1 //===- SafeStack.cpp - Safe Stack Insertion -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass splits the stack into the safe stack (kept as-is for LLVM backend)
11 // and the unsafe stack (explicitly allocated and managed through the runtime
12 // support library).
13 //
14 // http://clang.llvm.org/docs/SafeStack.html
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "SafeStackColoring.h"
19 #include "SafeStackLayout.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/ScalarEvolution.h"
29 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/TargetPassConfig.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/CallSite.h"
37 #include "llvm/IR/ConstantRange.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DIBuilder.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstIterator.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Use.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MathExtras.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Target/TargetMachine.h"
63 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
64 #include "llvm/Transforms/Utils/Local.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstdint>
68 #include <string>
69 #include <utility>
70 
71 using namespace llvm;
72 using namespace llvm::safestack;
73 
74 #define DEBUG_TYPE "safe-stack"
75 
76 namespace llvm {
77 
78 STATISTIC(NumFunctions, "Total number of functions");
79 STATISTIC(NumUnsafeStackFunctions, "Number of functions with unsafe stack");
80 STATISTIC(NumUnsafeStackRestorePointsFunctions,
81           "Number of functions that use setjmp or exceptions");
82 
83 STATISTIC(NumAllocas, "Total number of allocas");
84 STATISTIC(NumUnsafeStaticAllocas, "Number of unsafe static allocas");
85 STATISTIC(NumUnsafeDynamicAllocas, "Number of unsafe dynamic allocas");
86 STATISTIC(NumUnsafeByValArguments, "Number of unsafe byval arguments");
87 STATISTIC(NumUnsafeStackRestorePoints, "Number of setjmps and landingpads");
88 
89 } // namespace llvm
90 
91 namespace {
92 
93 /// Rewrite an SCEV expression for a memory access address to an expression that
94 /// represents offset from the given alloca.
95 ///
96 /// The implementation simply replaces all mentions of the alloca with zero.
97 class AllocaOffsetRewriter : public SCEVRewriteVisitor<AllocaOffsetRewriter> {
98   const Value *AllocaPtr;
99 
100 public:
101   AllocaOffsetRewriter(ScalarEvolution &SE, const Value *AllocaPtr)
102       : SCEVRewriteVisitor(SE), AllocaPtr(AllocaPtr) {}
103 
104   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
105     if (Expr->getValue() == AllocaPtr)
106       return SE.getZero(Expr->getType());
107     return Expr;
108   }
109 };
110 
111 /// The SafeStack pass splits the stack of each function into the safe
112 /// stack, which is only accessed through memory safe dereferences (as
113 /// determined statically), and the unsafe stack, which contains all
114 /// local variables that are accessed in ways that we can't prove to
115 /// be safe.
116 class SafeStack {
117   Function &F;
118   const TargetLoweringBase &TL;
119   const DataLayout &DL;
120   ScalarEvolution &SE;
121 
122   Type *StackPtrTy;
123   Type *IntPtrTy;
124   Type *Int32Ty;
125   Type *Int8Ty;
126 
127   Value *UnsafeStackPtr = nullptr;
128 
129   /// Unsafe stack alignment. Each stack frame must ensure that the stack is
130   /// aligned to this value. We need to re-align the unsafe stack if the
131   /// alignment of any object on the stack exceeds this value.
132   ///
133   /// 16 seems like a reasonable upper bound on the alignment of objects that we
134   /// might expect to appear on the stack on most common targets.
135   enum { StackAlignment = 16 };
136 
137   /// \brief Return the value of the stack canary.
138   Value *getStackGuard(IRBuilder<> &IRB, Function &F);
139 
140   /// \brief Load stack guard from the frame and check if it has changed.
141   void checkStackGuard(IRBuilder<> &IRB, Function &F, ReturnInst &RI,
142                        AllocaInst *StackGuardSlot, Value *StackGuard);
143 
144   /// \brief Find all static allocas, dynamic allocas, return instructions and
145   /// stack restore points (exception unwind blocks and setjmp calls) in the
146   /// given function and append them to the respective vectors.
147   void findInsts(Function &F, SmallVectorImpl<AllocaInst *> &StaticAllocas,
148                  SmallVectorImpl<AllocaInst *> &DynamicAllocas,
149                  SmallVectorImpl<Argument *> &ByValArguments,
150                  SmallVectorImpl<ReturnInst *> &Returns,
151                  SmallVectorImpl<Instruction *> &StackRestorePoints);
152 
153   /// \brief Calculate the allocation size of a given alloca. Returns 0 if the
154   /// size can not be statically determined.
155   uint64_t getStaticAllocaAllocationSize(const AllocaInst* AI);
156 
157   /// \brief Allocate space for all static allocas in \p StaticAllocas,
158   /// replace allocas with pointers into the unsafe stack and generate code to
159   /// restore the stack pointer before all return instructions in \p Returns.
160   ///
161   /// \returns A pointer to the top of the unsafe stack after all unsafe static
162   /// allocas are allocated.
163   Value *moveStaticAllocasToUnsafeStack(IRBuilder<> &IRB, Function &F,
164                                         ArrayRef<AllocaInst *> StaticAllocas,
165                                         ArrayRef<Argument *> ByValArguments,
166                                         ArrayRef<ReturnInst *> Returns,
167                                         Instruction *BasePointer,
168                                         AllocaInst *StackGuardSlot);
169 
170   /// \brief Generate code to restore the stack after all stack restore points
171   /// in \p StackRestorePoints.
172   ///
173   /// \returns A local variable in which to maintain the dynamic top of the
174   /// unsafe stack if needed.
175   AllocaInst *
176   createStackRestorePoints(IRBuilder<> &IRB, Function &F,
177                            ArrayRef<Instruction *> StackRestorePoints,
178                            Value *StaticTop, bool NeedDynamicTop);
179 
180   /// \brief Replace all allocas in \p DynamicAllocas with code to allocate
181   /// space dynamically on the unsafe stack and store the dynamic unsafe stack
182   /// top to \p DynamicTop if non-null.
183   void moveDynamicAllocasToUnsafeStack(Function &F, Value *UnsafeStackPtr,
184                                        AllocaInst *DynamicTop,
185                                        ArrayRef<AllocaInst *> DynamicAllocas);
186 
187   bool IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize);
188 
189   bool IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
190                           const Value *AllocaPtr, uint64_t AllocaSize);
191   bool IsAccessSafe(Value *Addr, uint64_t Size, const Value *AllocaPtr,
192                     uint64_t AllocaSize);
193 
194 public:
195   SafeStack(Function &F, const TargetLoweringBase &TL, const DataLayout &DL,
196             ScalarEvolution &SE)
197       : F(F), TL(TL), DL(DL), SE(SE),
198         StackPtrTy(Type::getInt8PtrTy(F.getContext())),
199         IntPtrTy(DL.getIntPtrType(F.getContext())),
200         Int32Ty(Type::getInt32Ty(F.getContext())),
201         Int8Ty(Type::getInt8Ty(F.getContext())) {}
202 
203   // Run the transformation on the associated function.
204   // Returns whether the function was changed.
205   bool run();
206 };
207 
208 uint64_t SafeStack::getStaticAllocaAllocationSize(const AllocaInst* AI) {
209   uint64_t Size = DL.getTypeAllocSize(AI->getAllocatedType());
210   if (AI->isArrayAllocation()) {
211     auto C = dyn_cast<ConstantInt>(AI->getArraySize());
212     if (!C)
213       return 0;
214     Size *= C->getZExtValue();
215   }
216   return Size;
217 }
218 
219 bool SafeStack::IsAccessSafe(Value *Addr, uint64_t AccessSize,
220                              const Value *AllocaPtr, uint64_t AllocaSize) {
221   AllocaOffsetRewriter Rewriter(SE, AllocaPtr);
222   const SCEV *Expr = Rewriter.visit(SE.getSCEV(Addr));
223 
224   uint64_t BitWidth = SE.getTypeSizeInBits(Expr->getType());
225   ConstantRange AccessStartRange = SE.getUnsignedRange(Expr);
226   ConstantRange SizeRange =
227       ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AccessSize));
228   ConstantRange AccessRange = AccessStartRange.add(SizeRange);
229   ConstantRange AllocaRange =
230       ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AllocaSize));
231   bool Safe = AllocaRange.contains(AccessRange);
232 
233   DEBUG(dbgs() << "[SafeStack] "
234                << (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ")
235                << *AllocaPtr << "\n"
236                << "            Access " << *Addr << "\n"
237                << "            SCEV " << *Expr
238                << " U: " << SE.getUnsignedRange(Expr)
239                << ", S: " << SE.getSignedRange(Expr) << "\n"
240                << "            Range " << AccessRange << "\n"
241                << "            AllocaRange " << AllocaRange << "\n"
242                << "            " << (Safe ? "safe" : "unsafe") << "\n");
243 
244   return Safe;
245 }
246 
247 bool SafeStack::IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
248                                    const Value *AllocaPtr,
249                                    uint64_t AllocaSize) {
250   // All MemIntrinsics have destination address in Arg0 and size in Arg2.
251   if (MI->getRawDest() != U) return true;
252   const auto *Len = dyn_cast<ConstantInt>(MI->getLength());
253   // Non-constant size => unsafe. FIXME: try SCEV getRange.
254   if (!Len) return false;
255   return IsAccessSafe(U, Len->getZExtValue(), AllocaPtr, AllocaSize);
256 }
257 
258 /// Check whether a given allocation must be put on the safe
259 /// stack or not. The function analyzes all uses of AI and checks whether it is
260 /// only accessed in a memory safe way (as decided statically).
261 bool SafeStack::IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize) {
262   // Go through all uses of this alloca and check whether all accesses to the
263   // allocated object are statically known to be memory safe and, hence, the
264   // object can be placed on the safe stack.
265   SmallPtrSet<const Value *, 16> Visited;
266   SmallVector<const Value *, 8> WorkList;
267   WorkList.push_back(AllocaPtr);
268 
269   // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc.
270   while (!WorkList.empty()) {
271     const Value *V = WorkList.pop_back_val();
272     for (const Use &UI : V->uses()) {
273       auto I = cast<const Instruction>(UI.getUser());
274       assert(V == UI.get());
275 
276       switch (I->getOpcode()) {
277       case Instruction::Load:
278         if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getType()), AllocaPtr,
279                           AllocaSize))
280           return false;
281         break;
282 
283       case Instruction::VAArg:
284         // "va-arg" from a pointer is safe.
285         break;
286       case Instruction::Store:
287         if (V == I->getOperand(0)) {
288           // Stored the pointer - conservatively assume it may be unsafe.
289           DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr
290                        << "\n            store of address: " << *I << "\n");
291           return false;
292         }
293 
294         if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getOperand(0)->getType()),
295                           AllocaPtr, AllocaSize))
296           return false;
297         break;
298 
299       case Instruction::Ret:
300         // Information leak.
301         return false;
302 
303       case Instruction::Call:
304       case Instruction::Invoke: {
305         ImmutableCallSite CS(I);
306 
307         if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
308           if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
309               II->getIntrinsicID() == Intrinsic::lifetime_end)
310             continue;
311         }
312 
313         if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
314           if (!IsMemIntrinsicSafe(MI, UI, AllocaPtr, AllocaSize)) {
315             DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr
316                          << "\n            unsafe memintrinsic: " << *I
317                          << "\n");
318             return false;
319           }
320           continue;
321         }
322 
323         // LLVM 'nocapture' attribute is only set for arguments whose address
324         // is not stored, passed around, or used in any other non-trivial way.
325         // We assume that passing a pointer to an object as a 'nocapture
326         // readnone' argument is safe.
327         // FIXME: a more precise solution would require an interprocedural
328         // analysis here, which would look at all uses of an argument inside
329         // the function being called.
330         ImmutableCallSite::arg_iterator B = CS.arg_begin(), E = CS.arg_end();
331         for (ImmutableCallSite::arg_iterator A = B; A != E; ++A)
332           if (A->get() == V)
333             if (!(CS.doesNotCapture(A - B) && (CS.doesNotAccessMemory(A - B) ||
334                                                CS.doesNotAccessMemory()))) {
335               DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr
336                            << "\n            unsafe call: " << *I << "\n");
337               return false;
338             }
339         continue;
340       }
341 
342       default:
343         if (Visited.insert(I).second)
344           WorkList.push_back(cast<const Instruction>(I));
345       }
346     }
347   }
348 
349   // All uses of the alloca are safe, we can place it on the safe stack.
350   return true;
351 }
352 
353 Value *SafeStack::getStackGuard(IRBuilder<> &IRB, Function &F) {
354   Value *StackGuardVar = TL.getIRStackGuard(IRB);
355   if (!StackGuardVar)
356     StackGuardVar =
357         F.getParent()->getOrInsertGlobal("__stack_chk_guard", StackPtrTy);
358   return IRB.CreateLoad(StackGuardVar, "StackGuard");
359 }
360 
361 void SafeStack::findInsts(Function &F,
362                           SmallVectorImpl<AllocaInst *> &StaticAllocas,
363                           SmallVectorImpl<AllocaInst *> &DynamicAllocas,
364                           SmallVectorImpl<Argument *> &ByValArguments,
365                           SmallVectorImpl<ReturnInst *> &Returns,
366                           SmallVectorImpl<Instruction *> &StackRestorePoints) {
367   for (Instruction &I : instructions(&F)) {
368     if (auto AI = dyn_cast<AllocaInst>(&I)) {
369       ++NumAllocas;
370 
371       uint64_t Size = getStaticAllocaAllocationSize(AI);
372       if (IsSafeStackAlloca(AI, Size))
373         continue;
374 
375       if (AI->isStaticAlloca()) {
376         ++NumUnsafeStaticAllocas;
377         StaticAllocas.push_back(AI);
378       } else {
379         ++NumUnsafeDynamicAllocas;
380         DynamicAllocas.push_back(AI);
381       }
382     } else if (auto RI = dyn_cast<ReturnInst>(&I)) {
383       Returns.push_back(RI);
384     } else if (auto CI = dyn_cast<CallInst>(&I)) {
385       // setjmps require stack restore.
386       if (CI->getCalledFunction() && CI->canReturnTwice())
387         StackRestorePoints.push_back(CI);
388     } else if (auto LP = dyn_cast<LandingPadInst>(&I)) {
389       // Exception landing pads require stack restore.
390       StackRestorePoints.push_back(LP);
391     } else if (auto II = dyn_cast<IntrinsicInst>(&I)) {
392       if (II->getIntrinsicID() == Intrinsic::gcroot)
393         report_fatal_error(
394             "gcroot intrinsic not compatible with safestack attribute");
395     }
396   }
397   for (Argument &Arg : F.args()) {
398     if (!Arg.hasByValAttr())
399       continue;
400     uint64_t Size =
401         DL.getTypeStoreSize(Arg.getType()->getPointerElementType());
402     if (IsSafeStackAlloca(&Arg, Size))
403       continue;
404 
405     ++NumUnsafeByValArguments;
406     ByValArguments.push_back(&Arg);
407   }
408 }
409 
410 AllocaInst *
411 SafeStack::createStackRestorePoints(IRBuilder<> &IRB, Function &F,
412                                     ArrayRef<Instruction *> StackRestorePoints,
413                                     Value *StaticTop, bool NeedDynamicTop) {
414   assert(StaticTop && "The stack top isn't set.");
415 
416   if (StackRestorePoints.empty())
417     return nullptr;
418 
419   // We need the current value of the shadow stack pointer to restore
420   // after longjmp or exception catching.
421 
422   // FIXME: On some platforms this could be handled by the longjmp/exception
423   // runtime itself.
424 
425   AllocaInst *DynamicTop = nullptr;
426   if (NeedDynamicTop) {
427     // If we also have dynamic alloca's, the stack pointer value changes
428     // throughout the function. For now we store it in an alloca.
429     DynamicTop = IRB.CreateAlloca(StackPtrTy, /*ArraySize=*/nullptr,
430                                   "unsafe_stack_dynamic_ptr");
431     IRB.CreateStore(StaticTop, DynamicTop);
432   }
433 
434   // Restore current stack pointer after longjmp/exception catch.
435   for (Instruction *I : StackRestorePoints) {
436     ++NumUnsafeStackRestorePoints;
437 
438     IRB.SetInsertPoint(I->getNextNode());
439     Value *CurrentTop = DynamicTop ? IRB.CreateLoad(DynamicTop) : StaticTop;
440     IRB.CreateStore(CurrentTop, UnsafeStackPtr);
441   }
442 
443   return DynamicTop;
444 }
445 
446 void SafeStack::checkStackGuard(IRBuilder<> &IRB, Function &F, ReturnInst &RI,
447                                 AllocaInst *StackGuardSlot, Value *StackGuard) {
448   Value *V = IRB.CreateLoad(StackGuardSlot);
449   Value *Cmp = IRB.CreateICmpNE(StackGuard, V);
450 
451   auto SuccessProb = BranchProbabilityInfo::getBranchProbStackProtector(true);
452   auto FailureProb = BranchProbabilityInfo::getBranchProbStackProtector(false);
453   MDNode *Weights = MDBuilder(F.getContext())
454                         .createBranchWeights(SuccessProb.getNumerator(),
455                                              FailureProb.getNumerator());
456   Instruction *CheckTerm =
457       SplitBlockAndInsertIfThen(Cmp, &RI,
458                                 /* Unreachable */ true, Weights);
459   IRBuilder<> IRBFail(CheckTerm);
460   // FIXME: respect -fsanitize-trap / -ftrap-function here?
461   Constant *StackChkFail = F.getParent()->getOrInsertFunction(
462       "__stack_chk_fail", IRB.getVoidTy());
463   IRBFail.CreateCall(StackChkFail, {});
464 }
465 
466 /// We explicitly compute and set the unsafe stack layout for all unsafe
467 /// static alloca instructions. We save the unsafe "base pointer" in the
468 /// prologue into a local variable and restore it in the epilogue.
469 Value *SafeStack::moveStaticAllocasToUnsafeStack(
470     IRBuilder<> &IRB, Function &F, ArrayRef<AllocaInst *> StaticAllocas,
471     ArrayRef<Argument *> ByValArguments, ArrayRef<ReturnInst *> Returns,
472     Instruction *BasePointer, AllocaInst *StackGuardSlot) {
473   if (StaticAllocas.empty() && ByValArguments.empty())
474     return BasePointer;
475 
476   DIBuilder DIB(*F.getParent());
477 
478   StackColoring SSC(F, StaticAllocas);
479   SSC.run();
480   SSC.removeAllMarkers();
481 
482   // Unsafe stack always grows down.
483   StackLayout SSL(StackAlignment);
484   if (StackGuardSlot) {
485     Type *Ty = StackGuardSlot->getAllocatedType();
486     unsigned Align =
487         std::max(DL.getPrefTypeAlignment(Ty), StackGuardSlot->getAlignment());
488     SSL.addObject(StackGuardSlot, getStaticAllocaAllocationSize(StackGuardSlot),
489                   Align, SSC.getFullLiveRange());
490   }
491 
492   for (Argument *Arg : ByValArguments) {
493     Type *Ty = Arg->getType()->getPointerElementType();
494     uint64_t Size = DL.getTypeStoreSize(Ty);
495     if (Size == 0)
496       Size = 1; // Don't create zero-sized stack objects.
497 
498     // Ensure the object is properly aligned.
499     unsigned Align = std::max((unsigned)DL.getPrefTypeAlignment(Ty),
500                               Arg->getParamAlignment());
501     SSL.addObject(Arg, Size, Align, SSC.getFullLiveRange());
502   }
503 
504   for (AllocaInst *AI : StaticAllocas) {
505     Type *Ty = AI->getAllocatedType();
506     uint64_t Size = getStaticAllocaAllocationSize(AI);
507     if (Size == 0)
508       Size = 1; // Don't create zero-sized stack objects.
509 
510     // Ensure the object is properly aligned.
511     unsigned Align =
512         std::max((unsigned)DL.getPrefTypeAlignment(Ty), AI->getAlignment());
513 
514     SSL.addObject(AI, Size, Align, SSC.getLiveRange(AI));
515   }
516 
517   SSL.computeLayout();
518   unsigned FrameAlignment = SSL.getFrameAlignment();
519 
520   // FIXME: tell SSL that we start at a less-then-MaxAlignment aligned location
521   // (AlignmentSkew).
522   if (FrameAlignment > StackAlignment) {
523     // Re-align the base pointer according to the max requested alignment.
524     assert(isPowerOf2_32(FrameAlignment));
525     IRB.SetInsertPoint(BasePointer->getNextNode());
526     BasePointer = cast<Instruction>(IRB.CreateIntToPtr(
527         IRB.CreateAnd(IRB.CreatePtrToInt(BasePointer, IntPtrTy),
528                       ConstantInt::get(IntPtrTy, ~uint64_t(FrameAlignment - 1))),
529         StackPtrTy));
530   }
531 
532   IRB.SetInsertPoint(BasePointer->getNextNode());
533 
534   if (StackGuardSlot) {
535     unsigned Offset = SSL.getObjectOffset(StackGuardSlot);
536     Value *Off = IRB.CreateGEP(BasePointer, // BasePointer is i8*
537                                ConstantInt::get(Int32Ty, -Offset));
538     Value *NewAI =
539         IRB.CreateBitCast(Off, StackGuardSlot->getType(), "StackGuardSlot");
540 
541     // Replace alloc with the new location.
542     StackGuardSlot->replaceAllUsesWith(NewAI);
543     StackGuardSlot->eraseFromParent();
544   }
545 
546   for (Argument *Arg : ByValArguments) {
547     unsigned Offset = SSL.getObjectOffset(Arg);
548     Type *Ty = Arg->getType()->getPointerElementType();
549 
550     uint64_t Size = DL.getTypeStoreSize(Ty);
551     if (Size == 0)
552       Size = 1; // Don't create zero-sized stack objects.
553 
554     Value *Off = IRB.CreateGEP(BasePointer, // BasePointer is i8*
555                                ConstantInt::get(Int32Ty, -Offset));
556     Value *NewArg = IRB.CreateBitCast(Off, Arg->getType(),
557                                      Arg->getName() + ".unsafe-byval");
558 
559     // Replace alloc with the new location.
560     replaceDbgDeclare(Arg, BasePointer, BasePointer->getNextNode(), DIB,
561                       DIExpression::NoDeref, -Offset, DIExpression::NoDeref);
562     Arg->replaceAllUsesWith(NewArg);
563     IRB.SetInsertPoint(cast<Instruction>(NewArg)->getNextNode());
564     IRB.CreateMemCpy(Off, Arg, Size, Arg->getParamAlignment());
565   }
566 
567   // Allocate space for every unsafe static AllocaInst on the unsafe stack.
568   for (AllocaInst *AI : StaticAllocas) {
569     IRB.SetInsertPoint(AI);
570     unsigned Offset = SSL.getObjectOffset(AI);
571 
572     uint64_t Size = getStaticAllocaAllocationSize(AI);
573     if (Size == 0)
574       Size = 1; // Don't create zero-sized stack objects.
575 
576     replaceDbgDeclareForAlloca(AI, BasePointer, DIB, DIExpression::NoDeref,
577                                -Offset, DIExpression::NoDeref);
578     replaceDbgValueForAlloca(AI, BasePointer, DIB, -Offset);
579 
580     // Replace uses of the alloca with the new location.
581     // Insert address calculation close to each use to work around PR27844.
582     std::string Name = std::string(AI->getName()) + ".unsafe";
583     while (!AI->use_empty()) {
584       Use &U = *AI->use_begin();
585       Instruction *User = cast<Instruction>(U.getUser());
586 
587       Instruction *InsertBefore;
588       if (auto *PHI = dyn_cast<PHINode>(User))
589         InsertBefore = PHI->getIncomingBlock(U)->getTerminator();
590       else
591         InsertBefore = User;
592 
593       IRBuilder<> IRBUser(InsertBefore);
594       Value *Off = IRBUser.CreateGEP(BasePointer, // BasePointer is i8*
595                                      ConstantInt::get(Int32Ty, -Offset));
596       Value *Replacement = IRBUser.CreateBitCast(Off, AI->getType(), Name);
597 
598       if (auto *PHI = dyn_cast<PHINode>(User)) {
599         // PHI nodes may have multiple incoming edges from the same BB (why??),
600         // all must be updated at once with the same incoming value.
601         auto *BB = PHI->getIncomingBlock(U);
602         for (unsigned I = 0; I < PHI->getNumIncomingValues(); ++I)
603           if (PHI->getIncomingBlock(I) == BB)
604             PHI->setIncomingValue(I, Replacement);
605       } else {
606         U.set(Replacement);
607       }
608     }
609 
610     AI->eraseFromParent();
611   }
612 
613   // Re-align BasePointer so that our callees would see it aligned as
614   // expected.
615   // FIXME: no need to update BasePointer in leaf functions.
616   unsigned FrameSize = alignTo(SSL.getFrameSize(), StackAlignment);
617 
618   // Update shadow stack pointer in the function epilogue.
619   IRB.SetInsertPoint(BasePointer->getNextNode());
620 
621   Value *StaticTop =
622       IRB.CreateGEP(BasePointer, ConstantInt::get(Int32Ty, -FrameSize),
623                     "unsafe_stack_static_top");
624   IRB.CreateStore(StaticTop, UnsafeStackPtr);
625   return StaticTop;
626 }
627 
628 void SafeStack::moveDynamicAllocasToUnsafeStack(
629     Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop,
630     ArrayRef<AllocaInst *> DynamicAllocas) {
631   DIBuilder DIB(*F.getParent());
632 
633   for (AllocaInst *AI : DynamicAllocas) {
634     IRBuilder<> IRB(AI);
635 
636     // Compute the new SP value (after AI).
637     Value *ArraySize = AI->getArraySize();
638     if (ArraySize->getType() != IntPtrTy)
639       ArraySize = IRB.CreateIntCast(ArraySize, IntPtrTy, false);
640 
641     Type *Ty = AI->getAllocatedType();
642     uint64_t TySize = DL.getTypeAllocSize(Ty);
643     Value *Size = IRB.CreateMul(ArraySize, ConstantInt::get(IntPtrTy, TySize));
644 
645     Value *SP = IRB.CreatePtrToInt(IRB.CreateLoad(UnsafeStackPtr), IntPtrTy);
646     SP = IRB.CreateSub(SP, Size);
647 
648     // Align the SP value to satisfy the AllocaInst, type and stack alignments.
649     unsigned Align = std::max(
650         std::max((unsigned)DL.getPrefTypeAlignment(Ty), AI->getAlignment()),
651         (unsigned)StackAlignment);
652 
653     assert(isPowerOf2_32(Align));
654     Value *NewTop = IRB.CreateIntToPtr(
655         IRB.CreateAnd(SP, ConstantInt::get(IntPtrTy, ~uint64_t(Align - 1))),
656         StackPtrTy);
657 
658     // Save the stack pointer.
659     IRB.CreateStore(NewTop, UnsafeStackPtr);
660     if (DynamicTop)
661       IRB.CreateStore(NewTop, DynamicTop);
662 
663     Value *NewAI = IRB.CreatePointerCast(NewTop, AI->getType());
664     if (AI->hasName() && isa<Instruction>(NewAI))
665       NewAI->takeName(AI);
666 
667     replaceDbgDeclareForAlloca(AI, NewAI, DIB, DIExpression::NoDeref, 0,
668                                DIExpression::NoDeref);
669     AI->replaceAllUsesWith(NewAI);
670     AI->eraseFromParent();
671   }
672 
673   if (!DynamicAllocas.empty()) {
674     // Now go through the instructions again, replacing stacksave/stackrestore.
675     for (inst_iterator It = inst_begin(&F), Ie = inst_end(&F); It != Ie;) {
676       Instruction *I = &*(It++);
677       auto II = dyn_cast<IntrinsicInst>(I);
678       if (!II)
679         continue;
680 
681       if (II->getIntrinsicID() == Intrinsic::stacksave) {
682         IRBuilder<> IRB(II);
683         Instruction *LI = IRB.CreateLoad(UnsafeStackPtr);
684         LI->takeName(II);
685         II->replaceAllUsesWith(LI);
686         II->eraseFromParent();
687       } else if (II->getIntrinsicID() == Intrinsic::stackrestore) {
688         IRBuilder<> IRB(II);
689         Instruction *SI = IRB.CreateStore(II->getArgOperand(0), UnsafeStackPtr);
690         SI->takeName(II);
691         assert(II->use_empty());
692         II->eraseFromParent();
693       }
694     }
695   }
696 }
697 
698 bool SafeStack::run() {
699   assert(F.hasFnAttribute(Attribute::SafeStack) &&
700          "Can't run SafeStack on a function without the attribute");
701   assert(!F.isDeclaration() && "Can't run SafeStack on a function declaration");
702 
703   ++NumFunctions;
704 
705   SmallVector<AllocaInst *, 16> StaticAllocas;
706   SmallVector<AllocaInst *, 4> DynamicAllocas;
707   SmallVector<Argument *, 4> ByValArguments;
708   SmallVector<ReturnInst *, 4> Returns;
709 
710   // Collect all points where stack gets unwound and needs to be restored
711   // This is only necessary because the runtime (setjmp and unwind code) is
712   // not aware of the unsafe stack and won't unwind/restore it properly.
713   // To work around this problem without changing the runtime, we insert
714   // instrumentation to restore the unsafe stack pointer when necessary.
715   SmallVector<Instruction *, 4> StackRestorePoints;
716 
717   // Find all static and dynamic alloca instructions that must be moved to the
718   // unsafe stack, all return instructions and stack restore points.
719   findInsts(F, StaticAllocas, DynamicAllocas, ByValArguments, Returns,
720             StackRestorePoints);
721 
722   if (StaticAllocas.empty() && DynamicAllocas.empty() &&
723       ByValArguments.empty() && StackRestorePoints.empty())
724     return false; // Nothing to do in this function.
725 
726   if (!StaticAllocas.empty() || !DynamicAllocas.empty() ||
727       !ByValArguments.empty())
728     ++NumUnsafeStackFunctions; // This function has the unsafe stack.
729 
730   if (!StackRestorePoints.empty())
731     ++NumUnsafeStackRestorePointsFunctions;
732 
733   IRBuilder<> IRB(&F.front(), F.begin()->getFirstInsertionPt());
734   UnsafeStackPtr = TL.getSafeStackPointerLocation(IRB);
735 
736   // Load the current stack pointer (we'll also use it as a base pointer).
737   // FIXME: use a dedicated register for it ?
738   Instruction *BasePointer =
739       IRB.CreateLoad(UnsafeStackPtr, false, "unsafe_stack_ptr");
740   assert(BasePointer->getType() == StackPtrTy);
741 
742   AllocaInst *StackGuardSlot = nullptr;
743   // FIXME: implement weaker forms of stack protector.
744   if (F.hasFnAttribute(Attribute::StackProtect) ||
745       F.hasFnAttribute(Attribute::StackProtectStrong) ||
746       F.hasFnAttribute(Attribute::StackProtectReq)) {
747     Value *StackGuard = getStackGuard(IRB, F);
748     StackGuardSlot = IRB.CreateAlloca(StackPtrTy, nullptr);
749     IRB.CreateStore(StackGuard, StackGuardSlot);
750 
751     for (ReturnInst *RI : Returns) {
752       IRBuilder<> IRBRet(RI);
753       checkStackGuard(IRBRet, F, *RI, StackGuardSlot, StackGuard);
754     }
755   }
756 
757   // The top of the unsafe stack after all unsafe static allocas are
758   // allocated.
759   Value *StaticTop =
760       moveStaticAllocasToUnsafeStack(IRB, F, StaticAllocas, ByValArguments,
761                                      Returns, BasePointer, StackGuardSlot);
762 
763   // Safe stack object that stores the current unsafe stack top. It is updated
764   // as unsafe dynamic (non-constant-sized) allocas are allocated and freed.
765   // This is only needed if we need to restore stack pointer after longjmp
766   // or exceptions, and we have dynamic allocations.
767   // FIXME: a better alternative might be to store the unsafe stack pointer
768   // before setjmp / invoke instructions.
769   AllocaInst *DynamicTop = createStackRestorePoints(
770       IRB, F, StackRestorePoints, StaticTop, !DynamicAllocas.empty());
771 
772   // Handle dynamic allocas.
773   moveDynamicAllocasToUnsafeStack(F, UnsafeStackPtr, DynamicTop,
774                                   DynamicAllocas);
775 
776   // Restore the unsafe stack pointer before each return.
777   for (ReturnInst *RI : Returns) {
778     IRB.SetInsertPoint(RI);
779     IRB.CreateStore(BasePointer, UnsafeStackPtr);
780   }
781 
782   DEBUG(dbgs() << "[SafeStack]     safestack applied\n");
783   return true;
784 }
785 
786 class SafeStackLegacyPass : public FunctionPass {
787   const TargetMachine *TM = nullptr;
788 
789 public:
790   static char ID; // Pass identification, replacement for typeid..
791 
792   SafeStackLegacyPass() : FunctionPass(ID) {
793     initializeSafeStackLegacyPassPass(*PassRegistry::getPassRegistry());
794   }
795 
796   void getAnalysisUsage(AnalysisUsage &AU) const override {
797     AU.addRequired<TargetPassConfig>();
798     AU.addRequired<TargetLibraryInfoWrapperPass>();
799     AU.addRequired<AssumptionCacheTracker>();
800   }
801 
802   bool runOnFunction(Function &F) override {
803     DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n");
804 
805     if (!F.hasFnAttribute(Attribute::SafeStack)) {
806       DEBUG(dbgs() << "[SafeStack]     safestack is not requested"
807                       " for this function\n");
808       return false;
809     }
810 
811     if (F.isDeclaration()) {
812       DEBUG(dbgs() << "[SafeStack]     function definition"
813                       " is not available\n");
814       return false;
815     }
816 
817     TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
818     auto *TL = TM->getSubtargetImpl(F)->getTargetLowering();
819     if (!TL)
820       report_fatal_error("TargetLowering instance is required");
821 
822     auto *DL = &F.getParent()->getDataLayout();
823     auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
824     auto &ACT = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
825 
826     // Compute DT and LI only for functions that have the attribute.
827     // This is only useful because the legacy pass manager doesn't let us
828     // compute analyzes lazily.
829     // In the backend pipeline, nothing preserves DT before SafeStack, so we
830     // would otherwise always compute it wastefully, even if there is no
831     // function with the safestack attribute.
832     DominatorTree DT(F);
833     LoopInfo LI(DT);
834 
835     ScalarEvolution SE(F, TLI, ACT, DT, LI);
836 
837     return SafeStack(F, *TL, *DL, SE).run();
838   }
839 };
840 
841 } // end anonymous namespace
842 
843 char SafeStackLegacyPass::ID = 0;
844 
845 INITIALIZE_PASS_BEGIN(SafeStackLegacyPass, DEBUG_TYPE,
846                       "Safe Stack instrumentation pass", false, false)
847 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
848 INITIALIZE_PASS_END(SafeStackLegacyPass, DEBUG_TYPE,
849                     "Safe Stack instrumentation pass", false, false)
850 
851 FunctionPass *llvm::createSafeStackPass() { return new SafeStackLegacyPass(); }
852