1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the RAGreedy function pass for register allocation in 11 // optimized builds. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/Passes.h" 16 #include "AllocationOrder.h" 17 #include "InterferenceCache.h" 18 #include "LiveDebugVariables.h" 19 #include "RegAllocBase.h" 20 #include "SpillPlacement.h" 21 #include "Spiller.h" 22 #include "SplitKit.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/CalcSpillWeights.h" 26 #include "llvm/CodeGen/EdgeBundles.h" 27 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 28 #include "llvm/CodeGen/LiveRangeEdit.h" 29 #include "llvm/CodeGen/LiveRegMatrix.h" 30 #include "llvm/CodeGen/LiveStackAnalysis.h" 31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineFunctionPass.h" 34 #include "llvm/CodeGen/MachineLoopInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/RegAllocRegistry.h" 37 #include "llvm/CodeGen/RegisterClassInfo.h" 38 #include "llvm/CodeGen/VirtRegMap.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/PassAnalysisSupport.h" 41 #include "llvm/Support/BranchProbability.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/Timer.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 #include <queue> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "regalloc" 53 54 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 55 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 56 STATISTIC(NumEvicted, "Number of interferences evicted"); 57 58 static cl::opt<SplitEditor::ComplementSpillMode> 59 SplitSpillMode("split-spill-mode", cl::Hidden, 60 cl::desc("Spill mode for splitting live ranges"), 61 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 62 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 63 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"), 64 clEnumValEnd), 65 cl::init(SplitEditor::SM_Partition)); 66 67 static cl::opt<unsigned> 68 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 69 cl::desc("Last chance recoloring max depth"), 70 cl::init(5)); 71 72 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 73 "lcr-max-interf", cl::Hidden, 74 cl::desc("Last chance recoloring maximum number of considered" 75 " interference at a time"), 76 cl::init(8)); 77 78 static cl::opt<bool> 79 ExhaustiveSearch("exhaustive-register-search", cl::NotHidden, 80 cl::desc("Exhaustive Search for registers bypassing the depth " 81 "and interference cutoffs of last chance recoloring")); 82 83 static cl::opt<bool> EnableLocalReassignment( 84 "enable-local-reassign", cl::Hidden, 85 cl::desc("Local reassignment can yield better allocation decisions, but " 86 "may be compile time intensive"), 87 cl::init(false)); 88 89 // FIXME: Find a good default for this flag and remove the flag. 90 static cl::opt<unsigned> 91 CSRFirstTimeCost("regalloc-csr-first-time-cost", 92 cl::desc("Cost for first time use of callee-saved register."), 93 cl::init(0), cl::Hidden); 94 95 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 96 createGreedyRegisterAllocator); 97 98 namespace { 99 class RAGreedy : public MachineFunctionPass, 100 public RegAllocBase, 101 private LiveRangeEdit::Delegate { 102 // Convenient shortcuts. 103 typedef std::priority_queue<std::pair<unsigned, unsigned> > PQueue; 104 typedef SmallPtrSet<LiveInterval *, 4> SmallLISet; 105 typedef SmallSet<unsigned, 16> SmallVirtRegSet; 106 107 // context 108 MachineFunction *MF; 109 110 // Shortcuts to some useful interface. 111 const TargetInstrInfo *TII; 112 const TargetRegisterInfo *TRI; 113 RegisterClassInfo RCI; 114 115 // analyses 116 SlotIndexes *Indexes; 117 MachineBlockFrequencyInfo *MBFI; 118 MachineDominatorTree *DomTree; 119 MachineLoopInfo *Loops; 120 EdgeBundles *Bundles; 121 SpillPlacement *SpillPlacer; 122 LiveDebugVariables *DebugVars; 123 124 // state 125 std::unique_ptr<Spiller> SpillerInstance; 126 PQueue Queue; 127 unsigned NextCascade; 128 129 // Live ranges pass through a number of stages as we try to allocate them. 130 // Some of the stages may also create new live ranges: 131 // 132 // - Region splitting. 133 // - Per-block splitting. 134 // - Local splitting. 135 // - Spilling. 136 // 137 // Ranges produced by one of the stages skip the previous stages when they are 138 // dequeued. This improves performance because we can skip interference checks 139 // that are unlikely to give any results. It also guarantees that the live 140 // range splitting algorithm terminates, something that is otherwise hard to 141 // ensure. 142 enum LiveRangeStage { 143 /// Newly created live range that has never been queued. 144 RS_New, 145 146 /// Only attempt assignment and eviction. Then requeue as RS_Split. 147 RS_Assign, 148 149 /// Attempt live range splitting if assignment is impossible. 150 RS_Split, 151 152 /// Attempt more aggressive live range splitting that is guaranteed to make 153 /// progress. This is used for split products that may not be making 154 /// progress. 155 RS_Split2, 156 157 /// Live range will be spilled. No more splitting will be attempted. 158 RS_Spill, 159 160 /// There is nothing more we can do to this live range. Abort compilation 161 /// if it can't be assigned. 162 RS_Done 163 }; 164 165 // Enum CutOffStage to keep a track whether the register allocation failed 166 // because of the cutoffs encountered in last chance recoloring. 167 // Note: This is used as bitmask. New value should be next power of 2. 168 enum CutOffStage { 169 // No cutoffs encountered 170 CO_None = 0, 171 172 // lcr-max-depth cutoff encountered 173 CO_Depth = 1, 174 175 // lcr-max-interf cutoff encountered 176 CO_Interf = 2 177 }; 178 179 uint8_t CutOffInfo; 180 181 #ifndef NDEBUG 182 static const char *const StageName[]; 183 #endif 184 185 // RegInfo - Keep additional information about each live range. 186 struct RegInfo { 187 LiveRangeStage Stage; 188 189 // Cascade - Eviction loop prevention. See canEvictInterference(). 190 unsigned Cascade; 191 192 RegInfo() : Stage(RS_New), Cascade(0) {} 193 }; 194 195 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 196 197 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 198 return ExtraRegInfo[VirtReg.reg].Stage; 199 } 200 201 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 202 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 203 ExtraRegInfo[VirtReg.reg].Stage = Stage; 204 } 205 206 template<typename Iterator> 207 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 208 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 209 for (;Begin != End; ++Begin) { 210 unsigned Reg = *Begin; 211 if (ExtraRegInfo[Reg].Stage == RS_New) 212 ExtraRegInfo[Reg].Stage = NewStage; 213 } 214 } 215 216 /// Cost of evicting interference. 217 struct EvictionCost { 218 unsigned BrokenHints; ///< Total number of broken hints. 219 float MaxWeight; ///< Maximum spill weight evicted. 220 221 EvictionCost(): BrokenHints(0), MaxWeight(0) {} 222 223 bool isMax() const { return BrokenHints == ~0u; } 224 225 void setMax() { BrokenHints = ~0u; } 226 227 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } 228 229 bool operator<(const EvictionCost &O) const { 230 return std::tie(BrokenHints, MaxWeight) < 231 std::tie(O.BrokenHints, O.MaxWeight); 232 } 233 }; 234 235 // splitting state. 236 std::unique_ptr<SplitAnalysis> SA; 237 std::unique_ptr<SplitEditor> SE; 238 239 /// Cached per-block interference maps 240 InterferenceCache IntfCache; 241 242 /// All basic blocks where the current register has uses. 243 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 244 245 /// Global live range splitting candidate info. 246 struct GlobalSplitCandidate { 247 // Register intended for assignment, or 0. 248 unsigned PhysReg; 249 250 // SplitKit interval index for this candidate. 251 unsigned IntvIdx; 252 253 // Interference for PhysReg. 254 InterferenceCache::Cursor Intf; 255 256 // Bundles where this candidate should be live. 257 BitVector LiveBundles; 258 SmallVector<unsigned, 8> ActiveBlocks; 259 260 void reset(InterferenceCache &Cache, unsigned Reg) { 261 PhysReg = Reg; 262 IntvIdx = 0; 263 Intf.setPhysReg(Cache, Reg); 264 LiveBundles.clear(); 265 ActiveBlocks.clear(); 266 } 267 268 // Set B[i] = C for every live bundle where B[i] was NoCand. 269 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 270 unsigned Count = 0; 271 for (int i = LiveBundles.find_first(); i >= 0; 272 i = LiveBundles.find_next(i)) 273 if (B[i] == NoCand) { 274 B[i] = C; 275 Count++; 276 } 277 return Count; 278 } 279 }; 280 281 /// Candidate info for each PhysReg in AllocationOrder. 282 /// This vector never shrinks, but grows to the size of the largest register 283 /// class. 284 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 285 286 enum : unsigned { NoCand = ~0u }; 287 288 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 289 /// NoCand which indicates the stack interval. 290 SmallVector<unsigned, 32> BundleCand; 291 292 /// Callee-save register cost, calculated once per machine function. 293 BlockFrequency CSRCost; 294 295 /// Run or not the local reassignment heuristic. This information is 296 /// obtained from the TargetSubtargetInfo. 297 bool EnableLocalReassign; 298 299 /// Set of broken hints that may be reconciled later because of eviction. 300 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 301 302 public: 303 RAGreedy(); 304 305 /// Return the pass name. 306 const char* getPassName() const override { 307 return "Greedy Register Allocator"; 308 } 309 310 /// RAGreedy analysis usage. 311 void getAnalysisUsage(AnalysisUsage &AU) const override; 312 void releaseMemory() override; 313 Spiller &spiller() override { return *SpillerInstance; } 314 void enqueue(LiveInterval *LI) override; 315 LiveInterval *dequeue() override; 316 unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override; 317 void aboutToRemoveInterval(LiveInterval &) override; 318 319 /// Perform register allocation. 320 bool runOnMachineFunction(MachineFunction &mf) override; 321 322 static char ID; 323 324 private: 325 unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &, 326 SmallVirtRegSet &, unsigned = 0); 327 328 bool LRE_CanEraseVirtReg(unsigned) override; 329 void LRE_WillShrinkVirtReg(unsigned) override; 330 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 331 void enqueue(PQueue &CurQueue, LiveInterval *LI); 332 LiveInterval *dequeue(PQueue &CurQueue); 333 334 BlockFrequency calcSpillCost(); 335 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 336 void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 337 void growRegion(GlobalSplitCandidate &Cand); 338 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&); 339 bool calcCompactRegion(GlobalSplitCandidate&); 340 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 341 void calcGapWeights(unsigned, SmallVectorImpl<float>&); 342 unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg); 343 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); 344 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&); 345 void evictInterference(LiveInterval&, unsigned, 346 SmallVectorImpl<unsigned>&); 347 bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 348 SmallLISet &RecoloringCandidates, 349 const SmallVirtRegSet &FixedRegisters); 350 351 unsigned tryAssign(LiveInterval&, AllocationOrder&, 352 SmallVectorImpl<unsigned>&); 353 unsigned tryEvict(LiveInterval&, AllocationOrder&, 354 SmallVectorImpl<unsigned>&, unsigned = ~0u); 355 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, 356 SmallVectorImpl<unsigned>&); 357 /// Calculate cost of region splitting. 358 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 359 AllocationOrder &Order, 360 BlockFrequency &BestCost, 361 unsigned &NumCands, bool IgnoreCSR); 362 /// Perform region splitting. 363 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 364 bool HasCompact, 365 SmallVectorImpl<unsigned> &NewVRegs); 366 /// Check other options before using a callee-saved register for the first 367 /// time. 368 unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 369 unsigned PhysReg, unsigned &CostPerUseLimit, 370 SmallVectorImpl<unsigned> &NewVRegs); 371 void initializeCSRCost(); 372 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 373 SmallVectorImpl<unsigned>&); 374 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 375 SmallVectorImpl<unsigned>&); 376 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 377 SmallVectorImpl<unsigned>&); 378 unsigned trySplit(LiveInterval&, AllocationOrder&, 379 SmallVectorImpl<unsigned>&); 380 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 381 SmallVectorImpl<unsigned> &, 382 SmallVirtRegSet &, unsigned); 383 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &, 384 SmallVirtRegSet &, unsigned); 385 void tryHintRecoloring(LiveInterval &); 386 void tryHintsRecoloring(); 387 388 /// Model the information carried by one end of a copy. 389 struct HintInfo { 390 /// The frequency of the copy. 391 BlockFrequency Freq; 392 /// The virtual register or physical register. 393 unsigned Reg; 394 /// Its currently assigned register. 395 /// In case of a physical register Reg == PhysReg. 396 unsigned PhysReg; 397 HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg) 398 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 399 }; 400 typedef SmallVector<HintInfo, 4> HintsInfo; 401 BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned); 402 void collectHintInfo(unsigned, HintsInfo &); 403 404 bool isUnusedCalleeSavedReg(unsigned PhysReg) const; 405 }; 406 } // end anonymous namespace 407 408 char RAGreedy::ID = 0; 409 410 #ifndef NDEBUG 411 const char *const RAGreedy::StageName[] = { 412 "RS_New", 413 "RS_Assign", 414 "RS_Split", 415 "RS_Split2", 416 "RS_Spill", 417 "RS_Done" 418 }; 419 #endif 420 421 // Hysteresis to use when comparing floats. 422 // This helps stabilize decisions based on float comparisons. 423 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 424 425 426 FunctionPass* llvm::createGreedyRegisterAllocator() { 427 return new RAGreedy(); 428 } 429 430 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 431 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 432 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 433 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 434 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 435 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 436 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 437 initializeLiveStacksPass(*PassRegistry::getPassRegistry()); 438 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); 439 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); 440 initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); 441 initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry()); 442 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry()); 443 initializeSpillPlacementPass(*PassRegistry::getPassRegistry()); 444 } 445 446 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 447 AU.setPreservesCFG(); 448 AU.addRequired<MachineBlockFrequencyInfo>(); 449 AU.addPreserved<MachineBlockFrequencyInfo>(); 450 AU.addRequired<AliasAnalysis>(); 451 AU.addPreserved<AliasAnalysis>(); 452 AU.addRequired<LiveIntervals>(); 453 AU.addPreserved<LiveIntervals>(); 454 AU.addRequired<SlotIndexes>(); 455 AU.addPreserved<SlotIndexes>(); 456 AU.addRequired<LiveDebugVariables>(); 457 AU.addPreserved<LiveDebugVariables>(); 458 AU.addRequired<LiveStacks>(); 459 AU.addPreserved<LiveStacks>(); 460 AU.addRequired<MachineDominatorTree>(); 461 AU.addPreserved<MachineDominatorTree>(); 462 AU.addRequired<MachineLoopInfo>(); 463 AU.addPreserved<MachineLoopInfo>(); 464 AU.addRequired<VirtRegMap>(); 465 AU.addPreserved<VirtRegMap>(); 466 AU.addRequired<LiveRegMatrix>(); 467 AU.addPreserved<LiveRegMatrix>(); 468 AU.addRequired<EdgeBundles>(); 469 AU.addRequired<SpillPlacement>(); 470 MachineFunctionPass::getAnalysisUsage(AU); 471 } 472 473 474 //===----------------------------------------------------------------------===// 475 // LiveRangeEdit delegate methods 476 //===----------------------------------------------------------------------===// 477 478 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { 479 if (VRM->hasPhys(VirtReg)) { 480 LiveInterval &LI = LIS->getInterval(VirtReg); 481 Matrix->unassign(LI); 482 aboutToRemoveInterval(LI); 483 return true; 484 } 485 // Unassigned virtreg is probably in the priority queue. 486 // RegAllocBase will erase it after dequeueing. 487 return false; 488 } 489 490 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { 491 if (!VRM->hasPhys(VirtReg)) 492 return; 493 494 // Register is assigned, put it back on the queue for reassignment. 495 LiveInterval &LI = LIS->getInterval(VirtReg); 496 Matrix->unassign(LI); 497 enqueue(&LI); 498 } 499 500 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 501 // Cloning a register we haven't even heard about yet? Just ignore it. 502 if (!ExtraRegInfo.inBounds(Old)) 503 return; 504 505 // LRE may clone a virtual register because dead code elimination causes it to 506 // be split into connected components. The new components are much smaller 507 // than the original, so they should get a new chance at being assigned. 508 // same stage as the parent. 509 ExtraRegInfo[Old].Stage = RS_Assign; 510 ExtraRegInfo.grow(New); 511 ExtraRegInfo[New] = ExtraRegInfo[Old]; 512 } 513 514 void RAGreedy::releaseMemory() { 515 SpillerInstance.reset(); 516 ExtraRegInfo.clear(); 517 GlobalCand.clear(); 518 } 519 520 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); } 521 522 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 523 // Prioritize live ranges by size, assigning larger ranges first. 524 // The queue holds (size, reg) pairs. 525 const unsigned Size = LI->getSize(); 526 const unsigned Reg = LI->reg; 527 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 528 "Can only enqueue virtual registers"); 529 unsigned Prio; 530 531 ExtraRegInfo.grow(Reg); 532 if (ExtraRegInfo[Reg].Stage == RS_New) 533 ExtraRegInfo[Reg].Stage = RS_Assign; 534 535 if (ExtraRegInfo[Reg].Stage == RS_Split) { 536 // Unsplit ranges that couldn't be allocated immediately are deferred until 537 // everything else has been allocated. 538 Prio = Size; 539 } else { 540 // Giant live ranges fall back to the global assignment heuristic, which 541 // prevents excessive spilling in pathological cases. 542 bool ReverseLocal = TRI->reverseLocalAssignment(); 543 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 544 bool ForceGlobal = !ReverseLocal && 545 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); 546 547 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 548 LIS->intervalIsInOneMBB(*LI)) { 549 // Allocate original local ranges in linear instruction order. Since they 550 // are singly defined, this produces optimal coloring in the absence of 551 // global interference and other constraints. 552 if (!ReverseLocal) 553 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 554 else { 555 // Allocating bottom up may allow many short LRGs to be assigned first 556 // to one of the cheap registers. This could be much faster for very 557 // large blocks on targets with many physical registers. 558 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 559 } 560 Prio |= RC.AllocationPriority << 24; 561 } else { 562 // Allocate global and split ranges in long->short order. Long ranges that 563 // don't fit should be spilled (or split) ASAP so they don't create 564 // interference. Mark a bit to prioritize global above local ranges. 565 Prio = (1u << 29) + Size; 566 } 567 // Mark a higher bit to prioritize global and local above RS_Split. 568 Prio |= (1u << 31); 569 570 // Boost ranges that have a physical register hint. 571 if (VRM->hasKnownPreference(Reg)) 572 Prio |= (1u << 30); 573 } 574 // The virtual register number is a tie breaker for same-sized ranges. 575 // Give lower vreg numbers higher priority to assign them first. 576 CurQueue.push(std::make_pair(Prio, ~Reg)); 577 } 578 579 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 580 581 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 582 if (CurQueue.empty()) 583 return nullptr; 584 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 585 CurQueue.pop(); 586 return LI; 587 } 588 589 590 //===----------------------------------------------------------------------===// 591 // Direct Assignment 592 //===----------------------------------------------------------------------===// 593 594 /// tryAssign - Try to assign VirtReg to an available register. 595 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg, 596 AllocationOrder &Order, 597 SmallVectorImpl<unsigned> &NewVRegs) { 598 Order.rewind(); 599 unsigned PhysReg; 600 while ((PhysReg = Order.next())) 601 if (!Matrix->checkInterference(VirtReg, PhysReg)) 602 break; 603 if (!PhysReg || Order.isHint()) 604 return PhysReg; 605 606 // PhysReg is available, but there may be a better choice. 607 608 // If we missed a simple hint, try to cheaply evict interference from the 609 // preferred register. 610 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg)) 611 if (Order.isHint(Hint)) { 612 DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n'); 613 EvictionCost MaxCost; 614 MaxCost.setBrokenHints(1); 615 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) { 616 evictInterference(VirtReg, Hint, NewVRegs); 617 return Hint; 618 } 619 } 620 621 // Try to evict interference from a cheaper alternative. 622 unsigned Cost = TRI->getCostPerUse(PhysReg); 623 624 // Most registers have 0 additional cost. 625 if (!Cost) 626 return PhysReg; 627 628 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost 629 << '\n'); 630 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost); 631 return CheapReg ? CheapReg : PhysReg; 632 } 633 634 635 //===----------------------------------------------------------------------===// 636 // Interference eviction 637 //===----------------------------------------------------------------------===// 638 639 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) { 640 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo); 641 unsigned PhysReg; 642 while ((PhysReg = Order.next())) { 643 if (PhysReg == PrevReg) 644 continue; 645 646 MCRegUnitIterator Units(PhysReg, TRI); 647 for (; Units.isValid(); ++Units) { 648 // Instantiate a "subquery", not to be confused with the Queries array. 649 LiveIntervalUnion::Query subQ(&VirtReg, &Matrix->getLiveUnions()[*Units]); 650 if (subQ.checkInterference()) 651 break; 652 } 653 // If no units have interference, break out with the current PhysReg. 654 if (!Units.isValid()) 655 break; 656 } 657 if (PhysReg) 658 DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 659 << PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI) 660 << '\n'); 661 return PhysReg; 662 } 663 664 /// shouldEvict - determine if A should evict the assigned live range B. The 665 /// eviction policy defined by this function together with the allocation order 666 /// defined by enqueue() decides which registers ultimately end up being split 667 /// and spilled. 668 /// 669 /// Cascade numbers are used to prevent infinite loops if this function is a 670 /// cyclic relation. 671 /// 672 /// @param A The live range to be assigned. 673 /// @param IsHint True when A is about to be assigned to its preferred 674 /// register. 675 /// @param B The live range to be evicted. 676 /// @param BreaksHint True when B is already assigned to its preferred register. 677 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 678 LiveInterval &B, bool BreaksHint) { 679 bool CanSplit = getStage(B) < RS_Spill; 680 681 // Be fairly aggressive about following hints as long as the evictee can be 682 // split. 683 if (CanSplit && IsHint && !BreaksHint) 684 return true; 685 686 if (A.weight > B.weight) { 687 DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n'); 688 return true; 689 } 690 return false; 691 } 692 693 /// canEvictInterference - Return true if all interferences between VirtReg and 694 /// PhysReg can be evicted. 695 /// 696 /// @param VirtReg Live range that is about to be assigned. 697 /// @param PhysReg Desired register for assignment. 698 /// @param IsHint True when PhysReg is VirtReg's preferred register. 699 /// @param MaxCost Only look for cheaper candidates and update with new cost 700 /// when returning true. 701 /// @returns True when interference can be evicted cheaper than MaxCost. 702 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, 703 bool IsHint, EvictionCost &MaxCost) { 704 // It is only possible to evict virtual register interference. 705 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 706 return false; 707 708 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 709 710 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 711 // involved in an eviction before. If a cascade number was assigned, deny 712 // evicting anything with the same or a newer cascade number. This prevents 713 // infinite eviction loops. 714 // 715 // This works out so a register without a cascade number is allowed to evict 716 // anything, and it can be evicted by anything. 717 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 718 if (!Cascade) 719 Cascade = NextCascade; 720 721 EvictionCost Cost; 722 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 723 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 724 // If there is 10 or more interferences, chances are one is heavier. 725 if (Q.collectInterferingVRegs(10) >= 10) 726 return false; 727 728 // Check if any interfering live range is heavier than MaxWeight. 729 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 730 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 731 assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) && 732 "Only expecting virtual register interference from query"); 733 // Never evict spill products. They cannot split or spill. 734 if (getStage(*Intf) == RS_Done) 735 return false; 736 // Once a live range becomes small enough, it is urgent that we find a 737 // register for it. This is indicated by an infinite spill weight. These 738 // urgent live ranges get to evict almost anything. 739 // 740 // Also allow urgent evictions of unspillable ranges from a strictly 741 // larger allocation order. 742 bool Urgent = !VirtReg.isSpillable() && 743 (Intf->isSpillable() || 744 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) < 745 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg))); 746 // Only evict older cascades or live ranges without a cascade. 747 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade; 748 if (Cascade <= IntfCascade) { 749 if (!Urgent) 750 return false; 751 // We permit breaking cascades for urgent evictions. It should be the 752 // last resort, though, so make it really expensive. 753 Cost.BrokenHints += 10; 754 } 755 // Would this break a satisfied hint? 756 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 757 // Update eviction cost. 758 Cost.BrokenHints += BreaksHint; 759 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 760 // Abort if this would be too expensive. 761 if (!(Cost < MaxCost)) 762 return false; 763 if (Urgent) 764 continue; 765 // Apply the eviction policy for non-urgent evictions. 766 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 767 return false; 768 // If !MaxCost.isMax(), then we're just looking for a cheap register. 769 // Evicting another local live range in this case could lead to suboptimal 770 // coloring. 771 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 772 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 773 return false; 774 } 775 } 776 } 777 MaxCost = Cost; 778 return true; 779 } 780 781 /// evictInterference - Evict any interferring registers that prevent VirtReg 782 /// from being assigned to Physreg. This assumes that canEvictInterference 783 /// returned true. 784 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg, 785 SmallVectorImpl<unsigned> &NewVRegs) { 786 // Make sure that VirtReg has a cascade number, and assign that cascade 787 // number to every evicted register. These live ranges than then only be 788 // evicted by a newer cascade, preventing infinite loops. 789 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 790 if (!Cascade) 791 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++; 792 793 DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI) 794 << " interference: Cascade " << Cascade << '\n'); 795 796 // Collect all interfering virtregs first. 797 SmallVector<LiveInterval*, 8> Intfs; 798 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 799 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 800 assert(Q.seenAllInterferences() && "Didn't check all interfererences."); 801 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 802 Intfs.append(IVR.begin(), IVR.end()); 803 } 804 805 // Evict them second. This will invalidate the queries. 806 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) { 807 LiveInterval *Intf = Intfs[i]; 808 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 809 if (!VRM->hasPhys(Intf->reg)) 810 continue; 811 Matrix->unassign(*Intf); 812 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade || 813 VirtReg.isSpillable() < Intf->isSpillable()) && 814 "Cannot decrease cascade number, illegal eviction"); 815 ExtraRegInfo[Intf->reg].Cascade = Cascade; 816 ++NumEvicted; 817 NewVRegs.push_back(Intf->reg); 818 } 819 } 820 821 /// Returns true if the given \p PhysReg is a callee saved register and has not 822 /// been used for allocation yet. 823 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const { 824 unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 825 if (CSR == 0) 826 return false; 827 828 return !Matrix->isPhysRegUsed(PhysReg); 829 } 830 831 /// tryEvict - Try to evict all interferences for a physreg. 832 /// @param VirtReg Currently unassigned virtual register. 833 /// @param Order Physregs to try. 834 /// @return Physreg to assign VirtReg, or 0. 835 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, 836 AllocationOrder &Order, 837 SmallVectorImpl<unsigned> &NewVRegs, 838 unsigned CostPerUseLimit) { 839 NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled); 840 841 // Keep track of the cheapest interference seen so far. 842 EvictionCost BestCost; 843 BestCost.setMax(); 844 unsigned BestPhys = 0; 845 unsigned OrderLimit = Order.getOrder().size(); 846 847 // When we are just looking for a reduced cost per use, don't break any 848 // hints, and only evict smaller spill weights. 849 if (CostPerUseLimit < ~0u) { 850 BestCost.BrokenHints = 0; 851 BestCost.MaxWeight = VirtReg.weight; 852 853 // Check of any registers in RC are below CostPerUseLimit. 854 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg); 855 unsigned MinCost = RegClassInfo.getMinCost(RC); 856 if (MinCost >= CostPerUseLimit) { 857 DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " << MinCost 858 << ", no cheaper registers to be found.\n"); 859 return 0; 860 } 861 862 // It is normal for register classes to have a long tail of registers with 863 // the same cost. We don't need to look at them if they're too expensive. 864 if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) { 865 OrderLimit = RegClassInfo.getLastCostChange(RC); 866 DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n"); 867 } 868 } 869 870 Order.rewind(); 871 while (unsigned PhysReg = Order.next(OrderLimit)) { 872 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) 873 continue; 874 // The first use of a callee-saved register in a function has cost 1. 875 // Don't start using a CSR when the CostPerUseLimit is low. 876 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 877 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR " 878 << PrintReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 879 << '\n'); 880 continue; 881 } 882 883 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost)) 884 continue; 885 886 // Best so far. 887 BestPhys = PhysReg; 888 889 // Stop if the hint can be used. 890 if (Order.isHint()) 891 break; 892 } 893 894 if (!BestPhys) 895 return 0; 896 897 evictInterference(VirtReg, BestPhys, NewVRegs); 898 return BestPhys; 899 } 900 901 902 //===----------------------------------------------------------------------===// 903 // Region Splitting 904 //===----------------------------------------------------------------------===// 905 906 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 907 /// interference pattern in Physreg and its aliases. Add the constraints to 908 /// SpillPlacement and return the static cost of this split in Cost, assuming 909 /// that all preferences in SplitConstraints are met. 910 /// Return false if there are no bundles with positive bias. 911 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 912 BlockFrequency &Cost) { 913 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 914 915 // Reset interference dependent info. 916 SplitConstraints.resize(UseBlocks.size()); 917 BlockFrequency StaticCost = 0; 918 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 919 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 920 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 921 922 BC.Number = BI.MBB->getNumber(); 923 Intf.moveToBlock(BC.Number); 924 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 925 BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 926 BC.ChangesValue = BI.FirstDef.isValid(); 927 928 if (!Intf.hasInterference()) 929 continue; 930 931 // Number of spill code instructions to insert. 932 unsigned Ins = 0; 933 934 // Interference for the live-in value. 935 if (BI.LiveIn) { 936 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) 937 BC.Entry = SpillPlacement::MustSpill, ++Ins; 938 else if (Intf.first() < BI.FirstInstr) 939 BC.Entry = SpillPlacement::PrefSpill, ++Ins; 940 else if (Intf.first() < BI.LastInstr) 941 ++Ins; 942 } 943 944 // Interference for the live-out value. 945 if (BI.LiveOut) { 946 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) 947 BC.Exit = SpillPlacement::MustSpill, ++Ins; 948 else if (Intf.last() > BI.LastInstr) 949 BC.Exit = SpillPlacement::PrefSpill, ++Ins; 950 else if (Intf.last() > BI.FirstInstr) 951 ++Ins; 952 } 953 954 // Accumulate the total frequency of inserted spill code. 955 while (Ins--) 956 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 957 } 958 Cost = StaticCost; 959 960 // Add constraints for use-blocks. Note that these are the only constraints 961 // that may add a positive bias, it is downhill from here. 962 SpillPlacer->addConstraints(SplitConstraints); 963 return SpillPlacer->scanActiveBundles(); 964 } 965 966 967 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 968 /// live-through blocks in Blocks. 969 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 970 ArrayRef<unsigned> Blocks) { 971 const unsigned GroupSize = 8; 972 SpillPlacement::BlockConstraint BCS[GroupSize]; 973 unsigned TBS[GroupSize]; 974 unsigned B = 0, T = 0; 975 976 for (unsigned i = 0; i != Blocks.size(); ++i) { 977 unsigned Number = Blocks[i]; 978 Intf.moveToBlock(Number); 979 980 if (!Intf.hasInterference()) { 981 assert(T < GroupSize && "Array overflow"); 982 TBS[T] = Number; 983 if (++T == GroupSize) { 984 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 985 T = 0; 986 } 987 continue; 988 } 989 990 assert(B < GroupSize && "Array overflow"); 991 BCS[B].Number = Number; 992 993 // Interference for the live-in value. 994 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 995 BCS[B].Entry = SpillPlacement::MustSpill; 996 else 997 BCS[B].Entry = SpillPlacement::PrefSpill; 998 999 // Interference for the live-out value. 1000 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1001 BCS[B].Exit = SpillPlacement::MustSpill; 1002 else 1003 BCS[B].Exit = SpillPlacement::PrefSpill; 1004 1005 if (++B == GroupSize) { 1006 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1007 B = 0; 1008 } 1009 } 1010 1011 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1012 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1013 } 1014 1015 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1016 // Keep track of through blocks that have not been added to SpillPlacer. 1017 BitVector Todo = SA->getThroughBlocks(); 1018 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1019 unsigned AddedTo = 0; 1020 #ifndef NDEBUG 1021 unsigned Visited = 0; 1022 #endif 1023 1024 for (;;) { 1025 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1026 // Find new through blocks in the periphery of PrefRegBundles. 1027 for (int i = 0, e = NewBundles.size(); i != e; ++i) { 1028 unsigned Bundle = NewBundles[i]; 1029 // Look at all blocks connected to Bundle in the full graph. 1030 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1031 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); 1032 I != E; ++I) { 1033 unsigned Block = *I; 1034 if (!Todo.test(Block)) 1035 continue; 1036 Todo.reset(Block); 1037 // This is a new through block. Add it to SpillPlacer later. 1038 ActiveBlocks.push_back(Block); 1039 #ifndef NDEBUG 1040 ++Visited; 1041 #endif 1042 } 1043 } 1044 // Any new blocks to add? 1045 if (ActiveBlocks.size() == AddedTo) 1046 break; 1047 1048 // Compute through constraints from the interference, or assume that all 1049 // through blocks prefer spilling when forming compact regions. 1050 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1051 if (Cand.PhysReg) 1052 addThroughConstraints(Cand.Intf, NewBlocks); 1053 else 1054 // Provide a strong negative bias on through blocks to prevent unwanted 1055 // liveness on loop backedges. 1056 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1057 AddedTo = ActiveBlocks.size(); 1058 1059 // Perhaps iterating can enable more bundles? 1060 SpillPlacer->iterate(); 1061 } 1062 DEBUG(dbgs() << ", v=" << Visited); 1063 } 1064 1065 /// calcCompactRegion - Compute the set of edge bundles that should be live 1066 /// when splitting the current live range into compact regions. Compact 1067 /// regions can be computed without looking at interference. They are the 1068 /// regions formed by removing all the live-through blocks from the live range. 1069 /// 1070 /// Returns false if the current live range is already compact, or if the 1071 /// compact regions would form single block regions anyway. 1072 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1073 // Without any through blocks, the live range is already compact. 1074 if (!SA->getNumThroughBlocks()) 1075 return false; 1076 1077 // Compact regions don't correspond to any physreg. 1078 Cand.reset(IntfCache, 0); 1079 1080 DEBUG(dbgs() << "Compact region bundles"); 1081 1082 // Use the spill placer to determine the live bundles. GrowRegion pretends 1083 // that all the through blocks have interference when PhysReg is unset. 1084 SpillPlacer->prepare(Cand.LiveBundles); 1085 1086 // The static split cost will be zero since Cand.Intf reports no interference. 1087 BlockFrequency Cost; 1088 if (!addSplitConstraints(Cand.Intf, Cost)) { 1089 DEBUG(dbgs() << ", none.\n"); 1090 return false; 1091 } 1092 1093 growRegion(Cand); 1094 SpillPlacer->finish(); 1095 1096 if (!Cand.LiveBundles.any()) { 1097 DEBUG(dbgs() << ", none.\n"); 1098 return false; 1099 } 1100 1101 DEBUG({ 1102 for (int i = Cand.LiveBundles.find_first(); i>=0; 1103 i = Cand.LiveBundles.find_next(i)) 1104 dbgs() << " EB#" << i; 1105 dbgs() << ".\n"; 1106 }); 1107 return true; 1108 } 1109 1110 /// calcSpillCost - Compute how expensive it would be to split the live range in 1111 /// SA around all use blocks instead of forming bundle regions. 1112 BlockFrequency RAGreedy::calcSpillCost() { 1113 BlockFrequency Cost = 0; 1114 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1115 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1116 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1117 unsigned Number = BI.MBB->getNumber(); 1118 // We normally only need one spill instruction - a load or a store. 1119 Cost += SpillPlacer->getBlockFrequency(Number); 1120 1121 // Unless the value is redefined in the block. 1122 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1123 Cost += SpillPlacer->getBlockFrequency(Number); 1124 } 1125 return Cost; 1126 } 1127 1128 /// calcGlobalSplitCost - Return the global split cost of following the split 1129 /// pattern in LiveBundles. This cost should be added to the local cost of the 1130 /// interference pattern in SplitConstraints. 1131 /// 1132 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) { 1133 BlockFrequency GlobalCost = 0; 1134 const BitVector &LiveBundles = Cand.LiveBundles; 1135 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1136 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1137 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1138 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1139 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)]; 1140 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)]; 1141 unsigned Ins = 0; 1142 1143 if (BI.LiveIn) 1144 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1145 if (BI.LiveOut) 1146 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1147 while (Ins--) 1148 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1149 } 1150 1151 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { 1152 unsigned Number = Cand.ActiveBlocks[i]; 1153 bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)]; 1154 bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)]; 1155 if (!RegIn && !RegOut) 1156 continue; 1157 if (RegIn && RegOut) { 1158 // We need double spill code if this block has interference. 1159 Cand.Intf.moveToBlock(Number); 1160 if (Cand.Intf.hasInterference()) { 1161 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1162 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1163 } 1164 continue; 1165 } 1166 // live-in / stack-out or stack-in live-out. 1167 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1168 } 1169 return GlobalCost; 1170 } 1171 1172 /// splitAroundRegion - Split the current live range around the regions 1173 /// determined by BundleCand and GlobalCand. 1174 /// 1175 /// Before calling this function, GlobalCand and BundleCand must be initialized 1176 /// so each bundle is assigned to a valid candidate, or NoCand for the 1177 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1178 /// objects must be initialized for the current live range, and intervals 1179 /// created for the used candidates. 1180 /// 1181 /// @param LREdit The LiveRangeEdit object handling the current split. 1182 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1183 /// must appear in this list. 1184 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1185 ArrayRef<unsigned> UsedCands) { 1186 // These are the intervals created for new global ranges. We may create more 1187 // intervals for local ranges. 1188 const unsigned NumGlobalIntvs = LREdit.size(); 1189 DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n"); 1190 assert(NumGlobalIntvs && "No global intervals configured"); 1191 1192 // Isolate even single instructions when dealing with a proper sub-class. 1193 // That guarantees register class inflation for the stack interval because it 1194 // is all copies. 1195 unsigned Reg = SA->getParent().reg; 1196 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1197 1198 // First handle all the blocks with uses. 1199 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1200 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1201 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1202 unsigned Number = BI.MBB->getNumber(); 1203 unsigned IntvIn = 0, IntvOut = 0; 1204 SlotIndex IntfIn, IntfOut; 1205 if (BI.LiveIn) { 1206 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; 1207 if (CandIn != NoCand) { 1208 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1209 IntvIn = Cand.IntvIdx; 1210 Cand.Intf.moveToBlock(Number); 1211 IntfIn = Cand.Intf.first(); 1212 } 1213 } 1214 if (BI.LiveOut) { 1215 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; 1216 if (CandOut != NoCand) { 1217 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1218 IntvOut = Cand.IntvIdx; 1219 Cand.Intf.moveToBlock(Number); 1220 IntfOut = Cand.Intf.last(); 1221 } 1222 } 1223 1224 // Create separate intervals for isolated blocks with multiple uses. 1225 if (!IntvIn && !IntvOut) { 1226 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n"); 1227 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1228 SE->splitSingleBlock(BI); 1229 continue; 1230 } 1231 1232 if (IntvIn && IntvOut) 1233 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1234 else if (IntvIn) 1235 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1236 else 1237 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1238 } 1239 1240 // Handle live-through blocks. The relevant live-through blocks are stored in 1241 // the ActiveBlocks list with each candidate. We need to filter out 1242 // duplicates. 1243 BitVector Todo = SA->getThroughBlocks(); 1244 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1245 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1246 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1247 unsigned Number = Blocks[i]; 1248 if (!Todo.test(Number)) 1249 continue; 1250 Todo.reset(Number); 1251 1252 unsigned IntvIn = 0, IntvOut = 0; 1253 SlotIndex IntfIn, IntfOut; 1254 1255 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; 1256 if (CandIn != NoCand) { 1257 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1258 IntvIn = Cand.IntvIdx; 1259 Cand.Intf.moveToBlock(Number); 1260 IntfIn = Cand.Intf.first(); 1261 } 1262 1263 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; 1264 if (CandOut != NoCand) { 1265 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1266 IntvOut = Cand.IntvIdx; 1267 Cand.Intf.moveToBlock(Number); 1268 IntfOut = Cand.Intf.last(); 1269 } 1270 if (!IntvIn && !IntvOut) 1271 continue; 1272 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1273 } 1274 } 1275 1276 ++NumGlobalSplits; 1277 1278 SmallVector<unsigned, 8> IntvMap; 1279 SE->finish(&IntvMap); 1280 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1281 1282 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1283 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1284 1285 // Sort out the new intervals created by splitting. We get four kinds: 1286 // - Remainder intervals should not be split again. 1287 // - Candidate intervals can be assigned to Cand.PhysReg. 1288 // - Block-local splits are candidates for local splitting. 1289 // - DCE leftovers should go back on the queue. 1290 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1291 LiveInterval &Reg = LIS->getInterval(LREdit.get(i)); 1292 1293 // Ignore old intervals from DCE. 1294 if (getStage(Reg) != RS_New) 1295 continue; 1296 1297 // Remainder interval. Don't try splitting again, spill if it doesn't 1298 // allocate. 1299 if (IntvMap[i] == 0) { 1300 setStage(Reg, RS_Spill); 1301 continue; 1302 } 1303 1304 // Global intervals. Allow repeated splitting as long as the number of live 1305 // blocks is strictly decreasing. 1306 if (IntvMap[i] < NumGlobalIntvs) { 1307 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1308 DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1309 << " blocks as original.\n"); 1310 // Don't allow repeated splitting as a safe guard against looping. 1311 setStage(Reg, RS_Split2); 1312 } 1313 continue; 1314 } 1315 1316 // Other intervals are treated as new. This includes local intervals created 1317 // for blocks with multiple uses, and anything created by DCE. 1318 } 1319 1320 if (VerifyEnabled) 1321 MF->verify(this, "After splitting live range around region"); 1322 } 1323 1324 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1325 SmallVectorImpl<unsigned> &NewVRegs) { 1326 unsigned NumCands = 0; 1327 BlockFrequency BestCost; 1328 1329 // Check if we can split this live range around a compact region. 1330 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1331 if (HasCompact) { 1332 // Yes, keep GlobalCand[0] as the compact region candidate. 1333 NumCands = 1; 1334 BestCost = BlockFrequency::getMaxFrequency(); 1335 } else { 1336 // No benefit from the compact region, our fallback will be per-block 1337 // splitting. Make sure we find a solution that is cheaper than spilling. 1338 BestCost = calcSpillCost(); 1339 DEBUG(dbgs() << "Cost of isolating all blocks = "; 1340 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1341 } 1342 1343 unsigned BestCand = 1344 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1345 false/*IgnoreCSR*/); 1346 1347 // No solutions found, fall back to single block splitting. 1348 if (!HasCompact && BestCand == NoCand) 1349 return 0; 1350 1351 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1352 } 1353 1354 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1355 AllocationOrder &Order, 1356 BlockFrequency &BestCost, 1357 unsigned &NumCands, 1358 bool IgnoreCSR) { 1359 unsigned BestCand = NoCand; 1360 Order.rewind(); 1361 while (unsigned PhysReg = Order.next()) { 1362 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1363 continue; 1364 1365 // Discard bad candidates before we run out of interference cache cursors. 1366 // This will only affect register classes with a lot of registers (>32). 1367 if (NumCands == IntfCache.getMaxCursors()) { 1368 unsigned WorstCount = ~0u; 1369 unsigned Worst = 0; 1370 for (unsigned i = 0; i != NumCands; ++i) { 1371 if (i == BestCand || !GlobalCand[i].PhysReg) 1372 continue; 1373 unsigned Count = GlobalCand[i].LiveBundles.count(); 1374 if (Count < WorstCount) 1375 Worst = i, WorstCount = Count; 1376 } 1377 --NumCands; 1378 GlobalCand[Worst] = GlobalCand[NumCands]; 1379 if (BestCand == NumCands) 1380 BestCand = Worst; 1381 } 1382 1383 if (GlobalCand.size() <= NumCands) 1384 GlobalCand.resize(NumCands+1); 1385 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1386 Cand.reset(IntfCache, PhysReg); 1387 1388 SpillPlacer->prepare(Cand.LiveBundles); 1389 BlockFrequency Cost; 1390 if (!addSplitConstraints(Cand.Intf, Cost)) { 1391 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n"); 1392 continue; 1393 } 1394 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = "; 1395 MBFI->printBlockFreq(dbgs(), Cost)); 1396 if (Cost >= BestCost) { 1397 DEBUG({ 1398 if (BestCand == NoCand) 1399 dbgs() << " worse than no bundles\n"; 1400 else 1401 dbgs() << " worse than " 1402 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1403 }); 1404 continue; 1405 } 1406 growRegion(Cand); 1407 1408 SpillPlacer->finish(); 1409 1410 // No live bundles, defer to splitSingleBlocks(). 1411 if (!Cand.LiveBundles.any()) { 1412 DEBUG(dbgs() << " no bundles.\n"); 1413 continue; 1414 } 1415 1416 Cost += calcGlobalSplitCost(Cand); 1417 DEBUG({ 1418 dbgs() << ", total = "; MBFI->printBlockFreq(dbgs(), Cost) 1419 << " with bundles"; 1420 for (int i = Cand.LiveBundles.find_first(); i>=0; 1421 i = Cand.LiveBundles.find_next(i)) 1422 dbgs() << " EB#" << i; 1423 dbgs() << ".\n"; 1424 }); 1425 if (Cost < BestCost) { 1426 BestCand = NumCands; 1427 BestCost = Cost; 1428 } 1429 ++NumCands; 1430 } 1431 return BestCand; 1432 } 1433 1434 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1435 bool HasCompact, 1436 SmallVectorImpl<unsigned> &NewVRegs) { 1437 SmallVector<unsigned, 8> UsedCands; 1438 // Prepare split editor. 1439 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this); 1440 SE->reset(LREdit, SplitSpillMode); 1441 1442 // Assign all edge bundles to the preferred candidate, or NoCand. 1443 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1444 1445 // Assign bundles for the best candidate region. 1446 if (BestCand != NoCand) { 1447 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1448 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1449 UsedCands.push_back(BestCand); 1450 Cand.IntvIdx = SE->openIntv(); 1451 DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in " 1452 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1453 (void)B; 1454 } 1455 } 1456 1457 // Assign bundles for the compact region. 1458 if (HasCompact) { 1459 GlobalSplitCandidate &Cand = GlobalCand.front(); 1460 assert(!Cand.PhysReg && "Compact region has no physreg"); 1461 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1462 UsedCands.push_back(0); 1463 Cand.IntvIdx = SE->openIntv(); 1464 DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv " 1465 << Cand.IntvIdx << ".\n"); 1466 (void)B; 1467 } 1468 } 1469 1470 splitAroundRegion(LREdit, UsedCands); 1471 return 0; 1472 } 1473 1474 1475 //===----------------------------------------------------------------------===// 1476 // Per-Block Splitting 1477 //===----------------------------------------------------------------------===// 1478 1479 /// tryBlockSplit - Split a global live range around every block with uses. This 1480 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1481 /// they don't allocate. 1482 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1483 SmallVectorImpl<unsigned> &NewVRegs) { 1484 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1485 unsigned Reg = VirtReg.reg; 1486 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1487 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this); 1488 SE->reset(LREdit, SplitSpillMode); 1489 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1490 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1491 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1492 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1493 SE->splitSingleBlock(BI); 1494 } 1495 // No blocks were split. 1496 if (LREdit.empty()) 1497 return 0; 1498 1499 // We did split for some blocks. 1500 SmallVector<unsigned, 8> IntvMap; 1501 SE->finish(&IntvMap); 1502 1503 // Tell LiveDebugVariables about the new ranges. 1504 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1505 1506 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1507 1508 // Sort out the new intervals created by splitting. The remainder interval 1509 // goes straight to spilling, the new local ranges get to stay RS_New. 1510 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1511 LiveInterval &LI = LIS->getInterval(LREdit.get(i)); 1512 if (getStage(LI) == RS_New && IntvMap[i] == 0) 1513 setStage(LI, RS_Spill); 1514 } 1515 1516 if (VerifyEnabled) 1517 MF->verify(this, "After splitting live range around basic blocks"); 1518 return 0; 1519 } 1520 1521 1522 //===----------------------------------------------------------------------===// 1523 // Per-Instruction Splitting 1524 //===----------------------------------------------------------------------===// 1525 1526 /// Get the number of allocatable registers that match the constraints of \p Reg 1527 /// on \p MI and that are also in \p SuperRC. 1528 static unsigned getNumAllocatableRegsForConstraints( 1529 const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC, 1530 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1531 const RegisterClassInfo &RCI) { 1532 assert(SuperRC && "Invalid register class"); 1533 1534 const TargetRegisterClass *ConstrainedRC = 1535 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 1536 /* ExploreBundle */ true); 1537 if (!ConstrainedRC) 1538 return 0; 1539 return RCI.getNumAllocatableRegs(ConstrainedRC); 1540 } 1541 1542 /// tryInstructionSplit - Split a live range around individual instructions. 1543 /// This is normally not worthwhile since the spiller is doing essentially the 1544 /// same thing. However, when the live range is in a constrained register 1545 /// class, it may help to insert copies such that parts of the live range can 1546 /// be moved to a larger register class. 1547 /// 1548 /// This is similar to spilling to a larger register class. 1549 unsigned 1550 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1551 SmallVectorImpl<unsigned> &NewVRegs) { 1552 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 1553 // There is no point to this if there are no larger sub-classes. 1554 if (!RegClassInfo.isProperSubClass(CurRC)) 1555 return 0; 1556 1557 // Always enable split spill mode, since we're effectively spilling to a 1558 // register. 1559 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this); 1560 SE->reset(LREdit, SplitEditor::SM_Size); 1561 1562 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1563 if (Uses.size() <= 1) 1564 return 0; 1565 1566 DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n"); 1567 1568 const TargetRegisterClass *SuperRC = 1569 TRI->getLargestLegalSuperClass(CurRC, *MF); 1570 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 1571 // Split around every non-copy instruction if this split will relax 1572 // the constraints on the virtual register. 1573 // Otherwise, splitting just inserts uncoalescable copies that do not help 1574 // the allocation. 1575 for (unsigned i = 0; i != Uses.size(); ++i) { 1576 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i])) 1577 if (MI->isFullCopy() || 1578 SuperRCNumAllocatableRegs == 1579 getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII, 1580 TRI, RCI)) { 1581 DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI); 1582 continue; 1583 } 1584 SE->openIntv(); 1585 SlotIndex SegStart = SE->enterIntvBefore(Uses[i]); 1586 SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]); 1587 SE->useIntv(SegStart, SegStop); 1588 } 1589 1590 if (LREdit.empty()) { 1591 DEBUG(dbgs() << "All uses were copies.\n"); 1592 return 0; 1593 } 1594 1595 SmallVector<unsigned, 8> IntvMap; 1596 SE->finish(&IntvMap); 1597 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 1598 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1599 1600 // Assign all new registers to RS_Spill. This was the last chance. 1601 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 1602 return 0; 1603 } 1604 1605 1606 //===----------------------------------------------------------------------===// 1607 // Local Splitting 1608 //===----------------------------------------------------------------------===// 1609 1610 1611 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 1612 /// in order to use PhysReg between two entries in SA->UseSlots. 1613 /// 1614 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. 1615 /// 1616 void RAGreedy::calcGapWeights(unsigned PhysReg, 1617 SmallVectorImpl<float> &GapWeight) { 1618 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1619 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1620 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1621 const unsigned NumGaps = Uses.size()-1; 1622 1623 // Start and end points for the interference check. 1624 SlotIndex StartIdx = 1625 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 1626 SlotIndex StopIdx = 1627 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 1628 1629 GapWeight.assign(NumGaps, 0.0f); 1630 1631 // Add interference from each overlapping register. 1632 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1633 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 1634 .checkInterference()) 1635 continue; 1636 1637 // We know that VirtReg is a continuous interval from FirstInstr to 1638 // LastInstr, so we don't need InterferenceQuery. 1639 // 1640 // Interference that overlaps an instruction is counted in both gaps 1641 // surrounding the instruction. The exception is interference before 1642 // StartIdx and after StopIdx. 1643 // 1644 LiveIntervalUnion::SegmentIter IntI = 1645 Matrix->getLiveUnions()[*Units] .find(StartIdx); 1646 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 1647 // Skip the gaps before IntI. 1648 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 1649 if (++Gap == NumGaps) 1650 break; 1651 if (Gap == NumGaps) 1652 break; 1653 1654 // Update the gaps covered by IntI. 1655 const float weight = IntI.value()->weight; 1656 for (; Gap != NumGaps; ++Gap) { 1657 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 1658 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 1659 break; 1660 } 1661 if (Gap == NumGaps) 1662 break; 1663 } 1664 } 1665 1666 // Add fixed interference. 1667 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1668 const LiveRange &LR = LIS->getRegUnit(*Units); 1669 LiveRange::const_iterator I = LR.find(StartIdx); 1670 LiveRange::const_iterator E = LR.end(); 1671 1672 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 1673 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 1674 while (Uses[Gap+1].getBoundaryIndex() < I->start) 1675 if (++Gap == NumGaps) 1676 break; 1677 if (Gap == NumGaps) 1678 break; 1679 1680 for (; Gap != NumGaps; ++Gap) { 1681 GapWeight[Gap] = llvm::huge_valf; 1682 if (Uses[Gap+1].getBaseIndex() >= I->end) 1683 break; 1684 } 1685 if (Gap == NumGaps) 1686 break; 1687 } 1688 } 1689 } 1690 1691 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 1692 /// basic block. 1693 /// 1694 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1695 SmallVectorImpl<unsigned> &NewVRegs) { 1696 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1697 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1698 1699 // Note that it is possible to have an interval that is live-in or live-out 1700 // while only covering a single block - A phi-def can use undef values from 1701 // predecessors, and the block could be a single-block loop. 1702 // We don't bother doing anything clever about such a case, we simply assume 1703 // that the interval is continuous from FirstInstr to LastInstr. We should 1704 // make sure that we don't do anything illegal to such an interval, though. 1705 1706 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1707 if (Uses.size() <= 2) 1708 return 0; 1709 const unsigned NumGaps = Uses.size()-1; 1710 1711 DEBUG({ 1712 dbgs() << "tryLocalSplit: "; 1713 for (unsigned i = 0, e = Uses.size(); i != e; ++i) 1714 dbgs() << ' ' << Uses[i]; 1715 dbgs() << '\n'; 1716 }); 1717 1718 // If VirtReg is live across any register mask operands, compute a list of 1719 // gaps with register masks. 1720 SmallVector<unsigned, 8> RegMaskGaps; 1721 if (Matrix->checkRegMaskInterference(VirtReg)) { 1722 // Get regmask slots for the whole block. 1723 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 1724 DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 1725 // Constrain to VirtReg's live range. 1726 unsigned ri = std::lower_bound(RMS.begin(), RMS.end(), 1727 Uses.front().getRegSlot()) - RMS.begin(); 1728 unsigned re = RMS.size(); 1729 for (unsigned i = 0; i != NumGaps && ri != re; ++i) { 1730 // Look for Uses[i] <= RMS <= Uses[i+1]. 1731 assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i])); 1732 if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri])) 1733 continue; 1734 // Skip a regmask on the same instruction as the last use. It doesn't 1735 // overlap the live range. 1736 if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps) 1737 break; 1738 DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]); 1739 RegMaskGaps.push_back(i); 1740 // Advance ri to the next gap. A regmask on one of the uses counts in 1741 // both gaps. 1742 while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1])) 1743 ++ri; 1744 } 1745 DEBUG(dbgs() << '\n'); 1746 } 1747 1748 // Since we allow local split results to be split again, there is a risk of 1749 // creating infinite loops. It is tempting to require that the new live 1750 // ranges have less instructions than the original. That would guarantee 1751 // convergence, but it is too strict. A live range with 3 instructions can be 1752 // split 2+3 (including the COPY), and we want to allow that. 1753 // 1754 // Instead we use these rules: 1755 // 1756 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 1757 // noop split, of course). 1758 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 1759 // the new ranges must have fewer instructions than before the split. 1760 // 3. New ranges with the same number of instructions are marked RS_Split2, 1761 // smaller ranges are marked RS_New. 1762 // 1763 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 1764 // excessive splitting and infinite loops. 1765 // 1766 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 1767 1768 // Best split candidate. 1769 unsigned BestBefore = NumGaps; 1770 unsigned BestAfter = 0; 1771 float BestDiff = 0; 1772 1773 const float blockFreq = 1774 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 1775 (1.0f / MBFI->getEntryFreq()); 1776 SmallVector<float, 8> GapWeight; 1777 1778 Order.rewind(); 1779 while (unsigned PhysReg = Order.next()) { 1780 // Keep track of the largest spill weight that would need to be evicted in 1781 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. 1782 calcGapWeights(PhysReg, GapWeight); 1783 1784 // Remove any gaps with regmask clobbers. 1785 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 1786 for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i) 1787 GapWeight[RegMaskGaps[i]] = llvm::huge_valf; 1788 1789 // Try to find the best sequence of gaps to close. 1790 // The new spill weight must be larger than any gap interference. 1791 1792 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 1793 unsigned SplitBefore = 0, SplitAfter = 1; 1794 1795 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 1796 // It is the spill weight that needs to be evicted. 1797 float MaxGap = GapWeight[0]; 1798 1799 for (;;) { 1800 // Live before/after split? 1801 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 1802 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 1803 1804 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' ' 1805 << Uses[SplitBefore] << '-' << Uses[SplitAfter] 1806 << " i=" << MaxGap); 1807 1808 // Stop before the interval gets so big we wouldn't be making progress. 1809 if (!LiveBefore && !LiveAfter) { 1810 DEBUG(dbgs() << " all\n"); 1811 break; 1812 } 1813 // Should the interval be extended or shrunk? 1814 bool Shrink = true; 1815 1816 // How many gaps would the new range have? 1817 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 1818 1819 // Legally, without causing looping? 1820 bool Legal = !ProgressRequired || NewGaps < NumGaps; 1821 1822 if (Legal && MaxGap < llvm::huge_valf) { 1823 // Estimate the new spill weight. Each instruction reads or writes the 1824 // register. Conservatively assume there are no read-modify-write 1825 // instructions. 1826 // 1827 // Try to guess the size of the new interval. 1828 const float EstWeight = normalizeSpillWeight( 1829 blockFreq * (NewGaps + 1), 1830 Uses[SplitBefore].distance(Uses[SplitAfter]) + 1831 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 1832 1); 1833 // Would this split be possible to allocate? 1834 // Never allocate all gaps, we wouldn't be making progress. 1835 DEBUG(dbgs() << " w=" << EstWeight); 1836 if (EstWeight * Hysteresis >= MaxGap) { 1837 Shrink = false; 1838 float Diff = EstWeight - MaxGap; 1839 if (Diff > BestDiff) { 1840 DEBUG(dbgs() << " (best)"); 1841 BestDiff = Hysteresis * Diff; 1842 BestBefore = SplitBefore; 1843 BestAfter = SplitAfter; 1844 } 1845 } 1846 } 1847 1848 // Try to shrink. 1849 if (Shrink) { 1850 if (++SplitBefore < SplitAfter) { 1851 DEBUG(dbgs() << " shrink\n"); 1852 // Recompute the max when necessary. 1853 if (GapWeight[SplitBefore - 1] >= MaxGap) { 1854 MaxGap = GapWeight[SplitBefore]; 1855 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) 1856 MaxGap = std::max(MaxGap, GapWeight[i]); 1857 } 1858 continue; 1859 } 1860 MaxGap = 0; 1861 } 1862 1863 // Try to extend the interval. 1864 if (SplitAfter >= NumGaps) { 1865 DEBUG(dbgs() << " end\n"); 1866 break; 1867 } 1868 1869 DEBUG(dbgs() << " extend\n"); 1870 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 1871 } 1872 } 1873 1874 // Didn't find any candidates? 1875 if (BestBefore == NumGaps) 1876 return 0; 1877 1878 DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] 1879 << '-' << Uses[BestAfter] << ", " << BestDiff 1880 << ", " << (BestAfter - BestBefore + 1) << " instrs\n"); 1881 1882 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this); 1883 SE->reset(LREdit); 1884 1885 SE->openIntv(); 1886 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 1887 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 1888 SE->useIntv(SegStart, SegStop); 1889 SmallVector<unsigned, 8> IntvMap; 1890 SE->finish(&IntvMap); 1891 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 1892 1893 // If the new range has the same number of instructions as before, mark it as 1894 // RS_Split2 so the next split will be forced to make progress. Otherwise, 1895 // leave the new intervals as RS_New so they can compete. 1896 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 1897 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 1898 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 1899 if (NewGaps >= NumGaps) { 1900 DEBUG(dbgs() << "Tagging non-progress ranges: "); 1901 assert(!ProgressRequired && "Didn't make progress when it was required."); 1902 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) 1903 if (IntvMap[i] == 1) { 1904 setStage(LIS->getInterval(LREdit.get(i)), RS_Split2); 1905 DEBUG(dbgs() << PrintReg(LREdit.get(i))); 1906 } 1907 DEBUG(dbgs() << '\n'); 1908 } 1909 ++NumLocalSplits; 1910 1911 return 0; 1912 } 1913 1914 //===----------------------------------------------------------------------===// 1915 // Live Range Splitting 1916 //===----------------------------------------------------------------------===// 1917 1918 /// trySplit - Try to split VirtReg or one of its interferences, making it 1919 /// assignable. 1920 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 1921 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 1922 SmallVectorImpl<unsigned>&NewVRegs) { 1923 // Ranges must be Split2 or less. 1924 if (getStage(VirtReg) >= RS_Spill) 1925 return 0; 1926 1927 // Local intervals are handled separately. 1928 if (LIS->intervalIsInOneMBB(VirtReg)) { 1929 NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled); 1930 SA->analyze(&VirtReg); 1931 unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 1932 if (PhysReg || !NewVRegs.empty()) 1933 return PhysReg; 1934 return tryInstructionSplit(VirtReg, Order, NewVRegs); 1935 } 1936 1937 NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled); 1938 1939 SA->analyze(&VirtReg); 1940 1941 // FIXME: SplitAnalysis may repair broken live ranges coming from the 1942 // coalescer. That may cause the range to become allocatable which means that 1943 // tryRegionSplit won't be making progress. This check should be replaced with 1944 // an assertion when the coalescer is fixed. 1945 if (SA->didRepairRange()) { 1946 // VirtReg has changed, so all cached queries are invalid. 1947 Matrix->invalidateVirtRegs(); 1948 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) 1949 return PhysReg; 1950 } 1951 1952 // First try to split around a region spanning multiple blocks. RS_Split2 1953 // ranges already made dubious progress with region splitting, so they go 1954 // straight to single block splitting. 1955 if (getStage(VirtReg) < RS_Split2) { 1956 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 1957 if (PhysReg || !NewVRegs.empty()) 1958 return PhysReg; 1959 } 1960 1961 // Then isolate blocks. 1962 return tryBlockSplit(VirtReg, Order, NewVRegs); 1963 } 1964 1965 //===----------------------------------------------------------------------===// 1966 // Last Chance Recoloring 1967 //===----------------------------------------------------------------------===// 1968 1969 /// mayRecolorAllInterferences - Check if the virtual registers that 1970 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 1971 /// recolored to free \p PhysReg. 1972 /// When true is returned, \p RecoloringCandidates has been augmented with all 1973 /// the live intervals that need to be recolored in order to free \p PhysReg 1974 /// for \p VirtReg. 1975 /// \p FixedRegisters contains all the virtual registers that cannot be 1976 /// recolored. 1977 bool 1978 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 1979 SmallLISet &RecoloringCandidates, 1980 const SmallVirtRegSet &FixedRegisters) { 1981 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 1982 1983 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1984 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1985 // If there is LastChanceRecoloringMaxInterference or more interferences, 1986 // chances are one would not be recolorable. 1987 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= 1988 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { 1989 DEBUG(dbgs() << "Early abort: too many interferences.\n"); 1990 CutOffInfo |= CO_Interf; 1991 return false; 1992 } 1993 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 1994 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 1995 // If Intf is done and sit on the same register class as VirtReg, 1996 // it would not be recolorable as it is in the same state as VirtReg. 1997 if ((getStage(*Intf) == RS_Done && 1998 MRI->getRegClass(Intf->reg) == CurRC) || 1999 FixedRegisters.count(Intf->reg)) { 2000 DEBUG(dbgs() << "Early abort: the inteference is not recolorable.\n"); 2001 return false; 2002 } 2003 RecoloringCandidates.insert(Intf); 2004 } 2005 } 2006 return true; 2007 } 2008 2009 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2010 /// its interferences. 2011 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2012 /// virtual register that was using it. The recoloring process may recursively 2013 /// use the last chance recoloring. Therefore, when a virtual register has been 2014 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2015 /// be last-chance-recolored again during this recoloring "session". 2016 /// E.g., 2017 /// Let 2018 /// vA can use {R1, R2 } 2019 /// vB can use { R2, R3} 2020 /// vC can use {R1 } 2021 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2022 /// instance) and they all interfere. 2023 /// 2024 /// vA is assigned R1 2025 /// vB is assigned R2 2026 /// vC tries to evict vA but vA is already done. 2027 /// Regular register allocation fails. 2028 /// 2029 /// Last chance recoloring kicks in: 2030 /// vC does as if vA was evicted => vC uses R1. 2031 /// vC is marked as fixed. 2032 /// vA needs to find a color. 2033 /// None are available. 2034 /// vA cannot evict vC: vC is a fixed virtual register now. 2035 /// vA does as if vB was evicted => vA uses R2. 2036 /// vB needs to find a color. 2037 /// R3 is available. 2038 /// Recoloring => vC = R1, vA = R2, vB = R3 2039 /// 2040 /// \p Order defines the preferred allocation order for \p VirtReg. 2041 /// \p NewRegs will contain any new virtual register that have been created 2042 /// (split, spill) during the process and that must be assigned. 2043 /// \p FixedRegisters contains all the virtual registers that cannot be 2044 /// recolored. 2045 /// \p Depth gives the current depth of the last chance recoloring. 2046 /// \return a physical register that can be used for VirtReg or ~0u if none 2047 /// exists. 2048 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2049 AllocationOrder &Order, 2050 SmallVectorImpl<unsigned> &NewVRegs, 2051 SmallVirtRegSet &FixedRegisters, 2052 unsigned Depth) { 2053 DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2054 // Ranges must be Done. 2055 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2056 "Last chance recoloring should really be last chance"); 2057 // Set the max depth to LastChanceRecoloringMaxDepth. 2058 // We may want to reconsider that if we end up with a too large search space 2059 // for target with hundreds of registers. 2060 // Indeed, in that case we may want to cut the search space earlier. 2061 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2062 DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2063 CutOffInfo |= CO_Depth; 2064 return ~0u; 2065 } 2066 2067 // Set of Live intervals that will need to be recolored. 2068 SmallLISet RecoloringCandidates; 2069 // Record the original mapping virtual register to physical register in case 2070 // the recoloring fails. 2071 DenseMap<unsigned, unsigned> VirtRegToPhysReg; 2072 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2073 // this recoloring "session". 2074 FixedRegisters.insert(VirtReg.reg); 2075 2076 Order.rewind(); 2077 while (unsigned PhysReg = Order.next()) { 2078 DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2079 << PrintReg(PhysReg, TRI) << '\n'); 2080 RecoloringCandidates.clear(); 2081 VirtRegToPhysReg.clear(); 2082 2083 // It is only possible to recolor virtual register interference. 2084 if (Matrix->checkInterference(VirtReg, PhysReg) > 2085 LiveRegMatrix::IK_VirtReg) { 2086 DEBUG(dbgs() << "Some inteferences are not with virtual registers.\n"); 2087 2088 continue; 2089 } 2090 2091 // Early give up on this PhysReg if it is obvious we cannot recolor all 2092 // the interferences. 2093 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2094 FixedRegisters)) { 2095 DEBUG(dbgs() << "Some inteferences cannot be recolored.\n"); 2096 continue; 2097 } 2098 2099 // RecoloringCandidates contains all the virtual registers that interfer 2100 // with VirtReg on PhysReg (or one of its aliases). 2101 // Enqueue them for recoloring and perform the actual recoloring. 2102 PQueue RecoloringQueue; 2103 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2104 EndIt = RecoloringCandidates.end(); 2105 It != EndIt; ++It) { 2106 unsigned ItVirtReg = (*It)->reg; 2107 enqueue(RecoloringQueue, *It); 2108 assert(VRM->hasPhys(ItVirtReg) && 2109 "Interferences are supposed to be with allocated vairables"); 2110 2111 // Record the current allocation. 2112 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2113 // unset the related struct. 2114 Matrix->unassign(**It); 2115 } 2116 2117 // Do as if VirtReg was assigned to PhysReg so that the underlying 2118 // recoloring has the right information about the interferes and 2119 // available colors. 2120 Matrix->assign(VirtReg, PhysReg); 2121 2122 // Save the current recoloring state. 2123 // If we cannot recolor all the interferences, we will have to start again 2124 // at this point for the next physical register. 2125 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2126 if (tryRecoloringCandidates(RecoloringQueue, NewVRegs, FixedRegisters, 2127 Depth)) { 2128 // Do not mess up with the global assignment process. 2129 // I.e., VirtReg must be unassigned. 2130 Matrix->unassign(VirtReg); 2131 return PhysReg; 2132 } 2133 2134 DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2135 << PrintReg(PhysReg, TRI) << '\n'); 2136 2137 // The recoloring attempt failed, undo the changes. 2138 FixedRegisters = SaveFixedRegisters; 2139 Matrix->unassign(VirtReg); 2140 2141 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2142 EndIt = RecoloringCandidates.end(); 2143 It != EndIt; ++It) { 2144 unsigned ItVirtReg = (*It)->reg; 2145 if (VRM->hasPhys(ItVirtReg)) 2146 Matrix->unassign(**It); 2147 unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2148 Matrix->assign(**It, ItPhysReg); 2149 } 2150 } 2151 2152 // Last chance recoloring did not worked either, give up. 2153 return ~0u; 2154 } 2155 2156 /// tryRecoloringCandidates - Try to assign a new color to every register 2157 /// in \RecoloringQueue. 2158 /// \p NewRegs will contain any new virtual register created during the 2159 /// recoloring process. 2160 /// \p FixedRegisters[in/out] contains all the registers that have been 2161 /// recolored. 2162 /// \return true if all virtual registers in RecoloringQueue were successfully 2163 /// recolored, false otherwise. 2164 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2165 SmallVectorImpl<unsigned> &NewVRegs, 2166 SmallVirtRegSet &FixedRegisters, 2167 unsigned Depth) { 2168 while (!RecoloringQueue.empty()) { 2169 LiveInterval *LI = dequeue(RecoloringQueue); 2170 DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2171 unsigned PhysReg; 2172 PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2173 if (PhysReg == ~0u || !PhysReg) 2174 return false; 2175 DEBUG(dbgs() << "Recoloring of " << *LI 2176 << " succeeded with: " << PrintReg(PhysReg, TRI) << '\n'); 2177 Matrix->assign(*LI, PhysReg); 2178 FixedRegisters.insert(LI->reg); 2179 } 2180 return true; 2181 } 2182 2183 //===----------------------------------------------------------------------===// 2184 // Main Entry Point 2185 //===----------------------------------------------------------------------===// 2186 2187 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2188 SmallVectorImpl<unsigned> &NewVRegs) { 2189 CutOffInfo = CO_None; 2190 LLVMContext &Ctx = MF->getFunction()->getContext(); 2191 SmallVirtRegSet FixedRegisters; 2192 unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2193 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2194 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2195 if (CutOffEncountered == CO_Depth) 2196 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2197 "reached. Use -fexhaustive-register-search to skip " 2198 "cutoffs"); 2199 else if (CutOffEncountered == CO_Interf) 2200 Ctx.emitError("register allocation failed: maximum interference for " 2201 "recoloring reached. Use -fexhaustive-register-search " 2202 "to skip cutoffs"); 2203 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2204 Ctx.emitError("register allocation failed: maximum interference and " 2205 "depth for recoloring reached. Use " 2206 "-fexhaustive-register-search to skip cutoffs"); 2207 } 2208 return Reg; 2209 } 2210 2211 /// Using a CSR for the first time has a cost because it causes push|pop 2212 /// to be added to prologue|epilogue. Splitting a cold section of the live 2213 /// range can have lower cost than using the CSR for the first time; 2214 /// Spilling a live range in the cold path can have lower cost than using 2215 /// the CSR for the first time. Returns the physical register if we decide 2216 /// to use the CSR; otherwise return 0. 2217 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, 2218 AllocationOrder &Order, 2219 unsigned PhysReg, 2220 unsigned &CostPerUseLimit, 2221 SmallVectorImpl<unsigned> &NewVRegs) { 2222 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2223 // We choose spill over using the CSR for the first time if the spill cost 2224 // is lower than CSRCost. 2225 SA->analyze(&VirtReg); 2226 if (calcSpillCost() >= CSRCost) 2227 return PhysReg; 2228 2229 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2230 // we will not use a callee-saved register in tryEvict. 2231 CostPerUseLimit = 1; 2232 return 0; 2233 } 2234 if (getStage(VirtReg) < RS_Split) { 2235 // We choose pre-splitting over using the CSR for the first time if 2236 // the cost of splitting is lower than CSRCost. 2237 SA->analyze(&VirtReg); 2238 unsigned NumCands = 0; 2239 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2240 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2241 NumCands, true /*IgnoreCSR*/); 2242 if (BestCand == NoCand) 2243 // Use the CSR if we can't find a region split below CSRCost. 2244 return PhysReg; 2245 2246 // Perform the actual pre-splitting. 2247 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2248 return 0; 2249 } 2250 return PhysReg; 2251 } 2252 2253 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2254 // Do not keep invalid information around. 2255 SetOfBrokenHints.remove(&LI); 2256 } 2257 2258 void RAGreedy::initializeCSRCost() { 2259 // We use the larger one out of the command-line option and the value report 2260 // by TRI. 2261 CSRCost = BlockFrequency( 2262 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2263 if (!CSRCost.getFrequency()) 2264 return; 2265 2266 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2267 uint64_t ActualEntry = MBFI->getEntryFreq(); 2268 if (!ActualEntry) { 2269 CSRCost = 0; 2270 return; 2271 } 2272 uint64_t FixedEntry = 1 << 14; 2273 if (ActualEntry < FixedEntry) 2274 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2275 else if (ActualEntry <= UINT32_MAX) 2276 // Invert the fraction and divide. 2277 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2278 else 2279 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2280 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2281 } 2282 2283 /// \brief Collect the hint info for \p Reg. 2284 /// The results are stored into \p Out. 2285 /// \p Out is not cleared before being populated. 2286 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) { 2287 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2288 if (!Instr.isFullCopy()) 2289 continue; 2290 // Look for the other end of the copy. 2291 unsigned OtherReg = Instr.getOperand(0).getReg(); 2292 if (OtherReg == Reg) { 2293 OtherReg = Instr.getOperand(1).getReg(); 2294 if (OtherReg == Reg) 2295 continue; 2296 } 2297 // Get the current assignment. 2298 unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg) 2299 ? OtherReg 2300 : VRM->getPhys(OtherReg); 2301 // Push the collected information. 2302 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2303 OtherPhysReg)); 2304 } 2305 } 2306 2307 /// \brief Using the given \p List, compute the cost of the broken hints if 2308 /// \p PhysReg was used. 2309 /// \return The cost of \p List for \p PhysReg. 2310 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2311 unsigned PhysReg) { 2312 BlockFrequency Cost = 0; 2313 for (const HintInfo &Info : List) { 2314 if (Info.PhysReg != PhysReg) 2315 Cost += Info.Freq; 2316 } 2317 return Cost; 2318 } 2319 2320 /// \brief Using the register assigned to \p VirtReg, try to recolor 2321 /// all the live ranges that are copy-related with \p VirtReg. 2322 /// The recoloring is then propagated to all the live-ranges that have 2323 /// been recolored and so on, until no more copies can be coalesced or 2324 /// it is not profitable. 2325 /// For a given live range, profitability is determined by the sum of the 2326 /// frequencies of the non-identity copies it would introduce with the old 2327 /// and new register. 2328 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2329 // We have a broken hint, check if it is possible to fix it by 2330 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2331 // some register and PhysReg may be available for the other live-ranges. 2332 SmallSet<unsigned, 4> Visited; 2333 SmallVector<unsigned, 2> RecoloringCandidates; 2334 HintsInfo Info; 2335 unsigned Reg = VirtReg.reg; 2336 unsigned PhysReg = VRM->getPhys(Reg); 2337 // Start the recoloring algorithm from the input live-interval, then 2338 // it will propagate to the ones that are copy-related with it. 2339 Visited.insert(Reg); 2340 RecoloringCandidates.push_back(Reg); 2341 2342 DEBUG(dbgs() << "Trying to reconcile hints for: " << PrintReg(Reg, TRI) << '(' 2343 << PrintReg(PhysReg, TRI) << ")\n"); 2344 2345 do { 2346 Reg = RecoloringCandidates.pop_back_val(); 2347 2348 // We cannot recolor physcal register. 2349 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 2350 continue; 2351 2352 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!"); 2353 2354 // Get the live interval mapped with this virtual register to be able 2355 // to check for the interference with the new color. 2356 LiveInterval &LI = LIS->getInterval(Reg); 2357 unsigned CurrPhys = VRM->getPhys(Reg); 2358 // Check that the new color matches the register class constraints and 2359 // that it is free for this live range. 2360 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2361 Matrix->checkInterference(LI, PhysReg))) 2362 continue; 2363 2364 DEBUG(dbgs() << PrintReg(Reg, TRI) << '(' << PrintReg(CurrPhys, TRI) 2365 << ") is recolorable.\n"); 2366 2367 // Gather the hint info. 2368 Info.clear(); 2369 collectHintInfo(Reg, Info); 2370 // Check if recoloring the live-range will increase the cost of the 2371 // non-identity copies. 2372 if (CurrPhys != PhysReg) { 2373 DEBUG(dbgs() << "Checking profitability:\n"); 2374 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2375 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2376 DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2377 << "\nNew Cost: " << NewCopiesCost.getFrequency() << '\n'); 2378 if (OldCopiesCost < NewCopiesCost) { 2379 DEBUG(dbgs() << "=> Not profitable.\n"); 2380 continue; 2381 } 2382 // At this point, the cost is either cheaper or equal. If it is 2383 // equal, we consider this is profitable because it may expose 2384 // more recoloring opportunities. 2385 DEBUG(dbgs() << "=> Profitable.\n"); 2386 // Recolor the live-range. 2387 Matrix->unassign(LI); 2388 Matrix->assign(LI, PhysReg); 2389 } 2390 // Push all copy-related live-ranges to keep reconciling the broken 2391 // hints. 2392 for (const HintInfo &HI : Info) { 2393 if (Visited.insert(HI.Reg).second) 2394 RecoloringCandidates.push_back(HI.Reg); 2395 } 2396 } while (!RecoloringCandidates.empty()); 2397 } 2398 2399 /// \brief Try to recolor broken hints. 2400 /// Broken hints may be repaired by recoloring when an evicted variable 2401 /// freed up a register for a larger live-range. 2402 /// Consider the following example: 2403 /// BB1: 2404 /// a = 2405 /// b = 2406 /// BB2: 2407 /// ... 2408 /// = b 2409 /// = a 2410 /// Let us assume b gets split: 2411 /// BB1: 2412 /// a = 2413 /// b = 2414 /// BB2: 2415 /// c = b 2416 /// ... 2417 /// d = c 2418 /// = d 2419 /// = a 2420 /// Because of how the allocation work, b, c, and d may be assigned different 2421 /// colors. Now, if a gets evicted later: 2422 /// BB1: 2423 /// a = 2424 /// st a, SpillSlot 2425 /// b = 2426 /// BB2: 2427 /// c = b 2428 /// ... 2429 /// d = c 2430 /// = d 2431 /// e = ld SpillSlot 2432 /// = e 2433 /// This is likely that we can assign the same register for b, c, and d, 2434 /// getting rid of 2 copies. 2435 void RAGreedy::tryHintsRecoloring() { 2436 for (LiveInterval *LI : SetOfBrokenHints) { 2437 assert(TargetRegisterInfo::isVirtualRegister(LI->reg) && 2438 "Recoloring is possible only for virtual registers"); 2439 // Some dead defs may be around (e.g., because of debug uses). 2440 // Ignore those. 2441 if (!VRM->hasPhys(LI->reg)) 2442 continue; 2443 tryHintRecoloring(*LI); 2444 } 2445 } 2446 2447 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 2448 SmallVectorImpl<unsigned> &NewVRegs, 2449 SmallVirtRegSet &FixedRegisters, 2450 unsigned Depth) { 2451 unsigned CostPerUseLimit = ~0u; 2452 // First try assigning a free register. 2453 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo); 2454 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) { 2455 // When NewVRegs is not empty, we may have made decisions such as evicting 2456 // a virtual register, go with the earlier decisions and use the physical 2457 // register. 2458 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 2459 NewVRegs.empty()) { 2460 unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 2461 CostPerUseLimit, NewVRegs); 2462 if (CSRReg || !NewVRegs.empty()) 2463 // Return now if we decide to use a CSR or create new vregs due to 2464 // pre-splitting. 2465 return CSRReg; 2466 } else 2467 return PhysReg; 2468 } 2469 2470 LiveRangeStage Stage = getStage(VirtReg); 2471 DEBUG(dbgs() << StageName[Stage] 2472 << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n'); 2473 2474 // Try to evict a less worthy live range, but only for ranges from the primary 2475 // queue. The RS_Split ranges already failed to do this, and they should not 2476 // get a second chance until they have been split. 2477 if (Stage != RS_Split) 2478 if (unsigned PhysReg = 2479 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) { 2480 unsigned Hint = MRI->getSimpleHint(VirtReg.reg); 2481 // If VirtReg has a hint and that hint is broken record this 2482 // virtual register as a recoloring candidate for broken hint. 2483 // Indeed, since we evicted a variable in its neighborhood it is 2484 // likely we can at least partially recolor some of the 2485 // copy-related live-ranges. 2486 if (Hint && Hint != PhysReg) 2487 SetOfBrokenHints.insert(&VirtReg); 2488 return PhysReg; 2489 } 2490 2491 assert(NewVRegs.empty() && "Cannot append to existing NewVRegs"); 2492 2493 // The first time we see a live range, don't try to split or spill. 2494 // Wait until the second time, when all smaller ranges have been allocated. 2495 // This gives a better picture of the interference to split around. 2496 if (Stage < RS_Split) { 2497 setStage(VirtReg, RS_Split); 2498 DEBUG(dbgs() << "wait for second round\n"); 2499 NewVRegs.push_back(VirtReg.reg); 2500 return 0; 2501 } 2502 2503 // If we couldn't allocate a register from spilling, there is probably some 2504 // invalid inline assembly. The base class wil report it. 2505 if (Stage >= RS_Done || !VirtReg.isSpillable()) 2506 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 2507 Depth); 2508 2509 // Try splitting VirtReg or interferences. 2510 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs); 2511 if (PhysReg || !NewVRegs.empty()) 2512 return PhysReg; 2513 2514 // Finally spill VirtReg itself. 2515 NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled); 2516 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this); 2517 spiller().spill(LRE); 2518 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 2519 2520 if (VerifyEnabled) 2521 MF->verify(this, "After spilling"); 2522 2523 // The live virtual register requesting allocation was spilled, so tell 2524 // the caller not to allocate anything during this round. 2525 return 0; 2526 } 2527 2528 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 2529 DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 2530 << "********** Function: " << mf.getName() << '\n'); 2531 2532 MF = &mf; 2533 TRI = MF->getSubtarget().getRegisterInfo(); 2534 TII = MF->getSubtarget().getInstrInfo(); 2535 RCI.runOnMachineFunction(mf); 2536 2537 EnableLocalReassign = EnableLocalReassignment || 2538 MF->getSubtarget().enableRALocalReassignment( 2539 MF->getTarget().getOptLevel()); 2540 2541 if (VerifyEnabled) 2542 MF->verify(this, "Before greedy register allocator"); 2543 2544 RegAllocBase::init(getAnalysis<VirtRegMap>(), 2545 getAnalysis<LiveIntervals>(), 2546 getAnalysis<LiveRegMatrix>()); 2547 Indexes = &getAnalysis<SlotIndexes>(); 2548 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2549 DomTree = &getAnalysis<MachineDominatorTree>(); 2550 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 2551 Loops = &getAnalysis<MachineLoopInfo>(); 2552 Bundles = &getAnalysis<EdgeBundles>(); 2553 SpillPlacer = &getAnalysis<SpillPlacement>(); 2554 DebugVars = &getAnalysis<LiveDebugVariables>(); 2555 2556 initializeCSRCost(); 2557 2558 calculateSpillWeightsAndHints(*LIS, mf, *Loops, *MBFI); 2559 2560 DEBUG(LIS->dump()); 2561 2562 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 2563 SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI)); 2564 ExtraRegInfo.clear(); 2565 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2566 NextCascade = 1; 2567 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 2568 GlobalCand.resize(32); // This will grow as needed. 2569 SetOfBrokenHints.clear(); 2570 2571 allocatePhysRegs(); 2572 tryHintsRecoloring(); 2573 releaseMemory(); 2574 return true; 2575 } 2576