 2325 return false; 2326 2327 TheUser = TheUser->user_back(); 2328 } 2329 2330 // If we didn't find the fold instruction, then we failed to collapse the 2331 // sequence. 2332 if (TheUser != FoldInst) 2333 return false; 2334 2335 // Don't try to fold volatile loads. Target has to deal with alignment 2336 // constraints. 2337 if (LI->isVolatile()) 2338 return false; 2339 2340 // Figure out which vreg this is going into. If there is no assigned vreg yet 2341 // then there actually was no reference to it. Perhaps the load is referenced 2342 // by a dead instruction. 2343 unsigned LoadReg = getRegForValue(LI); 2344 if (!LoadReg) 2345 return false; 2346 2347 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2348 // may mean that the instruction got lowered to multiple MIs, or the use of 2349 // the loaded value ended up being multiple operands of the result. 2350 if (!MRI.hasOneUse(LoadReg)) 2351 return false; 2352 2353 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2354 MachineInstr *User = RI->getParent(); 2355 2356 // Set the insertion point properly. Folding the load can cause generation of 2357 // other random instructions (like sign extends) for addressing modes; make 2358 // sure they get inserted in a logical place before the new instruction. 2359 FuncInfo.InsertPt = User; 2360 FuncInfo.MBB = User->getParent(); 2361 2362 // Ask the target to try folding the load. 2363 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2364 } 2365 2366 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2367 // Must be an add. 2368 if (!isa<AddOperator>(Add)) 2369 return false; 2370 // Type size needs to match. 2371 if (DL.getTypeSizeInBits(GEP->getType()) != 2372 DL.getTypeSizeInBits(Add->getType())) 2373 return false; 2374 // Must be in the same basic block. 2375 if (isa<Instruction>(Add) && 2376 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2377 return false; 2378 // Must have a constant operand. 2379 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2380 } 2381 2382 MachineMemOperand * 2383 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2384 const Value *Ptr; 2385 Type *ValTy; 2386 unsigned Alignment; 2387 MachineMemOperand::Flags Flags; 2388 bool IsVolatile; 2389 2390 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2391 Alignment = LI->getAlignment(); 2392 IsVolatile = LI->isVolatile(); 2393 Flags = MachineMemOperand::MOLoad; 2394 Ptr = LI->getPointerOperand(); 2395 ValTy = LI->getType(); 2396 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2397 Alignment = SI->getAlignment(); 2398 IsVolatile = SI->isVolatile(); 2399 Flags = MachineMemOperand::MOStore; 2400 Ptr = SI->getPointerOperand(); 2401 ValTy = SI->getValueOperand()->getType(); 2402 } else 2403 return nullptr; 2404 2405 bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2406 bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr; 2407 bool IsDereferenceable = 2408 I->getMetadata(LLVMContext::MD_dereferenceable) != nullptr; 2409 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2410 2411 AAMDNodes AAInfo; 2412 I->getAAMetadata(AAInfo); 2413 2414 if (Alignment == 0) // Ensure that codegen never sees alignment 0. 2415 Alignment = DL.getABITypeAlignment(ValTy); 2416 2417 unsigned Size = DL.getTypeStoreSize(ValTy); 2418 2419 if (IsVolatile) 2420 Flags |= MachineMemOperand::MOVolatile; 2421 if (IsNonTemporal) 2422 Flags |= MachineMemOperand::MONonTemporal; 2423 if (IsDereferenceable) 2424 Flags |= MachineMemOperand::MODereferenceable; 2425 if (IsInvariant) 2426 Flags |= MachineMemOperand::MOInvariant; 2427 2428 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2429 Alignment, AAInfo, Ranges); 2430 } 2431 2432 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2433 // If both operands are the same, then try to optimize or fold the cmp. 2434 CmpInst::Predicate Predicate = CI->getPredicate(); 2435 if (CI->getOperand(0) != CI->getOperand(1)) 2436 return Predicate; 2437 2438 switch (Predicate) { 2439 default: llvm_unreachable("Invalid predicate!"); 2440 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2441 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2442 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2443 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2444 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2445 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2446 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2447 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2448 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2449 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2450 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2451 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2452 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2453 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2454 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2455 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2456 2457 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2458 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2459 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2460 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2461 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2462 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2463 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2464 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2465 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2466 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2467 } 2468 2469 return Predicate; 2470 } 2471