1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the RAGreedy function pass for register allocation in 11 // optimized builds. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AllocationOrder.h" 16 #include "InterferenceCache.h" 17 #include "LiveDebugVariables.h" 18 #include "RegAllocBase.h" 19 #include "SpillPlacement.h" 20 #include "Spiller.h" 21 #include "SplitKit.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/IndexedMap.h" 26 #include "llvm/ADT/MapVector.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/CodeGen/CalcSpillWeights.h" 36 #include "llvm/CodeGen/EdgeBundles.h" 37 #include "llvm/CodeGen/LiveInterval.h" 38 #include "llvm/CodeGen/LiveIntervalUnion.h" 39 #include "llvm/CodeGen/LiveIntervals.h" 40 #include "llvm/CodeGen/LiveRangeEdit.h" 41 #include "llvm/CodeGen/LiveRegMatrix.h" 42 #include "llvm/CodeGen/LiveStacks.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 45 #include "llvm/CodeGen/MachineDominators.h" 46 #include "llvm/CodeGen/MachineFrameInfo.h" 47 #include "llvm/CodeGen/MachineFunction.h" 48 #include "llvm/CodeGen/MachineFunctionPass.h" 49 #include "llvm/CodeGen/MachineInstr.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RegAllocRegistry.h" 55 #include "llvm/CodeGen/RegisterClassInfo.h" 56 #include "llvm/CodeGen/SlotIndexes.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/VirtRegMap.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/MC/MCRegisterInfo.h" 64 #include "llvm/Pass.h" 65 #include "llvm/Support/BlockFrequency.h" 66 #include "llvm/Support/BranchProbability.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/Timer.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetMachine.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <memory> 77 #include <queue> 78 #include <tuple> 79 #include <utility> 80 81 using namespace llvm; 82 83 #define DEBUG_TYPE "regalloc" 84 85 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 86 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 87 STATISTIC(NumEvicted, "Number of interferences evicted"); 88 89 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 90 "split-spill-mode", cl::Hidden, 91 cl::desc("Spill mode for splitting live ranges"), 92 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 93 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 94 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 95 cl::init(SplitEditor::SM_Speed)); 96 97 static cl::opt<unsigned> 98 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 99 cl::desc("Last chance recoloring max depth"), 100 cl::init(5)); 101 102 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 103 "lcr-max-interf", cl::Hidden, 104 cl::desc("Last chance recoloring maximum number of considered" 105 " interference at a time"), 106 cl::init(8)); 107 108 static cl::opt<bool> ExhaustiveSearch( 109 "exhaustive-register-search", cl::NotHidden, 110 cl::desc("Exhaustive Search for registers bypassing the depth " 111 "and interference cutoffs of last chance recoloring"), 112 cl::Hidden); 113 114 static cl::opt<bool> EnableLocalReassignment( 115 "enable-local-reassign", cl::Hidden, 116 cl::desc("Local reassignment can yield better allocation decisions, but " 117 "may be compile time intensive"), 118 cl::init(false)); 119 120 static cl::opt<bool> EnableDeferredSpilling( 121 "enable-deferred-spilling", cl::Hidden, 122 cl::desc("Instead of spilling a variable right away, defer the actual " 123 "code insertion to the end of the allocation. That way the " 124 "allocator might still find a suitable coloring for this " 125 "variable because of other evicted variables."), 126 cl::init(false)); 127 128 static cl::opt<unsigned> 129 HugeSizeForSplit("huge-size-for-split", cl::Hidden, 130 cl::desc("A threshold of live range size which may cause " 131 "high compile time cost in global splitting."), 132 cl::init(5000)); 133 134 // FIXME: Find a good default for this flag and remove the flag. 135 static cl::opt<unsigned> 136 CSRFirstTimeCost("regalloc-csr-first-time-cost", 137 cl::desc("Cost for first time use of callee-saved register."), 138 cl::init(0), cl::Hidden); 139 140 static cl::opt<bool> ConsiderLocalIntervalCost( 141 "condsider-local-interval-cost", cl::Hidden, 142 cl::desc("Consider the cost of local intervals created by a split " 143 "candidate when choosing the best split candidate."), 144 cl::init(false)); 145 146 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 147 createGreedyRegisterAllocator); 148 149 namespace { 150 151 class RAGreedy : public MachineFunctionPass, 152 public RegAllocBase, 153 private LiveRangeEdit::Delegate { 154 // Convenient shortcuts. 155 using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>; 156 using SmallLISet = SmallPtrSet<LiveInterval *, 4>; 157 using SmallVirtRegSet = SmallSet<unsigned, 16>; 158 159 // context 160 MachineFunction *MF; 161 162 // Shortcuts to some useful interface. 163 const TargetInstrInfo *TII; 164 const TargetRegisterInfo *TRI; 165 RegisterClassInfo RCI; 166 167 // analyses 168 SlotIndexes *Indexes; 169 MachineBlockFrequencyInfo *MBFI; 170 MachineDominatorTree *DomTree; 171 MachineLoopInfo *Loops; 172 MachineOptimizationRemarkEmitter *ORE; 173 EdgeBundles *Bundles; 174 SpillPlacement *SpillPlacer; 175 LiveDebugVariables *DebugVars; 176 AliasAnalysis *AA; 177 178 // state 179 std::unique_ptr<Spiller> SpillerInstance; 180 PQueue Queue; 181 unsigned NextCascade; 182 183 // Live ranges pass through a number of stages as we try to allocate them. 184 // Some of the stages may also create new live ranges: 185 // 186 // - Region splitting. 187 // - Per-block splitting. 188 // - Local splitting. 189 // - Spilling. 190 // 191 // Ranges produced by one of the stages skip the previous stages when they are 192 // dequeued. This improves performance because we can skip interference checks 193 // that are unlikely to give any results. It also guarantees that the live 194 // range splitting algorithm terminates, something that is otherwise hard to 195 // ensure. 196 enum LiveRangeStage { 197 /// Newly created live range that has never been queued. 198 RS_New, 199 200 /// Only attempt assignment and eviction. Then requeue as RS_Split. 201 RS_Assign, 202 203 /// Attempt live range splitting if assignment is impossible. 204 RS_Split, 205 206 /// Attempt more aggressive live range splitting that is guaranteed to make 207 /// progress. This is used for split products that may not be making 208 /// progress. 209 RS_Split2, 210 211 /// Live range will be spilled. No more splitting will be attempted. 212 RS_Spill, 213 214 215 /// Live range is in memory. Because of other evictions, it might get moved 216 /// in a register in the end. 217 RS_Memory, 218 219 /// There is nothing more we can do to this live range. Abort compilation 220 /// if it can't be assigned. 221 RS_Done 222 }; 223 224 // Enum CutOffStage to keep a track whether the register allocation failed 225 // because of the cutoffs encountered in last chance recoloring. 226 // Note: This is used as bitmask. New value should be next power of 2. 227 enum CutOffStage { 228 // No cutoffs encountered 229 CO_None = 0, 230 231 // lcr-max-depth cutoff encountered 232 CO_Depth = 1, 233 234 // lcr-max-interf cutoff encountered 235 CO_Interf = 2 236 }; 237 238 uint8_t CutOffInfo; 239 240 #ifndef NDEBUG 241 static const char *const StageName[]; 242 #endif 243 244 // RegInfo - Keep additional information about each live range. 245 struct RegInfo { 246 LiveRangeStage Stage = RS_New; 247 248 // Cascade - Eviction loop prevention. See canEvictInterference(). 249 unsigned Cascade = 0; 250 251 RegInfo() = default; 252 }; 253 254 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 255 256 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 257 return ExtraRegInfo[VirtReg.reg].Stage; 258 } 259 260 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 261 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 262 ExtraRegInfo[VirtReg.reg].Stage = Stage; 263 } 264 265 template<typename Iterator> 266 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 267 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 268 for (;Begin != End; ++Begin) { 269 unsigned Reg = *Begin; 270 if (ExtraRegInfo[Reg].Stage == RS_New) 271 ExtraRegInfo[Reg].Stage = NewStage; 272 } 273 } 274 275 /// Cost of evicting interference. 276 struct EvictionCost { 277 unsigned BrokenHints = 0; ///< Total number of broken hints. 278 float MaxWeight = 0; ///< Maximum spill weight evicted. 279 280 EvictionCost() = default; 281 282 bool isMax() const { return BrokenHints == ~0u; } 283 284 void setMax() { BrokenHints = ~0u; } 285 286 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } 287 288 bool operator<(const EvictionCost &O) const { 289 return std::tie(BrokenHints, MaxWeight) < 290 std::tie(O.BrokenHints, O.MaxWeight); 291 } 292 }; 293 294 /// EvictionTrack - Keeps track of past evictions in order to optimize region 295 /// split decision. 296 class EvictionTrack { 297 298 public: 299 using EvictorInfo = 300 std::pair<unsigned /* evictor */, unsigned /* physreg */>; 301 using EvicteeInfo = llvm::DenseMap<unsigned /* evictee */, EvictorInfo>; 302 303 private: 304 /// Each Vreg that has been evicted in the last stage of selectOrSplit will 305 /// be mapped to the evictor Vreg and the PhysReg it was evicted from. 306 EvicteeInfo Evictees; 307 308 public: 309 /// Clear all eviction information. 310 void clear() { Evictees.clear(); } 311 312 /// Clear eviction information for the given evictee Vreg. 313 /// E.g. when Vreg get's a new allocation, the old eviction info is no 314 /// longer relevant. 315 /// \param Evictee The evictee Vreg for whom we want to clear collected 316 /// eviction info. 317 void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); } 318 319 /// Track new eviction. 320 /// The Evictor vreg has evicted the Evictee vreg from Physreg. 321 /// \param PhysReg The physical register Evictee was evicted from. 322 /// \param Evictor The evictor Vreg that evicted Evictee. 323 /// \param Evictee The evictee Vreg. 324 void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) { 325 Evictees[Evictee].first = Evictor; 326 Evictees[Evictee].second = PhysReg; 327 } 328 329 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg. 330 /// \param Evictee The evictee vreg. 331 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if 332 /// nobody has evicted Evictee from PhysReg. 333 EvictorInfo getEvictor(unsigned Evictee) { 334 if (Evictees.count(Evictee)) { 335 return Evictees[Evictee]; 336 } 337 338 return EvictorInfo(0, 0); 339 } 340 }; 341 342 // Keeps track of past evictions in order to optimize region split decision. 343 EvictionTrack LastEvicted; 344 345 // splitting state. 346 std::unique_ptr<SplitAnalysis> SA; 347 std::unique_ptr<SplitEditor> SE; 348 349 /// Cached per-block interference maps 350 InterferenceCache IntfCache; 351 352 /// All basic blocks where the current register has uses. 353 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 354 355 /// Global live range splitting candidate info. 356 struct GlobalSplitCandidate { 357 // Register intended for assignment, or 0. 358 unsigned PhysReg; 359 360 // SplitKit interval index for this candidate. 361 unsigned IntvIdx; 362 363 // Interference for PhysReg. 364 InterferenceCache::Cursor Intf; 365 366 // Bundles where this candidate should be live. 367 BitVector LiveBundles; 368 SmallVector<unsigned, 8> ActiveBlocks; 369 370 void reset(InterferenceCache &Cache, unsigned Reg) { 371 PhysReg = Reg; 372 IntvIdx = 0; 373 Intf.setPhysReg(Cache, Reg); 374 LiveBundles.clear(); 375 ActiveBlocks.clear(); 376 } 377 378 // Set B[i] = C for every live bundle where B[i] was NoCand. 379 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 380 unsigned Count = 0; 381 for (unsigned i : LiveBundles.set_bits()) 382 if (B[i] == NoCand) { 383 B[i] = C; 384 Count++; 385 } 386 return Count; 387 } 388 }; 389 390 /// Candidate info for each PhysReg in AllocationOrder. 391 /// This vector never shrinks, but grows to the size of the largest register 392 /// class. 393 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 394 395 enum : unsigned { NoCand = ~0u }; 396 397 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 398 /// NoCand which indicates the stack interval. 399 SmallVector<unsigned, 32> BundleCand; 400 401 /// Callee-save register cost, calculated once per machine function. 402 BlockFrequency CSRCost; 403 404 /// Run or not the local reassignment heuristic. This information is 405 /// obtained from the TargetSubtargetInfo. 406 bool EnableLocalReassign; 407 408 /// Enable or not the consideration of the cost of local intervals created 409 /// by a split candidate when choosing the best split candidate. 410 bool EnableAdvancedRASplitCost; 411 412 /// Set of broken hints that may be reconciled later because of eviction. 413 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 414 415 public: 416 RAGreedy(); 417 418 /// Return the pass name. 419 StringRef getPassName() const override { return "Greedy Register Allocator"; } 420 421 /// RAGreedy analysis usage. 422 void getAnalysisUsage(AnalysisUsage &AU) const override; 423 void releaseMemory() override; 424 Spiller &spiller() override { return *SpillerInstance; } 425 void enqueue(LiveInterval *LI) override; 426 LiveInterval *dequeue() override; 427 unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override; 428 void aboutToRemoveInterval(LiveInterval &) override; 429 430 /// Perform register allocation. 431 bool runOnMachineFunction(MachineFunction &mf) override; 432 433 MachineFunctionProperties getRequiredProperties() const override { 434 return MachineFunctionProperties().set( 435 MachineFunctionProperties::Property::NoPHIs); 436 } 437 438 static char ID; 439 440 private: 441 unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &, 442 SmallVirtRegSet &, unsigned = 0); 443 444 bool LRE_CanEraseVirtReg(unsigned) override; 445 void LRE_WillShrinkVirtReg(unsigned) override; 446 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 447 void enqueue(PQueue &CurQueue, LiveInterval *LI); 448 LiveInterval *dequeue(PQueue &CurQueue); 449 450 BlockFrequency calcSpillCost(); 451 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 452 bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 453 bool growRegion(GlobalSplitCandidate &Cand); 454 bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand, 455 unsigned BBNumber, 456 const AllocationOrder &Order); 457 bool splitCanCauseLocalSpill(unsigned VirtRegToSplit, 458 GlobalSplitCandidate &Cand, unsigned BBNumber, 459 const AllocationOrder &Order); 460 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &, 461 const AllocationOrder &Order, 462 bool *CanCauseEvictionChain); 463 bool calcCompactRegion(GlobalSplitCandidate&); 464 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 465 void calcGapWeights(unsigned, SmallVectorImpl<float>&); 466 unsigned canReassign(LiveInterval &VirtReg, unsigned PrevReg); 467 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); 468 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&); 469 bool canEvictInterferenceInRange(LiveInterval &VirtReg, unsigned PhysReg, 470 SlotIndex Start, SlotIndex End, 471 EvictionCost &MaxCost); 472 unsigned getCheapestEvicteeWeight(const AllocationOrder &Order, 473 LiveInterval &VirtReg, SlotIndex Start, 474 SlotIndex End, float *BestEvictWeight); 475 void evictInterference(LiveInterval&, unsigned, 476 SmallVectorImpl<unsigned>&); 477 bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 478 SmallLISet &RecoloringCandidates, 479 const SmallVirtRegSet &FixedRegisters); 480 481 unsigned tryAssign(LiveInterval&, AllocationOrder&, 482 SmallVectorImpl<unsigned>&); 483 unsigned tryEvict(LiveInterval&, AllocationOrder&, 484 SmallVectorImpl<unsigned>&, unsigned = ~0u); 485 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, 486 SmallVectorImpl<unsigned>&); 487 unsigned isSplitBenefitWorthCost(LiveInterval &VirtReg); 488 /// Calculate cost of region splitting. 489 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 490 AllocationOrder &Order, 491 BlockFrequency &BestCost, 492 unsigned &NumCands, bool IgnoreCSR, 493 bool *CanCauseEvictionChain = nullptr); 494 /// Perform region splitting. 495 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 496 bool HasCompact, 497 SmallVectorImpl<unsigned> &NewVRegs); 498 /// Check other options before using a callee-saved register for the first 499 /// time. 500 unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 501 unsigned PhysReg, unsigned &CostPerUseLimit, 502 SmallVectorImpl<unsigned> &NewVRegs); 503 void initializeCSRCost(); 504 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 505 SmallVectorImpl<unsigned>&); 506 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 507 SmallVectorImpl<unsigned>&); 508 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 509 SmallVectorImpl<unsigned>&); 510 unsigned trySplit(LiveInterval&, AllocationOrder&, 511 SmallVectorImpl<unsigned>&); 512 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 513 SmallVectorImpl<unsigned> &, 514 SmallVirtRegSet &, unsigned); 515 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &, 516 SmallVirtRegSet &, unsigned); 517 void tryHintRecoloring(LiveInterval &); 518 void tryHintsRecoloring(); 519 520 /// Model the information carried by one end of a copy. 521 struct HintInfo { 522 /// The frequency of the copy. 523 BlockFrequency Freq; 524 /// The virtual register or physical register. 525 unsigned Reg; 526 /// Its currently assigned register. 527 /// In case of a physical register Reg == PhysReg. 528 unsigned PhysReg; 529 530 HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg) 531 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 532 }; 533 using HintsInfo = SmallVector<HintInfo, 4>; 534 535 BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned); 536 void collectHintInfo(unsigned, HintsInfo &); 537 538 bool isUnusedCalleeSavedReg(unsigned PhysReg) const; 539 540 /// Compute and report the number of spills and reloads for a loop. 541 void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 542 unsigned &FoldedReloads, unsigned &Spills, 543 unsigned &FoldedSpills); 544 545 /// Report the number of spills and reloads for each loop. 546 void reportNumberOfSplillsReloads() { 547 for (MachineLoop *L : *Loops) { 548 unsigned Reloads, FoldedReloads, Spills, FoldedSpills; 549 reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills, 550 FoldedSpills); 551 } 552 } 553 }; 554 555 } // end anonymous namespace 556 557 char RAGreedy::ID = 0; 558 char &llvm::RAGreedyID = RAGreedy::ID; 559 560 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 561 "Greedy Register Allocator", false, false) 562 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 563 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 564 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 565 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 566 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 567 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 568 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 569 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 570 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 571 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 572 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 573 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 574 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 575 INITIALIZE_PASS_END(RAGreedy, "greedy", 576 "Greedy Register Allocator", false, false) 577 578 #ifndef NDEBUG 579 const char *const RAGreedy::StageName[] = { 580 "RS_New", 581 "RS_Assign", 582 "RS_Split", 583 "RS_Split2", 584 "RS_Spill", 585 "RS_Memory", 586 "RS_Done" 587 }; 588 #endif 589 590 // Hysteresis to use when comparing floats. 591 // This helps stabilize decisions based on float comparisons. 592 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 593 594 FunctionPass* llvm::createGreedyRegisterAllocator() { 595 return new RAGreedy(); 596 } 597 598 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 599 } 600 601 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 602 AU.setPreservesCFG(); 603 AU.addRequired<MachineBlockFrequencyInfo>(); 604 AU.addPreserved<MachineBlockFrequencyInfo>(); 605 AU.addRequired<AAResultsWrapperPass>(); 606 AU.addPreserved<AAResultsWrapperPass>(); 607 AU.addRequired<LiveIntervals>(); 608 AU.addPreserved<LiveIntervals>(); 609 AU.addRequired<SlotIndexes>(); 610 AU.addPreserved<SlotIndexes>(); 611 AU.addRequired<LiveDebugVariables>(); 612 AU.addPreserved<LiveDebugVariables>(); 613 AU.addRequired<LiveStacks>(); 614 AU.addPreserved<LiveStacks>(); 615 AU.addRequired<MachineDominatorTree>(); 616 AU.addPreserved<MachineDominatorTree>(); 617 AU.addRequired<MachineLoopInfo>(); 618 AU.addPreserved<MachineLoopInfo>(); 619 AU.addRequired<VirtRegMap>(); 620 AU.addPreserved<VirtRegMap>(); 621 AU.addRequired<LiveRegMatrix>(); 622 AU.addPreserved<LiveRegMatrix>(); 623 AU.addRequired<EdgeBundles>(); 624 AU.addRequired<SpillPlacement>(); 625 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 626 MachineFunctionPass::getAnalysisUsage(AU); 627 } 628 629 //===----------------------------------------------------------------------===// 630 // LiveRangeEdit delegate methods 631 //===----------------------------------------------------------------------===// 632 633 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { 634 LiveInterval &LI = LIS->getInterval(VirtReg); 635 if (VRM->hasPhys(VirtReg)) { 636 Matrix->unassign(LI); 637 aboutToRemoveInterval(LI); 638 return true; 639 } 640 // Unassigned virtreg is probably in the priority queue. 641 // RegAllocBase will erase it after dequeueing. 642 // Nonetheless, clear the live-range so that the debug 643 // dump will show the right state for that VirtReg. 644 LI.clear(); 645 return false; 646 } 647 648 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { 649 if (!VRM->hasPhys(VirtReg)) 650 return; 651 652 // Register is assigned, put it back on the queue for reassignment. 653 LiveInterval &LI = LIS->getInterval(VirtReg); 654 Matrix->unassign(LI); 655 enqueue(&LI); 656 } 657 658 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 659 // Cloning a register we haven't even heard about yet? Just ignore it. 660 if (!ExtraRegInfo.inBounds(Old)) 661 return; 662 663 // LRE may clone a virtual register because dead code elimination causes it to 664 // be split into connected components. The new components are much smaller 665 // than the original, so they should get a new chance at being assigned. 666 // same stage as the parent. 667 ExtraRegInfo[Old].Stage = RS_Assign; 668 ExtraRegInfo.grow(New); 669 ExtraRegInfo[New] = ExtraRegInfo[Old]; 670 } 671 672 void RAGreedy::releaseMemory() { 673 SpillerInstance.reset(); 674 ExtraRegInfo.clear(); 675 GlobalCand.clear(); 676 } 677 678 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); } 679 680 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 681 // Prioritize live ranges by size, assigning larger ranges first. 682 // The queue holds (size, reg) pairs. 683 const unsigned Size = LI->getSize(); 684 const unsigned Reg = LI->reg; 685 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 686 "Can only enqueue virtual registers"); 687 unsigned Prio; 688 689 ExtraRegInfo.grow(Reg); 690 if (ExtraRegInfo[Reg].Stage == RS_New) 691 ExtraRegInfo[Reg].Stage = RS_Assign; 692 693 if (ExtraRegInfo[Reg].Stage == RS_Split) { 694 // Unsplit ranges that couldn't be allocated immediately are deferred until 695 // everything else has been allocated. 696 Prio = Size; 697 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 698 // Memory operand should be considered last. 699 // Change the priority such that Memory operand are assigned in 700 // the reverse order that they came in. 701 // TODO: Make this a member variable and probably do something about hints. 702 static unsigned MemOp = 0; 703 Prio = MemOp++; 704 } else { 705 // Giant live ranges fall back to the global assignment heuristic, which 706 // prevents excessive spilling in pathological cases. 707 bool ReverseLocal = TRI->reverseLocalAssignment(); 708 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 709 bool ForceGlobal = !ReverseLocal && 710 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); 711 712 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 713 LIS->intervalIsInOneMBB(*LI)) { 714 // Allocate original local ranges in linear instruction order. Since they 715 // are singly defined, this produces optimal coloring in the absence of 716 // global interference and other constraints. 717 if (!ReverseLocal) 718 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 719 else { 720 // Allocating bottom up may allow many short LRGs to be assigned first 721 // to one of the cheap registers. This could be much faster for very 722 // large blocks on targets with many physical registers. 723 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 724 } 725 Prio |= RC.AllocationPriority << 24; 726 } else { 727 // Allocate global and split ranges in long->short order. Long ranges that 728 // don't fit should be spilled (or split) ASAP so they don't create 729 // interference. Mark a bit to prioritize global above local ranges. 730 Prio = (1u << 29) + Size; 731 } 732 // Mark a higher bit to prioritize global and local above RS_Split. 733 Prio |= (1u << 31); 734 735 // Boost ranges that have a physical register hint. 736 if (VRM->hasKnownPreference(Reg)) 737 Prio |= (1u << 30); 738 } 739 // The virtual register number is a tie breaker for same-sized ranges. 740 // Give lower vreg numbers higher priority to assign them first. 741 CurQueue.push(std::make_pair(Prio, ~Reg)); 742 } 743 744 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 745 746 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 747 if (CurQueue.empty()) 748 return nullptr; 749 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 750 CurQueue.pop(); 751 return LI; 752 } 753 754 //===----------------------------------------------------------------------===// 755 // Direct Assignment 756 //===----------------------------------------------------------------------===// 757 758 /// tryAssign - Try to assign VirtReg to an available register. 759 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg, 760 AllocationOrder &Order, 761 SmallVectorImpl<unsigned> &NewVRegs) { 762 Order.rewind(); 763 unsigned PhysReg; 764 while ((PhysReg = Order.next())) 765 if (!Matrix->checkInterference(VirtReg, PhysReg)) 766 break; 767 if (!PhysReg || Order.isHint()) 768 return PhysReg; 769 770 // PhysReg is available, but there may be a better choice. 771 772 // If we missed a simple hint, try to cheaply evict interference from the 773 // preferred register. 774 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg)) 775 if (Order.isHint(Hint)) { 776 LLVM_DEBUG(dbgs() << "missed hint " << printReg(Hint, TRI) << '\n'); 777 EvictionCost MaxCost; 778 MaxCost.setBrokenHints(1); 779 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) { 780 evictInterference(VirtReg, Hint, NewVRegs); 781 return Hint; 782 } 783 // Record the missed hint, we may be able to recover 784 // at the end if the surrounding allocation changed. 785 SetOfBrokenHints.insert(&VirtReg); 786 } 787 788 // Try to evict interference from a cheaper alternative. 789 unsigned Cost = TRI->getCostPerUse(PhysReg); 790 791 // Most registers have 0 additional cost. 792 if (!Cost) 793 return PhysReg; 794 795 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 796 << Cost << '\n'); 797 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost); 798 return CheapReg ? CheapReg : PhysReg; 799 } 800 801 //===----------------------------------------------------------------------===// 802 // Interference eviction 803 //===----------------------------------------------------------------------===// 804 805 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) { 806 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 807 unsigned PhysReg; 808 while ((PhysReg = Order.next())) { 809 if (PhysReg == PrevReg) 810 continue; 811 812 MCRegUnitIterator Units(PhysReg, TRI); 813 for (; Units.isValid(); ++Units) { 814 // Instantiate a "subquery", not to be confused with the Queries array. 815 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 816 if (subQ.checkInterference()) 817 break; 818 } 819 // If no units have interference, break out with the current PhysReg. 820 if (!Units.isValid()) 821 break; 822 } 823 if (PhysReg) 824 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 825 << printReg(PrevReg, TRI) << " to " 826 << printReg(PhysReg, TRI) << '\n'); 827 return PhysReg; 828 } 829 830 /// shouldEvict - determine if A should evict the assigned live range B. The 831 /// eviction policy defined by this function together with the allocation order 832 /// defined by enqueue() decides which registers ultimately end up being split 833 /// and spilled. 834 /// 835 /// Cascade numbers are used to prevent infinite loops if this function is a 836 /// cyclic relation. 837 /// 838 /// @param A The live range to be assigned. 839 /// @param IsHint True when A is about to be assigned to its preferred 840 /// register. 841 /// @param B The live range to be evicted. 842 /// @param BreaksHint True when B is already assigned to its preferred register. 843 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 844 LiveInterval &B, bool BreaksHint) { 845 bool CanSplit = getStage(B) < RS_Spill; 846 847 // Be fairly aggressive about following hints as long as the evictee can be 848 // split. 849 if (CanSplit && IsHint && !BreaksHint) 850 return true; 851 852 if (A.weight > B.weight) { 853 LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n'); 854 return true; 855 } 856 return false; 857 } 858 859 /// canEvictInterference - Return true if all interferences between VirtReg and 860 /// PhysReg can be evicted. 861 /// 862 /// @param VirtReg Live range that is about to be assigned. 863 /// @param PhysReg Desired register for assignment. 864 /// @param IsHint True when PhysReg is VirtReg's preferred register. 865 /// @param MaxCost Only look for cheaper candidates and update with new cost 866 /// when returning true. 867 /// @returns True when interference can be evicted cheaper than MaxCost. 868 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, 869 bool IsHint, EvictionCost &MaxCost) { 870 // It is only possible to evict virtual register interference. 871 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 872 return false; 873 874 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 875 876 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 877 // involved in an eviction before. If a cascade number was assigned, deny 878 // evicting anything with the same or a newer cascade number. This prevents 879 // infinite eviction loops. 880 // 881 // This works out so a register without a cascade number is allowed to evict 882 // anything, and it can be evicted by anything. 883 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 884 if (!Cascade) 885 Cascade = NextCascade; 886 887 EvictionCost Cost; 888 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 889 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 890 // If there is 10 or more interferences, chances are one is heavier. 891 if (Q.collectInterferingVRegs(10) >= 10) 892 return false; 893 894 // Check if any interfering live range is heavier than MaxWeight. 895 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 896 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 897 assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) && 898 "Only expecting virtual register interference from query"); 899 // Never evict spill products. They cannot split or spill. 900 if (getStage(*Intf) == RS_Done) 901 return false; 902 // Once a live range becomes small enough, it is urgent that we find a 903 // register for it. This is indicated by an infinite spill weight. These 904 // urgent live ranges get to evict almost anything. 905 // 906 // Also allow urgent evictions of unspillable ranges from a strictly 907 // larger allocation order. 908 bool Urgent = !VirtReg.isSpillable() && 909 (Intf->isSpillable() || 910 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) < 911 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg))); 912 // Only evict older cascades or live ranges without a cascade. 913 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade; 914 if (Cascade <= IntfCascade) { 915 if (!Urgent) 916 return false; 917 // We permit breaking cascades for urgent evictions. It should be the 918 // last resort, though, so make it really expensive. 919 Cost.BrokenHints += 10; 920 } 921 // Would this break a satisfied hint? 922 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 923 // Update eviction cost. 924 Cost.BrokenHints += BreaksHint; 925 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 926 // Abort if this would be too expensive. 927 if (!(Cost < MaxCost)) 928 return false; 929 if (Urgent) 930 continue; 931 // Apply the eviction policy for non-urgent evictions. 932 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 933 return false; 934 // If !MaxCost.isMax(), then we're just looking for a cheap register. 935 // Evicting another local live range in this case could lead to suboptimal 936 // coloring. 937 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 938 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 939 return false; 940 } 941 } 942 } 943 MaxCost = Cost; 944 return true; 945 } 946 947 /// Return true if all interferences between VirtReg and PhysReg between 948 /// Start and End can be evicted. 949 /// 950 /// \param VirtReg Live range that is about to be assigned. 951 /// \param PhysReg Desired register for assignment. 952 /// \param Start Start of range to look for interferences. 953 /// \param End End of range to look for interferences. 954 /// \param MaxCost Only look for cheaper candidates and update with new cost 955 /// when returning true. 956 /// \return True when interference can be evicted cheaper than MaxCost. 957 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg, 958 unsigned PhysReg, SlotIndex Start, 959 SlotIndex End, 960 EvictionCost &MaxCost) { 961 EvictionCost Cost; 962 963 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 964 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 965 966 // Check if any interfering live range is heavier than MaxWeight. 967 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 968 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 969 970 // Check if interference overlast the segment in interest. 971 if (!Intf->overlaps(Start, End)) 972 continue; 973 974 // Cannot evict non virtual reg interference. 975 if (!TargetRegisterInfo::isVirtualRegister(Intf->reg)) 976 return false; 977 // Never evict spill products. They cannot split or spill. 978 if (getStage(*Intf) == RS_Done) 979 return false; 980 981 // Would this break a satisfied hint? 982 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 983 // Update eviction cost. 984 Cost.BrokenHints += BreaksHint; 985 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 986 // Abort if this would be too expensive. 987 if (!(Cost < MaxCost)) 988 return false; 989 } 990 } 991 992 if (Cost.MaxWeight == 0) 993 return false; 994 995 MaxCost = Cost; 996 return true; 997 } 998 999 /// Return the physical register that will be best 1000 /// candidate for eviction by a local split interval that will be created 1001 /// between Start and End. 1002 /// 1003 /// \param Order The allocation order 1004 /// \param VirtReg Live range that is about to be assigned. 1005 /// \param Start Start of range to look for interferences 1006 /// \param End End of range to look for interferences 1007 /// \param BestEvictweight The eviction cost of that eviction 1008 /// \return The PhysReg which is the best candidate for eviction and the 1009 /// eviction cost in BestEvictweight 1010 unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, 1011 LiveInterval &VirtReg, 1012 SlotIndex Start, SlotIndex End, 1013 float *BestEvictweight) { 1014 EvictionCost BestEvictCost; 1015 BestEvictCost.setMax(); 1016 BestEvictCost.MaxWeight = VirtReg.weight; 1017 unsigned BestEvicteePhys = 0; 1018 1019 // Go over all physical registers and find the best candidate for eviction 1020 for (auto PhysReg : Order.getOrder()) { 1021 1022 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, 1023 BestEvictCost)) 1024 continue; 1025 1026 // Best so far. 1027 BestEvicteePhys = PhysReg; 1028 } 1029 *BestEvictweight = BestEvictCost.MaxWeight; 1030 return BestEvicteePhys; 1031 } 1032 1033 /// evictInterference - Evict any interferring registers that prevent VirtReg 1034 /// from being assigned to Physreg. This assumes that canEvictInterference 1035 /// returned true. 1036 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg, 1037 SmallVectorImpl<unsigned> &NewVRegs) { 1038 // Make sure that VirtReg has a cascade number, and assign that cascade 1039 // number to every evicted register. These live ranges than then only be 1040 // evicted by a newer cascade, preventing infinite loops. 1041 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 1042 if (!Cascade) 1043 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++; 1044 1045 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 1046 << " interference: Cascade " << Cascade << '\n'); 1047 1048 // Collect all interfering virtregs first. 1049 SmallVector<LiveInterval*, 8> Intfs; 1050 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1051 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1052 // We usually have the interfering VRegs cached so collectInterferingVRegs() 1053 // should be fast, we may need to recalculate if when different physregs 1054 // overlap the same register unit so we had different SubRanges queried 1055 // against it. 1056 Q.collectInterferingVRegs(); 1057 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 1058 Intfs.append(IVR.begin(), IVR.end()); 1059 } 1060 1061 // Evict them second. This will invalidate the queries. 1062 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) { 1063 LiveInterval *Intf = Intfs[i]; 1064 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 1065 if (!VRM->hasPhys(Intf->reg)) 1066 continue; 1067 1068 LastEvicted.addEviction(PhysReg, VirtReg.reg, Intf->reg); 1069 1070 Matrix->unassign(*Intf); 1071 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade || 1072 VirtReg.isSpillable() < Intf->isSpillable()) && 1073 "Cannot decrease cascade number, illegal eviction"); 1074 ExtraRegInfo[Intf->reg].Cascade = Cascade; 1075 ++NumEvicted; 1076 NewVRegs.push_back(Intf->reg); 1077 } 1078 } 1079 1080 /// Returns true if the given \p PhysReg is a callee saved register and has not 1081 /// been used for allocation yet. 1082 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const { 1083 unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 1084 if (CSR == 0) 1085 return false; 1086 1087 return !Matrix->isPhysRegUsed(PhysReg); 1088 } 1089 1090 /// tryEvict - Try to evict all interferences for a physreg. 1091 /// @param VirtReg Currently unassigned virtual register. 1092 /// @param Order Physregs to try. 1093 /// @return Physreg to assign VirtReg, or 0. 1094 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, 1095 AllocationOrder &Order, 1096 SmallVectorImpl<unsigned> &NewVRegs, 1097 unsigned CostPerUseLimit) { 1098 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 1099 TimePassesIsEnabled); 1100 1101 // Keep track of the cheapest interference seen so far. 1102 EvictionCost BestCost; 1103 BestCost.setMax(); 1104 unsigned BestPhys = 0; 1105 unsigned OrderLimit = Order.getOrder().size(); 1106 1107 // When we are just looking for a reduced cost per use, don't break any 1108 // hints, and only evict smaller spill weights. 1109 if (CostPerUseLimit < ~0u) { 1110 BestCost.BrokenHints = 0; 1111 BestCost.MaxWeight = VirtReg.weight; 1112 1113 // Check of any registers in RC are below CostPerUseLimit. 1114 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg); 1115 unsigned MinCost = RegClassInfo.getMinCost(RC); 1116 if (MinCost >= CostPerUseLimit) { 1117 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 1118 << MinCost << ", no cheaper registers to be found.\n"); 1119 return 0; 1120 } 1121 1122 // It is normal for register classes to have a long tail of registers with 1123 // the same cost. We don't need to look at them if they're too expensive. 1124 if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) { 1125 OrderLimit = RegClassInfo.getLastCostChange(RC); 1126 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 1127 << " regs.\n"); 1128 } 1129 } 1130 1131 Order.rewind(); 1132 while (unsigned PhysReg = Order.next(OrderLimit)) { 1133 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) 1134 continue; 1135 // The first use of a callee-saved register in a function has cost 1. 1136 // Don't start using a CSR when the CostPerUseLimit is low. 1137 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 1138 LLVM_DEBUG( 1139 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 1140 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 1141 << '\n'); 1142 continue; 1143 } 1144 1145 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost)) 1146 continue; 1147 1148 // Best so far. 1149 BestPhys = PhysReg; 1150 1151 // Stop if the hint can be used. 1152 if (Order.isHint()) 1153 break; 1154 } 1155 1156 if (!BestPhys) 1157 return 0; 1158 1159 evictInterference(VirtReg, BestPhys, NewVRegs); 1160 return BestPhys; 1161 } 1162 1163 //===----------------------------------------------------------------------===// 1164 // Region Splitting 1165 //===----------------------------------------------------------------------===// 1166 1167 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 1168 /// interference pattern in Physreg and its aliases. Add the constraints to 1169 /// SpillPlacement and return the static cost of this split in Cost, assuming 1170 /// that all preferences in SplitConstraints are met. 1171 /// Return false if there are no bundles with positive bias. 1172 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 1173 BlockFrequency &Cost) { 1174 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1175 1176 // Reset interference dependent info. 1177 SplitConstraints.resize(UseBlocks.size()); 1178 BlockFrequency StaticCost = 0; 1179 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1180 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1181 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1182 1183 BC.Number = BI.MBB->getNumber(); 1184 Intf.moveToBlock(BC.Number); 1185 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1186 BC.Exit = (BI.LiveOut && 1187 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 1188 ? SpillPlacement::PrefReg 1189 : SpillPlacement::DontCare; 1190 BC.ChangesValue = BI.FirstDef.isValid(); 1191 1192 if (!Intf.hasInterference()) 1193 continue; 1194 1195 // Number of spill code instructions to insert. 1196 unsigned Ins = 0; 1197 1198 // Interference for the live-in value. 1199 if (BI.LiveIn) { 1200 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 1201 BC.Entry = SpillPlacement::MustSpill; 1202 ++Ins; 1203 } else if (Intf.first() < BI.FirstInstr) { 1204 BC.Entry = SpillPlacement::PrefSpill; 1205 ++Ins; 1206 } else if (Intf.first() < BI.LastInstr) { 1207 ++Ins; 1208 } 1209 1210 // Abort if the spill cannot be inserted at the MBB' start 1211 if (((BC.Entry == SpillPlacement::MustSpill) || 1212 (BC.Entry == SpillPlacement::PrefSpill)) && 1213 SlotIndex::isEarlierInstr(BI.FirstInstr, 1214 SA->getFirstSplitPoint(BC.Number))) 1215 return false; 1216 } 1217 1218 // Interference for the live-out value. 1219 if (BI.LiveOut) { 1220 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 1221 BC.Exit = SpillPlacement::MustSpill; 1222 ++Ins; 1223 } else if (Intf.last() > BI.LastInstr) { 1224 BC.Exit = SpillPlacement::PrefSpill; 1225 ++Ins; 1226 } else if (Intf.last() > BI.FirstInstr) { 1227 ++Ins; 1228 } 1229 } 1230 1231 // Accumulate the total frequency of inserted spill code. 1232 while (Ins--) 1233 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 1234 } 1235 Cost = StaticCost; 1236 1237 // Add constraints for use-blocks. Note that these are the only constraints 1238 // that may add a positive bias, it is downhill from here. 1239 SpillPlacer->addConstraints(SplitConstraints); 1240 return SpillPlacer->scanActiveBundles(); 1241 } 1242 1243 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1244 /// live-through blocks in Blocks. 1245 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1246 ArrayRef<unsigned> Blocks) { 1247 const unsigned GroupSize = 8; 1248 SpillPlacement::BlockConstraint BCS[GroupSize]; 1249 unsigned TBS[GroupSize]; 1250 unsigned B = 0, T = 0; 1251 1252 for (unsigned i = 0; i != Blocks.size(); ++i) { 1253 unsigned Number = Blocks[i]; 1254 Intf.moveToBlock(Number); 1255 1256 if (!Intf.hasInterference()) { 1257 assert(T < GroupSize && "Array overflow"); 1258 TBS[T] = Number; 1259 if (++T == GroupSize) { 1260 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1261 T = 0; 1262 } 1263 continue; 1264 } 1265 1266 assert(B < GroupSize && "Array overflow"); 1267 BCS[B].Number = Number; 1268 1269 // Abort if the spill cannot be inserted at the MBB' start 1270 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 1271 if (!MBB->empty() && 1272 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()), 1273 SA->getFirstSplitPoint(Number))) 1274 return false; 1275 // Interference for the live-in value. 1276 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1277 BCS[B].Entry = SpillPlacement::MustSpill; 1278 else 1279 BCS[B].Entry = SpillPlacement::PrefSpill; 1280 1281 // Interference for the live-out value. 1282 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1283 BCS[B].Exit = SpillPlacement::MustSpill; 1284 else 1285 BCS[B].Exit = SpillPlacement::PrefSpill; 1286 1287 if (++B == GroupSize) { 1288 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1289 B = 0; 1290 } 1291 } 1292 1293 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1294 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1295 return true; 1296 } 1297 1298 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1299 // Keep track of through blocks that have not been added to SpillPlacer. 1300 BitVector Todo = SA->getThroughBlocks(); 1301 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1302 unsigned AddedTo = 0; 1303 #ifndef NDEBUG 1304 unsigned Visited = 0; 1305 #endif 1306 1307 while (true) { 1308 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1309 // Find new through blocks in the periphery of PrefRegBundles. 1310 for (int i = 0, e = NewBundles.size(); i != e; ++i) { 1311 unsigned Bundle = NewBundles[i]; 1312 // Look at all blocks connected to Bundle in the full graph. 1313 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1314 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); 1315 I != E; ++I) { 1316 unsigned Block = *I; 1317 if (!Todo.test(Block)) 1318 continue; 1319 Todo.reset(Block); 1320 // This is a new through block. Add it to SpillPlacer later. 1321 ActiveBlocks.push_back(Block); 1322 #ifndef NDEBUG 1323 ++Visited; 1324 #endif 1325 } 1326 } 1327 // Any new blocks to add? 1328 if (ActiveBlocks.size() == AddedTo) 1329 break; 1330 1331 // Compute through constraints from the interference, or assume that all 1332 // through blocks prefer spilling when forming compact regions. 1333 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1334 if (Cand.PhysReg) { 1335 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 1336 return false; 1337 } else 1338 // Provide a strong negative bias on through blocks to prevent unwanted 1339 // liveness on loop backedges. 1340 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1341 AddedTo = ActiveBlocks.size(); 1342 1343 // Perhaps iterating can enable more bundles? 1344 SpillPlacer->iterate(); 1345 } 1346 LLVM_DEBUG(dbgs() << ", v=" << Visited); 1347 return true; 1348 } 1349 1350 /// calcCompactRegion - Compute the set of edge bundles that should be live 1351 /// when splitting the current live range into compact regions. Compact 1352 /// regions can be computed without looking at interference. They are the 1353 /// regions formed by removing all the live-through blocks from the live range. 1354 /// 1355 /// Returns false if the current live range is already compact, or if the 1356 /// compact regions would form single block regions anyway. 1357 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1358 // Without any through blocks, the live range is already compact. 1359 if (!SA->getNumThroughBlocks()) 1360 return false; 1361 1362 // Compact regions don't correspond to any physreg. 1363 Cand.reset(IntfCache, 0); 1364 1365 LLVM_DEBUG(dbgs() << "Compact region bundles"); 1366 1367 // Use the spill placer to determine the live bundles. GrowRegion pretends 1368 // that all the through blocks have interference when PhysReg is unset. 1369 SpillPlacer->prepare(Cand.LiveBundles); 1370 1371 // The static split cost will be zero since Cand.Intf reports no interference. 1372 BlockFrequency Cost; 1373 if (!addSplitConstraints(Cand.Intf, Cost)) { 1374 LLVM_DEBUG(dbgs() << ", none.\n"); 1375 return false; 1376 } 1377 1378 if (!growRegion(Cand)) { 1379 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1380 return false; 1381 } 1382 1383 SpillPlacer->finish(); 1384 1385 if (!Cand.LiveBundles.any()) { 1386 LLVM_DEBUG(dbgs() << ", none.\n"); 1387 return false; 1388 } 1389 1390 LLVM_DEBUG({ 1391 for (int i : Cand.LiveBundles.set_bits()) 1392 dbgs() << " EB#" << i; 1393 dbgs() << ".\n"; 1394 }); 1395 return true; 1396 } 1397 1398 /// calcSpillCost - Compute how expensive it would be to split the live range in 1399 /// SA around all use blocks instead of forming bundle regions. 1400 BlockFrequency RAGreedy::calcSpillCost() { 1401 BlockFrequency Cost = 0; 1402 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1403 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1404 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1405 unsigned Number = BI.MBB->getNumber(); 1406 // We normally only need one spill instruction - a load or a store. 1407 Cost += SpillPlacer->getBlockFrequency(Number); 1408 1409 // Unless the value is redefined in the block. 1410 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1411 Cost += SpillPlacer->getBlockFrequency(Number); 1412 } 1413 return Cost; 1414 } 1415 1416 /// Check if splitting Evictee will create a local split interval in 1417 /// basic block number BBNumber that may cause a bad eviction chain. This is 1418 /// intended to prevent bad eviction sequences like: 1419 /// movl %ebp, 8(%esp) # 4-byte Spill 1420 /// movl %ecx, %ebp 1421 /// movl %ebx, %ecx 1422 /// movl %edi, %ebx 1423 /// movl %edx, %edi 1424 /// cltd 1425 /// idivl %esi 1426 /// movl %edi, %edx 1427 /// movl %ebx, %edi 1428 /// movl %ecx, %ebx 1429 /// movl %ebp, %ecx 1430 /// movl 16(%esp), %ebp # 4 - byte Reload 1431 /// 1432 /// Such sequences are created in 2 scenarios: 1433 /// 1434 /// Scenario #1: 1435 /// %0 is evicted from physreg0 by %1. 1436 /// Evictee %0 is intended for region splitting with split candidate 1437 /// physreg0 (the reg %0 was evicted from). 1438 /// Region splitting creates a local interval because of interference with the 1439 /// evictor %1 (normally region splitting creates 2 interval, the "by reg" 1440 /// and "by stack" intervals and local interval created when interference 1441 /// occurs). 1442 /// One of the split intervals ends up evicting %2 from physreg1. 1443 /// Evictee %2 is intended for region splitting with split candidate 1444 /// physreg1. 1445 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1446 /// 1447 /// Scenario #2 1448 /// %0 is evicted from physreg0 by %1. 1449 /// %2 is evicted from physreg2 by %3 etc. 1450 /// Evictee %0 is intended for region splitting with split candidate 1451 /// physreg1. 1452 /// Region splitting creates a local interval because of interference with the 1453 /// evictor %1. 1454 /// One of the split intervals ends up evicting back original evictor %1 1455 /// from physreg0 (the reg %0 was evicted from). 1456 /// Another evictee %2 is intended for region splitting with split candidate 1457 /// physreg1. 1458 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1459 /// 1460 /// \param Evictee The register considered to be split. 1461 /// \param Cand The split candidate that determines the physical register 1462 /// we are splitting for and the interferences. 1463 /// \param BBNumber The number of a BB for which the region split process will 1464 /// create a local split interval. 1465 /// \param Order The physical registers that may get evicted by a split 1466 /// artifact of Evictee. 1467 /// \return True if splitting Evictee may cause a bad eviction chain, false 1468 /// otherwise. 1469 bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee, 1470 GlobalSplitCandidate &Cand, 1471 unsigned BBNumber, 1472 const AllocationOrder &Order) { 1473 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); 1474 unsigned Evictor = VregEvictorInfo.first; 1475 unsigned PhysReg = VregEvictorInfo.second; 1476 1477 // No actual evictor. 1478 if (!Evictor || !PhysReg) 1479 return false; 1480 1481 float MaxWeight = 0; 1482 unsigned FutureEvictedPhysReg = 1483 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), 1484 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); 1485 1486 // The bad eviction chain occurs when either the split candidate is the 1487 // evicting reg or one of the split artifact will evict the evicting reg. 1488 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) 1489 return false; 1490 1491 Cand.Intf.moveToBlock(BBNumber); 1492 1493 // Check to see if the Evictor contains interference (with Evictee) in the 1494 // given BB. If so, this interference caused the eviction of Evictee from 1495 // PhysReg. This suggest that we will create a local interval during the 1496 // region split to avoid this interference This local interval may cause a bad 1497 // eviction chain. 1498 if (!LIS->hasInterval(Evictor)) 1499 return false; 1500 LiveInterval &EvictorLI = LIS->getInterval(Evictor); 1501 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) 1502 return false; 1503 1504 // Now, check to see if the local interval we will create is going to be 1505 // expensive enough to evict somebody If so, this may cause a bad eviction 1506 // chain. 1507 VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI); 1508 float splitArtifactWeight = 1509 VRAI.futureWeight(LIS->getInterval(Evictee), 1510 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1511 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) 1512 return false; 1513 1514 return true; 1515 } 1516 1517 /// Check if splitting VirtRegToSplit will create a local split interval 1518 /// in basic block number BBNumber that may cause a spill. 1519 /// 1520 /// \param VirtRegToSplit The register considered to be split. 1521 /// \param Cand The split candidate that determines the physical 1522 /// register we are splitting for and the interferences. 1523 /// \param BBNumber The number of a BB for which the region split process 1524 /// will create a local split interval. 1525 /// \param Order The physical registers that may get evicted by a 1526 /// split artifact of VirtRegToSplit. 1527 /// \return True if splitting VirtRegToSplit may cause a spill, false 1528 /// otherwise. 1529 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit, 1530 GlobalSplitCandidate &Cand, 1531 unsigned BBNumber, 1532 const AllocationOrder &Order) { 1533 Cand.Intf.moveToBlock(BBNumber); 1534 1535 // Check if the local interval will find a non interfereing assignment. 1536 for (auto PhysReg : Order.getOrder()) { 1537 if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(), 1538 Cand.Intf.last(), PhysReg)) 1539 return false; 1540 } 1541 1542 // Check if the local interval will evict a cheaper interval. 1543 float CheapestEvictWeight = 0; 1544 unsigned FutureEvictedPhysReg = getCheapestEvicteeWeight( 1545 Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(), 1546 Cand.Intf.last(), &CheapestEvictWeight); 1547 1548 // Have we found an interval that can be evicted? 1549 if (FutureEvictedPhysReg) { 1550 VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI); 1551 float splitArtifactWeight = 1552 VRAI.futureWeight(LIS->getInterval(VirtRegToSplit), 1553 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1554 // Will the weight of the local interval be higher than the cheapest evictee 1555 // weight? If so it will evict it and will not cause a spill. 1556 if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight) 1557 return false; 1558 } 1559 1560 // The local interval is not able to find non interferencing assignment and 1561 // not able to evict a less worthy interval, therfore, it can cause a spill. 1562 return true; 1563 } 1564 1565 /// calcGlobalSplitCost - Return the global split cost of following the split 1566 /// pattern in LiveBundles. This cost should be added to the local cost of the 1567 /// interference pattern in SplitConstraints. 1568 /// 1569 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 1570 const AllocationOrder &Order, 1571 bool *CanCauseEvictionChain) { 1572 BlockFrequency GlobalCost = 0; 1573 const BitVector &LiveBundles = Cand.LiveBundles; 1574 unsigned VirtRegToSplit = SA->getParent().reg; 1575 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1576 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1577 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1578 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1579 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1580 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1581 unsigned Ins = 0; 1582 1583 Cand.Intf.moveToBlock(BC.Number); 1584 // Check wheather a local interval is going to be created during the region 1585 // split. Calculate adavanced spilt cost (cost of local intervals) if option 1586 // is enabled. 1587 if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn && 1588 BI.LiveOut && RegIn && RegOut) { 1589 1590 if (CanCauseEvictionChain && 1591 splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) { 1592 // This interference causes our eviction from this assignment, we might 1593 // evict somebody else and eventually someone will spill, add that cost. 1594 // See splitCanCauseEvictionChain for detailed description of scenarios. 1595 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1596 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1597 1598 *CanCauseEvictionChain = true; 1599 1600 } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number, 1601 Order)) { 1602 // This interference causes local interval to spill, add that cost. 1603 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1604 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1605 } 1606 } 1607 1608 if (BI.LiveIn) 1609 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1610 if (BI.LiveOut) 1611 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1612 while (Ins--) 1613 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1614 } 1615 1616 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { 1617 unsigned Number = Cand.ActiveBlocks[i]; 1618 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1619 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1620 if (!RegIn && !RegOut) 1621 continue; 1622 if (RegIn && RegOut) { 1623 // We need double spill code if this block has interference. 1624 Cand.Intf.moveToBlock(Number); 1625 if (Cand.Intf.hasInterference()) { 1626 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1627 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1628 1629 // Check wheather a local interval is going to be created during the 1630 // region split. 1631 if (EnableAdvancedRASplitCost && CanCauseEvictionChain && 1632 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) { 1633 // This interference cause our eviction from this assignment, we might 1634 // evict somebody else, add that cost. 1635 // See splitCanCauseEvictionChain for detailed description of 1636 // scenarios. 1637 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1638 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1639 1640 *CanCauseEvictionChain = true; 1641 } 1642 } 1643 continue; 1644 } 1645 // live-in / stack-out or stack-in live-out. 1646 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1647 } 1648 return GlobalCost; 1649 } 1650 1651 /// splitAroundRegion - Split the current live range around the regions 1652 /// determined by BundleCand and GlobalCand. 1653 /// 1654 /// Before calling this function, GlobalCand and BundleCand must be initialized 1655 /// so each bundle is assigned to a valid candidate, or NoCand for the 1656 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1657 /// objects must be initialized for the current live range, and intervals 1658 /// created for the used candidates. 1659 /// 1660 /// @param LREdit The LiveRangeEdit object handling the current split. 1661 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1662 /// must appear in this list. 1663 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1664 ArrayRef<unsigned> UsedCands) { 1665 // These are the intervals created for new global ranges. We may create more 1666 // intervals for local ranges. 1667 const unsigned NumGlobalIntvs = LREdit.size(); 1668 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 1669 << " globals.\n"); 1670 assert(NumGlobalIntvs && "No global intervals configured"); 1671 1672 // Isolate even single instructions when dealing with a proper sub-class. 1673 // That guarantees register class inflation for the stack interval because it 1674 // is all copies. 1675 unsigned Reg = SA->getParent().reg; 1676 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1677 1678 // First handle all the blocks with uses. 1679 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1680 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1681 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1682 unsigned Number = BI.MBB->getNumber(); 1683 unsigned IntvIn = 0, IntvOut = 0; 1684 SlotIndex IntfIn, IntfOut; 1685 if (BI.LiveIn) { 1686 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1687 if (CandIn != NoCand) { 1688 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1689 IntvIn = Cand.IntvIdx; 1690 Cand.Intf.moveToBlock(Number); 1691 IntfIn = Cand.Intf.first(); 1692 } 1693 } 1694 if (BI.LiveOut) { 1695 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1696 if (CandOut != NoCand) { 1697 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1698 IntvOut = Cand.IntvIdx; 1699 Cand.Intf.moveToBlock(Number); 1700 IntfOut = Cand.Intf.last(); 1701 } 1702 } 1703 1704 // Create separate intervals for isolated blocks with multiple uses. 1705 if (!IntvIn && !IntvOut) { 1706 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 1707 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1708 SE->splitSingleBlock(BI); 1709 continue; 1710 } 1711 1712 if (IntvIn && IntvOut) 1713 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1714 else if (IntvIn) 1715 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1716 else 1717 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1718 } 1719 1720 // Handle live-through blocks. The relevant live-through blocks are stored in 1721 // the ActiveBlocks list with each candidate. We need to filter out 1722 // duplicates. 1723 BitVector Todo = SA->getThroughBlocks(); 1724 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1725 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1726 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1727 unsigned Number = Blocks[i]; 1728 if (!Todo.test(Number)) 1729 continue; 1730 Todo.reset(Number); 1731 1732 unsigned IntvIn = 0, IntvOut = 0; 1733 SlotIndex IntfIn, IntfOut; 1734 1735 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1736 if (CandIn != NoCand) { 1737 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1738 IntvIn = Cand.IntvIdx; 1739 Cand.Intf.moveToBlock(Number); 1740 IntfIn = Cand.Intf.first(); 1741 } 1742 1743 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1744 if (CandOut != NoCand) { 1745 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1746 IntvOut = Cand.IntvIdx; 1747 Cand.Intf.moveToBlock(Number); 1748 IntfOut = Cand.Intf.last(); 1749 } 1750 if (!IntvIn && !IntvOut) 1751 continue; 1752 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1753 } 1754 } 1755 1756 ++NumGlobalSplits; 1757 1758 SmallVector<unsigned, 8> IntvMap; 1759 SE->finish(&IntvMap); 1760 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1761 1762 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1763 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1764 1765 // Sort out the new intervals created by splitting. We get four kinds: 1766 // - Remainder intervals should not be split again. 1767 // - Candidate intervals can be assigned to Cand.PhysReg. 1768 // - Block-local splits are candidates for local splitting. 1769 // - DCE leftovers should go back on the queue. 1770 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1771 LiveInterval &Reg = LIS->getInterval(LREdit.get(i)); 1772 1773 // Ignore old intervals from DCE. 1774 if (getStage(Reg) != RS_New) 1775 continue; 1776 1777 // Remainder interval. Don't try splitting again, spill if it doesn't 1778 // allocate. 1779 if (IntvMap[i] == 0) { 1780 setStage(Reg, RS_Spill); 1781 continue; 1782 } 1783 1784 // Global intervals. Allow repeated splitting as long as the number of live 1785 // blocks is strictly decreasing. 1786 if (IntvMap[i] < NumGlobalIntvs) { 1787 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1788 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1789 << " blocks as original.\n"); 1790 // Don't allow repeated splitting as a safe guard against looping. 1791 setStage(Reg, RS_Split2); 1792 } 1793 continue; 1794 } 1795 1796 // Other intervals are treated as new. This includes local intervals created 1797 // for blocks with multiple uses, and anything created by DCE. 1798 } 1799 1800 if (VerifyEnabled) 1801 MF->verify(this, "After splitting live range around region"); 1802 } 1803 1804 // Global split has high compile time cost especially for large live range. 1805 // Return false for the case here where the potential benefit will never 1806 // worth the cost. 1807 unsigned RAGreedy::isSplitBenefitWorthCost(LiveInterval &VirtReg) { 1808 MachineInstr *MI = MRI->getUniqueVRegDef(VirtReg.reg); 1809 if (MI && TII->isTriviallyReMaterializable(*MI, AA) && 1810 VirtReg.size() > HugeSizeForSplit) 1811 return false; 1812 return true; 1813 } 1814 1815 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1816 SmallVectorImpl<unsigned> &NewVRegs) { 1817 if (!isSplitBenefitWorthCost(VirtReg)) 1818 return 0; 1819 unsigned NumCands = 0; 1820 BlockFrequency SpillCost = calcSpillCost(); 1821 BlockFrequency BestCost; 1822 1823 // Check if we can split this live range around a compact region. 1824 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1825 if (HasCompact) { 1826 // Yes, keep GlobalCand[0] as the compact region candidate. 1827 NumCands = 1; 1828 BestCost = BlockFrequency::getMaxFrequency(); 1829 } else { 1830 // No benefit from the compact region, our fallback will be per-block 1831 // splitting. Make sure we find a solution that is cheaper than spilling. 1832 BestCost = SpillCost; 1833 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1834 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1835 } 1836 1837 bool CanCauseEvictionChain = false; 1838 unsigned BestCand = 1839 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1840 false /*IgnoreCSR*/, &CanCauseEvictionChain); 1841 1842 // Split candidates with compact regions can cause a bad eviction sequence. 1843 // See splitCanCauseEvictionChain for detailed description of scenarios. 1844 // To avoid it, we need to comapre the cost with the spill cost and not the 1845 // current max frequency. 1846 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) && 1847 CanCauseEvictionChain) { 1848 return 0; 1849 } 1850 1851 // No solutions found, fall back to single block splitting. 1852 if (!HasCompact && BestCand == NoCand) 1853 return 0; 1854 1855 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1856 } 1857 1858 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1859 AllocationOrder &Order, 1860 BlockFrequency &BestCost, 1861 unsigned &NumCands, bool IgnoreCSR, 1862 bool *CanCauseEvictionChain) { 1863 unsigned BestCand = NoCand; 1864 Order.rewind(); 1865 while (unsigned PhysReg = Order.next()) { 1866 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1867 continue; 1868 1869 // Discard bad candidates before we run out of interference cache cursors. 1870 // This will only affect register classes with a lot of registers (>32). 1871 if (NumCands == IntfCache.getMaxCursors()) { 1872 unsigned WorstCount = ~0u; 1873 unsigned Worst = 0; 1874 for (unsigned i = 0; i != NumCands; ++i) { 1875 if (i == BestCand || !GlobalCand[i].PhysReg) 1876 continue; 1877 unsigned Count = GlobalCand[i].LiveBundles.count(); 1878 if (Count < WorstCount) { 1879 Worst = i; 1880 WorstCount = Count; 1881 } 1882 } 1883 --NumCands; 1884 GlobalCand[Worst] = GlobalCand[NumCands]; 1885 if (BestCand == NumCands) 1886 BestCand = Worst; 1887 } 1888 1889 if (GlobalCand.size() <= NumCands) 1890 GlobalCand.resize(NumCands+1); 1891 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1892 Cand.reset(IntfCache, PhysReg); 1893 1894 SpillPlacer->prepare(Cand.LiveBundles); 1895 BlockFrequency Cost; 1896 if (!addSplitConstraints(Cand.Intf, Cost)) { 1897 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1898 continue; 1899 } 1900 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1901 MBFI->printBlockFreq(dbgs(), Cost)); 1902 if (Cost >= BestCost) { 1903 LLVM_DEBUG({ 1904 if (BestCand == NoCand) 1905 dbgs() << " worse than no bundles\n"; 1906 else 1907 dbgs() << " worse than " 1908 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1909 }); 1910 continue; 1911 } 1912 if (!growRegion(Cand)) { 1913 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1914 continue; 1915 } 1916 1917 SpillPlacer->finish(); 1918 1919 // No live bundles, defer to splitSingleBlocks(). 1920 if (!Cand.LiveBundles.any()) { 1921 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1922 continue; 1923 } 1924 1925 bool HasEvictionChain = false; 1926 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain); 1927 LLVM_DEBUG({ 1928 dbgs() << ", total = "; 1929 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1930 for (int i : Cand.LiveBundles.set_bits()) 1931 dbgs() << " EB#" << i; 1932 dbgs() << ".\n"; 1933 }); 1934 if (Cost < BestCost) { 1935 BestCand = NumCands; 1936 BestCost = Cost; 1937 // See splitCanCauseEvictionChain for detailed description of bad 1938 // eviction chain scenarios. 1939 if (CanCauseEvictionChain) 1940 *CanCauseEvictionChain = HasEvictionChain; 1941 } 1942 ++NumCands; 1943 } 1944 1945 if (CanCauseEvictionChain && BestCand != NoCand) { 1946 // See splitCanCauseEvictionChain for detailed description of bad 1947 // eviction chain scenarios. 1948 LLVM_DEBUG(dbgs() << "Best split candidate of vreg " 1949 << printReg(VirtReg.reg, TRI) << " may "); 1950 if (!(*CanCauseEvictionChain)) 1951 LLVM_DEBUG(dbgs() << "not "); 1952 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n"); 1953 } 1954 1955 return BestCand; 1956 } 1957 1958 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1959 bool HasCompact, 1960 SmallVectorImpl<unsigned> &NewVRegs) { 1961 SmallVector<unsigned, 8> UsedCands; 1962 // Prepare split editor. 1963 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1964 SE->reset(LREdit, SplitSpillMode); 1965 1966 // Assign all edge bundles to the preferred candidate, or NoCand. 1967 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1968 1969 // Assign bundles for the best candidate region. 1970 if (BestCand != NoCand) { 1971 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1972 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1973 UsedCands.push_back(BestCand); 1974 Cand.IntvIdx = SE->openIntv(); 1975 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1976 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1977 (void)B; 1978 } 1979 } 1980 1981 // Assign bundles for the compact region. 1982 if (HasCompact) { 1983 GlobalSplitCandidate &Cand = GlobalCand.front(); 1984 assert(!Cand.PhysReg && "Compact region has no physreg"); 1985 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1986 UsedCands.push_back(0); 1987 Cand.IntvIdx = SE->openIntv(); 1988 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 1989 << " bundles, intv " << Cand.IntvIdx << ".\n"); 1990 (void)B; 1991 } 1992 } 1993 1994 splitAroundRegion(LREdit, UsedCands); 1995 return 0; 1996 } 1997 1998 //===----------------------------------------------------------------------===// 1999 // Per-Block Splitting 2000 //===----------------------------------------------------------------------===// 2001 2002 /// tryBlockSplit - Split a global live range around every block with uses. This 2003 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 2004 /// they don't allocate. 2005 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2006 SmallVectorImpl<unsigned> &NewVRegs) { 2007 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 2008 unsigned Reg = VirtReg.reg; 2009 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 2010 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2011 SE->reset(LREdit, SplitSpillMode); 2012 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 2013 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 2014 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 2015 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 2016 SE->splitSingleBlock(BI); 2017 } 2018 // No blocks were split. 2019 if (LREdit.empty()) 2020 return 0; 2021 2022 // We did split for some blocks. 2023 SmallVector<unsigned, 8> IntvMap; 2024 SE->finish(&IntvMap); 2025 2026 // Tell LiveDebugVariables about the new ranges. 2027 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 2028 2029 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2030 2031 // Sort out the new intervals created by splitting. The remainder interval 2032 // goes straight to spilling, the new local ranges get to stay RS_New. 2033 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 2034 LiveInterval &LI = LIS->getInterval(LREdit.get(i)); 2035 if (getStage(LI) == RS_New && IntvMap[i] == 0) 2036 setStage(LI, RS_Spill); 2037 } 2038 2039 if (VerifyEnabled) 2040 MF->verify(this, "After splitting live range around basic blocks"); 2041 return 0; 2042 } 2043 2044 //===----------------------------------------------------------------------===// 2045 // Per-Instruction Splitting 2046 //===----------------------------------------------------------------------===// 2047 2048 /// Get the number of allocatable registers that match the constraints of \p Reg 2049 /// on \p MI and that are also in \p SuperRC. 2050 static unsigned getNumAllocatableRegsForConstraints( 2051 const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC, 2052 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 2053 const RegisterClassInfo &RCI) { 2054 assert(SuperRC && "Invalid register class"); 2055 2056 const TargetRegisterClass *ConstrainedRC = 2057 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 2058 /* ExploreBundle */ true); 2059 if (!ConstrainedRC) 2060 return 0; 2061 return RCI.getNumAllocatableRegs(ConstrainedRC); 2062 } 2063 2064 /// tryInstructionSplit - Split a live range around individual instructions. 2065 /// This is normally not worthwhile since the spiller is doing essentially the 2066 /// same thing. However, when the live range is in a constrained register 2067 /// class, it may help to insert copies such that parts of the live range can 2068 /// be moved to a larger register class. 2069 /// 2070 /// This is similar to spilling to a larger register class. 2071 unsigned 2072 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2073 SmallVectorImpl<unsigned> &NewVRegs) { 2074 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 2075 // There is no point to this if there are no larger sub-classes. 2076 if (!RegClassInfo.isProperSubClass(CurRC)) 2077 return 0; 2078 2079 // Always enable split spill mode, since we're effectively spilling to a 2080 // register. 2081 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2082 SE->reset(LREdit, SplitEditor::SM_Size); 2083 2084 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2085 if (Uses.size() <= 1) 2086 return 0; 2087 2088 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 2089 << " individual instrs.\n"); 2090 2091 const TargetRegisterClass *SuperRC = 2092 TRI->getLargestLegalSuperClass(CurRC, *MF); 2093 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 2094 // Split around every non-copy instruction if this split will relax 2095 // the constraints on the virtual register. 2096 // Otherwise, splitting just inserts uncoalescable copies that do not help 2097 // the allocation. 2098 for (unsigned i = 0; i != Uses.size(); ++i) { 2099 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i])) 2100 if (MI->isFullCopy() || 2101 SuperRCNumAllocatableRegs == 2102 getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII, 2103 TRI, RCI)) { 2104 LLVM_DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI); 2105 continue; 2106 } 2107 SE->openIntv(); 2108 SlotIndex SegStart = SE->enterIntvBefore(Uses[i]); 2109 SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]); 2110 SE->useIntv(SegStart, SegStop); 2111 } 2112 2113 if (LREdit.empty()) { 2114 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 2115 return 0; 2116 } 2117 2118 SmallVector<unsigned, 8> IntvMap; 2119 SE->finish(&IntvMap); 2120 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 2121 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2122 2123 // Assign all new registers to RS_Spill. This was the last chance. 2124 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 2125 return 0; 2126 } 2127 2128 //===----------------------------------------------------------------------===// 2129 // Local Splitting 2130 //===----------------------------------------------------------------------===// 2131 2132 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 2133 /// in order to use PhysReg between two entries in SA->UseSlots. 2134 /// 2135 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. 2136 /// 2137 void RAGreedy::calcGapWeights(unsigned PhysReg, 2138 SmallVectorImpl<float> &GapWeight) { 2139 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 2140 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2141 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2142 const unsigned NumGaps = Uses.size()-1; 2143 2144 // Start and end points for the interference check. 2145 SlotIndex StartIdx = 2146 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 2147 SlotIndex StopIdx = 2148 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 2149 2150 GapWeight.assign(NumGaps, 0.0f); 2151 2152 // Add interference from each overlapping register. 2153 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2154 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 2155 .checkInterference()) 2156 continue; 2157 2158 // We know that VirtReg is a continuous interval from FirstInstr to 2159 // LastInstr, so we don't need InterferenceQuery. 2160 // 2161 // Interference that overlaps an instruction is counted in both gaps 2162 // surrounding the instruction. The exception is interference before 2163 // StartIdx and after StopIdx. 2164 // 2165 LiveIntervalUnion::SegmentIter IntI = 2166 Matrix->getLiveUnions()[*Units] .find(StartIdx); 2167 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 2168 // Skip the gaps before IntI. 2169 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 2170 if (++Gap == NumGaps) 2171 break; 2172 if (Gap == NumGaps) 2173 break; 2174 2175 // Update the gaps covered by IntI. 2176 const float weight = IntI.value()->weight; 2177 for (; Gap != NumGaps; ++Gap) { 2178 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 2179 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 2180 break; 2181 } 2182 if (Gap == NumGaps) 2183 break; 2184 } 2185 } 2186 2187 // Add fixed interference. 2188 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2189 const LiveRange &LR = LIS->getRegUnit(*Units); 2190 LiveRange::const_iterator I = LR.find(StartIdx); 2191 LiveRange::const_iterator E = LR.end(); 2192 2193 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 2194 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 2195 while (Uses[Gap+1].getBoundaryIndex() < I->start) 2196 if (++Gap == NumGaps) 2197 break; 2198 if (Gap == NumGaps) 2199 break; 2200 2201 for (; Gap != NumGaps; ++Gap) { 2202 GapWeight[Gap] = huge_valf; 2203 if (Uses[Gap+1].getBaseIndex() >= I->end) 2204 break; 2205 } 2206 if (Gap == NumGaps) 2207 break; 2208 } 2209 } 2210 } 2211 2212 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 2213 /// basic block. 2214 /// 2215 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2216 SmallVectorImpl<unsigned> &NewVRegs) { 2217 // TODO: the function currently only handles a single UseBlock; it should be 2218 // possible to generalize. 2219 if (SA->getUseBlocks().size() != 1) 2220 return 0; 2221 2222 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2223 2224 // Note that it is possible to have an interval that is live-in or live-out 2225 // while only covering a single block - A phi-def can use undef values from 2226 // predecessors, and the block could be a single-block loop. 2227 // We don't bother doing anything clever about such a case, we simply assume 2228 // that the interval is continuous from FirstInstr to LastInstr. We should 2229 // make sure that we don't do anything illegal to such an interval, though. 2230 2231 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2232 if (Uses.size() <= 2) 2233 return 0; 2234 const unsigned NumGaps = Uses.size()-1; 2235 2236 LLVM_DEBUG({ 2237 dbgs() << "tryLocalSplit: "; 2238 for (unsigned i = 0, e = Uses.size(); i != e; ++i) 2239 dbgs() << ' ' << Uses[i]; 2240 dbgs() << '\n'; 2241 }); 2242 2243 // If VirtReg is live across any register mask operands, compute a list of 2244 // gaps with register masks. 2245 SmallVector<unsigned, 8> RegMaskGaps; 2246 if (Matrix->checkRegMaskInterference(VirtReg)) { 2247 // Get regmask slots for the whole block. 2248 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 2249 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 2250 // Constrain to VirtReg's live range. 2251 unsigned ri = std::lower_bound(RMS.begin(), RMS.end(), 2252 Uses.front().getRegSlot()) - RMS.begin(); 2253 unsigned re = RMS.size(); 2254 for (unsigned i = 0; i != NumGaps && ri != re; ++i) { 2255 // Look for Uses[i] <= RMS <= Uses[i+1]. 2256 assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i])); 2257 if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri])) 2258 continue; 2259 // Skip a regmask on the same instruction as the last use. It doesn't 2260 // overlap the live range. 2261 if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps) 2262 break; 2263 LLVM_DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' 2264 << Uses[i + 1]); 2265 RegMaskGaps.push_back(i); 2266 // Advance ri to the next gap. A regmask on one of the uses counts in 2267 // both gaps. 2268 while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1])) 2269 ++ri; 2270 } 2271 LLVM_DEBUG(dbgs() << '\n'); 2272 } 2273 2274 // Since we allow local split results to be split again, there is a risk of 2275 // creating infinite loops. It is tempting to require that the new live 2276 // ranges have less instructions than the original. That would guarantee 2277 // convergence, but it is too strict. A live range with 3 instructions can be 2278 // split 2+3 (including the COPY), and we want to allow that. 2279 // 2280 // Instead we use these rules: 2281 // 2282 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 2283 // noop split, of course). 2284 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 2285 // the new ranges must have fewer instructions than before the split. 2286 // 3. New ranges with the same number of instructions are marked RS_Split2, 2287 // smaller ranges are marked RS_New. 2288 // 2289 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 2290 // excessive splitting and infinite loops. 2291 // 2292 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 2293 2294 // Best split candidate. 2295 unsigned BestBefore = NumGaps; 2296 unsigned BestAfter = 0; 2297 float BestDiff = 0; 2298 2299 const float blockFreq = 2300 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 2301 (1.0f / MBFI->getEntryFreq()); 2302 SmallVector<float, 8> GapWeight; 2303 2304 Order.rewind(); 2305 while (unsigned PhysReg = Order.next()) { 2306 // Keep track of the largest spill weight that would need to be evicted in 2307 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. 2308 calcGapWeights(PhysReg, GapWeight); 2309 2310 // Remove any gaps with regmask clobbers. 2311 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 2312 for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i) 2313 GapWeight[RegMaskGaps[i]] = huge_valf; 2314 2315 // Try to find the best sequence of gaps to close. 2316 // The new spill weight must be larger than any gap interference. 2317 2318 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 2319 unsigned SplitBefore = 0, SplitAfter = 1; 2320 2321 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 2322 // It is the spill weight that needs to be evicted. 2323 float MaxGap = GapWeight[0]; 2324 2325 while (true) { 2326 // Live before/after split? 2327 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 2328 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 2329 2330 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 2331 << '-' << Uses[SplitAfter] << " i=" << MaxGap); 2332 2333 // Stop before the interval gets so big we wouldn't be making progress. 2334 if (!LiveBefore && !LiveAfter) { 2335 LLVM_DEBUG(dbgs() << " all\n"); 2336 break; 2337 } 2338 // Should the interval be extended or shrunk? 2339 bool Shrink = true; 2340 2341 // How many gaps would the new range have? 2342 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 2343 2344 // Legally, without causing looping? 2345 bool Legal = !ProgressRequired || NewGaps < NumGaps; 2346 2347 if (Legal && MaxGap < huge_valf) { 2348 // Estimate the new spill weight. Each instruction reads or writes the 2349 // register. Conservatively assume there are no read-modify-write 2350 // instructions. 2351 // 2352 // Try to guess the size of the new interval. 2353 const float EstWeight = normalizeSpillWeight( 2354 blockFreq * (NewGaps + 1), 2355 Uses[SplitBefore].distance(Uses[SplitAfter]) + 2356 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 2357 1); 2358 // Would this split be possible to allocate? 2359 // Never allocate all gaps, we wouldn't be making progress. 2360 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 2361 if (EstWeight * Hysteresis >= MaxGap) { 2362 Shrink = false; 2363 float Diff = EstWeight - MaxGap; 2364 if (Diff > BestDiff) { 2365 LLVM_DEBUG(dbgs() << " (best)"); 2366 BestDiff = Hysteresis * Diff; 2367 BestBefore = SplitBefore; 2368 BestAfter = SplitAfter; 2369 } 2370 } 2371 } 2372 2373 // Try to shrink. 2374 if (Shrink) { 2375 if (++SplitBefore < SplitAfter) { 2376 LLVM_DEBUG(dbgs() << " shrink\n"); 2377 // Recompute the max when necessary. 2378 if (GapWeight[SplitBefore - 1] >= MaxGap) { 2379 MaxGap = GapWeight[SplitBefore]; 2380 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) 2381 MaxGap = std::max(MaxGap, GapWeight[i]); 2382 } 2383 continue; 2384 } 2385 MaxGap = 0; 2386 } 2387 2388 // Try to extend the interval. 2389 if (SplitAfter >= NumGaps) { 2390 LLVM_DEBUG(dbgs() << " end\n"); 2391 break; 2392 } 2393 2394 LLVM_DEBUG(dbgs() << " extend\n"); 2395 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 2396 } 2397 } 2398 2399 // Didn't find any candidates? 2400 if (BestBefore == NumGaps) 2401 return 0; 2402 2403 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 2404 << Uses[BestAfter] << ", " << BestDiff << ", " 2405 << (BestAfter - BestBefore + 1) << " instrs\n"); 2406 2407 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2408 SE->reset(LREdit); 2409 2410 SE->openIntv(); 2411 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 2412 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 2413 SE->useIntv(SegStart, SegStop); 2414 SmallVector<unsigned, 8> IntvMap; 2415 SE->finish(&IntvMap); 2416 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 2417 2418 // If the new range has the same number of instructions as before, mark it as 2419 // RS_Split2 so the next split will be forced to make progress. Otherwise, 2420 // leave the new intervals as RS_New so they can compete. 2421 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 2422 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 2423 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 2424 if (NewGaps >= NumGaps) { 2425 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: "); 2426 assert(!ProgressRequired && "Didn't make progress when it was required."); 2427 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) 2428 if (IntvMap[i] == 1) { 2429 setStage(LIS->getInterval(LREdit.get(i)), RS_Split2); 2430 LLVM_DEBUG(dbgs() << printReg(LREdit.get(i))); 2431 } 2432 LLVM_DEBUG(dbgs() << '\n'); 2433 } 2434 ++NumLocalSplits; 2435 2436 return 0; 2437 } 2438 2439 //===----------------------------------------------------------------------===// 2440 // Live Range Splitting 2441 //===----------------------------------------------------------------------===// 2442 2443 /// trySplit - Try to split VirtReg or one of its interferences, making it 2444 /// assignable. 2445 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 2446 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 2447 SmallVectorImpl<unsigned>&NewVRegs) { 2448 // Ranges must be Split2 or less. 2449 if (getStage(VirtReg) >= RS_Spill) 2450 return 0; 2451 2452 // Local intervals are handled separately. 2453 if (LIS->intervalIsInOneMBB(VirtReg)) { 2454 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 2455 TimerGroupDescription, TimePassesIsEnabled); 2456 SA->analyze(&VirtReg); 2457 unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 2458 if (PhysReg || !NewVRegs.empty()) 2459 return PhysReg; 2460 return tryInstructionSplit(VirtReg, Order, NewVRegs); 2461 } 2462 2463 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2464 TimerGroupDescription, TimePassesIsEnabled); 2465 2466 SA->analyze(&VirtReg); 2467 2468 // FIXME: SplitAnalysis may repair broken live ranges coming from the 2469 // coalescer. That may cause the range to become allocatable which means that 2470 // tryRegionSplit won't be making progress. This check should be replaced with 2471 // an assertion when the coalescer is fixed. 2472 if (SA->didRepairRange()) { 2473 // VirtReg has changed, so all cached queries are invalid. 2474 Matrix->invalidateVirtRegs(); 2475 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) 2476 return PhysReg; 2477 } 2478 2479 // First try to split around a region spanning multiple blocks. RS_Split2 2480 // ranges already made dubious progress with region splitting, so they go 2481 // straight to single block splitting. 2482 if (getStage(VirtReg) < RS_Split2) { 2483 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2484 if (PhysReg || !NewVRegs.empty()) 2485 return PhysReg; 2486 } 2487 2488 // Then isolate blocks. 2489 return tryBlockSplit(VirtReg, Order, NewVRegs); 2490 } 2491 2492 //===----------------------------------------------------------------------===// 2493 // Last Chance Recoloring 2494 //===----------------------------------------------------------------------===// 2495 2496 /// Return true if \p reg has any tied def operand. 2497 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 2498 for (const MachineOperand &MO : MRI->def_operands(reg)) 2499 if (MO.isTied()) 2500 return true; 2501 2502 return false; 2503 } 2504 2505 /// mayRecolorAllInterferences - Check if the virtual registers that 2506 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2507 /// recolored to free \p PhysReg. 2508 /// When true is returned, \p RecoloringCandidates has been augmented with all 2509 /// the live intervals that need to be recolored in order to free \p PhysReg 2510 /// for \p VirtReg. 2511 /// \p FixedRegisters contains all the virtual registers that cannot be 2512 /// recolored. 2513 bool 2514 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 2515 SmallLISet &RecoloringCandidates, 2516 const SmallVirtRegSet &FixedRegisters) { 2517 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 2518 2519 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2520 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2521 // If there is LastChanceRecoloringMaxInterference or more interferences, 2522 // chances are one would not be recolorable. 2523 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= 2524 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { 2525 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2526 CutOffInfo |= CO_Interf; 2527 return false; 2528 } 2529 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 2530 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 2531 // If Intf is done and sit on the same register class as VirtReg, 2532 // it would not be recolorable as it is in the same state as VirtReg. 2533 // However, if VirtReg has tied defs and Intf doesn't, then 2534 // there is still a point in examining if it can be recolorable. 2535 if (((getStage(*Intf) == RS_Done && 2536 MRI->getRegClass(Intf->reg) == CurRC) && 2537 !(hasTiedDef(MRI, VirtReg.reg) && !hasTiedDef(MRI, Intf->reg))) || 2538 FixedRegisters.count(Intf->reg)) { 2539 LLVM_DEBUG( 2540 dbgs() << "Early abort: the interference is not recolorable.\n"); 2541 return false; 2542 } 2543 RecoloringCandidates.insert(Intf); 2544 } 2545 } 2546 return true; 2547 } 2548 2549 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2550 /// its interferences. 2551 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2552 /// virtual register that was using it. The recoloring process may recursively 2553 /// use the last chance recoloring. Therefore, when a virtual register has been 2554 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2555 /// be last-chance-recolored again during this recoloring "session". 2556 /// E.g., 2557 /// Let 2558 /// vA can use {R1, R2 } 2559 /// vB can use { R2, R3} 2560 /// vC can use {R1 } 2561 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2562 /// instance) and they all interfere. 2563 /// 2564 /// vA is assigned R1 2565 /// vB is assigned R2 2566 /// vC tries to evict vA but vA is already done. 2567 /// Regular register allocation fails. 2568 /// 2569 /// Last chance recoloring kicks in: 2570 /// vC does as if vA was evicted => vC uses R1. 2571 /// vC is marked as fixed. 2572 /// vA needs to find a color. 2573 /// None are available. 2574 /// vA cannot evict vC: vC is a fixed virtual register now. 2575 /// vA does as if vB was evicted => vA uses R2. 2576 /// vB needs to find a color. 2577 /// R3 is available. 2578 /// Recoloring => vC = R1, vA = R2, vB = R3 2579 /// 2580 /// \p Order defines the preferred allocation order for \p VirtReg. 2581 /// \p NewRegs will contain any new virtual register that have been created 2582 /// (split, spill) during the process and that must be assigned. 2583 /// \p FixedRegisters contains all the virtual registers that cannot be 2584 /// recolored. 2585 /// \p Depth gives the current depth of the last chance recoloring. 2586 /// \return a physical register that can be used for VirtReg or ~0u if none 2587 /// exists. 2588 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2589 AllocationOrder &Order, 2590 SmallVectorImpl<unsigned> &NewVRegs, 2591 SmallVirtRegSet &FixedRegisters, 2592 unsigned Depth) { 2593 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2594 // Ranges must be Done. 2595 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2596 "Last chance recoloring should really be last chance"); 2597 // Set the max depth to LastChanceRecoloringMaxDepth. 2598 // We may want to reconsider that if we end up with a too large search space 2599 // for target with hundreds of registers. 2600 // Indeed, in that case we may want to cut the search space earlier. 2601 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2602 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2603 CutOffInfo |= CO_Depth; 2604 return ~0u; 2605 } 2606 2607 // Set of Live intervals that will need to be recolored. 2608 SmallLISet RecoloringCandidates; 2609 // Record the original mapping virtual register to physical register in case 2610 // the recoloring fails. 2611 DenseMap<unsigned, unsigned> VirtRegToPhysReg; 2612 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2613 // this recoloring "session". 2614 FixedRegisters.insert(VirtReg.reg); 2615 SmallVector<unsigned, 4> CurrentNewVRegs; 2616 2617 Order.rewind(); 2618 while (unsigned PhysReg = Order.next()) { 2619 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2620 << printReg(PhysReg, TRI) << '\n'); 2621 RecoloringCandidates.clear(); 2622 VirtRegToPhysReg.clear(); 2623 CurrentNewVRegs.clear(); 2624 2625 // It is only possible to recolor virtual register interference. 2626 if (Matrix->checkInterference(VirtReg, PhysReg) > 2627 LiveRegMatrix::IK_VirtReg) { 2628 LLVM_DEBUG( 2629 dbgs() << "Some interferences are not with virtual registers.\n"); 2630 2631 continue; 2632 } 2633 2634 // Early give up on this PhysReg if it is obvious we cannot recolor all 2635 // the interferences. 2636 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2637 FixedRegisters)) { 2638 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 2639 continue; 2640 } 2641 2642 // RecoloringCandidates contains all the virtual registers that interfer 2643 // with VirtReg on PhysReg (or one of its aliases). 2644 // Enqueue them for recoloring and perform the actual recoloring. 2645 PQueue RecoloringQueue; 2646 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2647 EndIt = RecoloringCandidates.end(); 2648 It != EndIt; ++It) { 2649 unsigned ItVirtReg = (*It)->reg; 2650 enqueue(RecoloringQueue, *It); 2651 assert(VRM->hasPhys(ItVirtReg) && 2652 "Interferences are supposed to be with allocated variables"); 2653 2654 // Record the current allocation. 2655 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2656 // unset the related struct. 2657 Matrix->unassign(**It); 2658 } 2659 2660 // Do as if VirtReg was assigned to PhysReg so that the underlying 2661 // recoloring has the right information about the interferes and 2662 // available colors. 2663 Matrix->assign(VirtReg, PhysReg); 2664 2665 // Save the current recoloring state. 2666 // If we cannot recolor all the interferences, we will have to start again 2667 // at this point for the next physical register. 2668 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2669 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2670 FixedRegisters, Depth)) { 2671 // Push the queued vregs into the main queue. 2672 for (unsigned NewVReg : CurrentNewVRegs) 2673 NewVRegs.push_back(NewVReg); 2674 // Do not mess up with the global assignment process. 2675 // I.e., VirtReg must be unassigned. 2676 Matrix->unassign(VirtReg); 2677 return PhysReg; 2678 } 2679 2680 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2681 << printReg(PhysReg, TRI) << '\n'); 2682 2683 // The recoloring attempt failed, undo the changes. 2684 FixedRegisters = SaveFixedRegisters; 2685 Matrix->unassign(VirtReg); 2686 2687 // For a newly created vreg which is also in RecoloringCandidates, 2688 // don't add it to NewVRegs because its physical register will be restored 2689 // below. Other vregs in CurrentNewVRegs are created by calling 2690 // selectOrSplit and should be added into NewVRegs. 2691 for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(), 2692 End = CurrentNewVRegs.end(); 2693 Next != End; ++Next) { 2694 if (RecoloringCandidates.count(&LIS->getInterval(*Next))) 2695 continue; 2696 NewVRegs.push_back(*Next); 2697 } 2698 2699 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2700 EndIt = RecoloringCandidates.end(); 2701 It != EndIt; ++It) { 2702 unsigned ItVirtReg = (*It)->reg; 2703 if (VRM->hasPhys(ItVirtReg)) 2704 Matrix->unassign(**It); 2705 unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2706 Matrix->assign(**It, ItPhysReg); 2707 } 2708 } 2709 2710 // Last chance recoloring did not worked either, give up. 2711 return ~0u; 2712 } 2713 2714 /// tryRecoloringCandidates - Try to assign a new color to every register 2715 /// in \RecoloringQueue. 2716 /// \p NewRegs will contain any new virtual register created during the 2717 /// recoloring process. 2718 /// \p FixedRegisters[in/out] contains all the registers that have been 2719 /// recolored. 2720 /// \return true if all virtual registers in RecoloringQueue were successfully 2721 /// recolored, false otherwise. 2722 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2723 SmallVectorImpl<unsigned> &NewVRegs, 2724 SmallVirtRegSet &FixedRegisters, 2725 unsigned Depth) { 2726 while (!RecoloringQueue.empty()) { 2727 LiveInterval *LI = dequeue(RecoloringQueue); 2728 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2729 unsigned PhysReg; 2730 PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2731 // When splitting happens, the live-range may actually be empty. 2732 // In that case, this is okay to continue the recoloring even 2733 // if we did not find an alternative color for it. Indeed, 2734 // there will not be anything to color for LI in the end. 2735 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2736 return false; 2737 2738 if (!PhysReg) { 2739 assert(LI->empty() && "Only empty live-range do not require a register"); 2740 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2741 << " succeeded. Empty LI.\n"); 2742 continue; 2743 } 2744 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2745 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2746 2747 Matrix->assign(*LI, PhysReg); 2748 FixedRegisters.insert(LI->reg); 2749 } 2750 return true; 2751 } 2752 2753 //===----------------------------------------------------------------------===// 2754 // Main Entry Point 2755 //===----------------------------------------------------------------------===// 2756 2757 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2758 SmallVectorImpl<unsigned> &NewVRegs) { 2759 CutOffInfo = CO_None; 2760 LLVMContext &Ctx = MF->getFunction().getContext(); 2761 SmallVirtRegSet FixedRegisters; 2762 unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2763 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2764 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2765 if (CutOffEncountered == CO_Depth) 2766 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2767 "reached. Use -fexhaustive-register-search to skip " 2768 "cutoffs"); 2769 else if (CutOffEncountered == CO_Interf) 2770 Ctx.emitError("register allocation failed: maximum interference for " 2771 "recoloring reached. Use -fexhaustive-register-search " 2772 "to skip cutoffs"); 2773 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2774 Ctx.emitError("register allocation failed: maximum interference and " 2775 "depth for recoloring reached. Use " 2776 "-fexhaustive-register-search to skip cutoffs"); 2777 } 2778 return Reg; 2779 } 2780 2781 /// Using a CSR for the first time has a cost because it causes push|pop 2782 /// to be added to prologue|epilogue. Splitting a cold section of the live 2783 /// range can have lower cost than using the CSR for the first time; 2784 /// Spilling a live range in the cold path can have lower cost than using 2785 /// the CSR for the first time. Returns the physical register if we decide 2786 /// to use the CSR; otherwise return 0. 2787 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, 2788 AllocationOrder &Order, 2789 unsigned PhysReg, 2790 unsigned &CostPerUseLimit, 2791 SmallVectorImpl<unsigned> &NewVRegs) { 2792 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2793 // We choose spill over using the CSR for the first time if the spill cost 2794 // is lower than CSRCost. 2795 SA->analyze(&VirtReg); 2796 if (calcSpillCost() >= CSRCost) 2797 return PhysReg; 2798 2799 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2800 // we will not use a callee-saved register in tryEvict. 2801 CostPerUseLimit = 1; 2802 return 0; 2803 } 2804 if (getStage(VirtReg) < RS_Split) { 2805 // We choose pre-splitting over using the CSR for the first time if 2806 // the cost of splitting is lower than CSRCost. 2807 SA->analyze(&VirtReg); 2808 unsigned NumCands = 0; 2809 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2810 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2811 NumCands, true /*IgnoreCSR*/); 2812 if (BestCand == NoCand) 2813 // Use the CSR if we can't find a region split below CSRCost. 2814 return PhysReg; 2815 2816 // Perform the actual pre-splitting. 2817 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2818 return 0; 2819 } 2820 return PhysReg; 2821 } 2822 2823 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2824 // Do not keep invalid information around. 2825 SetOfBrokenHints.remove(&LI); 2826 } 2827 2828 void RAGreedy::initializeCSRCost() { 2829 // We use the larger one out of the command-line option and the value report 2830 // by TRI. 2831 CSRCost = BlockFrequency( 2832 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2833 if (!CSRCost.getFrequency()) 2834 return; 2835 2836 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2837 uint64_t ActualEntry = MBFI->getEntryFreq(); 2838 if (!ActualEntry) { 2839 CSRCost = 0; 2840 return; 2841 } 2842 uint64_t FixedEntry = 1 << 14; 2843 if (ActualEntry < FixedEntry) 2844 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2845 else if (ActualEntry <= UINT32_MAX) 2846 // Invert the fraction and divide. 2847 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2848 else 2849 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2850 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2851 } 2852 2853 /// Collect the hint info for \p Reg. 2854 /// The results are stored into \p Out. 2855 /// \p Out is not cleared before being populated. 2856 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) { 2857 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2858 if (!Instr.isFullCopy()) 2859 continue; 2860 // Look for the other end of the copy. 2861 unsigned OtherReg = Instr.getOperand(0).getReg(); 2862 if (OtherReg == Reg) { 2863 OtherReg = Instr.getOperand(1).getReg(); 2864 if (OtherReg == Reg) 2865 continue; 2866 } 2867 // Get the current assignment. 2868 unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg) 2869 ? OtherReg 2870 : VRM->getPhys(OtherReg); 2871 // Push the collected information. 2872 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2873 OtherPhysReg)); 2874 } 2875 } 2876 2877 /// Using the given \p List, compute the cost of the broken hints if 2878 /// \p PhysReg was used. 2879 /// \return The cost of \p List for \p PhysReg. 2880 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2881 unsigned PhysReg) { 2882 BlockFrequency Cost = 0; 2883 for (const HintInfo &Info : List) { 2884 if (Info.PhysReg != PhysReg) 2885 Cost += Info.Freq; 2886 } 2887 return Cost; 2888 } 2889 2890 /// Using the register assigned to \p VirtReg, try to recolor 2891 /// all the live ranges that are copy-related with \p VirtReg. 2892 /// The recoloring is then propagated to all the live-ranges that have 2893 /// been recolored and so on, until no more copies can be coalesced or 2894 /// it is not profitable. 2895 /// For a given live range, profitability is determined by the sum of the 2896 /// frequencies of the non-identity copies it would introduce with the old 2897 /// and new register. 2898 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2899 // We have a broken hint, check if it is possible to fix it by 2900 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2901 // some register and PhysReg may be available for the other live-ranges. 2902 SmallSet<unsigned, 4> Visited; 2903 SmallVector<unsigned, 2> RecoloringCandidates; 2904 HintsInfo Info; 2905 unsigned Reg = VirtReg.reg; 2906 unsigned PhysReg = VRM->getPhys(Reg); 2907 // Start the recoloring algorithm from the input live-interval, then 2908 // it will propagate to the ones that are copy-related with it. 2909 Visited.insert(Reg); 2910 RecoloringCandidates.push_back(Reg); 2911 2912 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2913 << '(' << printReg(PhysReg, TRI) << ")\n"); 2914 2915 do { 2916 Reg = RecoloringCandidates.pop_back_val(); 2917 2918 // We cannot recolor physical register. 2919 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 2920 continue; 2921 2922 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!"); 2923 2924 // Get the live interval mapped with this virtual register to be able 2925 // to check for the interference with the new color. 2926 LiveInterval &LI = LIS->getInterval(Reg); 2927 unsigned CurrPhys = VRM->getPhys(Reg); 2928 // Check that the new color matches the register class constraints and 2929 // that it is free for this live range. 2930 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2931 Matrix->checkInterference(LI, PhysReg))) 2932 continue; 2933 2934 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2935 << ") is recolorable.\n"); 2936 2937 // Gather the hint info. 2938 Info.clear(); 2939 collectHintInfo(Reg, Info); 2940 // Check if recoloring the live-range will increase the cost of the 2941 // non-identity copies. 2942 if (CurrPhys != PhysReg) { 2943 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2944 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2945 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2946 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2947 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2948 << '\n'); 2949 if (OldCopiesCost < NewCopiesCost) { 2950 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2951 continue; 2952 } 2953 // At this point, the cost is either cheaper or equal. If it is 2954 // equal, we consider this is profitable because it may expose 2955 // more recoloring opportunities. 2956 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2957 // Recolor the live-range. 2958 Matrix->unassign(LI); 2959 Matrix->assign(LI, PhysReg); 2960 } 2961 // Push all copy-related live-ranges to keep reconciling the broken 2962 // hints. 2963 for (const HintInfo &HI : Info) { 2964 if (Visited.insert(HI.Reg).second) 2965 RecoloringCandidates.push_back(HI.Reg); 2966 } 2967 } while (!RecoloringCandidates.empty()); 2968 } 2969 2970 /// Try to recolor broken hints. 2971 /// Broken hints may be repaired by recoloring when an evicted variable 2972 /// freed up a register for a larger live-range. 2973 /// Consider the following example: 2974 /// BB1: 2975 /// a = 2976 /// b = 2977 /// BB2: 2978 /// ... 2979 /// = b 2980 /// = a 2981 /// Let us assume b gets split: 2982 /// BB1: 2983 /// a = 2984 /// b = 2985 /// BB2: 2986 /// c = b 2987 /// ... 2988 /// d = c 2989 /// = d 2990 /// = a 2991 /// Because of how the allocation work, b, c, and d may be assigned different 2992 /// colors. Now, if a gets evicted later: 2993 /// BB1: 2994 /// a = 2995 /// st a, SpillSlot 2996 /// b = 2997 /// BB2: 2998 /// c = b 2999 /// ... 3000 /// d = c 3001 /// = d 3002 /// e = ld SpillSlot 3003 /// = e 3004 /// This is likely that we can assign the same register for b, c, and d, 3005 /// getting rid of 2 copies. 3006 void RAGreedy::tryHintsRecoloring() { 3007 for (LiveInterval *LI : SetOfBrokenHints) { 3008 assert(TargetRegisterInfo::isVirtualRegister(LI->reg) && 3009 "Recoloring is possible only for virtual registers"); 3010 // Some dead defs may be around (e.g., because of debug uses). 3011 // Ignore those. 3012 if (!VRM->hasPhys(LI->reg)) 3013 continue; 3014 tryHintRecoloring(*LI); 3015 } 3016 } 3017 3018 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 3019 SmallVectorImpl<unsigned> &NewVRegs, 3020 SmallVirtRegSet &FixedRegisters, 3021 unsigned Depth) { 3022 unsigned CostPerUseLimit = ~0u; 3023 // First try assigning a free register. 3024 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 3025 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) { 3026 // If VirtReg got an assignment, the eviction info is no longre relevant. 3027 LastEvicted.clearEvicteeInfo(VirtReg.reg); 3028 // When NewVRegs is not empty, we may have made decisions such as evicting 3029 // a virtual register, go with the earlier decisions and use the physical 3030 // register. 3031 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 3032 NewVRegs.empty()) { 3033 unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 3034 CostPerUseLimit, NewVRegs); 3035 if (CSRReg || !NewVRegs.empty()) 3036 // Return now if we decide to use a CSR or create new vregs due to 3037 // pre-splitting. 3038 return CSRReg; 3039 } else 3040 return PhysReg; 3041 } 3042 3043 LiveRangeStage Stage = getStage(VirtReg); 3044 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 3045 << ExtraRegInfo[VirtReg.reg].Cascade << '\n'); 3046 3047 // Try to evict a less worthy live range, but only for ranges from the primary 3048 // queue. The RS_Split ranges already failed to do this, and they should not 3049 // get a second chance until they have been split. 3050 if (Stage != RS_Split) 3051 if (unsigned PhysReg = 3052 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) { 3053 unsigned Hint = MRI->getSimpleHint(VirtReg.reg); 3054 // If VirtReg has a hint and that hint is broken record this 3055 // virtual register as a recoloring candidate for broken hint. 3056 // Indeed, since we evicted a variable in its neighborhood it is 3057 // likely we can at least partially recolor some of the 3058 // copy-related live-ranges. 3059 if (Hint && Hint != PhysReg) 3060 SetOfBrokenHints.insert(&VirtReg); 3061 // If VirtReg eviction someone, the eviction info for it as an evictee is 3062 // no longre relevant. 3063 LastEvicted.clearEvicteeInfo(VirtReg.reg); 3064 return PhysReg; 3065 } 3066 3067 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 3068 3069 // The first time we see a live range, don't try to split or spill. 3070 // Wait until the second time, when all smaller ranges have been allocated. 3071 // This gives a better picture of the interference to split around. 3072 if (Stage < RS_Split) { 3073 setStage(VirtReg, RS_Split); 3074 LLVM_DEBUG(dbgs() << "wait for second round\n"); 3075 NewVRegs.push_back(VirtReg.reg); 3076 return 0; 3077 } 3078 3079 if (Stage < RS_Spill) { 3080 // Try splitting VirtReg or interferences. 3081 unsigned NewVRegSizeBefore = NewVRegs.size(); 3082 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs); 3083 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 3084 // If VirtReg got split, the eviction info is no longre relevant. 3085 LastEvicted.clearEvicteeInfo(VirtReg.reg); 3086 return PhysReg; 3087 } 3088 } 3089 3090 // If we couldn't allocate a register from spilling, there is probably some 3091 // invalid inline assembly. The base class will report it. 3092 if (Stage >= RS_Done || !VirtReg.isSpillable()) 3093 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 3094 Depth); 3095 3096 // Finally spill VirtReg itself. 3097 if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) { 3098 // TODO: This is experimental and in particular, we do not model 3099 // the live range splitting done by spilling correctly. 3100 // We would need a deep integration with the spiller to do the 3101 // right thing here. Anyway, that is still good for early testing. 3102 setStage(VirtReg, RS_Memory); 3103 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 3104 NewVRegs.push_back(VirtReg.reg); 3105 } else { 3106 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 3107 TimerGroupDescription, TimePassesIsEnabled); 3108 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 3109 spiller().spill(LRE); 3110 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 3111 3112 if (VerifyEnabled) 3113 MF->verify(this, "After spilling"); 3114 } 3115 3116 // The live virtual register requesting allocation was spilled, so tell 3117 // the caller not to allocate anything during this round. 3118 return 0; 3119 } 3120 3121 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 3122 unsigned &FoldedReloads, 3123 unsigned &Spills, 3124 unsigned &FoldedSpills) { 3125 Reloads = 0; 3126 FoldedReloads = 0; 3127 Spills = 0; 3128 FoldedSpills = 0; 3129 3130 // Sum up the spill and reloads in subloops. 3131 for (MachineLoop *SubLoop : *L) { 3132 unsigned SubReloads; 3133 unsigned SubFoldedReloads; 3134 unsigned SubSpills; 3135 unsigned SubFoldedSpills; 3136 3137 reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads, 3138 SubSpills, SubFoldedSpills); 3139 Reloads += SubReloads; 3140 FoldedReloads += SubFoldedReloads; 3141 Spills += SubSpills; 3142 FoldedSpills += SubFoldedSpills; 3143 } 3144 3145 const MachineFrameInfo &MFI = MF->getFrameInfo(); 3146 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 3147 int FI; 3148 3149 for (MachineBasicBlock *MBB : L->getBlocks()) 3150 // Handle blocks that were not included in subloops. 3151 if (Loops->getLoopFor(MBB) == L) 3152 for (MachineInstr &MI : *MBB) { 3153 SmallVector<const MachineMemOperand *, 2> Accesses; 3154 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 3155 return MFI.isSpillSlotObjectIndex( 3156 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 3157 ->getFrameIndex()); 3158 }; 3159 3160 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) 3161 ++Reloads; 3162 else if (TII->hasLoadFromStackSlot(MI, Accesses) && 3163 llvm::any_of(Accesses, isSpillSlotAccess)) 3164 ++FoldedReloads; 3165 else if (TII->isStoreToStackSlot(MI, FI) && 3166 MFI.isSpillSlotObjectIndex(FI)) 3167 ++Spills; 3168 else if (TII->hasStoreToStackSlot(MI, Accesses) && 3169 llvm::any_of(Accesses, isSpillSlotAccess)) 3170 ++FoldedSpills; 3171 } 3172 3173 if (Reloads || FoldedReloads || Spills || FoldedSpills) { 3174 using namespace ore; 3175 3176 ORE->emit([&]() { 3177 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload", 3178 L->getStartLoc(), L->getHeader()); 3179 if (Spills) 3180 R << NV("NumSpills", Spills) << " spills "; 3181 if (FoldedSpills) 3182 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 3183 if (Reloads) 3184 R << NV("NumReloads", Reloads) << " reloads "; 3185 if (FoldedReloads) 3186 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 3187 R << "generated in loop"; 3188 return R; 3189 }); 3190 } 3191 } 3192 3193 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 3194 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 3195 << "********** Function: " << mf.getName() << '\n'); 3196 3197 MF = &mf; 3198 TRI = MF->getSubtarget().getRegisterInfo(); 3199 TII = MF->getSubtarget().getInstrInfo(); 3200 RCI.runOnMachineFunction(mf); 3201 3202 EnableLocalReassign = EnableLocalReassignment || 3203 MF->getSubtarget().enableRALocalReassignment( 3204 MF->getTarget().getOptLevel()); 3205 3206 EnableAdvancedRASplitCost = ConsiderLocalIntervalCost || 3207 MF->getSubtarget().enableAdvancedRASplitCost(); 3208 3209 if (VerifyEnabled) 3210 MF->verify(this, "Before greedy register allocator"); 3211 3212 RegAllocBase::init(getAnalysis<VirtRegMap>(), 3213 getAnalysis<LiveIntervals>(), 3214 getAnalysis<LiveRegMatrix>()); 3215 Indexes = &getAnalysis<SlotIndexes>(); 3216 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3217 DomTree = &getAnalysis<MachineDominatorTree>(); 3218 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 3219 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 3220 Loops = &getAnalysis<MachineLoopInfo>(); 3221 Bundles = &getAnalysis<EdgeBundles>(); 3222 SpillPlacer = &getAnalysis<SpillPlacement>(); 3223 DebugVars = &getAnalysis<LiveDebugVariables>(); 3224 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3225 3226 initializeCSRCost(); 3227 3228 calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI); 3229 3230 LLVM_DEBUG(LIS->dump()); 3231 3232 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 3233 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI)); 3234 ExtraRegInfo.clear(); 3235 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 3236 NextCascade = 1; 3237 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 3238 GlobalCand.resize(32); // This will grow as needed. 3239 SetOfBrokenHints.clear(); 3240 LastEvicted.clear(); 3241 3242 allocatePhysRegs(); 3243 tryHintsRecoloring(); 3244 postOptimization(); 3245 reportNumberOfSplillsReloads(); 3246 3247 releaseMemory(); 3248 return true; 3249 } 3250