1 //===-- RegAllocBasic.cpp - Basic Register Allocator ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the RABasic function pass, which provides a minimal 11 // implementation of the basic register allocator. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AllocationOrder.h" 16 #include "LiveDebugVariables.h" 17 #include "RegAllocBase.h" 18 #include "Spiller.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/CodeGen/CalcSpillWeights.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/LiveRangeEdit.h" 23 #include "llvm/CodeGen/LiveRegMatrix.h" 24 #include "llvm/CodeGen/LiveStackAnalysis.h" 25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineLoopInfo.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/Passes.h" 31 #include "llvm/CodeGen/RegAllocRegistry.h" 32 #include "llvm/CodeGen/VirtRegMap.h" 33 #include "llvm/PassAnalysisSupport.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetRegisterInfo.h" 37 #include <cstdlib> 38 #include <queue> 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "regalloc" 43 44 static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator", 45 createBasicRegisterAllocator); 46 47 namespace { 48 struct CompSpillWeight { 49 bool operator()(LiveInterval *A, LiveInterval *B) const { 50 return A->weight < B->weight; 51 } 52 }; 53 } 54 55 namespace { 56 /// RABasic provides a minimal implementation of the basic register allocation 57 /// algorithm. It prioritizes live virtual registers by spill weight and spills 58 /// whenever a register is unavailable. This is not practical in production but 59 /// provides a useful baseline both for measuring other allocators and comparing 60 /// the speed of the basic algorithm against other styles of allocators. 61 class RABasic : public MachineFunctionPass, 62 public RegAllocBase, 63 private LiveRangeEdit::Delegate { 64 // context 65 MachineFunction *MF; 66 67 // state 68 std::unique_ptr<Spiller> SpillerInstance; 69 std::priority_queue<LiveInterval*, std::vector<LiveInterval*>, 70 CompSpillWeight> Queue; 71 72 // Scratch space. Allocated here to avoid repeated malloc calls in 73 // selectOrSplit(). 74 BitVector UsableRegs; 75 76 bool LRE_CanEraseVirtReg(unsigned) override; 77 void LRE_WillShrinkVirtReg(unsigned) override; 78 79 public: 80 RABasic(); 81 82 /// Return the pass name. 83 StringRef getPassName() const override { return "Basic Register Allocator"; } 84 85 /// RABasic analysis usage. 86 void getAnalysisUsage(AnalysisUsage &AU) const override; 87 88 void releaseMemory() override; 89 90 Spiller &spiller() override { return *SpillerInstance; } 91 92 void enqueue(LiveInterval *LI) override { 93 Queue.push(LI); 94 } 95 96 LiveInterval *dequeue() override { 97 if (Queue.empty()) 98 return nullptr; 99 LiveInterval *LI = Queue.top(); 100 Queue.pop(); 101 return LI; 102 } 103 104 unsigned selectOrSplit(LiveInterval &VirtReg, 105 SmallVectorImpl<unsigned> &SplitVRegs) override; 106 107 /// Perform register allocation. 108 bool runOnMachineFunction(MachineFunction &mf) override; 109 110 MachineFunctionProperties getRequiredProperties() const override { 111 return MachineFunctionProperties().set( 112 MachineFunctionProperties::Property::NoPHIs); 113 } 114 115 // Helper for spilling all live virtual registers currently unified under preg 116 // that interfere with the most recently queried lvr. Return true if spilling 117 // was successful, and append any new spilled/split intervals to splitLVRs. 118 bool spillInterferences(LiveInterval &VirtReg, unsigned PhysReg, 119 SmallVectorImpl<unsigned> &SplitVRegs); 120 121 static char ID; 122 }; 123 124 char RABasic::ID = 0; 125 126 } // end anonymous namespace 127 128 char &llvm::RABasicID = RABasic::ID; 129 130 INITIALIZE_PASS_BEGIN(RABasic, "regallocbasic", "Basic Register Allocator", 131 false, false) 132 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 133 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 134 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 135 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 136 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 137 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 138 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 139 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 140 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 141 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 142 INITIALIZE_PASS_END(RABasic, "regallocbasic", "Basic Register Allocator", false, 143 false) 144 145 bool RABasic::LRE_CanEraseVirtReg(unsigned VirtReg) { 146 if (VRM->hasPhys(VirtReg)) { 147 LiveInterval &LI = LIS->getInterval(VirtReg); 148 Matrix->unassign(LI); 149 aboutToRemoveInterval(LI); 150 return true; 151 } 152 // Unassigned virtreg is probably in the priority queue. 153 // RegAllocBase will erase it after dequeueing. 154 return false; 155 } 156 157 void RABasic::LRE_WillShrinkVirtReg(unsigned VirtReg) { 158 if (!VRM->hasPhys(VirtReg)) 159 return; 160 161 // Register is assigned, put it back on the queue for reassignment. 162 LiveInterval &LI = LIS->getInterval(VirtReg); 163 Matrix->unassign(LI); 164 enqueue(&LI); 165 } 166 167 RABasic::RABasic(): MachineFunctionPass(ID) { 168 } 169 170 void RABasic::getAnalysisUsage(AnalysisUsage &AU) const { 171 AU.setPreservesCFG(); 172 AU.addRequired<AAResultsWrapperPass>(); 173 AU.addPreserved<AAResultsWrapperPass>(); 174 AU.addRequired<LiveIntervals>(); 175 AU.addPreserved<LiveIntervals>(); 176 AU.addPreserved<SlotIndexes>(); 177 AU.addRequired<LiveDebugVariables>(); 178 AU.addPreserved<LiveDebugVariables>(); 179 AU.addRequired<LiveStacks>(); 180 AU.addPreserved<LiveStacks>(); 181 AU.addRequired<MachineBlockFrequencyInfo>(); 182 AU.addPreserved<MachineBlockFrequencyInfo>(); 183 AU.addRequiredID(MachineDominatorsID); 184 AU.addPreservedID(MachineDominatorsID); 185 AU.addRequired<MachineLoopInfo>(); 186 AU.addPreserved<MachineLoopInfo>(); 187 AU.addRequired<VirtRegMap>(); 188 AU.addPreserved<VirtRegMap>(); 189 AU.addRequired<LiveRegMatrix>(); 190 AU.addPreserved<LiveRegMatrix>(); 191 MachineFunctionPass::getAnalysisUsage(AU); 192 } 193 194 void RABasic::releaseMemory() { 195 SpillerInstance.reset(); 196 } 197 198 199 // Spill or split all live virtual registers currently unified under PhysReg 200 // that interfere with VirtReg. The newly spilled or split live intervals are 201 // returned by appending them to SplitVRegs. 202 bool RABasic::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg, 203 SmallVectorImpl<unsigned> &SplitVRegs) { 204 // Record each interference and determine if all are spillable before mutating 205 // either the union or live intervals. 206 SmallVector<LiveInterval*, 8> Intfs; 207 208 // Collect interferences assigned to any alias of the physical register. 209 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 210 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 211 Q.collectInterferingVRegs(); 212 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 213 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 214 if (!Intf->isSpillable() || Intf->weight > VirtReg.weight) 215 return false; 216 Intfs.push_back(Intf); 217 } 218 } 219 DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) << 220 " interferences with " << VirtReg << "\n"); 221 assert(!Intfs.empty() && "expected interference"); 222 223 // Spill each interfering vreg allocated to PhysReg or an alias. 224 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) { 225 LiveInterval &Spill = *Intfs[i]; 226 227 // Skip duplicates. 228 if (!VRM->hasPhys(Spill.reg)) 229 continue; 230 231 // Deallocate the interfering vreg by removing it from the union. 232 // A LiveInterval instance may not be in a union during modification! 233 Matrix->unassign(Spill); 234 235 // Spill the extracted interval. 236 LiveRangeEdit LRE(&Spill, SplitVRegs, *MF, *LIS, VRM, this, &DeadRemats); 237 spiller().spill(LRE); 238 } 239 return true; 240 } 241 242 // Driver for the register assignment and splitting heuristics. 243 // Manages iteration over the LiveIntervalUnions. 244 // 245 // This is a minimal implementation of register assignment and splitting that 246 // spills whenever we run out of registers. 247 // 248 // selectOrSplit can only be called once per live virtual register. We then do a 249 // single interference test for each register the correct class until we find an 250 // available register. So, the number of interference tests in the worst case is 251 // |vregs| * |machineregs|. And since the number of interference tests is 252 // minimal, there is no value in caching them outside the scope of 253 // selectOrSplit(). 254 unsigned RABasic::selectOrSplit(LiveInterval &VirtReg, 255 SmallVectorImpl<unsigned> &SplitVRegs) { 256 // Populate a list of physical register spill candidates. 257 SmallVector<unsigned, 8> PhysRegSpillCands; 258 259 // Check for an available register in this class. 260 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 261 while (unsigned PhysReg = Order.next()) { 262 // Check for interference in PhysReg 263 switch (Matrix->checkInterference(VirtReg, PhysReg)) { 264 case LiveRegMatrix::IK_Free: 265 // PhysReg is available, allocate it. 266 return PhysReg; 267 268 case LiveRegMatrix::IK_VirtReg: 269 // Only virtual registers in the way, we may be able to spill them. 270 PhysRegSpillCands.push_back(PhysReg); 271 continue; 272 273 default: 274 // RegMask or RegUnit interference. 275 continue; 276 } 277 } 278 279 // Try to spill another interfering reg with less spill weight. 280 for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(), 281 PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) { 282 if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) 283 continue; 284 285 assert(!Matrix->checkInterference(VirtReg, *PhysRegI) && 286 "Interference after spill."); 287 // Tell the caller to allocate to this newly freed physical register. 288 return *PhysRegI; 289 } 290 291 // No other spill candidates were found, so spill the current VirtReg. 292 DEBUG(dbgs() << "spilling: " << VirtReg << '\n'); 293 if (!VirtReg.isSpillable()) 294 return ~0u; 295 LiveRangeEdit LRE(&VirtReg, SplitVRegs, *MF, *LIS, VRM, this, &DeadRemats); 296 spiller().spill(LRE); 297 298 // The live virtual register requesting allocation was spilled, so tell 299 // the caller not to allocate anything during this round. 300 return 0; 301 } 302 303 bool RABasic::runOnMachineFunction(MachineFunction &mf) { 304 DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n" 305 << "********** Function: " 306 << mf.getName() << '\n'); 307 308 MF = &mf; 309 RegAllocBase::init(getAnalysis<VirtRegMap>(), 310 getAnalysis<LiveIntervals>(), 311 getAnalysis<LiveRegMatrix>()); 312 313 calculateSpillWeightsAndHints(*LIS, *MF, VRM, 314 getAnalysis<MachineLoopInfo>(), 315 getAnalysis<MachineBlockFrequencyInfo>()); 316 317 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 318 319 allocatePhysRegs(); 320 postOptimization(); 321 322 // Diagnostic output before rewriting 323 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n"); 324 325 releaseMemory(); 326 return true; 327 } 328 329 FunctionPass* llvm::createBasicRegisterAllocator() 330 { 331 return new RABasic(); 332 } 333