1 //===-- RegAllocBasic.cpp - basic register allocator ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the RABasic function pass, which provides a minimal 11 // implementation of the basic register allocator. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "RegAllocBase.h" 17 #include "LiveDebugVariables.h" 18 #include "LiveIntervalUnion.h" 19 #include "LiveRangeEdit.h" 20 #include "RenderMachineFunction.h" 21 #include "Spiller.h" 22 #include "VirtRegMap.h" 23 #include "RegisterCoalescer.h" 24 #include "llvm/ADT/OwningPtr.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Function.h" 28 #include "llvm/PassAnalysisSupport.h" 29 #include "llvm/CodeGen/CalcSpillWeights.h" 30 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 31 #include "llvm/CodeGen/LiveStackAnalysis.h" 32 #include "llvm/CodeGen/MachineFunctionPass.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineLoopInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/RegAllocRegistry.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include "llvm/Target/TargetOptions.h" 40 #include "llvm/Target/TargetRegisterInfo.h" 41 #ifndef NDEBUG 42 #include "llvm/ADT/SparseBitVector.h" 43 #endif 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Support/Timer.h" 48 49 #include <cstdlib> 50 #include <queue> 51 52 using namespace llvm; 53 54 STATISTIC(NumAssigned , "Number of registers assigned"); 55 STATISTIC(NumUnassigned , "Number of registers unassigned"); 56 STATISTIC(NumNewQueued , "Number of new live ranges queued"); 57 58 static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator", 59 createBasicRegisterAllocator); 60 61 // Temporary verification option until we can put verification inside 62 // MachineVerifier. 63 static cl::opt<bool, true> 64 VerifyRegAlloc("verify-regalloc", cl::location(RegAllocBase::VerifyEnabled), 65 cl::desc("Verify during register allocation")); 66 67 const char *RegAllocBase::TimerGroupName = "Register Allocation"; 68 bool RegAllocBase::VerifyEnabled = false; 69 70 namespace { 71 struct CompSpillWeight { 72 bool operator()(LiveInterval *A, LiveInterval *B) const { 73 return A->weight < B->weight; 74 } 75 }; 76 } 77 78 namespace { 79 /// RABasic provides a minimal implementation of the basic register allocation 80 /// algorithm. It prioritizes live virtual registers by spill weight and spills 81 /// whenever a register is unavailable. This is not practical in production but 82 /// provides a useful baseline both for measuring other allocators and comparing 83 /// the speed of the basic algorithm against other styles of allocators. 84 class RABasic : public MachineFunctionPass, public RegAllocBase 85 { 86 // context 87 MachineFunction *MF; 88 89 // analyses 90 LiveStacks *LS; 91 RenderMachineFunction *RMF; 92 93 // state 94 std::auto_ptr<Spiller> SpillerInstance; 95 std::priority_queue<LiveInterval*, std::vector<LiveInterval*>, 96 CompSpillWeight> Queue; 97 public: 98 RABasic(); 99 100 /// Return the pass name. 101 virtual const char* getPassName() const { 102 return "Basic Register Allocator"; 103 } 104 105 /// RABasic analysis usage. 106 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 107 108 virtual void releaseMemory(); 109 110 virtual Spiller &spiller() { return *SpillerInstance; } 111 112 virtual float getPriority(LiveInterval *LI) { return LI->weight; } 113 114 virtual void enqueue(LiveInterval *LI) { 115 Queue.push(LI); 116 } 117 118 virtual LiveInterval *dequeue() { 119 if (Queue.empty()) 120 return 0; 121 LiveInterval *LI = Queue.top(); 122 Queue.pop(); 123 return LI; 124 } 125 126 virtual unsigned selectOrSplit(LiveInterval &VirtReg, 127 SmallVectorImpl<LiveInterval*> &SplitVRegs); 128 129 /// Perform register allocation. 130 virtual bool runOnMachineFunction(MachineFunction &mf); 131 132 static char ID; 133 }; 134 135 char RABasic::ID = 0; 136 137 } // end anonymous namespace 138 139 RABasic::RABasic(): MachineFunctionPass(ID) { 140 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 141 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 142 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 143 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry()); 144 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 145 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); 146 initializeLiveStacksPass(*PassRegistry::getPassRegistry()); 147 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); 148 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); 149 initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); 150 initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry()); 151 } 152 153 void RABasic::getAnalysisUsage(AnalysisUsage &AU) const { 154 AU.setPreservesCFG(); 155 AU.addRequired<AliasAnalysis>(); 156 AU.addPreserved<AliasAnalysis>(); 157 AU.addRequired<LiveIntervals>(); 158 AU.addPreserved<SlotIndexes>(); 159 AU.addRequired<LiveDebugVariables>(); 160 AU.addPreserved<LiveDebugVariables>(); 161 if (StrongPHIElim) 162 AU.addRequiredID(StrongPHIEliminationID); 163 AU.addRequiredTransitive<RegisterCoalescer>(); 164 AU.addRequired<CalculateSpillWeights>(); 165 AU.addRequired<LiveStacks>(); 166 AU.addPreserved<LiveStacks>(); 167 AU.addRequiredID(MachineDominatorsID); 168 AU.addPreservedID(MachineDominatorsID); 169 AU.addRequired<MachineLoopInfo>(); 170 AU.addPreserved<MachineLoopInfo>(); 171 AU.addRequired<VirtRegMap>(); 172 AU.addPreserved<VirtRegMap>(); 173 DEBUG(AU.addRequired<RenderMachineFunction>()); 174 MachineFunctionPass::getAnalysisUsage(AU); 175 } 176 177 void RABasic::releaseMemory() { 178 SpillerInstance.reset(0); 179 RegAllocBase::releaseMemory(); 180 } 181 182 #ifndef NDEBUG 183 // Verify each LiveIntervalUnion. 184 void RegAllocBase::verify() { 185 LiveVirtRegBitSet VisitedVRegs; 186 OwningArrayPtr<LiveVirtRegBitSet> 187 unionVRegs(new LiveVirtRegBitSet[PhysReg2LiveUnion.numRegs()]); 188 189 // Verify disjoint unions. 190 for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) { 191 DEBUG(PhysReg2LiveUnion[PhysReg].print(dbgs(), TRI)); 192 LiveVirtRegBitSet &VRegs = unionVRegs[PhysReg]; 193 PhysReg2LiveUnion[PhysReg].verify(VRegs); 194 // Union + intersection test could be done efficiently in one pass, but 195 // don't add a method to SparseBitVector unless we really need it. 196 assert(!VisitedVRegs.intersects(VRegs) && "vreg in multiple unions"); 197 VisitedVRegs |= VRegs; 198 } 199 200 // Verify vreg coverage. 201 for (LiveIntervals::iterator liItr = LIS->begin(), liEnd = LIS->end(); 202 liItr != liEnd; ++liItr) { 203 unsigned reg = liItr->first; 204 if (TargetRegisterInfo::isPhysicalRegister(reg)) continue; 205 if (!VRM->hasPhys(reg)) continue; // spilled? 206 unsigned PhysReg = VRM->getPhys(reg); 207 if (!unionVRegs[PhysReg].test(reg)) { 208 dbgs() << "LiveVirtReg " << reg << " not in union " << 209 TRI->getName(PhysReg) << "\n"; 210 llvm_unreachable("unallocated live vreg"); 211 } 212 } 213 // FIXME: I'm not sure how to verify spilled intervals. 214 } 215 #endif //!NDEBUG 216 217 //===----------------------------------------------------------------------===// 218 // RegAllocBase Implementation 219 //===----------------------------------------------------------------------===// 220 221 // Instantiate a LiveIntervalUnion for each physical register. 222 void RegAllocBase::LiveUnionArray::init(LiveIntervalUnion::Allocator &allocator, 223 unsigned NRegs) { 224 NumRegs = NRegs; 225 Array = 226 static_cast<LiveIntervalUnion*>(malloc(sizeof(LiveIntervalUnion)*NRegs)); 227 for (unsigned r = 0; r != NRegs; ++r) 228 new(Array + r) LiveIntervalUnion(r, allocator); 229 } 230 231 void RegAllocBase::init(VirtRegMap &vrm, LiveIntervals &lis) { 232 NamedRegionTimer T("Initialize", TimerGroupName, TimePassesIsEnabled); 233 TRI = &vrm.getTargetRegInfo(); 234 MRI = &vrm.getRegInfo(); 235 VRM = &vrm; 236 LIS = &lis; 237 RegClassInfo.runOnMachineFunction(vrm.getMachineFunction()); 238 239 const unsigned NumRegs = TRI->getNumRegs(); 240 if (NumRegs != PhysReg2LiveUnion.numRegs()) { 241 PhysReg2LiveUnion.init(UnionAllocator, NumRegs); 242 // Cache an interferece query for each physical reg 243 Queries.reset(new LiveIntervalUnion::Query[PhysReg2LiveUnion.numRegs()]); 244 } 245 } 246 247 void RegAllocBase::LiveUnionArray::clear() { 248 if (!Array) 249 return; 250 for (unsigned r = 0; r != NumRegs; ++r) 251 Array[r].~LiveIntervalUnion(); 252 free(Array); 253 NumRegs = 0; 254 Array = 0; 255 } 256 257 void RegAllocBase::releaseMemory() { 258 for (unsigned r = 0, e = PhysReg2LiveUnion.numRegs(); r != e; ++r) 259 PhysReg2LiveUnion[r].clear(); 260 } 261 262 // Visit all the live registers. If they are already assigned to a physical 263 // register, unify them with the corresponding LiveIntervalUnion, otherwise push 264 // them on the priority queue for later assignment. 265 void RegAllocBase::seedLiveRegs() { 266 NamedRegionTimer T("Seed Live Regs", TimerGroupName, TimePassesIsEnabled); 267 for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end(); I != E; ++I) { 268 unsigned RegNum = I->first; 269 LiveInterval &VirtReg = *I->second; 270 if (TargetRegisterInfo::isPhysicalRegister(RegNum)) 271 PhysReg2LiveUnion[RegNum].unify(VirtReg); 272 else 273 enqueue(&VirtReg); 274 } 275 } 276 277 void RegAllocBase::assign(LiveInterval &VirtReg, unsigned PhysReg) { 278 DEBUG(dbgs() << "assigning " << PrintReg(VirtReg.reg, TRI) 279 << " to " << PrintReg(PhysReg, TRI) << '\n'); 280 assert(!VRM->hasPhys(VirtReg.reg) && "Duplicate VirtReg assignment"); 281 VRM->assignVirt2Phys(VirtReg.reg, PhysReg); 282 MRI->setPhysRegUsed(PhysReg); 283 PhysReg2LiveUnion[PhysReg].unify(VirtReg); 284 ++NumAssigned; 285 } 286 287 void RegAllocBase::unassign(LiveInterval &VirtReg, unsigned PhysReg) { 288 DEBUG(dbgs() << "unassigning " << PrintReg(VirtReg.reg, TRI) 289 << " from " << PrintReg(PhysReg, TRI) << '\n'); 290 assert(VRM->getPhys(VirtReg.reg) == PhysReg && "Inconsistent unassign"); 291 PhysReg2LiveUnion[PhysReg].extract(VirtReg); 292 VRM->clearVirt(VirtReg.reg); 293 ++NumUnassigned; 294 } 295 296 // Top-level driver to manage the queue of unassigned VirtRegs and call the 297 // selectOrSplit implementation. 298 void RegAllocBase::allocatePhysRegs() { 299 seedLiveRegs(); 300 301 // Continue assigning vregs one at a time to available physical registers. 302 while (LiveInterval *VirtReg = dequeue()) { 303 assert(!VRM->hasPhys(VirtReg->reg) && "Register already assigned"); 304 305 // Unused registers can appear when the spiller coalesces snippets. 306 if (MRI->reg_nodbg_empty(VirtReg->reg)) { 307 DEBUG(dbgs() << "Dropping unused " << *VirtReg << '\n'); 308 LIS->removeInterval(VirtReg->reg); 309 continue; 310 } 311 312 // Invalidate all interference queries, live ranges could have changed. 313 invalidateVirtRegs(); 314 315 // selectOrSplit requests the allocator to return an available physical 316 // register if possible and populate a list of new live intervals that 317 // result from splitting. 318 DEBUG(dbgs() << "\nselectOrSplit " 319 << MRI->getRegClass(VirtReg->reg)->getName() 320 << ':' << *VirtReg << '\n'); 321 typedef SmallVector<LiveInterval*, 4> VirtRegVec; 322 VirtRegVec SplitVRegs; 323 unsigned AvailablePhysReg = selectOrSplit(*VirtReg, SplitVRegs); 324 325 if (AvailablePhysReg == ~0u) { 326 // selectOrSplit failed to find a register! 327 const char *Msg = "ran out of registers during register allocation"; 328 // Probably caused by an inline asm. 329 MachineInstr *MI; 330 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(VirtReg->reg); 331 (MI = I.skipInstruction());) 332 if (MI->isInlineAsm()) 333 break; 334 if (MI) 335 MI->emitError(Msg); 336 else 337 report_fatal_error(Msg); 338 // Keep going after reporting the error. 339 VRM->assignVirt2Phys(VirtReg->reg, 340 RegClassInfo.getOrder(MRI->getRegClass(VirtReg->reg)).front()); 341 continue; 342 } 343 344 if (AvailablePhysReg) 345 assign(*VirtReg, AvailablePhysReg); 346 347 for (VirtRegVec::iterator I = SplitVRegs.begin(), E = SplitVRegs.end(); 348 I != E; ++I) { 349 LiveInterval *SplitVirtReg = *I; 350 assert(!VRM->hasPhys(SplitVirtReg->reg) && "Register already assigned"); 351 if (MRI->reg_nodbg_empty(SplitVirtReg->reg)) { 352 DEBUG(dbgs() << "not queueing unused " << *SplitVirtReg << '\n'); 353 LIS->removeInterval(SplitVirtReg->reg); 354 continue; 355 } 356 DEBUG(dbgs() << "queuing new interval: " << *SplitVirtReg << "\n"); 357 assert(TargetRegisterInfo::isVirtualRegister(SplitVirtReg->reg) && 358 "expect split value in virtual register"); 359 enqueue(SplitVirtReg); 360 ++NumNewQueued; 361 } 362 } 363 } 364 365 // Check if this live virtual register interferes with a physical register. If 366 // not, then check for interference on each register that aliases with the 367 // physical register. Return the interfering register. 368 unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &VirtReg, 369 unsigned PhysReg) { 370 for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) 371 if (query(VirtReg, *AliasI).checkInterference()) 372 return *AliasI; 373 return 0; 374 } 375 376 // Helper for spillInteferences() that spills all interfering vregs currently 377 // assigned to this physical register. 378 void RegAllocBase::spillReg(LiveInterval& VirtReg, unsigned PhysReg, 379 SmallVectorImpl<LiveInterval*> &SplitVRegs) { 380 LiveIntervalUnion::Query &Q = query(VirtReg, PhysReg); 381 assert(Q.seenAllInterferences() && "need collectInterferences()"); 382 const SmallVectorImpl<LiveInterval*> &PendingSpills = Q.interferingVRegs(); 383 384 for (SmallVectorImpl<LiveInterval*>::const_iterator I = PendingSpills.begin(), 385 E = PendingSpills.end(); I != E; ++I) { 386 LiveInterval &SpilledVReg = **I; 387 DEBUG(dbgs() << "extracting from " << 388 TRI->getName(PhysReg) << " " << SpilledVReg << '\n'); 389 390 // Deallocate the interfering vreg by removing it from the union. 391 // A LiveInterval instance may not be in a union during modification! 392 unassign(SpilledVReg, PhysReg); 393 394 // Spill the extracted interval. 395 LiveRangeEdit LRE(SpilledVReg, SplitVRegs, 0, &PendingSpills); 396 spiller().spill(LRE); 397 } 398 // After extracting segments, the query's results are invalid. But keep the 399 // contents valid until we're done accessing pendingSpills. 400 Q.clear(); 401 } 402 403 // Spill or split all live virtual registers currently unified under PhysReg 404 // that interfere with VirtReg. The newly spilled or split live intervals are 405 // returned by appending them to SplitVRegs. 406 bool 407 RegAllocBase::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg, 408 SmallVectorImpl<LiveInterval*> &SplitVRegs) { 409 // Record each interference and determine if all are spillable before mutating 410 // either the union or live intervals. 411 unsigned NumInterferences = 0; 412 // Collect interferences assigned to any alias of the physical register. 413 for (const unsigned *asI = TRI->getOverlaps(PhysReg); *asI; ++asI) { 414 LiveIntervalUnion::Query &QAlias = query(VirtReg, *asI); 415 NumInterferences += QAlias.collectInterferingVRegs(); 416 if (QAlias.seenUnspillableVReg()) { 417 return false; 418 } 419 } 420 DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) << 421 " interferences with " << VirtReg << "\n"); 422 assert(NumInterferences > 0 && "expect interference"); 423 424 // Spill each interfering vreg allocated to PhysReg or an alias. 425 for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) 426 spillReg(VirtReg, *AliasI, SplitVRegs); 427 return true; 428 } 429 430 // Add newly allocated physical registers to the MBB live in sets. 431 void RegAllocBase::addMBBLiveIns(MachineFunction *MF) { 432 NamedRegionTimer T("MBB Live Ins", TimerGroupName, TimePassesIsEnabled); 433 SlotIndexes *Indexes = LIS->getSlotIndexes(); 434 if (MF->size() <= 1) 435 return; 436 437 LiveIntervalUnion::SegmentIter SI; 438 for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) { 439 LiveIntervalUnion &LiveUnion = PhysReg2LiveUnion[PhysReg]; 440 if (LiveUnion.empty()) 441 continue; 442 MachineFunction::iterator MBB = llvm::next(MF->begin()); 443 MachineFunction::iterator MFE = MF->end(); 444 SlotIndex Start, Stop; 445 tie(Start, Stop) = Indexes->getMBBRange(MBB); 446 SI.setMap(LiveUnion.getMap()); 447 SI.find(Start); 448 while (SI.valid()) { 449 if (SI.start() <= Start) { 450 if (!MBB->isLiveIn(PhysReg)) 451 MBB->addLiveIn(PhysReg); 452 } else if (SI.start() > Stop) 453 MBB = Indexes->getMBBFromIndex(SI.start().getPrevIndex()); 454 if (++MBB == MFE) 455 break; 456 tie(Start, Stop) = Indexes->getMBBRange(MBB); 457 SI.advanceTo(Start); 458 } 459 } 460 } 461 462 463 //===----------------------------------------------------------------------===// 464 // RABasic Implementation 465 //===----------------------------------------------------------------------===// 466 467 // Driver for the register assignment and splitting heuristics. 468 // Manages iteration over the LiveIntervalUnions. 469 // 470 // This is a minimal implementation of register assignment and splitting that 471 // spills whenever we run out of registers. 472 // 473 // selectOrSplit can only be called once per live virtual register. We then do a 474 // single interference test for each register the correct class until we find an 475 // available register. So, the number of interference tests in the worst case is 476 // |vregs| * |machineregs|. And since the number of interference tests is 477 // minimal, there is no value in caching them outside the scope of 478 // selectOrSplit(). 479 unsigned RABasic::selectOrSplit(LiveInterval &VirtReg, 480 SmallVectorImpl<LiveInterval*> &SplitVRegs) { 481 // Populate a list of physical register spill candidates. 482 SmallVector<unsigned, 8> PhysRegSpillCands; 483 484 // Check for an available register in this class. 485 ArrayRef<unsigned> Order = 486 RegClassInfo.getOrder(MRI->getRegClass(VirtReg.reg)); 487 for (ArrayRef<unsigned>::iterator I = Order.begin(), E = Order.end(); I != E; 488 ++I) { 489 unsigned PhysReg = *I; 490 491 // Check interference and as a side effect, intialize queries for this 492 // VirtReg and its aliases. 493 unsigned interfReg = checkPhysRegInterference(VirtReg, PhysReg); 494 if (interfReg == 0) { 495 // Found an available register. 496 return PhysReg; 497 } 498 LiveInterval *interferingVirtReg = 499 Queries[interfReg].firstInterference().liveUnionPos().value(); 500 501 // The current VirtReg must either be spillable, or one of its interferences 502 // must have less spill weight. 503 if (interferingVirtReg->weight < VirtReg.weight ) { 504 PhysRegSpillCands.push_back(PhysReg); 505 } 506 } 507 // Try to spill another interfering reg with less spill weight. 508 for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(), 509 PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) { 510 511 if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue; 512 513 assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 && 514 "Interference after spill."); 515 // Tell the caller to allocate to this newly freed physical register. 516 return *PhysRegI; 517 } 518 519 // No other spill candidates were found, so spill the current VirtReg. 520 DEBUG(dbgs() << "spilling: " << VirtReg << '\n'); 521 if (!VirtReg.isSpillable()) 522 return ~0u; 523 LiveRangeEdit LRE(VirtReg, SplitVRegs); 524 spiller().spill(LRE); 525 526 // The live virtual register requesting allocation was spilled, so tell 527 // the caller not to allocate anything during this round. 528 return 0; 529 } 530 531 bool RABasic::runOnMachineFunction(MachineFunction &mf) { 532 DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n" 533 << "********** Function: " 534 << ((Value*)mf.getFunction())->getName() << '\n'); 535 536 MF = &mf; 537 DEBUG(RMF = &getAnalysis<RenderMachineFunction>()); 538 539 RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>()); 540 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 541 542 allocatePhysRegs(); 543 544 addMBBLiveIns(MF); 545 546 // Diagnostic output before rewriting 547 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n"); 548 549 // optional HTML output 550 DEBUG(RMF->renderMachineFunction("After basic register allocation.", VRM)); 551 552 // FIXME: Verification currently must run before VirtRegRewriter. We should 553 // make the rewriter a separate pass and override verifyAnalysis instead. When 554 // that happens, verification naturally falls under VerifyMachineCode. 555 #ifndef NDEBUG 556 if (VerifyEnabled) { 557 // Verify accuracy of LiveIntervals. The standard machine code verifier 558 // ensures that each LiveIntervals covers all uses of the virtual reg. 559 560 // FIXME: MachineVerifier is badly broken when using the standard 561 // spiller. Always use -spiller=inline with -verify-regalloc. Even with the 562 // inline spiller, some tests fail to verify because the coalescer does not 563 // always generate verifiable code. 564 MF->verify(this, "In RABasic::verify"); 565 566 // Verify that LiveIntervals are partitioned into unions and disjoint within 567 // the unions. 568 verify(); 569 } 570 #endif // !NDEBUG 571 572 // Run rewriter 573 VRM->rewrite(LIS->getSlotIndexes()); 574 575 // Write out new DBG_VALUE instructions. 576 getAnalysis<LiveDebugVariables>().emitDebugValues(VRM); 577 578 // The pass output is in VirtRegMap. Release all the transient data. 579 releaseMemory(); 580 581 return true; 582 } 583 584 FunctionPass* llvm::createBasicRegisterAllocator() 585 { 586 return new RABasic(); 587 } 588