1 //===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Perform peephole optimizations on the machine code: 11 // 12 // - Optimize Extensions 13 // 14 // Optimization of sign / zero extension instructions. It may be extended to 15 // handle other instructions with similar properties. 16 // 17 // On some targets, some instructions, e.g. X86 sign / zero extension, may 18 // leave the source value in the lower part of the result. This optimization 19 // will replace some uses of the pre-extension value with uses of the 20 // sub-register of the results. 21 // 22 // - Optimize Comparisons 23 // 24 // Optimization of comparison instructions. For instance, in this code: 25 // 26 // sub r1, 1 27 // cmp r1, 0 28 // bz L1 29 // 30 // If the "sub" instruction all ready sets (or could be modified to set) the 31 // same flag that the "cmp" instruction sets and that "bz" uses, then we can 32 // eliminate the "cmp" instruction. 33 // 34 // Another instance, in this code: 35 // 36 // sub r1, r3 | sub r1, imm 37 // cmp r3, r1 or cmp r1, r3 | cmp r1, imm 38 // bge L1 39 // 40 // If the branch instruction can use flag from "sub", then we can replace 41 // "sub" with "subs" and eliminate the "cmp" instruction. 42 // 43 // - Optimize Loads: 44 // 45 // Loads that can be folded into a later instruction. A load is foldable 46 // if it loads to virtual registers and the virtual register defined has 47 // a single use. 48 // 49 // - Optimize Copies and Bitcast (more generally, target specific copies): 50 // 51 // Rewrite copies and bitcasts to avoid cross register bank copies 52 // when possible. 53 // E.g., Consider the following example, where capital and lower 54 // letters denote different register file: 55 // b = copy A <-- cross-bank copy 56 // C = copy b <-- cross-bank copy 57 // => 58 // b = copy A <-- cross-bank copy 59 // C = copy A <-- same-bank copy 60 // 61 // E.g., for bitcast: 62 // b = bitcast A <-- cross-bank copy 63 // C = bitcast b <-- cross-bank copy 64 // => 65 // b = bitcast A <-- cross-bank copy 66 // C = copy A <-- same-bank copy 67 //===----------------------------------------------------------------------===// 68 69 #include "llvm/ADT/DenseMap.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/SmallPtrSet.h" 72 #include "llvm/ADT/SmallSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/Statistic.h" 75 #include "llvm/CodeGen/MachineBasicBlock.h" 76 #include "llvm/CodeGen/MachineDominators.h" 77 #include "llvm/CodeGen/MachineFunction.h" 78 #include "llvm/CodeGen/MachineFunctionPass.h" 79 #include "llvm/CodeGen/MachineInstr.h" 80 #include "llvm/CodeGen/MachineInstrBuilder.h" 81 #include "llvm/CodeGen/MachineLoopInfo.h" 82 #include "llvm/CodeGen/MachineOperand.h" 83 #include "llvm/CodeGen/MachineRegisterInfo.h" 84 #include "llvm/CodeGen/TargetInstrInfo.h" 85 #include "llvm/CodeGen/TargetOpcodes.h" 86 #include "llvm/CodeGen/TargetRegisterInfo.h" 87 #include "llvm/CodeGen/TargetSubtargetInfo.h" 88 #include "llvm/MC/LaneBitmask.h" 89 #include "llvm/MC/MCInstrDesc.h" 90 #include "llvm/Pass.h" 91 #include "llvm/Support/CommandLine.h" 92 #include "llvm/Support/Debug.h" 93 #include "llvm/Support/ErrorHandling.h" 94 #include "llvm/Support/raw_ostream.h" 95 #include <cassert> 96 #include <cstdint> 97 #include <memory> 98 #include <utility> 99 100 using namespace llvm; 101 102 #define DEBUG_TYPE "peephole-opt" 103 104 // Optimize Extensions 105 static cl::opt<bool> 106 Aggressive("aggressive-ext-opt", cl::Hidden, 107 cl::desc("Aggressive extension optimization")); 108 109 static cl::opt<bool> 110 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false), 111 cl::desc("Disable the peephole optimizer")); 112 113 static cl::opt<bool> 114 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false), 115 cl::desc("Disable advanced copy optimization")); 116 117 static cl::opt<bool> DisableNAPhysCopyOpt( 118 "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false), 119 cl::desc("Disable non-allocatable physical register copy optimization")); 120 121 // Limit the number of PHI instructions to process 122 // in PeepholeOptimizer::getNextSource. 123 static cl::opt<unsigned> RewritePHILimit( 124 "rewrite-phi-limit", cl::Hidden, cl::init(10), 125 cl::desc("Limit the length of PHI chains to lookup")); 126 127 // Limit the length of recurrence chain when evaluating the benefit of 128 // commuting operands. 129 static cl::opt<unsigned> MaxRecurrenceChain( 130 "recurrence-chain-limit", cl::Hidden, cl::init(3), 131 cl::desc("Maximum length of recurrence chain when evaluating the benefit " 132 "of commuting operands")); 133 134 135 STATISTIC(NumReuse, "Number of extension results reused"); 136 STATISTIC(NumCmps, "Number of compares eliminated"); 137 STATISTIC(NumImmFold, "Number of move immediate folded"); 138 STATISTIC(NumLoadFold, "Number of loads folded"); 139 STATISTIC(NumSelects, "Number of selects optimized"); 140 STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized"); 141 STATISTIC(NumRewrittenCopies, "Number of copies rewritten"); 142 STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed"); 143 144 namespace { 145 146 class ValueTrackerResult; 147 class RecurrenceInstr; 148 149 class PeepholeOptimizer : public MachineFunctionPass { 150 const TargetInstrInfo *TII; 151 const TargetRegisterInfo *TRI; 152 MachineRegisterInfo *MRI; 153 MachineDominatorTree *DT; // Machine dominator tree 154 MachineLoopInfo *MLI; 155 156 public: 157 static char ID; // Pass identification 158 159 PeepholeOptimizer() : MachineFunctionPass(ID) { 160 initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry()); 161 } 162 163 bool runOnMachineFunction(MachineFunction &MF) override; 164 165 void getAnalysisUsage(AnalysisUsage &AU) const override { 166 AU.setPreservesCFG(); 167 MachineFunctionPass::getAnalysisUsage(AU); 168 AU.addRequired<MachineLoopInfo>(); 169 AU.addPreserved<MachineLoopInfo>(); 170 if (Aggressive) { 171 AU.addRequired<MachineDominatorTree>(); 172 AU.addPreserved<MachineDominatorTree>(); 173 } 174 } 175 176 /// \brief Track Def -> Use info used for rewriting copies. 177 using RewriteMapTy = 178 SmallDenseMap<TargetInstrInfo::RegSubRegPair, ValueTrackerResult>; 179 180 /// \brief Sequence of instructions that formulate recurrence cycle. 181 using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>; 182 183 private: 184 bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB); 185 bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB, 186 SmallPtrSetImpl<MachineInstr*> &LocalMIs); 187 bool optimizeSelect(MachineInstr *MI, 188 SmallPtrSetImpl<MachineInstr *> &LocalMIs); 189 bool optimizeCondBranch(MachineInstr *MI); 190 bool optimizeCoalescableCopy(MachineInstr *MI); 191 bool optimizeUncoalescableCopy(MachineInstr *MI, 192 SmallPtrSetImpl<MachineInstr *> &LocalMIs); 193 bool optimizeRecurrence(MachineInstr &PHI); 194 bool findNextSource(unsigned Reg, unsigned SubReg, 195 RewriteMapTy &RewriteMap); 196 bool isMoveImmediate(MachineInstr *MI, 197 SmallSet<unsigned, 4> &ImmDefRegs, 198 DenseMap<unsigned, MachineInstr*> &ImmDefMIs); 199 bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB, 200 SmallSet<unsigned, 4> &ImmDefRegs, 201 DenseMap<unsigned, MachineInstr*> &ImmDefMIs); 202 203 /// \brief Finds recurrence cycles, but only ones that formulated around 204 /// a def operand and a use operand that are tied. If there is a use 205 /// operand commutable with the tied use operand, find recurrence cycle 206 /// along that operand as well. 207 bool findTargetRecurrence(unsigned Reg, 208 const SmallSet<unsigned, 2> &TargetReg, 209 RecurrenceCycle &RC); 210 211 /// \brief If copy instruction \p MI is a virtual register copy, track it in 212 /// the set \p CopySrcRegs and \p CopyMIs. If this virtual register was 213 /// previously seen as a copy, replace the uses of this copy with the 214 /// previously seen copy's destination register. 215 bool foldRedundantCopy(MachineInstr *MI, 216 SmallSet<unsigned, 4> &CopySrcRegs, 217 DenseMap<unsigned, MachineInstr *> &CopyMIs); 218 219 /// \brief Is the register \p Reg a non-allocatable physical register? 220 bool isNAPhysCopy(unsigned Reg); 221 222 /// \brief If copy instruction \p MI is a non-allocatable virtual<->physical 223 /// register copy, track it in the \p NAPhysToVirtMIs map. If this 224 /// non-allocatable physical register was previously copied to a virtual 225 /// registered and hasn't been clobbered, the virt->phys copy can be 226 /// deleted. 227 bool foldRedundantNAPhysCopy( 228 MachineInstr *MI, 229 DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs); 230 231 bool isLoadFoldable(MachineInstr *MI, 232 SmallSet<unsigned, 16> &FoldAsLoadDefCandidates); 233 234 /// \brief Check whether \p MI is understood by the register coalescer 235 /// but may require some rewriting. 236 bool isCoalescableCopy(const MachineInstr &MI) { 237 // SubregToRegs are not interesting, because they are already register 238 // coalescer friendly. 239 return MI.isCopy() || (!DisableAdvCopyOpt && 240 (MI.isRegSequence() || MI.isInsertSubreg() || 241 MI.isExtractSubreg())); 242 } 243 244 /// \brief Check whether \p MI is a copy like instruction that is 245 /// not recognized by the register coalescer. 246 bool isUncoalescableCopy(const MachineInstr &MI) { 247 return MI.isBitcast() || 248 (!DisableAdvCopyOpt && 249 (MI.isRegSequenceLike() || MI.isInsertSubregLike() || 250 MI.isExtractSubregLike())); 251 } 252 }; 253 254 /// \brief Helper class to hold instructions that are inside recurrence 255 /// cycles. The recurrence cycle is formulated around 1) a def operand and its 256 /// tied use operand, or 2) a def operand and a use operand that is commutable 257 /// with another use operand which is tied to the def operand. In the latter 258 /// case, index of the tied use operand and the commutable use operand are 259 /// maintained with CommutePair. 260 class RecurrenceInstr { 261 public: 262 using IndexPair = std::pair<unsigned, unsigned>; 263 264 RecurrenceInstr(MachineInstr *MI) : MI(MI) {} 265 RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2) 266 : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {} 267 268 MachineInstr *getMI() const { return MI; } 269 Optional<IndexPair> getCommutePair() const { return CommutePair; } 270 271 private: 272 MachineInstr *MI; 273 Optional<IndexPair> CommutePair; 274 }; 275 276 /// \brief Helper class to hold a reply for ValueTracker queries. Contains the 277 /// returned sources for a given search and the instructions where the sources 278 /// were tracked from. 279 class ValueTrackerResult { 280 private: 281 /// Track all sources found by one ValueTracker query. 282 SmallVector<TargetInstrInfo::RegSubRegPair, 2> RegSrcs; 283 284 /// Instruction using the sources in 'RegSrcs'. 285 const MachineInstr *Inst = nullptr; 286 287 public: 288 ValueTrackerResult() = default; 289 290 ValueTrackerResult(unsigned Reg, unsigned SubReg) { 291 addSource(Reg, SubReg); 292 } 293 294 bool isValid() const { return getNumSources() > 0; } 295 296 void setInst(const MachineInstr *I) { Inst = I; } 297 const MachineInstr *getInst() const { return Inst; } 298 299 void clear() { 300 RegSrcs.clear(); 301 Inst = nullptr; 302 } 303 304 void addSource(unsigned SrcReg, unsigned SrcSubReg) { 305 RegSrcs.push_back(TargetInstrInfo::RegSubRegPair(SrcReg, SrcSubReg)); 306 } 307 308 void setSource(int Idx, unsigned SrcReg, unsigned SrcSubReg) { 309 assert(Idx < getNumSources() && "Reg pair source out of index"); 310 RegSrcs[Idx] = TargetInstrInfo::RegSubRegPair(SrcReg, SrcSubReg); 311 } 312 313 int getNumSources() const { return RegSrcs.size(); } 314 315 unsigned getSrcReg(int Idx) const { 316 assert(Idx < getNumSources() && "Reg source out of index"); 317 return RegSrcs[Idx].Reg; 318 } 319 320 unsigned getSrcSubReg(int Idx) const { 321 assert(Idx < getNumSources() && "SubReg source out of index"); 322 return RegSrcs[Idx].SubReg; 323 } 324 325 bool operator==(const ValueTrackerResult &Other) { 326 if (Other.getInst() != getInst()) 327 return false; 328 329 if (Other.getNumSources() != getNumSources()) 330 return false; 331 332 for (int i = 0, e = Other.getNumSources(); i != e; ++i) 333 if (Other.getSrcReg(i) != getSrcReg(i) || 334 Other.getSrcSubReg(i) != getSrcSubReg(i)) 335 return false; 336 return true; 337 } 338 }; 339 340 /// \brief Helper class to track the possible sources of a value defined by 341 /// a (chain of) copy related instructions. 342 /// Given a definition (instruction and definition index), this class 343 /// follows the use-def chain to find successive suitable sources. 344 /// The given source can be used to rewrite the definition into 345 /// def = COPY src. 346 /// 347 /// For instance, let us consider the following snippet: 348 /// v0 = 349 /// v2 = INSERT_SUBREG v1, v0, sub0 350 /// def = COPY v2.sub0 351 /// 352 /// Using a ValueTracker for def = COPY v2.sub0 will give the following 353 /// suitable sources: 354 /// v2.sub0 and v0. 355 /// Then, def can be rewritten into def = COPY v0. 356 class ValueTracker { 357 private: 358 /// The current point into the use-def chain. 359 const MachineInstr *Def = nullptr; 360 361 /// The index of the definition in Def. 362 unsigned DefIdx = 0; 363 364 /// The sub register index of the definition. 365 unsigned DefSubReg; 366 367 /// The register where the value can be found. 368 unsigned Reg; 369 370 /// Specifiy whether or not the value tracking looks through 371 /// complex instructions. When this is false, the value tracker 372 /// bails on everything that is not a copy or a bitcast. 373 /// 374 /// Note: This could have been implemented as a specialized version of 375 /// the ValueTracker class but that would have complicated the code of 376 /// the users of this class. 377 bool UseAdvancedTracking; 378 379 /// MachineRegisterInfo used to perform tracking. 380 const MachineRegisterInfo &MRI; 381 382 /// Optional TargetInstrInfo used to perform some complex 383 /// tracking. 384 const TargetInstrInfo *TII; 385 386 /// \brief Dispatcher to the right underlying implementation of 387 /// getNextSource. 388 ValueTrackerResult getNextSourceImpl(); 389 390 /// \brief Specialized version of getNextSource for Copy instructions. 391 ValueTrackerResult getNextSourceFromCopy(); 392 393 /// \brief Specialized version of getNextSource for Bitcast instructions. 394 ValueTrackerResult getNextSourceFromBitcast(); 395 396 /// \brief Specialized version of getNextSource for RegSequence 397 /// instructions. 398 ValueTrackerResult getNextSourceFromRegSequence(); 399 400 /// \brief Specialized version of getNextSource for InsertSubreg 401 /// instructions. 402 ValueTrackerResult getNextSourceFromInsertSubreg(); 403 404 /// \brief Specialized version of getNextSource for ExtractSubreg 405 /// instructions. 406 ValueTrackerResult getNextSourceFromExtractSubreg(); 407 408 /// \brief Specialized version of getNextSource for SubregToReg 409 /// instructions. 410 ValueTrackerResult getNextSourceFromSubregToReg(); 411 412 /// \brief Specialized version of getNextSource for PHI instructions. 413 ValueTrackerResult getNextSourceFromPHI(); 414 415 public: 416 /// \brief Create a ValueTracker instance for the value defined by \p Reg. 417 /// \p DefSubReg represents the sub register index the value tracker will 418 /// track. It does not need to match the sub register index used in the 419 /// definition of \p Reg. 420 /// \p UseAdvancedTracking specifies whether or not the value tracker looks 421 /// through complex instructions. By default (false), it handles only copy 422 /// and bitcast instructions. 423 /// If \p Reg is a physical register, a value tracker constructed with 424 /// this constructor will not find any alternative source. 425 /// Indeed, when \p Reg is a physical register that constructor does not 426 /// know which definition of \p Reg it should track. 427 /// Use the next constructor to track a physical register. 428 ValueTracker(unsigned Reg, unsigned DefSubReg, 429 const MachineRegisterInfo &MRI, 430 bool UseAdvancedTracking = false, 431 const TargetInstrInfo *TII = nullptr) 432 : DefSubReg(DefSubReg), Reg(Reg), 433 UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) { 434 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) { 435 Def = MRI.getVRegDef(Reg); 436 DefIdx = MRI.def_begin(Reg).getOperandNo(); 437 } 438 } 439 440 /// \brief Create a ValueTracker instance for the value defined by 441 /// the pair \p MI, \p DefIdx. 442 /// Unlike the other constructor, the value tracker produced by this one 443 /// may be able to find a new source when the definition is a physical 444 /// register. 445 /// This could be useful to rewrite target specific instructions into 446 /// generic copy instructions. 447 ValueTracker(const MachineInstr &MI, unsigned DefIdx, unsigned DefSubReg, 448 const MachineRegisterInfo &MRI, 449 bool UseAdvancedTracking = false, 450 const TargetInstrInfo *TII = nullptr) 451 : Def(&MI), DefIdx(DefIdx), DefSubReg(DefSubReg), 452 UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) { 453 assert(DefIdx < Def->getDesc().getNumDefs() && 454 Def->getOperand(DefIdx).isReg() && "Invalid definition"); 455 Reg = Def->getOperand(DefIdx).getReg(); 456 } 457 458 /// \brief Following the use-def chain, get the next available source 459 /// for the tracked value. 460 /// \return A ValueTrackerResult containing a set of registers 461 /// and sub registers with tracked values. A ValueTrackerResult with 462 /// an empty set of registers means no source was found. 463 ValueTrackerResult getNextSource(); 464 465 /// \brief Get the last register where the initial value can be found. 466 /// Initially this is the register of the definition. 467 /// Then, after each successful call to getNextSource, this is the 468 /// register of the last source. 469 unsigned getReg() const { return Reg; } 470 }; 471 472 } // end anonymous namespace 473 474 char PeepholeOptimizer::ID = 0; 475 476 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID; 477 478 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE, 479 "Peephole Optimizations", false, false) 480 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 481 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 482 INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE, 483 "Peephole Optimizations", false, false) 484 485 /// If instruction is a copy-like instruction, i.e. it reads a single register 486 /// and writes a single register and it does not modify the source, and if the 487 /// source value is preserved as a sub-register of the result, then replace all 488 /// reachable uses of the source with the subreg of the result. 489 /// 490 /// Do not generate an EXTRACT that is used only in a debug use, as this changes 491 /// the code. Since this code does not currently share EXTRACTs, just ignore all 492 /// debug uses. 493 bool PeepholeOptimizer:: 494 optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB, 495 SmallPtrSetImpl<MachineInstr*> &LocalMIs) { 496 unsigned SrcReg, DstReg, SubIdx; 497 if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx)) 498 return false; 499 500 if (TargetRegisterInfo::isPhysicalRegister(DstReg) || 501 TargetRegisterInfo::isPhysicalRegister(SrcReg)) 502 return false; 503 504 if (MRI->hasOneNonDBGUse(SrcReg)) 505 // No other uses. 506 return false; 507 508 // Ensure DstReg can get a register class that actually supports 509 // sub-registers. Don't change the class until we commit. 510 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 511 DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx); 512 if (!DstRC) 513 return false; 514 515 // The ext instr may be operating on a sub-register of SrcReg as well. 516 // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit 517 // register. 518 // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of 519 // SrcReg:SubIdx should be replaced. 520 bool UseSrcSubIdx = 521 TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr; 522 523 // The source has other uses. See if we can replace the other uses with use of 524 // the result of the extension. 525 SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs; 526 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) 527 ReachedBBs.insert(UI.getParent()); 528 529 // Uses that are in the same BB of uses of the result of the instruction. 530 SmallVector<MachineOperand*, 8> Uses; 531 532 // Uses that the result of the instruction can reach. 533 SmallVector<MachineOperand*, 8> ExtendedUses; 534 535 bool ExtendLife = true; 536 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { 537 MachineInstr *UseMI = UseMO.getParent(); 538 if (UseMI == MI) 539 continue; 540 541 if (UseMI->isPHI()) { 542 ExtendLife = false; 543 continue; 544 } 545 546 // Only accept uses of SrcReg:SubIdx. 547 if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx) 548 continue; 549 550 // It's an error to translate this: 551 // 552 // %reg1025 = <sext> %reg1024 553 // ... 554 // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4 555 // 556 // into this: 557 // 558 // %reg1025 = <sext> %reg1024 559 // ... 560 // %reg1027 = COPY %reg1025:4 561 // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4 562 // 563 // The problem here is that SUBREG_TO_REG is there to assert that an 564 // implicit zext occurs. It doesn't insert a zext instruction. If we allow 565 // the COPY here, it will give us the value after the <sext>, not the 566 // original value of %reg1024 before <sext>. 567 if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG) 568 continue; 569 570 MachineBasicBlock *UseMBB = UseMI->getParent(); 571 if (UseMBB == MBB) { 572 // Local uses that come after the extension. 573 if (!LocalMIs.count(UseMI)) 574 Uses.push_back(&UseMO); 575 } else if (ReachedBBs.count(UseMBB)) { 576 // Non-local uses where the result of the extension is used. Always 577 // replace these unless it's a PHI. 578 Uses.push_back(&UseMO); 579 } else if (Aggressive && DT->dominates(MBB, UseMBB)) { 580 // We may want to extend the live range of the extension result in order 581 // to replace these uses. 582 ExtendedUses.push_back(&UseMO); 583 } else { 584 // Both will be live out of the def MBB anyway. Don't extend live range of 585 // the extension result. 586 ExtendLife = false; 587 break; 588 } 589 } 590 591 if (ExtendLife && !ExtendedUses.empty()) 592 // Extend the liveness of the extension result. 593 Uses.append(ExtendedUses.begin(), ExtendedUses.end()); 594 595 // Now replace all uses. 596 bool Changed = false; 597 if (!Uses.empty()) { 598 SmallPtrSet<MachineBasicBlock*, 4> PHIBBs; 599 600 // Look for PHI uses of the extended result, we don't want to extend the 601 // liveness of a PHI input. It breaks all kinds of assumptions down 602 // stream. A PHI use is expected to be the kill of its source values. 603 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) 604 if (UI.isPHI()) 605 PHIBBs.insert(UI.getParent()); 606 607 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 608 for (unsigned i = 0, e = Uses.size(); i != e; ++i) { 609 MachineOperand *UseMO = Uses[i]; 610 MachineInstr *UseMI = UseMO->getParent(); 611 MachineBasicBlock *UseMBB = UseMI->getParent(); 612 if (PHIBBs.count(UseMBB)) 613 continue; 614 615 // About to add uses of DstReg, clear DstReg's kill flags. 616 if (!Changed) { 617 MRI->clearKillFlags(DstReg); 618 MRI->constrainRegClass(DstReg, DstRC); 619 } 620 621 unsigned NewVR = MRI->createVirtualRegister(RC); 622 MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(), 623 TII->get(TargetOpcode::COPY), NewVR) 624 .addReg(DstReg, 0, SubIdx); 625 // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set. 626 if (UseSrcSubIdx) { 627 Copy->getOperand(0).setSubReg(SubIdx); 628 Copy->getOperand(0).setIsUndef(); 629 } 630 UseMO->setReg(NewVR); 631 ++NumReuse; 632 Changed = true; 633 } 634 } 635 636 return Changed; 637 } 638 639 /// If the instruction is a compare and the previous instruction it's comparing 640 /// against already sets (or could be modified to set) the same flag as the 641 /// compare, then we can remove the comparison and use the flag from the 642 /// previous instruction. 643 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI, 644 MachineBasicBlock *MBB) { 645 // If this instruction is a comparison against zero and isn't comparing a 646 // physical register, we can try to optimize it. 647 unsigned SrcReg, SrcReg2; 648 int CmpMask, CmpValue; 649 if (!TII->analyzeCompare(*MI, SrcReg, SrcReg2, CmpMask, CmpValue) || 650 TargetRegisterInfo::isPhysicalRegister(SrcReg) || 651 (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2))) 652 return false; 653 654 // Attempt to optimize the comparison instruction. 655 if (TII->optimizeCompareInstr(*MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) { 656 ++NumCmps; 657 return true; 658 } 659 660 return false; 661 } 662 663 /// Optimize a select instruction. 664 bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI, 665 SmallPtrSetImpl<MachineInstr *> &LocalMIs) { 666 unsigned TrueOp = 0; 667 unsigned FalseOp = 0; 668 bool Optimizable = false; 669 SmallVector<MachineOperand, 4> Cond; 670 if (TII->analyzeSelect(*MI, Cond, TrueOp, FalseOp, Optimizable)) 671 return false; 672 if (!Optimizable) 673 return false; 674 if (!TII->optimizeSelect(*MI, LocalMIs)) 675 return false; 676 MI->eraseFromParent(); 677 ++NumSelects; 678 return true; 679 } 680 681 /// \brief Check if a simpler conditional branch can be 682 /// generated 683 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr *MI) { 684 return TII->optimizeCondBranch(*MI); 685 } 686 687 /// \brief Try to find the next source that share the same register file 688 /// for the value defined by \p Reg and \p SubReg. 689 /// When true is returned, the \p RewriteMap can be used by the client to 690 /// retrieve all Def -> Use along the way up to the next source. Any found 691 /// Use that is not itself a key for another entry, is the next source to 692 /// use. During the search for the next source, multiple sources can be found 693 /// given multiple incoming sources of a PHI instruction. In this case, we 694 /// look in each PHI source for the next source; all found next sources must 695 /// share the same register file as \p Reg and \p SubReg. The client should 696 /// then be capable to rewrite all intermediate PHIs to get the next source. 697 /// \return False if no alternative sources are available. True otherwise. 698 bool PeepholeOptimizer::findNextSource(unsigned Reg, unsigned SubReg, 699 RewriteMapTy &RewriteMap) { 700 // Do not try to find a new source for a physical register. 701 // So far we do not have any motivating example for doing that. 702 // Thus, instead of maintaining untested code, we will revisit that if 703 // that changes at some point. 704 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 705 return false; 706 const TargetRegisterClass *DefRC = MRI->getRegClass(Reg); 707 708 SmallVector<TargetInstrInfo::RegSubRegPair, 4> SrcToLook; 709 TargetInstrInfo::RegSubRegPair CurSrcPair(Reg, SubReg); 710 SrcToLook.push_back(CurSrcPair); 711 712 unsigned PHICount = 0; 713 while (!SrcToLook.empty() && PHICount < RewritePHILimit) { 714 TargetInstrInfo::RegSubRegPair Pair = SrcToLook.pop_back_val(); 715 // As explained above, do not handle physical registers 716 if (TargetRegisterInfo::isPhysicalRegister(Pair.Reg)) 717 return false; 718 719 CurSrcPair = Pair; 720 ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, 721 !DisableAdvCopyOpt, TII); 722 723 // Follow the chain of copies until we find a more suitable source, a phi 724 // or have to abort. 725 while (true) { 726 ValueTrackerResult Res = ValTracker.getNextSource(); 727 // Abort at the end of a chain (without finding a suitable source). 728 if (!Res.isValid()) 729 return false; 730 731 // Insert the Def -> Use entry for the recently found source. 732 ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair); 733 if (CurSrcRes.isValid()) { 734 assert(CurSrcRes == Res && "ValueTrackerResult found must match"); 735 // An existent entry with multiple sources is a PHI cycle we must avoid. 736 // Otherwise it's an entry with a valid next source we already found. 737 if (CurSrcRes.getNumSources() > 1) { 738 DEBUG(dbgs() << "findNextSource: found PHI cycle, aborting...\n"); 739 return false; 740 } 741 break; 742 } 743 RewriteMap.insert(std::make_pair(CurSrcPair, Res)); 744 745 // ValueTrackerResult usually have one source unless it's the result from 746 // a PHI instruction. Add the found PHI edges to be looked up further. 747 unsigned NumSrcs = Res.getNumSources(); 748 if (NumSrcs > 1) { 749 PHICount++; 750 for (unsigned i = 0; i < NumSrcs; ++i) 751 SrcToLook.push_back(TargetInstrInfo::RegSubRegPair( 752 Res.getSrcReg(i), Res.getSrcSubReg(i))); 753 break; 754 } 755 756 CurSrcPair.Reg = Res.getSrcReg(0); 757 CurSrcPair.SubReg = Res.getSrcSubReg(0); 758 // Do not extend the live-ranges of physical registers as they add 759 // constraints to the register allocator. Moreover, if we want to extend 760 // the live-range of a physical register, unlike SSA virtual register, 761 // we will have to check that they aren't redefine before the related use. 762 if (TargetRegisterInfo::isPhysicalRegister(CurSrcPair.Reg)) 763 return false; 764 765 // Keep following the chain if the value isn't any better yet. 766 const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg); 767 if (!TRI->shouldRewriteCopySrc(DefRC, SubReg, SrcRC, CurSrcPair.SubReg)) 768 continue; 769 770 // We currently cannot deal with subreg operands on PHI instructions 771 // (see insertPHI()). 772 if (PHICount > 0 && CurSrcPair.SubReg != 0) 773 continue; 774 775 // We found a suitable source, and are done with this chain. 776 break; 777 } 778 } 779 780 // If we did not find a more suitable source, there is nothing to optimize. 781 return CurSrcPair.Reg != Reg; 782 } 783 784 /// \brief Insert a PHI instruction with incoming edges \p SrcRegs that are 785 /// guaranteed to have the same register class. This is necessary whenever we 786 /// successfully traverse a PHI instruction and find suitable sources coming 787 /// from its edges. By inserting a new PHI, we provide a rewritten PHI def 788 /// suitable to be used in a new COPY instruction. 789 static MachineInstr * 790 insertPHI(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 791 const SmallVectorImpl<TargetInstrInfo::RegSubRegPair> &SrcRegs, 792 MachineInstr *OrigPHI) { 793 assert(!SrcRegs.empty() && "No sources to create a PHI instruction?"); 794 795 const TargetRegisterClass *NewRC = MRI->getRegClass(SrcRegs[0].Reg); 796 // NewRC is only correct if no subregisters are involved. findNextSource() 797 // should have rejected those cases already. 798 assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand"); 799 unsigned NewVR = MRI->createVirtualRegister(NewRC); 800 MachineBasicBlock *MBB = OrigPHI->getParent(); 801 MachineInstrBuilder MIB = BuildMI(*MBB, OrigPHI, OrigPHI->getDebugLoc(), 802 TII->get(TargetOpcode::PHI), NewVR); 803 804 unsigned MBBOpIdx = 2; 805 for (auto RegPair : SrcRegs) { 806 MIB.addReg(RegPair.Reg, 0, RegPair.SubReg); 807 MIB.addMBB(OrigPHI->getOperand(MBBOpIdx).getMBB()); 808 // Since we're extended the lifetime of RegPair.Reg, clear the 809 // kill flags to account for that and make RegPair.Reg reaches 810 // the new PHI. 811 MRI->clearKillFlags(RegPair.Reg); 812 MBBOpIdx += 2; 813 } 814 815 return MIB; 816 } 817 818 namespace { 819 820 /// \brief Helper class to rewrite the arguments of a copy-like instruction. 821 class CopyRewriter { 822 protected: 823 /// The copy-like instruction. 824 MachineInstr &CopyLike; 825 826 /// The index of the source being rewritten. 827 unsigned CurrentSrcIdx = 0; 828 829 public: 830 CopyRewriter(MachineInstr &MI) : CopyLike(MI) {} 831 virtual ~CopyRewriter() = default; 832 833 /// \brief Get the next rewritable source (SrcReg, SrcSubReg) and 834 /// the related value that it affects (TrackReg, TrackSubReg). 835 /// A source is considered rewritable if its register class and the 836 /// register class of the related TrackReg may not be register 837 /// coalescer friendly. In other words, given a copy-like instruction 838 /// not all the arguments may be returned at rewritable source, since 839 /// some arguments are none to be register coalescer friendly. 840 /// 841 /// Each call of this method moves the current source to the next 842 /// rewritable source. 843 /// For instance, let CopyLike be the instruction to rewrite. 844 /// CopyLike has one definition and one source: 845 /// dst.dstSubIdx = CopyLike src.srcSubIdx. 846 /// 847 /// The first call will give the first rewritable source, i.e., 848 /// the only source this instruction has: 849 /// (SrcReg, SrcSubReg) = (src, srcSubIdx). 850 /// This source defines the whole definition, i.e., 851 /// (TrackReg, TrackSubReg) = (dst, dstSubIdx). 852 /// 853 /// The second and subsequent calls will return false, as there is only one 854 /// rewritable source. 855 /// 856 /// \return True if a rewritable source has been found, false otherwise. 857 /// The output arguments are valid if and only if true is returned. 858 virtual bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 859 unsigned &TrackReg, 860 unsigned &TrackSubReg) { 861 // If CurrentSrcIdx == 1, this means this function has already been called 862 // once. CopyLike has one definition and one argument, thus, there is 863 // nothing else to rewrite. 864 if (!CopyLike.isCopy() || CurrentSrcIdx == 1) 865 return false; 866 // This is the first call to getNextRewritableSource. 867 // Move the CurrentSrcIdx to remember that we made that call. 868 CurrentSrcIdx = 1; 869 // The rewritable source is the argument. 870 const MachineOperand &MOSrc = CopyLike.getOperand(1); 871 SrcReg = MOSrc.getReg(); 872 SrcSubReg = MOSrc.getSubReg(); 873 // What we track are the alternative sources of the definition. 874 const MachineOperand &MODef = CopyLike.getOperand(0); 875 TrackReg = MODef.getReg(); 876 TrackSubReg = MODef.getSubReg(); 877 return true; 878 } 879 880 /// \brief Rewrite the current source with \p NewReg and \p NewSubReg 881 /// if possible. 882 /// \return True if the rewriting was possible, false otherwise. 883 virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) { 884 if (!CopyLike.isCopy() || CurrentSrcIdx != 1) 885 return false; 886 MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx); 887 MOSrc.setReg(NewReg); 888 MOSrc.setSubReg(NewSubReg); 889 return true; 890 } 891 892 /// \brief Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find 893 /// the new source to use for rewrite. If \p HandleMultipleSources is true and 894 /// multiple sources for a given \p Def are found along the way, we found a 895 /// PHI instructions that needs to be rewritten. 896 /// TODO: HandleMultipleSources should be removed once we test PHI handling 897 /// with coalescable copies. 898 TargetInstrInfo::RegSubRegPair 899 getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 900 TargetInstrInfo::RegSubRegPair Def, 901 PeepholeOptimizer::RewriteMapTy &RewriteMap, 902 bool HandleMultipleSources = true) { 903 TargetInstrInfo::RegSubRegPair LookupSrc(Def.Reg, Def.SubReg); 904 do { 905 ValueTrackerResult Res = RewriteMap.lookup(LookupSrc); 906 // If there are no entries on the map, LookupSrc is the new source. 907 if (!Res.isValid()) 908 return LookupSrc; 909 910 // There's only one source for this definition, keep searching... 911 unsigned NumSrcs = Res.getNumSources(); 912 if (NumSrcs == 1) { 913 LookupSrc.Reg = Res.getSrcReg(0); 914 LookupSrc.SubReg = Res.getSrcSubReg(0); 915 continue; 916 } 917 918 // TODO: Remove once multiple srcs w/ coalescable copies are supported. 919 if (!HandleMultipleSources) 920 break; 921 922 // Multiple sources, recurse into each source to find a new source 923 // for it. Then, rewrite the PHI accordingly to its new edges. 924 SmallVector<TargetInstrInfo::RegSubRegPair, 4> NewPHISrcs; 925 for (unsigned i = 0; i < NumSrcs; ++i) { 926 TargetInstrInfo::RegSubRegPair PHISrc(Res.getSrcReg(i), 927 Res.getSrcSubReg(i)); 928 NewPHISrcs.push_back( 929 getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources)); 930 } 931 932 // Build the new PHI node and return its def register as the new source. 933 MachineInstr *OrigPHI = const_cast<MachineInstr *>(Res.getInst()); 934 MachineInstr *NewPHI = insertPHI(MRI, TII, NewPHISrcs, OrigPHI); 935 DEBUG(dbgs() << "-- getNewSource\n"); 936 DEBUG(dbgs() << " Replacing: " << *OrigPHI); 937 DEBUG(dbgs() << " With: " << *NewPHI); 938 const MachineOperand &MODef = NewPHI->getOperand(0); 939 return TargetInstrInfo::RegSubRegPair(MODef.getReg(), MODef.getSubReg()); 940 941 } while (true); 942 943 return TargetInstrInfo::RegSubRegPair(0, 0); 944 } 945 946 /// \brief Rewrite the source found through \p Def, by using the \p RewriteMap 947 /// and create a new COPY instruction. More info about RewriteMap in 948 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle 949 /// Uncoalescable copies, since they are copy like instructions that aren't 950 /// recognized by the register allocator. 951 virtual MachineInstr * 952 RewriteSource(TargetInstrInfo::RegSubRegPair Def, 953 PeepholeOptimizer::RewriteMapTy &RewriteMap) { 954 return nullptr; 955 } 956 }; 957 958 /// \brief Helper class to rewrite uncoalescable copy like instructions 959 /// into new COPY (coalescable friendly) instructions. 960 class UncoalescableRewriter : public CopyRewriter { 961 protected: 962 const TargetInstrInfo &TII; 963 MachineRegisterInfo &MRI; 964 965 /// The number of defs in the bitcast 966 unsigned NumDefs; 967 968 public: 969 UncoalescableRewriter(MachineInstr &MI, const TargetInstrInfo &TII, 970 MachineRegisterInfo &MRI) 971 : CopyRewriter(MI), TII(TII), MRI(MRI) { 972 NumDefs = MI.getDesc().getNumDefs(); 973 } 974 975 /// \brief Get the next rewritable def source (TrackReg, TrackSubReg) 976 /// All such sources need to be considered rewritable in order to 977 /// rewrite a uncoalescable copy-like instruction. This method return 978 /// each definition that must be checked if rewritable. 979 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 980 unsigned &TrackReg, 981 unsigned &TrackSubReg) override { 982 // Find the next non-dead definition and continue from there. 983 if (CurrentSrcIdx == NumDefs) 984 return false; 985 986 while (CopyLike.getOperand(CurrentSrcIdx).isDead()) { 987 ++CurrentSrcIdx; 988 if (CurrentSrcIdx == NumDefs) 989 return false; 990 } 991 992 // What we track are the alternative sources of the definition. 993 const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx); 994 TrackReg = MODef.getReg(); 995 TrackSubReg = MODef.getSubReg(); 996 997 CurrentSrcIdx++; 998 return true; 999 } 1000 1001 /// \brief Rewrite the source found through \p Def, by using the \p RewriteMap 1002 /// and create a new COPY instruction. More info about RewriteMap in 1003 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle 1004 /// Uncoalescable copies, since they are copy like instructions that aren't 1005 /// recognized by the register allocator. 1006 MachineInstr * 1007 RewriteSource(TargetInstrInfo::RegSubRegPair Def, 1008 PeepholeOptimizer::RewriteMapTy &RewriteMap) override { 1009 assert(!TargetRegisterInfo::isPhysicalRegister(Def.Reg) && 1010 "We do not rewrite physical registers"); 1011 1012 // Find the new source to use in the COPY rewrite. 1013 TargetInstrInfo::RegSubRegPair NewSrc = 1014 getNewSource(&MRI, &TII, Def, RewriteMap); 1015 1016 // Insert the COPY. 1017 const TargetRegisterClass *DefRC = MRI.getRegClass(Def.Reg); 1018 unsigned NewVR = MRI.createVirtualRegister(DefRC); 1019 1020 MachineInstr *NewCopy = 1021 BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(), 1022 TII.get(TargetOpcode::COPY), NewVR) 1023 .addReg(NewSrc.Reg, 0, NewSrc.SubReg); 1024 1025 NewCopy->getOperand(0).setSubReg(Def.SubReg); 1026 if (Def.SubReg) 1027 NewCopy->getOperand(0).setIsUndef(); 1028 1029 DEBUG(dbgs() << "-- RewriteSource\n"); 1030 DEBUG(dbgs() << " Replacing: " << CopyLike); 1031 DEBUG(dbgs() << " With: " << *NewCopy); 1032 MRI.replaceRegWith(Def.Reg, NewVR); 1033 MRI.clearKillFlags(NewVR); 1034 1035 // We extended the lifetime of NewSrc.Reg, clear the kill flags to 1036 // account for that. 1037 MRI.clearKillFlags(NewSrc.Reg); 1038 1039 return NewCopy; 1040 } 1041 }; 1042 1043 /// \brief Specialized rewriter for INSERT_SUBREG instruction. 1044 class InsertSubregRewriter : public CopyRewriter { 1045 public: 1046 InsertSubregRewriter(MachineInstr &MI) : CopyRewriter(MI) { 1047 assert(MI.isInsertSubreg() && "Invalid instruction"); 1048 } 1049 1050 /// \brief See CopyRewriter::getNextRewritableSource. 1051 /// Here CopyLike has the following form: 1052 /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx. 1053 /// Src1 has the same register class has dst, hence, there is 1054 /// nothing to rewrite. 1055 /// Src2.src2SubIdx, may not be register coalescer friendly. 1056 /// Therefore, the first call to this method returns: 1057 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). 1058 /// (TrackReg, TrackSubReg) = (dst, subIdx). 1059 /// 1060 /// Subsequence calls will return false. 1061 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 1062 unsigned &TrackReg, 1063 unsigned &TrackSubReg) override { 1064 // If we already get the only source we can rewrite, return false. 1065 if (CurrentSrcIdx == 2) 1066 return false; 1067 // We are looking at v2 = INSERT_SUBREG v0, v1, sub0. 1068 CurrentSrcIdx = 2; 1069 const MachineOperand &MOInsertedReg = CopyLike.getOperand(2); 1070 SrcReg = MOInsertedReg.getReg(); 1071 SrcSubReg = MOInsertedReg.getSubReg(); 1072 const MachineOperand &MODef = CopyLike.getOperand(0); 1073 1074 // We want to track something that is compatible with the 1075 // partial definition. 1076 TrackReg = MODef.getReg(); 1077 if (MODef.getSubReg()) 1078 // Bail if we have to compose sub-register indices. 1079 return false; 1080 TrackSubReg = (unsigned)CopyLike.getOperand(3).getImm(); 1081 return true; 1082 } 1083 1084 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { 1085 if (CurrentSrcIdx != 2) 1086 return false; 1087 // We are rewriting the inserted reg. 1088 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); 1089 MO.setReg(NewReg); 1090 MO.setSubReg(NewSubReg); 1091 return true; 1092 } 1093 }; 1094 1095 /// \brief Specialized rewriter for EXTRACT_SUBREG instruction. 1096 class ExtractSubregRewriter : public CopyRewriter { 1097 const TargetInstrInfo &TII; 1098 1099 public: 1100 ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII) 1101 : CopyRewriter(MI), TII(TII) { 1102 assert(MI.isExtractSubreg() && "Invalid instruction"); 1103 } 1104 1105 /// \brief See CopyRewriter::getNextRewritableSource. 1106 /// Here CopyLike has the following form: 1107 /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx. 1108 /// There is only one rewritable source: Src.subIdx, 1109 /// which defines dst.dstSubIdx. 1110 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 1111 unsigned &TrackReg, 1112 unsigned &TrackSubReg) override { 1113 // If we already get the only source we can rewrite, return false. 1114 if (CurrentSrcIdx == 1) 1115 return false; 1116 // We are looking at v1 = EXTRACT_SUBREG v0, sub0. 1117 CurrentSrcIdx = 1; 1118 const MachineOperand &MOExtractedReg = CopyLike.getOperand(1); 1119 SrcReg = MOExtractedReg.getReg(); 1120 // If we have to compose sub-register indices, bail out. 1121 if (MOExtractedReg.getSubReg()) 1122 return false; 1123 1124 SrcSubReg = CopyLike.getOperand(2).getImm(); 1125 1126 // We want to track something that is compatible with the definition. 1127 const MachineOperand &MODef = CopyLike.getOperand(0); 1128 TrackReg = MODef.getReg(); 1129 TrackSubReg = MODef.getSubReg(); 1130 return true; 1131 } 1132 1133 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { 1134 // The only source we can rewrite is the input register. 1135 if (CurrentSrcIdx != 1) 1136 return false; 1137 1138 CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg); 1139 1140 // If we find a source that does not require to extract something, 1141 // rewrite the operation with a copy. 1142 if (!NewSubReg) { 1143 // Move the current index to an invalid position. 1144 // We do not want another call to this method to be able 1145 // to do any change. 1146 CurrentSrcIdx = -1; 1147 // Rewrite the operation as a COPY. 1148 // Get rid of the sub-register index. 1149 CopyLike.RemoveOperand(2); 1150 // Morph the operation into a COPY. 1151 CopyLike.setDesc(TII.get(TargetOpcode::COPY)); 1152 return true; 1153 } 1154 CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg); 1155 return true; 1156 } 1157 }; 1158 1159 /// \brief Specialized rewriter for REG_SEQUENCE instruction. 1160 class RegSequenceRewriter : public CopyRewriter { 1161 public: 1162 RegSequenceRewriter(MachineInstr &MI) : CopyRewriter(MI) { 1163 assert(MI.isRegSequence() && "Invalid instruction"); 1164 } 1165 1166 /// \brief See CopyRewriter::getNextRewritableSource. 1167 /// Here CopyLike has the following form: 1168 /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2. 1169 /// Each call will return a different source, walking all the available 1170 /// source. 1171 /// 1172 /// The first call returns: 1173 /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx). 1174 /// (TrackReg, TrackSubReg) = (dst, subIdx1). 1175 /// 1176 /// The second call returns: 1177 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). 1178 /// (TrackReg, TrackSubReg) = (dst, subIdx2). 1179 /// 1180 /// And so on, until all the sources have been traversed, then 1181 /// it returns false. 1182 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 1183 unsigned &TrackReg, 1184 unsigned &TrackSubReg) override { 1185 // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc. 1186 1187 // If this is the first call, move to the first argument. 1188 if (CurrentSrcIdx == 0) { 1189 CurrentSrcIdx = 1; 1190 } else { 1191 // Otherwise, move to the next argument and check that it is valid. 1192 CurrentSrcIdx += 2; 1193 if (CurrentSrcIdx >= CopyLike.getNumOperands()) 1194 return false; 1195 } 1196 const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx); 1197 SrcReg = MOInsertedReg.getReg(); 1198 // If we have to compose sub-register indices, bail out. 1199 if ((SrcSubReg = MOInsertedReg.getSubReg())) 1200 return false; 1201 1202 // We want to track something that is compatible with the related 1203 // partial definition. 1204 TrackSubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm(); 1205 1206 const MachineOperand &MODef = CopyLike.getOperand(0); 1207 TrackReg = MODef.getReg(); 1208 // If we have to compose sub-registers, bail. 1209 return MODef.getSubReg() == 0; 1210 } 1211 1212 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { 1213 // We cannot rewrite out of bound operands. 1214 // Moreover, rewritable sources are at odd positions. 1215 if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands()) 1216 return false; 1217 1218 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); 1219 MO.setReg(NewReg); 1220 MO.setSubReg(NewSubReg); 1221 return true; 1222 } 1223 }; 1224 1225 } // end anonymous namespace 1226 1227 /// \brief Get the appropriated CopyRewriter for \p MI. 1228 /// \return A pointer to a dynamically allocated CopyRewriter or nullptr 1229 /// if no rewriter works for \p MI. 1230 static CopyRewriter *getCopyRewriter(MachineInstr &MI, 1231 const TargetInstrInfo &TII, 1232 MachineRegisterInfo &MRI) { 1233 // Handle uncoalescable copy-like instructions. 1234 if (MI.isBitcast() || (MI.isRegSequenceLike() || MI.isInsertSubregLike() || 1235 MI.isExtractSubregLike())) 1236 return new UncoalescableRewriter(MI, TII, MRI); 1237 1238 switch (MI.getOpcode()) { 1239 default: 1240 return nullptr; 1241 case TargetOpcode::COPY: 1242 return new CopyRewriter(MI); 1243 case TargetOpcode::INSERT_SUBREG: 1244 return new InsertSubregRewriter(MI); 1245 case TargetOpcode::EXTRACT_SUBREG: 1246 return new ExtractSubregRewriter(MI, TII); 1247 case TargetOpcode::REG_SEQUENCE: 1248 return new RegSequenceRewriter(MI); 1249 } 1250 llvm_unreachable(nullptr); 1251 } 1252 1253 /// \brief Optimize generic copy instructions to avoid cross 1254 /// register bank copy. The optimization looks through a chain of 1255 /// copies and tries to find a source that has a compatible register 1256 /// class. 1257 /// Two register classes are considered to be compatible if they share 1258 /// the same register bank. 1259 /// New copies issued by this optimization are register allocator 1260 /// friendly. This optimization does not remove any copy as it may 1261 /// overconstrain the register allocator, but replaces some operands 1262 /// when possible. 1263 /// \pre isCoalescableCopy(*MI) is true. 1264 /// \return True, when \p MI has been rewritten. False otherwise. 1265 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr *MI) { 1266 assert(MI && isCoalescableCopy(*MI) && "Invalid argument"); 1267 assert(MI->getDesc().getNumDefs() == 1 && 1268 "Coalescer can understand multiple defs?!"); 1269 const MachineOperand &MODef = MI->getOperand(0); 1270 // Do not rewrite physical definitions. 1271 if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg())) 1272 return false; 1273 1274 bool Changed = false; 1275 // Get the right rewriter for the current copy. 1276 std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII, *MRI)); 1277 // If none exists, bail out. 1278 if (!CpyRewriter) 1279 return false; 1280 // Rewrite each rewritable source. 1281 unsigned SrcReg, SrcSubReg, TrackReg, TrackSubReg; 1282 while (CpyRewriter->getNextRewritableSource(SrcReg, SrcSubReg, TrackReg, 1283 TrackSubReg)) { 1284 // Keep track of PHI nodes and its incoming edges when looking for sources. 1285 RewriteMapTy RewriteMap; 1286 // Try to find a more suitable source. If we failed to do so, or get the 1287 // actual source, move to the next source. 1288 if (!findNextSource(TrackReg, TrackSubReg, RewriteMap)) 1289 continue; 1290 1291 // Get the new source to rewrite. TODO: Only enable handling of multiple 1292 // sources (PHIs) once we have a motivating example and testcases for it. 1293 TargetInstrInfo::RegSubRegPair TrackPair(TrackReg, TrackSubReg); 1294 TargetInstrInfo::RegSubRegPair NewSrc = CpyRewriter->getNewSource( 1295 MRI, TII, TrackPair, RewriteMap, false /* multiple sources */); 1296 if (SrcReg == NewSrc.Reg || NewSrc.Reg == 0) 1297 continue; 1298 1299 // Rewrite source. 1300 if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) { 1301 // We may have extended the live-range of NewSrc, account for that. 1302 MRI->clearKillFlags(NewSrc.Reg); 1303 Changed = true; 1304 } 1305 } 1306 // TODO: We could have a clean-up method to tidy the instruction. 1307 // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0 1308 // => v0 = COPY v1 1309 // Currently we haven't seen motivating example for that and we 1310 // want to avoid untested code. 1311 NumRewrittenCopies += Changed; 1312 return Changed; 1313 } 1314 1315 /// \brief Optimize copy-like instructions to create 1316 /// register coalescer friendly instruction. 1317 /// The optimization tries to kill-off the \p MI by looking 1318 /// through a chain of copies to find a source that has a compatible 1319 /// register class. 1320 /// If such a source is found, it replace \p MI by a generic COPY 1321 /// operation. 1322 /// \pre isUncoalescableCopy(*MI) is true. 1323 /// \return True, when \p MI has been optimized. In that case, \p MI has 1324 /// been removed from its parent. 1325 /// All COPY instructions created, are inserted in \p LocalMIs. 1326 bool PeepholeOptimizer::optimizeUncoalescableCopy( 1327 MachineInstr *MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) { 1328 assert(MI && isUncoalescableCopy(*MI) && "Invalid argument"); 1329 1330 // Check if we can rewrite all the values defined by this instruction. 1331 SmallVector<TargetInstrInfo::RegSubRegPair, 4> RewritePairs; 1332 // Get the right rewriter for the current copy. 1333 std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII, *MRI)); 1334 // If none exists, bail out. 1335 if (!CpyRewriter) 1336 return false; 1337 1338 // Rewrite each rewritable source by generating new COPYs. This works 1339 // differently from optimizeCoalescableCopy since it first makes sure that all 1340 // definitions can be rewritten. 1341 RewriteMapTy RewriteMap; 1342 unsigned Reg, SubReg, CopyDefReg, CopyDefSubReg; 1343 while (CpyRewriter->getNextRewritableSource(Reg, SubReg, CopyDefReg, 1344 CopyDefSubReg)) { 1345 // If a physical register is here, this is probably for a good reason. 1346 // Do not rewrite that. 1347 if (TargetRegisterInfo::isPhysicalRegister(CopyDefReg)) 1348 return false; 1349 1350 // If we do not know how to rewrite this definition, there is no point 1351 // in trying to kill this instruction. 1352 TargetInstrInfo::RegSubRegPair Def(CopyDefReg, CopyDefSubReg); 1353 if (!findNextSource(Def.Reg, Def.SubReg, RewriteMap)) 1354 return false; 1355 1356 RewritePairs.push_back(Def); 1357 } 1358 1359 // The change is possible for all defs, do it. 1360 for (const auto &Def : RewritePairs) { 1361 // Rewrite the "copy" in a way the register coalescer understands. 1362 MachineInstr *NewCopy = CpyRewriter->RewriteSource(Def, RewriteMap); 1363 assert(NewCopy && "Should be able to always generate a new copy"); 1364 LocalMIs.insert(NewCopy); 1365 } 1366 1367 // MI is now dead. 1368 MI->eraseFromParent(); 1369 ++NumUncoalescableCopies; 1370 return true; 1371 } 1372 1373 /// Check whether MI is a candidate for folding into a later instruction. 1374 /// We only fold loads to virtual registers and the virtual register defined 1375 /// has a single use. 1376 bool PeepholeOptimizer::isLoadFoldable( 1377 MachineInstr *MI, SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) { 1378 if (!MI->canFoldAsLoad() || !MI->mayLoad()) 1379 return false; 1380 const MCInstrDesc &MCID = MI->getDesc(); 1381 if (MCID.getNumDefs() != 1) 1382 return false; 1383 1384 unsigned Reg = MI->getOperand(0).getReg(); 1385 // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting 1386 // loads. It should be checked when processing uses of the load, since 1387 // uses can be removed during peephole. 1388 if (!MI->getOperand(0).getSubReg() && 1389 TargetRegisterInfo::isVirtualRegister(Reg) && 1390 MRI->hasOneNonDBGUse(Reg)) { 1391 FoldAsLoadDefCandidates.insert(Reg); 1392 return true; 1393 } 1394 return false; 1395 } 1396 1397 bool PeepholeOptimizer::isMoveImmediate( 1398 MachineInstr *MI, SmallSet<unsigned, 4> &ImmDefRegs, 1399 DenseMap<unsigned, MachineInstr *> &ImmDefMIs) { 1400 const MCInstrDesc &MCID = MI->getDesc(); 1401 if (!MI->isMoveImmediate()) 1402 return false; 1403 if (MCID.getNumDefs() != 1) 1404 return false; 1405 unsigned Reg = MI->getOperand(0).getReg(); 1406 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1407 ImmDefMIs.insert(std::make_pair(Reg, MI)); 1408 ImmDefRegs.insert(Reg); 1409 return true; 1410 } 1411 1412 return false; 1413 } 1414 1415 /// Try folding register operands that are defined by move immediate 1416 /// instructions, i.e. a trivial constant folding optimization, if 1417 /// and only if the def and use are in the same BB. 1418 bool PeepholeOptimizer::foldImmediate( 1419 MachineInstr *MI, MachineBasicBlock *MBB, SmallSet<unsigned, 4> &ImmDefRegs, 1420 DenseMap<unsigned, MachineInstr *> &ImmDefMIs) { 1421 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 1422 MachineOperand &MO = MI->getOperand(i); 1423 if (!MO.isReg() || MO.isDef()) 1424 continue; 1425 // Ignore dead implicit defs. 1426 if (MO.isImplicit() && MO.isDead()) 1427 continue; 1428 unsigned Reg = MO.getReg(); 1429 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1430 continue; 1431 if (ImmDefRegs.count(Reg) == 0) 1432 continue; 1433 DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg); 1434 assert(II != ImmDefMIs.end() && "couldn't find immediate definition"); 1435 if (TII->FoldImmediate(*MI, *II->second, Reg, MRI)) { 1436 ++NumImmFold; 1437 return true; 1438 } 1439 } 1440 return false; 1441 } 1442 1443 // FIXME: This is very simple and misses some cases which should be handled when 1444 // motivating examples are found. 1445 // 1446 // The copy rewriting logic should look at uses as well as defs and be able to 1447 // eliminate copies across blocks. 1448 // 1449 // Later copies that are subregister extracts will also not be eliminated since 1450 // only the first copy is considered. 1451 // 1452 // e.g. 1453 // %1 = COPY %0 1454 // %2 = COPY %0:sub1 1455 // 1456 // Should replace %2 uses with %1:sub1 1457 bool PeepholeOptimizer::foldRedundantCopy( 1458 MachineInstr *MI, SmallSet<unsigned, 4> &CopySrcRegs, 1459 DenseMap<unsigned, MachineInstr *> &CopyMIs) { 1460 assert(MI->isCopy() && "expected a COPY machine instruction"); 1461 1462 unsigned SrcReg = MI->getOperand(1).getReg(); 1463 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 1464 return false; 1465 1466 unsigned DstReg = MI->getOperand(0).getReg(); 1467 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 1468 return false; 1469 1470 if (CopySrcRegs.insert(SrcReg).second) { 1471 // First copy of this reg seen. 1472 CopyMIs.insert(std::make_pair(SrcReg, MI)); 1473 return false; 1474 } 1475 1476 MachineInstr *PrevCopy = CopyMIs.find(SrcReg)->second; 1477 1478 unsigned SrcSubReg = MI->getOperand(1).getSubReg(); 1479 unsigned PrevSrcSubReg = PrevCopy->getOperand(1).getSubReg(); 1480 1481 // Can't replace different subregister extracts. 1482 if (SrcSubReg != PrevSrcSubReg) 1483 return false; 1484 1485 unsigned PrevDstReg = PrevCopy->getOperand(0).getReg(); 1486 1487 // Only replace if the copy register class is the same. 1488 // 1489 // TODO: If we have multiple copies to different register classes, we may want 1490 // to track multiple copies of the same source register. 1491 if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg)) 1492 return false; 1493 1494 MRI->replaceRegWith(DstReg, PrevDstReg); 1495 1496 // Lifetime of the previous copy has been extended. 1497 MRI->clearKillFlags(PrevDstReg); 1498 return true; 1499 } 1500 1501 bool PeepholeOptimizer::isNAPhysCopy(unsigned Reg) { 1502 return TargetRegisterInfo::isPhysicalRegister(Reg) && 1503 !MRI->isAllocatable(Reg); 1504 } 1505 1506 bool PeepholeOptimizer::foldRedundantNAPhysCopy( 1507 MachineInstr *MI, DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs) { 1508 assert(MI->isCopy() && "expected a COPY machine instruction"); 1509 1510 if (DisableNAPhysCopyOpt) 1511 return false; 1512 1513 unsigned DstReg = MI->getOperand(0).getReg(); 1514 unsigned SrcReg = MI->getOperand(1).getReg(); 1515 if (isNAPhysCopy(SrcReg) && TargetRegisterInfo::isVirtualRegister(DstReg)) { 1516 // %vreg = COPY %physreg 1517 // Avoid using a datastructure which can track multiple live non-allocatable 1518 // phys->virt copies since LLVM doesn't seem to do this. 1519 NAPhysToVirtMIs.insert({SrcReg, MI}); 1520 return false; 1521 } 1522 1523 if (!(TargetRegisterInfo::isVirtualRegister(SrcReg) && isNAPhysCopy(DstReg))) 1524 return false; 1525 1526 // %physreg = COPY %vreg 1527 auto PrevCopy = NAPhysToVirtMIs.find(DstReg); 1528 if (PrevCopy == NAPhysToVirtMIs.end()) { 1529 // We can't remove the copy: there was an intervening clobber of the 1530 // non-allocatable physical register after the copy to virtual. 1531 DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing " << *MI 1532 << '\n'); 1533 return false; 1534 } 1535 1536 unsigned PrevDstReg = PrevCopy->second->getOperand(0).getReg(); 1537 if (PrevDstReg == SrcReg) { 1538 // Remove the virt->phys copy: we saw the virtual register definition, and 1539 // the non-allocatable physical register's state hasn't changed since then. 1540 DEBUG(dbgs() << "NAPhysCopy: erasing " << *MI << '\n'); 1541 ++NumNAPhysCopies; 1542 return true; 1543 } 1544 1545 // Potential missed optimization opportunity: we saw a different virtual 1546 // register get a copy of the non-allocatable physical register, and we only 1547 // track one such copy. Avoid getting confused by this new non-allocatable 1548 // physical register definition, and remove it from the tracked copies. 1549 DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << *MI << '\n'); 1550 NAPhysToVirtMIs.erase(PrevCopy); 1551 return false; 1552 } 1553 1554 /// \bried Returns true if \p MO is a virtual register operand. 1555 static bool isVirtualRegisterOperand(MachineOperand &MO) { 1556 if (!MO.isReg()) 1557 return false; 1558 return TargetRegisterInfo::isVirtualRegister(MO.getReg()); 1559 } 1560 1561 bool PeepholeOptimizer::findTargetRecurrence( 1562 unsigned Reg, const SmallSet<unsigned, 2> &TargetRegs, 1563 RecurrenceCycle &RC) { 1564 // Recurrence found if Reg is in TargetRegs. 1565 if (TargetRegs.count(Reg)) 1566 return true; 1567 1568 // TODO: Curerntly, we only allow the last instruction of the recurrence 1569 // cycle (the instruction that feeds the PHI instruction) to have more than 1570 // one uses to guarantee that commuting operands does not tie registers 1571 // with overlapping live range. Once we have actual live range info of 1572 // each register, this constraint can be relaxed. 1573 if (!MRI->hasOneNonDBGUse(Reg)) 1574 return false; 1575 1576 // Give up if the reccurrence chain length is longer than the limit. 1577 if (RC.size() >= MaxRecurrenceChain) 1578 return false; 1579 1580 MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg)); 1581 unsigned Idx = MI.findRegisterUseOperandIdx(Reg); 1582 1583 // Only interested in recurrences whose instructions have only one def, which 1584 // is a virtual register. 1585 if (MI.getDesc().getNumDefs() != 1) 1586 return false; 1587 1588 MachineOperand &DefOp = MI.getOperand(0); 1589 if (!isVirtualRegisterOperand(DefOp)) 1590 return false; 1591 1592 // Check if def operand of MI is tied to any use operand. We are only 1593 // interested in the case that all the instructions in the recurrence chain 1594 // have there def operand tied with one of the use operand. 1595 unsigned TiedUseIdx; 1596 if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx)) 1597 return false; 1598 1599 if (Idx == TiedUseIdx) { 1600 RC.push_back(RecurrenceInstr(&MI)); 1601 return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC); 1602 } else { 1603 // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx. 1604 unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex; 1605 if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) { 1606 RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx)); 1607 return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC); 1608 } 1609 } 1610 1611 return false; 1612 } 1613 1614 /// \brief Phi instructions will eventually be lowered to copy instructions. If 1615 /// phi is in a loop header, a recurrence may formulated around the source and 1616 /// destination of the phi. For such case commuting operands of the instructions 1617 /// in the recurrence may enable coalescing of the copy instruction generated 1618 /// from the phi. For example, if there is a recurrence of 1619 /// 1620 /// LoopHeader: 1621 /// %1 = phi(%0, %100) 1622 /// LoopLatch: 1623 /// %0<def, tied1> = ADD %2<def, tied0>, %1 1624 /// 1625 /// , the fact that %0 and %2 are in the same tied operands set makes 1626 /// the coalescing of copy instruction generated from the phi in 1627 /// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and 1628 /// %2 have overlapping live range. This introduces additional move 1629 /// instruction to the final assembly. However, if we commute %2 and 1630 /// %1 of ADD instruction, the redundant move instruction can be 1631 /// avoided. 1632 bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) { 1633 SmallSet<unsigned, 2> TargetRegs; 1634 for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) { 1635 MachineOperand &MO = PHI.getOperand(Idx); 1636 assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction"); 1637 TargetRegs.insert(MO.getReg()); 1638 } 1639 1640 bool Changed = false; 1641 RecurrenceCycle RC; 1642 if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) { 1643 // Commutes operands of instructions in RC if necessary so that the copy to 1644 // be generated from PHI can be coalesced. 1645 DEBUG(dbgs() << "Optimize recurrence chain from " << PHI); 1646 for (auto &RI : RC) { 1647 DEBUG(dbgs() << "\tInst: " << *(RI.getMI())); 1648 auto CP = RI.getCommutePair(); 1649 if (CP) { 1650 Changed = true; 1651 TII->commuteInstruction(*(RI.getMI()), false, (*CP).first, 1652 (*CP).second); 1653 DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI())); 1654 } 1655 } 1656 } 1657 1658 return Changed; 1659 } 1660 1661 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) { 1662 if (skipFunction(MF.getFunction())) 1663 return false; 1664 1665 DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n"); 1666 DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n'); 1667 1668 if (DisablePeephole) 1669 return false; 1670 1671 TII = MF.getSubtarget().getInstrInfo(); 1672 TRI = MF.getSubtarget().getRegisterInfo(); 1673 MRI = &MF.getRegInfo(); 1674 DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr; 1675 MLI = &getAnalysis<MachineLoopInfo>(); 1676 1677 bool Changed = false; 1678 1679 for (MachineBasicBlock &MBB : MF) { 1680 bool SeenMoveImm = false; 1681 1682 // During this forward scan, at some point it needs to answer the question 1683 // "given a pointer to an MI in the current BB, is it located before or 1684 // after the current instruction". 1685 // To perform this, the following set keeps track of the MIs already seen 1686 // during the scan, if a MI is not in the set, it is assumed to be located 1687 // after. Newly created MIs have to be inserted in the set as well. 1688 SmallPtrSet<MachineInstr*, 16> LocalMIs; 1689 SmallSet<unsigned, 4> ImmDefRegs; 1690 DenseMap<unsigned, MachineInstr*> ImmDefMIs; 1691 SmallSet<unsigned, 16> FoldAsLoadDefCandidates; 1692 1693 // Track when a non-allocatable physical register is copied to a virtual 1694 // register so that useless moves can be removed. 1695 // 1696 // %physreg is the map index; MI is the last valid `%vreg = COPY %physreg` 1697 // without any intervening re-definition of %physreg. 1698 DenseMap<unsigned, MachineInstr *> NAPhysToVirtMIs; 1699 1700 // Set of virtual registers that are copied from. 1701 SmallSet<unsigned, 4> CopySrcRegs; 1702 DenseMap<unsigned, MachineInstr *> CopySrcMIs; 1703 1704 bool IsLoopHeader = MLI->isLoopHeader(&MBB); 1705 1706 for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end(); 1707 MII != MIE; ) { 1708 MachineInstr *MI = &*MII; 1709 // We may be erasing MI below, increment MII now. 1710 ++MII; 1711 LocalMIs.insert(MI); 1712 1713 // Skip debug values. They should not affect this peephole optimization. 1714 if (MI->isDebugValue()) 1715 continue; 1716 1717 if (MI->isPosition()) 1718 continue; 1719 1720 if (IsLoopHeader && MI->isPHI()) { 1721 if (optimizeRecurrence(*MI)) { 1722 Changed = true; 1723 continue; 1724 } 1725 } 1726 1727 if (!MI->isCopy()) { 1728 for (const auto &Op : MI->operands()) { 1729 // Visit all operands: definitions can be implicit or explicit. 1730 if (Op.isReg()) { 1731 unsigned Reg = Op.getReg(); 1732 if (Op.isDef() && isNAPhysCopy(Reg)) { 1733 const auto &Def = NAPhysToVirtMIs.find(Reg); 1734 if (Def != NAPhysToVirtMIs.end()) { 1735 // A new definition of the non-allocatable physical register 1736 // invalidates previous copies. 1737 DEBUG(dbgs() << "NAPhysCopy: invalidating because of " << *MI 1738 << '\n'); 1739 NAPhysToVirtMIs.erase(Def); 1740 } 1741 } 1742 } else if (Op.isRegMask()) { 1743 const uint32_t *RegMask = Op.getRegMask(); 1744 for (auto &RegMI : NAPhysToVirtMIs) { 1745 unsigned Def = RegMI.first; 1746 if (MachineOperand::clobbersPhysReg(RegMask, Def)) { 1747 DEBUG(dbgs() << "NAPhysCopy: invalidating because of " << *MI 1748 << '\n'); 1749 NAPhysToVirtMIs.erase(Def); 1750 } 1751 } 1752 } 1753 } 1754 } 1755 1756 if (MI->isImplicitDef() || MI->isKill()) 1757 continue; 1758 1759 if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) { 1760 // Blow away all non-allocatable physical registers knowledge since we 1761 // don't know what's correct anymore. 1762 // 1763 // FIXME: handle explicit asm clobbers. 1764 DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to " << *MI 1765 << '\n'); 1766 NAPhysToVirtMIs.clear(); 1767 } 1768 1769 if ((isUncoalescableCopy(*MI) && 1770 optimizeUncoalescableCopy(MI, LocalMIs)) || 1771 (MI->isCompare() && optimizeCmpInstr(MI, &MBB)) || 1772 (MI->isSelect() && optimizeSelect(MI, LocalMIs))) { 1773 // MI is deleted. 1774 LocalMIs.erase(MI); 1775 Changed = true; 1776 continue; 1777 } 1778 1779 if (MI->isConditionalBranch() && optimizeCondBranch(MI)) { 1780 Changed = true; 1781 continue; 1782 } 1783 1784 if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(MI)) { 1785 // MI is just rewritten. 1786 Changed = true; 1787 continue; 1788 } 1789 1790 if (MI->isCopy() && 1791 (foldRedundantCopy(MI, CopySrcRegs, CopySrcMIs) || 1792 foldRedundantNAPhysCopy(MI, NAPhysToVirtMIs))) { 1793 LocalMIs.erase(MI); 1794 MI->eraseFromParent(); 1795 Changed = true; 1796 continue; 1797 } 1798 1799 if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) { 1800 SeenMoveImm = true; 1801 } else { 1802 Changed |= optimizeExtInstr(MI, &MBB, LocalMIs); 1803 // optimizeExtInstr might have created new instructions after MI 1804 // and before the already incremented MII. Adjust MII so that the 1805 // next iteration sees the new instructions. 1806 MII = MI; 1807 ++MII; 1808 if (SeenMoveImm) 1809 Changed |= foldImmediate(MI, &MBB, ImmDefRegs, ImmDefMIs); 1810 } 1811 1812 // Check whether MI is a load candidate for folding into a later 1813 // instruction. If MI is not a candidate, check whether we can fold an 1814 // earlier load into MI. 1815 if (!isLoadFoldable(MI, FoldAsLoadDefCandidates) && 1816 !FoldAsLoadDefCandidates.empty()) { 1817 1818 // We visit each operand even after successfully folding a previous 1819 // one. This allows us to fold multiple loads into a single 1820 // instruction. We do assume that optimizeLoadInstr doesn't insert 1821 // foldable uses earlier in the argument list. Since we don't restart 1822 // iteration, we'd miss such cases. 1823 const MCInstrDesc &MIDesc = MI->getDesc(); 1824 for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands(); 1825 ++i) { 1826 const MachineOperand &MOp = MI->getOperand(i); 1827 if (!MOp.isReg()) 1828 continue; 1829 unsigned FoldAsLoadDefReg = MOp.getReg(); 1830 if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) { 1831 // We need to fold load after optimizeCmpInstr, since 1832 // optimizeCmpInstr can enable folding by converting SUB to CMP. 1833 // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and 1834 // we need it for markUsesInDebugValueAsUndef(). 1835 unsigned FoldedReg = FoldAsLoadDefReg; 1836 MachineInstr *DefMI = nullptr; 1837 if (MachineInstr *FoldMI = 1838 TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) { 1839 // Update LocalMIs since we replaced MI with FoldMI and deleted 1840 // DefMI. 1841 DEBUG(dbgs() << "Replacing: " << *MI); 1842 DEBUG(dbgs() << " With: " << *FoldMI); 1843 LocalMIs.erase(MI); 1844 LocalMIs.erase(DefMI); 1845 LocalMIs.insert(FoldMI); 1846 MI->eraseFromParent(); 1847 DefMI->eraseFromParent(); 1848 MRI->markUsesInDebugValueAsUndef(FoldedReg); 1849 FoldAsLoadDefCandidates.erase(FoldedReg); 1850 ++NumLoadFold; 1851 1852 // MI is replaced with FoldMI so we can continue trying to fold 1853 Changed = true; 1854 MI = FoldMI; 1855 } 1856 } 1857 } 1858 } 1859 1860 // If we run into an instruction we can't fold across, discard 1861 // the load candidates. Note: We might be able to fold *into* this 1862 // instruction, so this needs to be after the folding logic. 1863 if (MI->isLoadFoldBarrier()) { 1864 DEBUG(dbgs() << "Encountered load fold barrier on " << *MI << "\n"); 1865 FoldAsLoadDefCandidates.clear(); 1866 } 1867 } 1868 } 1869 1870 return Changed; 1871 } 1872 1873 ValueTrackerResult ValueTracker::getNextSourceFromCopy() { 1874 assert(Def->isCopy() && "Invalid definition"); 1875 // Copy instruction are supposed to be: Def = Src. 1876 // If someone breaks this assumption, bad things will happen everywhere. 1877 assert(Def->getNumOperands() == 2 && "Invalid number of operands"); 1878 1879 if (Def->getOperand(DefIdx).getSubReg() != DefSubReg) 1880 // If we look for a different subreg, it means we want a subreg of src. 1881 // Bails as we do not support composing subregs yet. 1882 return ValueTrackerResult(); 1883 // Otherwise, we want the whole source. 1884 const MachineOperand &Src = Def->getOperand(1); 1885 return ValueTrackerResult(Src.getReg(), Src.getSubReg()); 1886 } 1887 1888 ValueTrackerResult ValueTracker::getNextSourceFromBitcast() { 1889 assert(Def->isBitcast() && "Invalid definition"); 1890 1891 // Bail if there are effects that a plain copy will not expose. 1892 if (Def->hasUnmodeledSideEffects()) 1893 return ValueTrackerResult(); 1894 1895 // Bitcasts with more than one def are not supported. 1896 if (Def->getDesc().getNumDefs() != 1) 1897 return ValueTrackerResult(); 1898 const MachineOperand DefOp = Def->getOperand(DefIdx); 1899 if (DefOp.getSubReg() != DefSubReg) 1900 // If we look for a different subreg, it means we want a subreg of the src. 1901 // Bails as we do not support composing subregs yet. 1902 return ValueTrackerResult(); 1903 1904 unsigned SrcIdx = Def->getNumOperands(); 1905 for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; 1906 ++OpIdx) { 1907 const MachineOperand &MO = Def->getOperand(OpIdx); 1908 if (!MO.isReg() || !MO.getReg()) 1909 continue; 1910 // Ignore dead implicit defs. 1911 if (MO.isImplicit() && MO.isDead()) 1912 continue; 1913 assert(!MO.isDef() && "We should have skipped all the definitions by now"); 1914 if (SrcIdx != EndOpIdx) 1915 // Multiple sources? 1916 return ValueTrackerResult(); 1917 SrcIdx = OpIdx; 1918 } 1919 1920 // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY 1921 // will break the assumed guarantees for the upper bits. 1922 for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) { 1923 if (UseMI.isSubregToReg()) 1924 return ValueTrackerResult(); 1925 } 1926 1927 const MachineOperand &Src = Def->getOperand(SrcIdx); 1928 return ValueTrackerResult(Src.getReg(), Src.getSubReg()); 1929 } 1930 1931 ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() { 1932 assert((Def->isRegSequence() || Def->isRegSequenceLike()) && 1933 "Invalid definition"); 1934 1935 if (Def->getOperand(DefIdx).getSubReg()) 1936 // If we are composing subregs, bail out. 1937 // The case we are checking is Def.<subreg> = REG_SEQUENCE. 1938 // This should almost never happen as the SSA property is tracked at 1939 // the register level (as opposed to the subreg level). 1940 // I.e., 1941 // Def.sub0 = 1942 // Def.sub1 = 1943 // is a valid SSA representation for Def.sub0 and Def.sub1, but not for 1944 // Def. Thus, it must not be generated. 1945 // However, some code could theoretically generates a single 1946 // Def.sub0 (i.e, not defining the other subregs) and we would 1947 // have this case. 1948 // If we can ascertain (or force) that this never happens, we could 1949 // turn that into an assertion. 1950 return ValueTrackerResult(); 1951 1952 if (!TII) 1953 // We could handle the REG_SEQUENCE here, but we do not want to 1954 // duplicate the code from the generic TII. 1955 return ValueTrackerResult(); 1956 1957 SmallVector<TargetInstrInfo::RegSubRegPairAndIdx, 8> RegSeqInputRegs; 1958 if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs)) 1959 return ValueTrackerResult(); 1960 1961 // We are looking at: 1962 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... 1963 // Check if one of the operand defines the subreg we are interested in. 1964 for (auto &RegSeqInput : RegSeqInputRegs) { 1965 if (RegSeqInput.SubIdx == DefSubReg) { 1966 if (RegSeqInput.SubReg) 1967 // Bail if we have to compose sub registers. 1968 return ValueTrackerResult(); 1969 1970 return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg); 1971 } 1972 } 1973 1974 // If the subreg we are tracking is super-defined by another subreg, 1975 // we could follow this value. However, this would require to compose 1976 // the subreg and we do not do that for now. 1977 return ValueTrackerResult(); 1978 } 1979 1980 ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() { 1981 assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) && 1982 "Invalid definition"); 1983 1984 if (Def->getOperand(DefIdx).getSubReg()) 1985 // If we are composing subreg, bail out. 1986 // Same remark as getNextSourceFromRegSequence. 1987 // I.e., this may be turned into an assert. 1988 return ValueTrackerResult(); 1989 1990 if (!TII) 1991 // We could handle the REG_SEQUENCE here, but we do not want to 1992 // duplicate the code from the generic TII. 1993 return ValueTrackerResult(); 1994 1995 TargetInstrInfo::RegSubRegPair BaseReg; 1996 TargetInstrInfo::RegSubRegPairAndIdx InsertedReg; 1997 if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg)) 1998 return ValueTrackerResult(); 1999 2000 // We are looking at: 2001 // Def = INSERT_SUBREG v0, v1, sub1 2002 // There are two cases: 2003 // 1. DefSubReg == sub1, get v1. 2004 // 2. DefSubReg != sub1, the value may be available through v0. 2005 2006 // #1 Check if the inserted register matches the required sub index. 2007 if (InsertedReg.SubIdx == DefSubReg) { 2008 return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg); 2009 } 2010 // #2 Otherwise, if the sub register we are looking for is not partial 2011 // defined by the inserted element, we can look through the main 2012 // register (v0). 2013 const MachineOperand &MODef = Def->getOperand(DefIdx); 2014 // If the result register (Def) and the base register (v0) do not 2015 // have the same register class or if we have to compose 2016 // subregisters, bail out. 2017 if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) || 2018 BaseReg.SubReg) 2019 return ValueTrackerResult(); 2020 2021 // Get the TRI and check if the inserted sub-register overlaps with the 2022 // sub-register we are tracking. 2023 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); 2024 if (!TRI || 2025 !(TRI->getSubRegIndexLaneMask(DefSubReg) & 2026 TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none()) 2027 return ValueTrackerResult(); 2028 // At this point, the value is available in v0 via the same subreg 2029 // we used for Def. 2030 return ValueTrackerResult(BaseReg.Reg, DefSubReg); 2031 } 2032 2033 ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() { 2034 assert((Def->isExtractSubreg() || 2035 Def->isExtractSubregLike()) && "Invalid definition"); 2036 // We are looking at: 2037 // Def = EXTRACT_SUBREG v0, sub0 2038 2039 // Bail if we have to compose sub registers. 2040 // Indeed, if DefSubReg != 0, we would have to compose it with sub0. 2041 if (DefSubReg) 2042 return ValueTrackerResult(); 2043 2044 if (!TII) 2045 // We could handle the EXTRACT_SUBREG here, but we do not want to 2046 // duplicate the code from the generic TII. 2047 return ValueTrackerResult(); 2048 2049 TargetInstrInfo::RegSubRegPairAndIdx ExtractSubregInputReg; 2050 if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg)) 2051 return ValueTrackerResult(); 2052 2053 // Bail if we have to compose sub registers. 2054 // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0. 2055 if (ExtractSubregInputReg.SubReg) 2056 return ValueTrackerResult(); 2057 // Otherwise, the value is available in the v0.sub0. 2058 return ValueTrackerResult(ExtractSubregInputReg.Reg, 2059 ExtractSubregInputReg.SubIdx); 2060 } 2061 2062 ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() { 2063 assert(Def->isSubregToReg() && "Invalid definition"); 2064 // We are looking at: 2065 // Def = SUBREG_TO_REG Imm, v0, sub0 2066 2067 // Bail if we have to compose sub registers. 2068 // If DefSubReg != sub0, we would have to check that all the bits 2069 // we track are included in sub0 and if yes, we would have to 2070 // determine the right subreg in v0. 2071 if (DefSubReg != Def->getOperand(3).getImm()) 2072 return ValueTrackerResult(); 2073 // Bail if we have to compose sub registers. 2074 // Likewise, if v0.subreg != 0, we would have to compose it with sub0. 2075 if (Def->getOperand(2).getSubReg()) 2076 return ValueTrackerResult(); 2077 2078 return ValueTrackerResult(Def->getOperand(2).getReg(), 2079 Def->getOperand(3).getImm()); 2080 } 2081 2082 /// \brief Explore each PHI incoming operand and return its sources 2083 ValueTrackerResult ValueTracker::getNextSourceFromPHI() { 2084 assert(Def->isPHI() && "Invalid definition"); 2085 ValueTrackerResult Res; 2086 2087 // If we look for a different subreg, bail as we do not support composing 2088 // subregs yet. 2089 if (Def->getOperand(0).getSubReg() != DefSubReg) 2090 return ValueTrackerResult(); 2091 2092 // Return all register sources for PHI instructions. 2093 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) { 2094 auto &MO = Def->getOperand(i); 2095 assert(MO.isReg() && "Invalid PHI instruction"); 2096 Res.addSource(MO.getReg(), MO.getSubReg()); 2097 } 2098 2099 return Res; 2100 } 2101 2102 ValueTrackerResult ValueTracker::getNextSourceImpl() { 2103 assert(Def && "This method needs a valid definition"); 2104 2105 assert(((Def->getOperand(DefIdx).isDef() && 2106 (DefIdx < Def->getDesc().getNumDefs() || 2107 Def->getDesc().isVariadic())) || 2108 Def->getOperand(DefIdx).isImplicit()) && 2109 "Invalid DefIdx"); 2110 if (Def->isCopy()) 2111 return getNextSourceFromCopy(); 2112 if (Def->isBitcast()) 2113 return getNextSourceFromBitcast(); 2114 // All the remaining cases involve "complex" instructions. 2115 // Bail if we did not ask for the advanced tracking. 2116 if (!UseAdvancedTracking) 2117 return ValueTrackerResult(); 2118 if (Def->isRegSequence() || Def->isRegSequenceLike()) 2119 return getNextSourceFromRegSequence(); 2120 if (Def->isInsertSubreg() || Def->isInsertSubregLike()) 2121 return getNextSourceFromInsertSubreg(); 2122 if (Def->isExtractSubreg() || Def->isExtractSubregLike()) 2123 return getNextSourceFromExtractSubreg(); 2124 if (Def->isSubregToReg()) 2125 return getNextSourceFromSubregToReg(); 2126 if (Def->isPHI()) 2127 return getNextSourceFromPHI(); 2128 return ValueTrackerResult(); 2129 } 2130 2131 ValueTrackerResult ValueTracker::getNextSource() { 2132 // If we reach a point where we cannot move up in the use-def chain, 2133 // there is nothing we can get. 2134 if (!Def) 2135 return ValueTrackerResult(); 2136 2137 ValueTrackerResult Res = getNextSourceImpl(); 2138 if (Res.isValid()) { 2139 // Update definition, definition index, and subregister for the 2140 // next call of getNextSource. 2141 // Update the current register. 2142 bool OneRegSrc = Res.getNumSources() == 1; 2143 if (OneRegSrc) 2144 Reg = Res.getSrcReg(0); 2145 // Update the result before moving up in the use-def chain 2146 // with the instruction containing the last found sources. 2147 Res.setInst(Def); 2148 2149 // If we can still move up in the use-def chain, move to the next 2150 // definition. 2151 if (!TargetRegisterInfo::isPhysicalRegister(Reg) && OneRegSrc) { 2152 Def = MRI.getVRegDef(Reg); 2153 DefIdx = MRI.def_begin(Reg).getOperandNo(); 2154 DefSubReg = Res.getSrcSubReg(0); 2155 return Res; 2156 } 2157 } 2158 // If we end up here, this means we will not be able to find another source 2159 // for the next iteration. Make sure any new call to getNextSource bails out 2160 // early by cutting the use-def chain. 2161 Def = nullptr; 2162 return Res; 2163 } 2164