1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 11 // 12 // This SMS implementation is a target-independent back-end pass. When enabled, 13 // the pass runs just prior to the register allocation pass, while the machine 14 // IR is in SSA form. If software pipelining is successful, then the original 15 // loop is replaced by the optimized loop. The optimized loop contains one or 16 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 17 // the instructions cannot be scheduled in a given MII, we increase the MII by 18 // one and try again. 19 // 20 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 21 // represent loop carried dependences in the DAG as order edges to the Phi 22 // nodes. We also perform several passes over the DAG to eliminate unnecessary 23 // edges that inhibit the ability to pipeline. The implementation uses the 24 // DFAPacketizer class to compute the minimum initiation interval and the check 25 // where an instruction may be inserted in the pipelined schedule. 26 // 27 // In order for the SMS pass to work, several target specific hooks need to be 28 // implemented to get information about the loop structure and to rewrite 29 // instructions. 30 // 31 //===----------------------------------------------------------------------===// 32 33 #include "llvm/ADT/ArrayRef.h" 34 #include "llvm/ADT/BitVector.h" 35 #include "llvm/ADT/DenseMap.h" 36 #include "llvm/ADT/MapVector.h" 37 #include "llvm/ADT/PriorityQueue.h" 38 #include "llvm/ADT/SetVector.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/SmallSet.h" 41 #include "llvm/ADT/SmallVector.h" 42 #include "llvm/ADT/Statistic.h" 43 #include "llvm/ADT/iterator_range.h" 44 #include "llvm/Analysis/AliasAnalysis.h" 45 #include "llvm/Analysis/MemoryLocation.h" 46 #include "llvm/Analysis/ValueTracking.h" 47 #include "llvm/CodeGen/DFAPacketizer.h" 48 #include "llvm/CodeGen/LiveIntervals.h" 49 #include "llvm/CodeGen/MachineBasicBlock.h" 50 #include "llvm/CodeGen/MachineDominators.h" 51 #include "llvm/CodeGen/MachineFunction.h" 52 #include "llvm/CodeGen/MachineFunctionPass.h" 53 #include "llvm/CodeGen/MachineInstr.h" 54 #include "llvm/CodeGen/MachineInstrBuilder.h" 55 #include "llvm/CodeGen/MachineLoopInfo.h" 56 #include "llvm/CodeGen/MachineMemOperand.h" 57 #include "llvm/CodeGen/MachineOperand.h" 58 #include "llvm/CodeGen/MachinePipeliner.h" 59 #include "llvm/CodeGen/MachineRegisterInfo.h" 60 #include "llvm/CodeGen/RegisterPressure.h" 61 #include "llvm/CodeGen/ScheduleDAG.h" 62 #include "llvm/CodeGen/ScheduleDAGMutation.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/Config/llvm-config.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/DebugLoc.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/MC/LaneBitmask.h" 71 #include "llvm/MC/MCInstrDesc.h" 72 #include "llvm/MC/MCInstrItineraries.h" 73 #include "llvm/MC/MCRegisterInfo.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/CommandLine.h" 76 #include "llvm/Support/Compiler.h" 77 #include "llvm/Support/Debug.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <deque> 85 #include <functional> 86 #include <iterator> 87 #include <map> 88 #include <memory> 89 #include <tuple> 90 #include <utility> 91 #include <vector> 92 93 using namespace llvm; 94 95 #define DEBUG_TYPE "pipeliner" 96 97 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 98 STATISTIC(NumPipelined, "Number of loops software pipelined"); 99 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 100 101 /// A command line option to turn software pipelining on or off. 102 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 103 cl::ZeroOrMore, 104 cl::desc("Enable Software Pipelining")); 105 106 /// A command line option to enable SWP at -Os. 107 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 108 cl::desc("Enable SWP at Os."), cl::Hidden, 109 cl::init(false)); 110 111 /// A command line argument to limit minimum initial interval for pipelining. 112 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 113 cl::desc("Size limit for the MII."), 114 cl::Hidden, cl::init(27)); 115 116 /// A command line argument to limit the number of stages in the pipeline. 117 static cl::opt<int> 118 SwpMaxStages("pipeliner-max-stages", 119 cl::desc("Maximum stages allowed in the generated scheduled."), 120 cl::Hidden, cl::init(3)); 121 122 /// A command line option to disable the pruning of chain dependences due to 123 /// an unrelated Phi. 124 static cl::opt<bool> 125 SwpPruneDeps("pipeliner-prune-deps", 126 cl::desc("Prune dependences between unrelated Phi nodes."), 127 cl::Hidden, cl::init(true)); 128 129 /// A command line option to disable the pruning of loop carried order 130 /// dependences. 131 static cl::opt<bool> 132 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 133 cl::desc("Prune loop carried order dependences."), 134 cl::Hidden, cl::init(true)); 135 136 #ifndef NDEBUG 137 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 138 #endif 139 140 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 141 cl::ReallyHidden, cl::init(false), 142 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 143 144 namespace llvm { 145 146 // A command line option to enable the CopyToPhi DAG mutation. 147 cl::opt<bool> 148 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 149 cl::init(true), cl::ZeroOrMore, 150 cl::desc("Enable CopyToPhi DAG Mutation")); 151 152 } // end namespace llvm 153 154 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 155 char MachinePipeliner::ID = 0; 156 #ifndef NDEBUG 157 int MachinePipeliner::NumTries = 0; 158 #endif 159 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 160 161 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 162 "Modulo Software Pipelining", false, false) 163 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 164 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 165 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 166 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 167 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 168 "Modulo Software Pipelining", false, false) 169 170 /// The "main" function for implementing Swing Modulo Scheduling. 171 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 172 if (skipFunction(mf.getFunction())) 173 return false; 174 175 if (!EnableSWP) 176 return false; 177 178 if (mf.getFunction().getAttributes().hasAttribute( 179 AttributeList::FunctionIndex, Attribute::OptimizeForSize) && 180 !EnableSWPOptSize.getPosition()) 181 return false; 182 183 MF = &mf; 184 MLI = &getAnalysis<MachineLoopInfo>(); 185 MDT = &getAnalysis<MachineDominatorTree>(); 186 TII = MF->getSubtarget().getInstrInfo(); 187 RegClassInfo.runOnMachineFunction(*MF); 188 189 for (auto &L : *MLI) 190 scheduleLoop(*L); 191 192 return false; 193 } 194 195 /// Attempt to perform the SMS algorithm on the specified loop. This function is 196 /// the main entry point for the algorithm. The function identifies candidate 197 /// loops, calculates the minimum initiation interval, and attempts to schedule 198 /// the loop. 199 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 200 bool Changed = false; 201 for (auto &InnerLoop : L) 202 Changed |= scheduleLoop(*InnerLoop); 203 204 #ifndef NDEBUG 205 // Stop trying after reaching the limit (if any). 206 int Limit = SwpLoopLimit; 207 if (Limit >= 0) { 208 if (NumTries >= SwpLoopLimit) 209 return Changed; 210 NumTries++; 211 } 212 #endif 213 214 if (!canPipelineLoop(L)) 215 return Changed; 216 217 ++NumTrytoPipeline; 218 219 Changed = swingModuloScheduler(L); 220 221 return Changed; 222 } 223 224 /// Return true if the loop can be software pipelined. The algorithm is 225 /// restricted to loops with a single basic block. Make sure that the 226 /// branch in the loop can be analyzed. 227 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 228 if (L.getNumBlocks() != 1) 229 return false; 230 231 // Check if the branch can't be understood because we can't do pipelining 232 // if that's the case. 233 LI.TBB = nullptr; 234 LI.FBB = nullptr; 235 LI.BrCond.clear(); 236 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) 237 return false; 238 239 LI.LoopInductionVar = nullptr; 240 LI.LoopCompare = nullptr; 241 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) 242 return false; 243 244 if (!L.getLoopPreheader()) 245 return false; 246 247 // Remove any subregisters from inputs to phi nodes. 248 preprocessPhiNodes(*L.getHeader()); 249 return true; 250 } 251 252 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 253 MachineRegisterInfo &MRI = MF->getRegInfo(); 254 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); 255 256 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { 257 MachineOperand &DefOp = PI.getOperand(0); 258 assert(DefOp.getSubReg() == 0); 259 auto *RC = MRI.getRegClass(DefOp.getReg()); 260 261 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 262 MachineOperand &RegOp = PI.getOperand(i); 263 if (RegOp.getSubReg() == 0) 264 continue; 265 266 // If the operand uses a subregister, replace it with a new register 267 // without subregisters, and generate a copy to the new register. 268 unsigned NewReg = MRI.createVirtualRegister(RC); 269 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 270 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 271 const DebugLoc &DL = PredB.findDebugLoc(At); 272 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 273 .addReg(RegOp.getReg(), getRegState(RegOp), 274 RegOp.getSubReg()); 275 Slots.insertMachineInstrInMaps(*Copy); 276 RegOp.setReg(NewReg); 277 RegOp.setSubReg(0); 278 } 279 } 280 } 281 282 /// The SMS algorithm consists of the following main steps: 283 /// 1. Computation and analysis of the dependence graph. 284 /// 2. Ordering of the nodes (instructions). 285 /// 3. Attempt to Schedule the loop. 286 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 287 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 288 289 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo); 290 291 MachineBasicBlock *MBB = L.getHeader(); 292 // The kernel should not include any terminator instructions. These 293 // will be added back later. 294 SMS.startBlock(MBB); 295 296 // Compute the number of 'real' instructions in the basic block by 297 // ignoring terminators. 298 unsigned size = MBB->size(); 299 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 300 E = MBB->instr_end(); 301 I != E; ++I, --size) 302 ; 303 304 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 305 SMS.schedule(); 306 SMS.exitRegion(); 307 308 SMS.finishBlock(); 309 return SMS.hasNewSchedule(); 310 } 311 312 /// We override the schedule function in ScheduleDAGInstrs to implement the 313 /// scheduling part of the Swing Modulo Scheduling algorithm. 314 void SwingSchedulerDAG::schedule() { 315 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 316 buildSchedGraph(AA); 317 addLoopCarriedDependences(AA); 318 updatePhiDependences(); 319 Topo.InitDAGTopologicalSorting(); 320 changeDependences(); 321 postprocessDAG(); 322 LLVM_DEBUG(dump()); 323 324 NodeSetType NodeSets; 325 findCircuits(NodeSets); 326 NodeSetType Circuits = NodeSets; 327 328 // Calculate the MII. 329 unsigned ResMII = calculateResMII(); 330 unsigned RecMII = calculateRecMII(NodeSets); 331 332 fuseRecs(NodeSets); 333 334 // This flag is used for testing and can cause correctness problems. 335 if (SwpIgnoreRecMII) 336 RecMII = 0; 337 338 MII = std::max(ResMII, RecMII); 339 LLVM_DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII 340 << ", res=" << ResMII << ")\n"); 341 342 // Can't schedule a loop without a valid MII. 343 if (MII == 0) 344 return; 345 346 // Don't pipeline large loops. 347 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) 348 return; 349 350 computeNodeFunctions(NodeSets); 351 352 registerPressureFilter(NodeSets); 353 354 colocateNodeSets(NodeSets); 355 356 checkNodeSets(NodeSets); 357 358 LLVM_DEBUG({ 359 for (auto &I : NodeSets) { 360 dbgs() << " Rec NodeSet "; 361 I.dump(); 362 } 363 }); 364 365 std::stable_sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>()); 366 367 groupRemainingNodes(NodeSets); 368 369 removeDuplicateNodes(NodeSets); 370 371 LLVM_DEBUG({ 372 for (auto &I : NodeSets) { 373 dbgs() << " NodeSet "; 374 I.dump(); 375 } 376 }); 377 378 computeNodeOrder(NodeSets); 379 380 // check for node order issues 381 checkValidNodeOrder(Circuits); 382 383 SMSchedule Schedule(Pass.MF); 384 Scheduled = schedulePipeline(Schedule); 385 386 if (!Scheduled) 387 return; 388 389 unsigned numStages = Schedule.getMaxStageCount(); 390 // No need to generate pipeline if there are no overlapped iterations. 391 if (numStages == 0) 392 return; 393 394 // Check that the maximum stage count is less than user-defined limit. 395 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) 396 return; 397 398 generatePipelinedLoop(Schedule); 399 ++NumPipelined; 400 } 401 402 /// Clean up after the software pipeliner runs. 403 void SwingSchedulerDAG::finishBlock() { 404 for (MachineInstr *I : NewMIs) 405 MF.DeleteMachineInstr(I); 406 NewMIs.clear(); 407 408 // Call the superclass. 409 ScheduleDAGInstrs::finishBlock(); 410 } 411 412 /// Return the register values for the operands of a Phi instruction. 413 /// This function assume the instruction is a Phi. 414 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 415 unsigned &InitVal, unsigned &LoopVal) { 416 assert(Phi.isPHI() && "Expecting a Phi."); 417 418 InitVal = 0; 419 LoopVal = 0; 420 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 421 if (Phi.getOperand(i + 1).getMBB() != Loop) 422 InitVal = Phi.getOperand(i).getReg(); 423 else 424 LoopVal = Phi.getOperand(i).getReg(); 425 426 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 427 } 428 429 /// Return the Phi register value that comes from the incoming block. 430 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 431 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 432 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 433 return Phi.getOperand(i).getReg(); 434 return 0; 435 } 436 437 /// Return the Phi register value that comes the loop block. 438 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 439 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 440 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 441 return Phi.getOperand(i).getReg(); 442 return 0; 443 } 444 445 /// Return true if SUb can be reached from SUa following the chain edges. 446 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 447 SmallPtrSet<SUnit *, 8> Visited; 448 SmallVector<SUnit *, 8> Worklist; 449 Worklist.push_back(SUa); 450 while (!Worklist.empty()) { 451 const SUnit *SU = Worklist.pop_back_val(); 452 for (auto &SI : SU->Succs) { 453 SUnit *SuccSU = SI.getSUnit(); 454 if (SI.getKind() == SDep::Order) { 455 if (Visited.count(SuccSU)) 456 continue; 457 if (SuccSU == SUb) 458 return true; 459 Worklist.push_back(SuccSU); 460 Visited.insert(SuccSU); 461 } 462 } 463 } 464 return false; 465 } 466 467 /// Return true if the instruction causes a chain between memory 468 /// references before and after it. 469 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 470 return MI.isCall() || MI.hasUnmodeledSideEffects() || 471 (MI.hasOrderedMemoryRef() && 472 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 473 } 474 475 /// Return the underlying objects for the memory references of an instruction. 476 /// This function calls the code in ValueTracking, but first checks that the 477 /// instruction has a memory operand. 478 static void getUnderlyingObjects(MachineInstr *MI, 479 SmallVectorImpl<Value *> &Objs, 480 const DataLayout &DL) { 481 if (!MI->hasOneMemOperand()) 482 return; 483 MachineMemOperand *MM = *MI->memoperands_begin(); 484 if (!MM->getValue()) 485 return; 486 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL); 487 for (Value *V : Objs) { 488 if (!isIdentifiedObject(V)) { 489 Objs.clear(); 490 return; 491 } 492 Objs.push_back(V); 493 } 494 } 495 496 /// Add a chain edge between a load and store if the store can be an 497 /// alias of the load on a subsequent iteration, i.e., a loop carried 498 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 499 /// but that code doesn't create loop carried dependences. 500 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 501 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads; 502 Value *UnknownValue = 503 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 504 for (auto &SU : SUnits) { 505 MachineInstr &MI = *SU.getInstr(); 506 if (isDependenceBarrier(MI, AA)) 507 PendingLoads.clear(); 508 else if (MI.mayLoad()) { 509 SmallVector<Value *, 4> Objs; 510 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 511 if (Objs.empty()) 512 Objs.push_back(UnknownValue); 513 for (auto V : Objs) { 514 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 515 SUs.push_back(&SU); 516 } 517 } else if (MI.mayStore()) { 518 SmallVector<Value *, 4> Objs; 519 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 520 if (Objs.empty()) 521 Objs.push_back(UnknownValue); 522 for (auto V : Objs) { 523 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I = 524 PendingLoads.find(V); 525 if (I == PendingLoads.end()) 526 continue; 527 for (auto Load : I->second) { 528 if (isSuccOrder(Load, &SU)) 529 continue; 530 MachineInstr &LdMI = *Load->getInstr(); 531 // First, perform the cheaper check that compares the base register. 532 // If they are the same and the load offset is less than the store 533 // offset, then mark the dependence as loop carried potentially. 534 MachineOperand *BaseOp1, *BaseOp2; 535 int64_t Offset1, Offset2; 536 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, TRI) && 537 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, TRI)) { 538 if (BaseOp1->isIdenticalTo(*BaseOp2) && 539 (int)Offset1 < (int)Offset2) { 540 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && 541 "What happened to the chain edge?"); 542 SDep Dep(Load, SDep::Barrier); 543 Dep.setLatency(1); 544 SU.addPred(Dep); 545 continue; 546 } 547 } 548 // Second, the more expensive check that uses alias analysis on the 549 // base registers. If they alias, and the load offset is less than 550 // the store offset, the mark the dependence as loop carried. 551 if (!AA) { 552 SDep Dep(Load, SDep::Barrier); 553 Dep.setLatency(1); 554 SU.addPred(Dep); 555 continue; 556 } 557 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 558 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 559 if (!MMO1->getValue() || !MMO2->getValue()) { 560 SDep Dep(Load, SDep::Barrier); 561 Dep.setLatency(1); 562 SU.addPred(Dep); 563 continue; 564 } 565 if (MMO1->getValue() == MMO2->getValue() && 566 MMO1->getOffset() <= MMO2->getOffset()) { 567 SDep Dep(Load, SDep::Barrier); 568 Dep.setLatency(1); 569 SU.addPred(Dep); 570 continue; 571 } 572 AliasResult AAResult = AA->alias( 573 MemoryLocation(MMO1->getValue(), LocationSize::unknown(), 574 MMO1->getAAInfo()), 575 MemoryLocation(MMO2->getValue(), LocationSize::unknown(), 576 MMO2->getAAInfo())); 577 578 if (AAResult != NoAlias) { 579 SDep Dep(Load, SDep::Barrier); 580 Dep.setLatency(1); 581 SU.addPred(Dep); 582 } 583 } 584 } 585 } 586 } 587 } 588 589 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 590 /// processes dependences for PHIs. This function adds true dependences 591 /// from a PHI to a use, and a loop carried dependence from the use to the 592 /// PHI. The loop carried dependence is represented as an anti dependence 593 /// edge. This function also removes chain dependences between unrelated 594 /// PHIs. 595 void SwingSchedulerDAG::updatePhiDependences() { 596 SmallVector<SDep, 4> RemoveDeps; 597 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 598 599 // Iterate over each DAG node. 600 for (SUnit &I : SUnits) { 601 RemoveDeps.clear(); 602 // Set to true if the instruction has an operand defined by a Phi. 603 unsigned HasPhiUse = 0; 604 unsigned HasPhiDef = 0; 605 MachineInstr *MI = I.getInstr(); 606 // Iterate over each operand, and we process the definitions. 607 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 608 MOE = MI->operands_end(); 609 MOI != MOE; ++MOI) { 610 if (!MOI->isReg()) 611 continue; 612 unsigned Reg = MOI->getReg(); 613 if (MOI->isDef()) { 614 // If the register is used by a Phi, then create an anti dependence. 615 for (MachineRegisterInfo::use_instr_iterator 616 UI = MRI.use_instr_begin(Reg), 617 UE = MRI.use_instr_end(); 618 UI != UE; ++UI) { 619 MachineInstr *UseMI = &*UI; 620 SUnit *SU = getSUnit(UseMI); 621 if (SU != nullptr && UseMI->isPHI()) { 622 if (!MI->isPHI()) { 623 SDep Dep(SU, SDep::Anti, Reg); 624 Dep.setLatency(1); 625 I.addPred(Dep); 626 } else { 627 HasPhiDef = Reg; 628 // Add a chain edge to a dependent Phi that isn't an existing 629 // predecessor. 630 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 631 I.addPred(SDep(SU, SDep::Barrier)); 632 } 633 } 634 } 635 } else if (MOI->isUse()) { 636 // If the register is defined by a Phi, then create a true dependence. 637 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 638 if (DefMI == nullptr) 639 continue; 640 SUnit *SU = getSUnit(DefMI); 641 if (SU != nullptr && DefMI->isPHI()) { 642 if (!MI->isPHI()) { 643 SDep Dep(SU, SDep::Data, Reg); 644 Dep.setLatency(0); 645 ST.adjustSchedDependency(SU, &I, Dep); 646 I.addPred(Dep); 647 } else { 648 HasPhiUse = Reg; 649 // Add a chain edge to a dependent Phi that isn't an existing 650 // predecessor. 651 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 652 I.addPred(SDep(SU, SDep::Barrier)); 653 } 654 } 655 } 656 } 657 // Remove order dependences from an unrelated Phi. 658 if (!SwpPruneDeps) 659 continue; 660 for (auto &PI : I.Preds) { 661 MachineInstr *PMI = PI.getSUnit()->getInstr(); 662 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 663 if (I.getInstr()->isPHI()) { 664 if (PMI->getOperand(0).getReg() == HasPhiUse) 665 continue; 666 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 667 continue; 668 } 669 RemoveDeps.push_back(PI); 670 } 671 } 672 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 673 I.removePred(RemoveDeps[i]); 674 } 675 } 676 677 /// Iterate over each DAG node and see if we can change any dependences 678 /// in order to reduce the recurrence MII. 679 void SwingSchedulerDAG::changeDependences() { 680 // See if an instruction can use a value from the previous iteration. 681 // If so, we update the base and offset of the instruction and change 682 // the dependences. 683 for (SUnit &I : SUnits) { 684 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 685 int64_t NewOffset = 0; 686 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 687 NewOffset)) 688 continue; 689 690 // Get the MI and SUnit for the instruction that defines the original base. 691 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 692 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 693 if (!DefMI) 694 continue; 695 SUnit *DefSU = getSUnit(DefMI); 696 if (!DefSU) 697 continue; 698 // Get the MI and SUnit for the instruction that defins the new base. 699 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 700 if (!LastMI) 701 continue; 702 SUnit *LastSU = getSUnit(LastMI); 703 if (!LastSU) 704 continue; 705 706 if (Topo.IsReachable(&I, LastSU)) 707 continue; 708 709 // Remove the dependence. The value now depends on a prior iteration. 710 SmallVector<SDep, 4> Deps; 711 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; 712 ++P) 713 if (P->getSUnit() == DefSU) 714 Deps.push_back(*P); 715 for (int i = 0, e = Deps.size(); i != e; i++) { 716 Topo.RemovePred(&I, Deps[i].getSUnit()); 717 I.removePred(Deps[i]); 718 } 719 // Remove the chain dependence between the instructions. 720 Deps.clear(); 721 for (auto &P : LastSU->Preds) 722 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 723 Deps.push_back(P); 724 for (int i = 0, e = Deps.size(); i != e; i++) { 725 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 726 LastSU->removePred(Deps[i]); 727 } 728 729 // Add a dependence between the new instruction and the instruction 730 // that defines the new base. 731 SDep Dep(&I, SDep::Anti, NewBase); 732 Topo.AddPred(LastSU, &I); 733 LastSU->addPred(Dep); 734 735 // Remember the base and offset information so that we can update the 736 // instruction during code generation. 737 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 738 } 739 } 740 741 namespace { 742 743 // FuncUnitSorter - Comparison operator used to sort instructions by 744 // the number of functional unit choices. 745 struct FuncUnitSorter { 746 const InstrItineraryData *InstrItins; 747 DenseMap<unsigned, unsigned> Resources; 748 749 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {} 750 751 // Compute the number of functional unit alternatives needed 752 // at each stage, and take the minimum value. We prioritize the 753 // instructions by the least number of choices first. 754 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { 755 unsigned schedClass = Inst->getDesc().getSchedClass(); 756 unsigned min = UINT_MAX; 757 for (const InstrStage *IS = InstrItins->beginStage(schedClass), 758 *IE = InstrItins->endStage(schedClass); 759 IS != IE; ++IS) { 760 unsigned funcUnits = IS->getUnits(); 761 unsigned numAlternatives = countPopulation(funcUnits); 762 if (numAlternatives < min) { 763 min = numAlternatives; 764 F = funcUnits; 765 } 766 } 767 return min; 768 } 769 770 // Compute the critical resources needed by the instruction. This 771 // function records the functional units needed by instructions that 772 // must use only one functional unit. We use this as a tie breaker 773 // for computing the resource MII. The instrutions that require 774 // the same, highly used, functional unit have high priority. 775 void calcCriticalResources(MachineInstr &MI) { 776 unsigned SchedClass = MI.getDesc().getSchedClass(); 777 for (const InstrStage *IS = InstrItins->beginStage(SchedClass), 778 *IE = InstrItins->endStage(SchedClass); 779 IS != IE; ++IS) { 780 unsigned FuncUnits = IS->getUnits(); 781 if (countPopulation(FuncUnits) == 1) 782 Resources[FuncUnits]++; 783 } 784 } 785 786 /// Return true if IS1 has less priority than IS2. 787 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 788 unsigned F1 = 0, F2 = 0; 789 unsigned MFUs1 = minFuncUnits(IS1, F1); 790 unsigned MFUs2 = minFuncUnits(IS2, F2); 791 if (MFUs1 == 1 && MFUs2 == 1) 792 return Resources.lookup(F1) < Resources.lookup(F2); 793 return MFUs1 > MFUs2; 794 } 795 }; 796 797 } // end anonymous namespace 798 799 /// Calculate the resource constrained minimum initiation interval for the 800 /// specified loop. We use the DFA to model the resources needed for 801 /// each instruction, and we ignore dependences. A different DFA is created 802 /// for each cycle that is required. When adding a new instruction, we attempt 803 /// to add it to each existing DFA, until a legal space is found. If the 804 /// instruction cannot be reserved in an existing DFA, we create a new one. 805 unsigned SwingSchedulerDAG::calculateResMII() { 806 SmallVector<DFAPacketizer *, 8> Resources; 807 MachineBasicBlock *MBB = Loop.getHeader(); 808 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget())); 809 810 // Sort the instructions by the number of available choices for scheduling, 811 // least to most. Use the number of critical resources as the tie breaker. 812 FuncUnitSorter FUS = 813 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData()); 814 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 815 E = MBB->getFirstTerminator(); 816 I != E; ++I) 817 FUS.calcCriticalResources(*I); 818 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 819 FuncUnitOrder(FUS); 820 821 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 822 E = MBB->getFirstTerminator(); 823 I != E; ++I) 824 FuncUnitOrder.push(&*I); 825 826 while (!FuncUnitOrder.empty()) { 827 MachineInstr *MI = FuncUnitOrder.top(); 828 FuncUnitOrder.pop(); 829 if (TII->isZeroCost(MI->getOpcode())) 830 continue; 831 // Attempt to reserve the instruction in an existing DFA. At least one 832 // DFA is needed for each cycle. 833 unsigned NumCycles = getSUnit(MI)->Latency; 834 unsigned ReservedCycles = 0; 835 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin(); 836 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end(); 837 for (unsigned C = 0; C < NumCycles; ++C) 838 while (RI != RE) { 839 if ((*RI++)->canReserveResources(*MI)) { 840 ++ReservedCycles; 841 break; 842 } 843 } 844 // Start reserving resources using existing DFAs. 845 for (unsigned C = 0; C < ReservedCycles; ++C) { 846 --RI; 847 (*RI)->reserveResources(*MI); 848 } 849 // Add new DFAs, if needed, to reserve resources. 850 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 851 DFAPacketizer *NewResource = 852 TII->CreateTargetScheduleState(MF.getSubtarget()); 853 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 854 NewResource->reserveResources(*MI); 855 Resources.push_back(NewResource); 856 } 857 } 858 int Resmii = Resources.size(); 859 // Delete the memory for each of the DFAs that were created earlier. 860 for (DFAPacketizer *RI : Resources) { 861 DFAPacketizer *D = RI; 862 delete D; 863 } 864 Resources.clear(); 865 return Resmii; 866 } 867 868 /// Calculate the recurrence-constrainted minimum initiation interval. 869 /// Iterate over each circuit. Compute the delay(c) and distance(c) 870 /// for each circuit. The II needs to satisfy the inequality 871 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 872 /// II that satisfies the inequality, and the RecMII is the maximum 873 /// of those values. 874 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 875 unsigned RecMII = 0; 876 877 for (NodeSet &Nodes : NodeSets) { 878 if (Nodes.empty()) 879 continue; 880 881 unsigned Delay = Nodes.getLatency(); 882 unsigned Distance = 1; 883 884 // ii = ceil(delay / distance) 885 unsigned CurMII = (Delay + Distance - 1) / Distance; 886 Nodes.setRecMII(CurMII); 887 if (CurMII > RecMII) 888 RecMII = CurMII; 889 } 890 891 return RecMII; 892 } 893 894 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 895 /// but we do this to find the circuits, and then change them back. 896 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 897 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 898 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 899 SUnit *SU = &SUnits[i]; 900 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 901 IP != EP; ++IP) { 902 if (IP->getKind() != SDep::Anti) 903 continue; 904 DepsAdded.push_back(std::make_pair(SU, *IP)); 905 } 906 } 907 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), 908 E = DepsAdded.end(); 909 I != E; ++I) { 910 // Remove this anti dependency and add one in the reverse direction. 911 SUnit *SU = I->first; 912 SDep &D = I->second; 913 SUnit *TargetSU = D.getSUnit(); 914 unsigned Reg = D.getReg(); 915 unsigned Lat = D.getLatency(); 916 SU->removePred(D); 917 SDep Dep(SU, SDep::Anti, Reg); 918 Dep.setLatency(Lat); 919 TargetSU->addPred(Dep); 920 } 921 } 922 923 /// Create the adjacency structure of the nodes in the graph. 924 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 925 SwingSchedulerDAG *DAG) { 926 BitVector Added(SUnits.size()); 927 DenseMap<int, int> OutputDeps; 928 for (int i = 0, e = SUnits.size(); i != e; ++i) { 929 Added.reset(); 930 // Add any successor to the adjacency matrix and exclude duplicates. 931 for (auto &SI : SUnits[i].Succs) { 932 // Only create a back-edge on the first and last nodes of a dependence 933 // chain. This records any chains and adds them later. 934 if (SI.getKind() == SDep::Output) { 935 int N = SI.getSUnit()->NodeNum; 936 int BackEdge = i; 937 auto Dep = OutputDeps.find(BackEdge); 938 if (Dep != OutputDeps.end()) { 939 BackEdge = Dep->second; 940 OutputDeps.erase(Dep); 941 } 942 OutputDeps[N] = BackEdge; 943 } 944 // Do not process a boundary node, an artificial node. 945 // A back-edge is processed only if it goes to a Phi. 946 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 947 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 948 continue; 949 int N = SI.getSUnit()->NodeNum; 950 if (!Added.test(N)) { 951 AdjK[i].push_back(N); 952 Added.set(N); 953 } 954 } 955 // A chain edge between a store and a load is treated as a back-edge in the 956 // adjacency matrix. 957 for (auto &PI : SUnits[i].Preds) { 958 if (!SUnits[i].getInstr()->mayStore() || 959 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 960 continue; 961 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 962 int N = PI.getSUnit()->NodeNum; 963 if (!Added.test(N)) { 964 AdjK[i].push_back(N); 965 Added.set(N); 966 } 967 } 968 } 969 } 970 // Add back-edges in the adjacency matrix for the output dependences. 971 for (auto &OD : OutputDeps) 972 if (!Added.test(OD.second)) { 973 AdjK[OD.first].push_back(OD.second); 974 Added.set(OD.second); 975 } 976 } 977 978 /// Identify an elementary circuit in the dependence graph starting at the 979 /// specified node. 980 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 981 bool HasBackedge) { 982 SUnit *SV = &SUnits[V]; 983 bool F = false; 984 Stack.insert(SV); 985 Blocked.set(V); 986 987 for (auto W : AdjK[V]) { 988 if (NumPaths > MaxPaths) 989 break; 990 if (W < S) 991 continue; 992 if (W == S) { 993 if (!HasBackedge) 994 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 995 F = true; 996 ++NumPaths; 997 break; 998 } else if (!Blocked.test(W)) { 999 if (circuit(W, S, NodeSets, 1000 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1001 F = true; 1002 } 1003 } 1004 1005 if (F) 1006 unblock(V); 1007 else { 1008 for (auto W : AdjK[V]) { 1009 if (W < S) 1010 continue; 1011 if (B[W].count(SV) == 0) 1012 B[W].insert(SV); 1013 } 1014 } 1015 Stack.pop_back(); 1016 return F; 1017 } 1018 1019 /// Unblock a node in the circuit finding algorithm. 1020 void SwingSchedulerDAG::Circuits::unblock(int U) { 1021 Blocked.reset(U); 1022 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1023 while (!BU.empty()) { 1024 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1025 assert(SI != BU.end() && "Invalid B set."); 1026 SUnit *W = *SI; 1027 BU.erase(W); 1028 if (Blocked.test(W->NodeNum)) 1029 unblock(W->NodeNum); 1030 } 1031 } 1032 1033 /// Identify all the elementary circuits in the dependence graph using 1034 /// Johnson's circuit algorithm. 1035 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1036 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1037 // but we do this to find the circuits, and then change them back. 1038 swapAntiDependences(SUnits); 1039 1040 Circuits Cir(SUnits, Topo); 1041 // Create the adjacency structure. 1042 Cir.createAdjacencyStructure(this); 1043 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1044 Cir.reset(); 1045 Cir.circuit(i, i, NodeSets); 1046 } 1047 1048 // Change the dependences back so that we've created a DAG again. 1049 swapAntiDependences(SUnits); 1050 } 1051 1052 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1053 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1054 // additional copies that are needed across iterations. An artificial dependence 1055 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1056 1057 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1058 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1059 // PHI-------True-Dep------> USEOfPhi 1060 1061 // The mutation creates 1062 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1063 1064 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1065 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1066 // late to avoid additional copies across iterations. The possible scheduling 1067 // order would be 1068 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1069 1070 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1071 for (SUnit &SU : DAG->SUnits) { 1072 // Find the COPY/REG_SEQUENCE instruction. 1073 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1074 continue; 1075 1076 // Record the loop carried PHIs. 1077 SmallVector<SUnit *, 4> PHISUs; 1078 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1079 SmallVector<SUnit *, 4> SrcSUs; 1080 1081 for (auto &Dep : SU.Preds) { 1082 SUnit *TmpSU = Dep.getSUnit(); 1083 MachineInstr *TmpMI = TmpSU->getInstr(); 1084 SDep::Kind DepKind = Dep.getKind(); 1085 // Save the loop carried PHI. 1086 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1087 PHISUs.push_back(TmpSU); 1088 // Save the source of COPY/REG_SEQUENCE. 1089 // If the source has no pre-decessors, we will end up creating cycles. 1090 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1091 SrcSUs.push_back(TmpSU); 1092 } 1093 1094 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1095 continue; 1096 1097 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1098 // SUnit to the container. 1099 SmallVector<SUnit *, 8> UseSUs; 1100 for (auto I = PHISUs.begin(); I != PHISUs.end(); ++I) { 1101 for (auto &Dep : (*I)->Succs) { 1102 if (Dep.getKind() != SDep::Data) 1103 continue; 1104 1105 SUnit *TmpSU = Dep.getSUnit(); 1106 MachineInstr *TmpMI = TmpSU->getInstr(); 1107 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1108 PHISUs.push_back(TmpSU); 1109 continue; 1110 } 1111 UseSUs.push_back(TmpSU); 1112 } 1113 } 1114 1115 if (UseSUs.size() == 0) 1116 continue; 1117 1118 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1119 // Add the artificial dependencies if it does not form a cycle. 1120 for (auto I : UseSUs) { 1121 for (auto Src : SrcSUs) { 1122 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1123 Src->addPred(SDep(I, SDep::Artificial)); 1124 SDAG->Topo.AddPred(Src, I); 1125 } 1126 } 1127 } 1128 } 1129 } 1130 1131 /// Return true for DAG nodes that we ignore when computing the cost functions. 1132 /// We ignore the back-edge recurrence in order to avoid unbounded recursion 1133 /// in the calculation of the ASAP, ALAP, etc functions. 1134 static bool ignoreDependence(const SDep &D, bool isPred) { 1135 if (D.isArtificial()) 1136 return true; 1137 return D.getKind() == SDep::Anti && isPred; 1138 } 1139 1140 /// Compute several functions need to order the nodes for scheduling. 1141 /// ASAP - Earliest time to schedule a node. 1142 /// ALAP - Latest time to schedule a node. 1143 /// MOV - Mobility function, difference between ALAP and ASAP. 1144 /// D - Depth of each node. 1145 /// H - Height of each node. 1146 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1147 ScheduleInfo.resize(SUnits.size()); 1148 1149 LLVM_DEBUG({ 1150 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1151 E = Topo.end(); 1152 I != E; ++I) { 1153 const SUnit &SU = SUnits[*I]; 1154 dumpNode(SU); 1155 } 1156 }); 1157 1158 int maxASAP = 0; 1159 // Compute ASAP and ZeroLatencyDepth. 1160 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1161 E = Topo.end(); 1162 I != E; ++I) { 1163 int asap = 0; 1164 int zeroLatencyDepth = 0; 1165 SUnit *SU = &SUnits[*I]; 1166 for (SUnit::const_pred_iterator IP = SU->Preds.begin(), 1167 EP = SU->Preds.end(); 1168 IP != EP; ++IP) { 1169 SUnit *pred = IP->getSUnit(); 1170 if (IP->getLatency() == 0) 1171 zeroLatencyDepth = 1172 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1173 if (ignoreDependence(*IP, true)) 1174 continue; 1175 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - 1176 getDistance(pred, SU, *IP) * MII)); 1177 } 1178 maxASAP = std::max(maxASAP, asap); 1179 ScheduleInfo[*I].ASAP = asap; 1180 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; 1181 } 1182 1183 // Compute ALAP, ZeroLatencyHeight, and MOV. 1184 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1185 E = Topo.rend(); 1186 I != E; ++I) { 1187 int alap = maxASAP; 1188 int zeroLatencyHeight = 0; 1189 SUnit *SU = &SUnits[*I]; 1190 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1191 ES = SU->Succs.end(); 1192 IS != ES; ++IS) { 1193 SUnit *succ = IS->getSUnit(); 1194 if (IS->getLatency() == 0) 1195 zeroLatencyHeight = 1196 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1197 if (ignoreDependence(*IS, true)) 1198 continue; 1199 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + 1200 getDistance(SU, succ, *IS) * MII)); 1201 } 1202 1203 ScheduleInfo[*I].ALAP = alap; 1204 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; 1205 } 1206 1207 // After computing the node functions, compute the summary for each node set. 1208 for (NodeSet &I : NodeSets) 1209 I.computeNodeSetInfo(this); 1210 1211 LLVM_DEBUG({ 1212 for (unsigned i = 0; i < SUnits.size(); i++) { 1213 dbgs() << "\tNode " << i << ":\n"; 1214 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1215 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1216 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1217 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1218 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1219 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1220 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1221 } 1222 }); 1223 } 1224 1225 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1226 /// as the predecessors of the elements of NodeOrder that are not also in 1227 /// NodeOrder. 1228 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1229 SmallSetVector<SUnit *, 8> &Preds, 1230 const NodeSet *S = nullptr) { 1231 Preds.clear(); 1232 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1233 I != E; ++I) { 1234 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); 1235 PI != PE; ++PI) { 1236 if (S && S->count(PI->getSUnit()) == 0) 1237 continue; 1238 if (ignoreDependence(*PI, true)) 1239 continue; 1240 if (NodeOrder.count(PI->getSUnit()) == 0) 1241 Preds.insert(PI->getSUnit()); 1242 } 1243 // Back-edges are predecessors with an anti-dependence. 1244 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), 1245 ES = (*I)->Succs.end(); 1246 IS != ES; ++IS) { 1247 if (IS->getKind() != SDep::Anti) 1248 continue; 1249 if (S && S->count(IS->getSUnit()) == 0) 1250 continue; 1251 if (NodeOrder.count(IS->getSUnit()) == 0) 1252 Preds.insert(IS->getSUnit()); 1253 } 1254 } 1255 return !Preds.empty(); 1256 } 1257 1258 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1259 /// as the successors of the elements of NodeOrder that are not also in 1260 /// NodeOrder. 1261 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1262 SmallSetVector<SUnit *, 8> &Succs, 1263 const NodeSet *S = nullptr) { 1264 Succs.clear(); 1265 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1266 I != E; ++I) { 1267 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); 1268 SI != SE; ++SI) { 1269 if (S && S->count(SI->getSUnit()) == 0) 1270 continue; 1271 if (ignoreDependence(*SI, false)) 1272 continue; 1273 if (NodeOrder.count(SI->getSUnit()) == 0) 1274 Succs.insert(SI->getSUnit()); 1275 } 1276 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), 1277 PE = (*I)->Preds.end(); 1278 PI != PE; ++PI) { 1279 if (PI->getKind() != SDep::Anti) 1280 continue; 1281 if (S && S->count(PI->getSUnit()) == 0) 1282 continue; 1283 if (NodeOrder.count(PI->getSUnit()) == 0) 1284 Succs.insert(PI->getSUnit()); 1285 } 1286 } 1287 return !Succs.empty(); 1288 } 1289 1290 /// Return true if there is a path from the specified node to any of the nodes 1291 /// in DestNodes. Keep track and return the nodes in any path. 1292 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1293 SetVector<SUnit *> &DestNodes, 1294 SetVector<SUnit *> &Exclude, 1295 SmallPtrSet<SUnit *, 8> &Visited) { 1296 if (Cur->isBoundaryNode()) 1297 return false; 1298 if (Exclude.count(Cur) != 0) 1299 return false; 1300 if (DestNodes.count(Cur) != 0) 1301 return true; 1302 if (!Visited.insert(Cur).second) 1303 return Path.count(Cur) != 0; 1304 bool FoundPath = false; 1305 for (auto &SI : Cur->Succs) 1306 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1307 for (auto &PI : Cur->Preds) 1308 if (PI.getKind() == SDep::Anti) 1309 FoundPath |= 1310 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1311 if (FoundPath) 1312 Path.insert(Cur); 1313 return FoundPath; 1314 } 1315 1316 /// Return true if Set1 is a subset of Set2. 1317 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { 1318 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) 1319 if (Set2.count(*I) == 0) 1320 return false; 1321 return true; 1322 } 1323 1324 /// Compute the live-out registers for the instructions in a node-set. 1325 /// The live-out registers are those that are defined in the node-set, 1326 /// but not used. Except for use operands of Phis. 1327 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1328 NodeSet &NS) { 1329 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1330 MachineRegisterInfo &MRI = MF.getRegInfo(); 1331 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1332 SmallSet<unsigned, 4> Uses; 1333 for (SUnit *SU : NS) { 1334 const MachineInstr *MI = SU->getInstr(); 1335 if (MI->isPHI()) 1336 continue; 1337 for (const MachineOperand &MO : MI->operands()) 1338 if (MO.isReg() && MO.isUse()) { 1339 unsigned Reg = MO.getReg(); 1340 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1341 Uses.insert(Reg); 1342 else if (MRI.isAllocatable(Reg)) 1343 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1344 Uses.insert(*Units); 1345 } 1346 } 1347 for (SUnit *SU : NS) 1348 for (const MachineOperand &MO : SU->getInstr()->operands()) 1349 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1350 unsigned Reg = MO.getReg(); 1351 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1352 if (!Uses.count(Reg)) 1353 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1354 LaneBitmask::getNone())); 1355 } else if (MRI.isAllocatable(Reg)) { 1356 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1357 if (!Uses.count(*Units)) 1358 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1359 LaneBitmask::getNone())); 1360 } 1361 } 1362 RPTracker.addLiveRegs(LiveOutRegs); 1363 } 1364 1365 /// A heuristic to filter nodes in recurrent node-sets if the register 1366 /// pressure of a set is too high. 1367 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1368 for (auto &NS : NodeSets) { 1369 // Skip small node-sets since they won't cause register pressure problems. 1370 if (NS.size() <= 2) 1371 continue; 1372 IntervalPressure RecRegPressure; 1373 RegPressureTracker RecRPTracker(RecRegPressure); 1374 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1375 computeLiveOuts(MF, RecRPTracker, NS); 1376 RecRPTracker.closeBottom(); 1377 1378 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1379 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 1380 return A->NodeNum > B->NodeNum; 1381 }); 1382 1383 for (auto &SU : SUnits) { 1384 // Since we're computing the register pressure for a subset of the 1385 // instructions in a block, we need to set the tracker for each 1386 // instruction in the node-set. The tracker is set to the instruction 1387 // just after the one we're interested in. 1388 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1389 RecRPTracker.setPos(std::next(CurInstI)); 1390 1391 RegPressureDelta RPDelta; 1392 ArrayRef<PressureChange> CriticalPSets; 1393 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1394 CriticalPSets, 1395 RecRegPressure.MaxSetPressure); 1396 if (RPDelta.Excess.isValid()) { 1397 LLVM_DEBUG( 1398 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1399 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1400 << ":" << RPDelta.Excess.getUnitInc()); 1401 NS.setExceedPressure(SU); 1402 break; 1403 } 1404 RecRPTracker.recede(); 1405 } 1406 } 1407 } 1408 1409 /// A heuristic to colocate node sets that have the same set of 1410 /// successors. 1411 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1412 unsigned Colocate = 0; 1413 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1414 NodeSet &N1 = NodeSets[i]; 1415 SmallSetVector<SUnit *, 8> S1; 1416 if (N1.empty() || !succ_L(N1, S1)) 1417 continue; 1418 for (int j = i + 1; j < e; ++j) { 1419 NodeSet &N2 = NodeSets[j]; 1420 if (N1.compareRecMII(N2) != 0) 1421 continue; 1422 SmallSetVector<SUnit *, 8> S2; 1423 if (N2.empty() || !succ_L(N2, S2)) 1424 continue; 1425 if (isSubset(S1, S2) && S1.size() == S2.size()) { 1426 N1.setColocate(++Colocate); 1427 N2.setColocate(Colocate); 1428 break; 1429 } 1430 } 1431 } 1432 } 1433 1434 /// Check if the existing node-sets are profitable. If not, then ignore the 1435 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1436 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 1437 /// then it's best to try to schedule all instructions together instead of 1438 /// starting with the recurrent node-sets. 1439 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1440 // Look for loops with a large MII. 1441 if (MII < 17) 1442 return; 1443 // Check if the node-set contains only a simple add recurrence. 1444 for (auto &NS : NodeSets) { 1445 if (NS.getRecMII() > 2) 1446 return; 1447 if (NS.getMaxDepth() > MII) 1448 return; 1449 } 1450 NodeSets.clear(); 1451 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1452 return; 1453 } 1454 1455 /// Add the nodes that do not belong to a recurrence set into groups 1456 /// based upon connected componenets. 1457 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1458 SetVector<SUnit *> NodesAdded; 1459 SmallPtrSet<SUnit *, 8> Visited; 1460 // Add the nodes that are on a path between the previous node sets and 1461 // the current node set. 1462 for (NodeSet &I : NodeSets) { 1463 SmallSetVector<SUnit *, 8> N; 1464 // Add the nodes from the current node set to the previous node set. 1465 if (succ_L(I, N)) { 1466 SetVector<SUnit *> Path; 1467 for (SUnit *NI : N) { 1468 Visited.clear(); 1469 computePath(NI, Path, NodesAdded, I, Visited); 1470 } 1471 if (!Path.empty()) 1472 I.insert(Path.begin(), Path.end()); 1473 } 1474 // Add the nodes from the previous node set to the current node set. 1475 N.clear(); 1476 if (succ_L(NodesAdded, N)) { 1477 SetVector<SUnit *> Path; 1478 for (SUnit *NI : N) { 1479 Visited.clear(); 1480 computePath(NI, Path, I, NodesAdded, Visited); 1481 } 1482 if (!Path.empty()) 1483 I.insert(Path.begin(), Path.end()); 1484 } 1485 NodesAdded.insert(I.begin(), I.end()); 1486 } 1487 1488 // Create a new node set with the connected nodes of any successor of a node 1489 // in a recurrent set. 1490 NodeSet NewSet; 1491 SmallSetVector<SUnit *, 8> N; 1492 if (succ_L(NodesAdded, N)) 1493 for (SUnit *I : N) 1494 addConnectedNodes(I, NewSet, NodesAdded); 1495 if (!NewSet.empty()) 1496 NodeSets.push_back(NewSet); 1497 1498 // Create a new node set with the connected nodes of any predecessor of a node 1499 // in a recurrent set. 1500 NewSet.clear(); 1501 if (pred_L(NodesAdded, N)) 1502 for (SUnit *I : N) 1503 addConnectedNodes(I, NewSet, NodesAdded); 1504 if (!NewSet.empty()) 1505 NodeSets.push_back(NewSet); 1506 1507 // Create new nodes sets with the connected nodes any remaining node that 1508 // has no predecessor. 1509 for (unsigned i = 0; i < SUnits.size(); ++i) { 1510 SUnit *SU = &SUnits[i]; 1511 if (NodesAdded.count(SU) == 0) { 1512 NewSet.clear(); 1513 addConnectedNodes(SU, NewSet, NodesAdded); 1514 if (!NewSet.empty()) 1515 NodeSets.push_back(NewSet); 1516 } 1517 } 1518 } 1519 1520 /// Add the node to the set, and add all is its connected nodes to the set. 1521 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1522 SetVector<SUnit *> &NodesAdded) { 1523 NewSet.insert(SU); 1524 NodesAdded.insert(SU); 1525 for (auto &SI : SU->Succs) { 1526 SUnit *Successor = SI.getSUnit(); 1527 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 1528 addConnectedNodes(Successor, NewSet, NodesAdded); 1529 } 1530 for (auto &PI : SU->Preds) { 1531 SUnit *Predecessor = PI.getSUnit(); 1532 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1533 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1534 } 1535 } 1536 1537 /// Return true if Set1 contains elements in Set2. The elements in common 1538 /// are returned in a different container. 1539 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 1540 SmallSetVector<SUnit *, 8> &Result) { 1541 Result.clear(); 1542 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 1543 SUnit *SU = Set1[i]; 1544 if (Set2.count(SU) != 0) 1545 Result.insert(SU); 1546 } 1547 return !Result.empty(); 1548 } 1549 1550 /// Merge the recurrence node sets that have the same initial node. 1551 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 1552 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1553 ++I) { 1554 NodeSet &NI = *I; 1555 for (NodeSetType::iterator J = I + 1; J != E;) { 1556 NodeSet &NJ = *J; 1557 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 1558 if (NJ.compareRecMII(NI) > 0) 1559 NI.setRecMII(NJ.getRecMII()); 1560 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; 1561 ++NII) 1562 I->insert(*NII); 1563 NodeSets.erase(J); 1564 E = NodeSets.end(); 1565 } else { 1566 ++J; 1567 } 1568 } 1569 } 1570 } 1571 1572 /// Remove nodes that have been scheduled in previous NodeSets. 1573 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 1574 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1575 ++I) 1576 for (NodeSetType::iterator J = I + 1; J != E;) { 1577 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 1578 1579 if (J->empty()) { 1580 NodeSets.erase(J); 1581 E = NodeSets.end(); 1582 } else { 1583 ++J; 1584 } 1585 } 1586 } 1587 1588 /// Compute an ordered list of the dependence graph nodes, which 1589 /// indicates the order that the nodes will be scheduled. This is a 1590 /// two-level algorithm. First, a partial order is created, which 1591 /// consists of a list of sets ordered from highest to lowest priority. 1592 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 1593 SmallSetVector<SUnit *, 8> R; 1594 NodeOrder.clear(); 1595 1596 for (auto &Nodes : NodeSets) { 1597 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 1598 OrderKind Order; 1599 SmallSetVector<SUnit *, 8> N; 1600 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { 1601 R.insert(N.begin(), N.end()); 1602 Order = BottomUp; 1603 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 1604 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { 1605 R.insert(N.begin(), N.end()); 1606 Order = TopDown; 1607 LLVM_DEBUG(dbgs() << " Top down (succs) "); 1608 } else if (isIntersect(N, Nodes, R)) { 1609 // If some of the successors are in the existing node-set, then use the 1610 // top-down ordering. 1611 Order = TopDown; 1612 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 1613 } else if (NodeSets.size() == 1) { 1614 for (auto &N : Nodes) 1615 if (N->Succs.size() == 0) 1616 R.insert(N); 1617 Order = BottomUp; 1618 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 1619 } else { 1620 // Find the node with the highest ASAP. 1621 SUnit *maxASAP = nullptr; 1622 for (SUnit *SU : Nodes) { 1623 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 1624 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 1625 maxASAP = SU; 1626 } 1627 R.insert(maxASAP); 1628 Order = BottomUp; 1629 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 1630 } 1631 1632 while (!R.empty()) { 1633 if (Order == TopDown) { 1634 // Choose the node with the maximum height. If more than one, choose 1635 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 1636 // choose the node with the lowest MOV. 1637 while (!R.empty()) { 1638 SUnit *maxHeight = nullptr; 1639 for (SUnit *I : R) { 1640 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 1641 maxHeight = I; 1642 else if (getHeight(I) == getHeight(maxHeight) && 1643 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 1644 maxHeight = I; 1645 else if (getHeight(I) == getHeight(maxHeight) && 1646 getZeroLatencyHeight(I) == 1647 getZeroLatencyHeight(maxHeight) && 1648 getMOV(I) < getMOV(maxHeight)) 1649 maxHeight = I; 1650 } 1651 NodeOrder.insert(maxHeight); 1652 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 1653 R.remove(maxHeight); 1654 for (const auto &I : maxHeight->Succs) { 1655 if (Nodes.count(I.getSUnit()) == 0) 1656 continue; 1657 if (NodeOrder.count(I.getSUnit()) != 0) 1658 continue; 1659 if (ignoreDependence(I, false)) 1660 continue; 1661 R.insert(I.getSUnit()); 1662 } 1663 // Back-edges are predecessors with an anti-dependence. 1664 for (const auto &I : maxHeight->Preds) { 1665 if (I.getKind() != SDep::Anti) 1666 continue; 1667 if (Nodes.count(I.getSUnit()) == 0) 1668 continue; 1669 if (NodeOrder.count(I.getSUnit()) != 0) 1670 continue; 1671 R.insert(I.getSUnit()); 1672 } 1673 } 1674 Order = BottomUp; 1675 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 1676 SmallSetVector<SUnit *, 8> N; 1677 if (pred_L(NodeOrder, N, &Nodes)) 1678 R.insert(N.begin(), N.end()); 1679 } else { 1680 // Choose the node with the maximum depth. If more than one, choose 1681 // the node with the maximum ZeroLatencyDepth. If still more than one, 1682 // choose the node with the lowest MOV. 1683 while (!R.empty()) { 1684 SUnit *maxDepth = nullptr; 1685 for (SUnit *I : R) { 1686 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 1687 maxDepth = I; 1688 else if (getDepth(I) == getDepth(maxDepth) && 1689 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 1690 maxDepth = I; 1691 else if (getDepth(I) == getDepth(maxDepth) && 1692 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 1693 getMOV(I) < getMOV(maxDepth)) 1694 maxDepth = I; 1695 } 1696 NodeOrder.insert(maxDepth); 1697 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 1698 R.remove(maxDepth); 1699 if (Nodes.isExceedSU(maxDepth)) { 1700 Order = TopDown; 1701 R.clear(); 1702 R.insert(Nodes.getNode(0)); 1703 break; 1704 } 1705 for (const auto &I : maxDepth->Preds) { 1706 if (Nodes.count(I.getSUnit()) == 0) 1707 continue; 1708 if (NodeOrder.count(I.getSUnit()) != 0) 1709 continue; 1710 R.insert(I.getSUnit()); 1711 } 1712 // Back-edges are predecessors with an anti-dependence. 1713 for (const auto &I : maxDepth->Succs) { 1714 if (I.getKind() != SDep::Anti) 1715 continue; 1716 if (Nodes.count(I.getSUnit()) == 0) 1717 continue; 1718 if (NodeOrder.count(I.getSUnit()) != 0) 1719 continue; 1720 R.insert(I.getSUnit()); 1721 } 1722 } 1723 Order = TopDown; 1724 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 1725 SmallSetVector<SUnit *, 8> N; 1726 if (succ_L(NodeOrder, N, &Nodes)) 1727 R.insert(N.begin(), N.end()); 1728 } 1729 } 1730 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 1731 } 1732 1733 LLVM_DEBUG({ 1734 dbgs() << "Node order: "; 1735 for (SUnit *I : NodeOrder) 1736 dbgs() << " " << I->NodeNum << " "; 1737 dbgs() << "\n"; 1738 }); 1739 } 1740 1741 /// Process the nodes in the computed order and create the pipelined schedule 1742 /// of the instructions, if possible. Return true if a schedule is found. 1743 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 1744 if (NodeOrder.empty()) 1745 return false; 1746 1747 bool scheduleFound = false; 1748 // Keep increasing II until a valid schedule is found. 1749 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) { 1750 Schedule.reset(); 1751 Schedule.setInitiationInterval(II); 1752 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 1753 1754 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 1755 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 1756 do { 1757 SUnit *SU = *NI; 1758 1759 // Compute the schedule time for the instruction, which is based 1760 // upon the scheduled time for any predecessors/successors. 1761 int EarlyStart = INT_MIN; 1762 int LateStart = INT_MAX; 1763 // These values are set when the size of the schedule window is limited 1764 // due to chain dependences. 1765 int SchedEnd = INT_MAX; 1766 int SchedStart = INT_MIN; 1767 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 1768 II, this); 1769 LLVM_DEBUG({ 1770 dbgs() << "Inst (" << SU->NodeNum << ") "; 1771 SU->getInstr()->dump(); 1772 dbgs() << "\n"; 1773 }); 1774 LLVM_DEBUG({ 1775 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart 1776 << " me: " << SchedEnd << " ms: " << SchedStart << "\n"; 1777 }); 1778 1779 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 1780 SchedStart > LateStart) 1781 scheduleFound = false; 1782 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 1783 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 1784 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 1785 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 1786 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 1787 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 1788 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 1789 SchedEnd = 1790 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 1791 // When scheduling a Phi it is better to start at the late cycle and go 1792 // backwards. The default order may insert the Phi too far away from 1793 // its first dependence. 1794 if (SU->getInstr()->isPHI()) 1795 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 1796 else 1797 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 1798 } else { 1799 int FirstCycle = Schedule.getFirstCycle(); 1800 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 1801 FirstCycle + getASAP(SU) + II - 1, II); 1802 } 1803 // Even if we find a schedule, make sure the schedule doesn't exceed the 1804 // allowable number of stages. We keep trying if this happens. 1805 if (scheduleFound) 1806 if (SwpMaxStages > -1 && 1807 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 1808 scheduleFound = false; 1809 1810 LLVM_DEBUG({ 1811 if (!scheduleFound) 1812 dbgs() << "\tCan't schedule\n"; 1813 }); 1814 } while (++NI != NE && scheduleFound); 1815 1816 // If a schedule is found, check if it is a valid schedule too. 1817 if (scheduleFound) 1818 scheduleFound = Schedule.isValidSchedule(this); 1819 } 1820 1821 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n"); 1822 1823 if (scheduleFound) 1824 Schedule.finalizeSchedule(this); 1825 else 1826 Schedule.reset(); 1827 1828 return scheduleFound && Schedule.getMaxStageCount() > 0; 1829 } 1830 1831 /// Given a schedule for the loop, generate a new version of the loop, 1832 /// and replace the old version. This function generates a prolog 1833 /// that contains the initial iterations in the pipeline, and kernel 1834 /// loop, and the epilogue that contains the code for the final 1835 /// iterations. 1836 void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { 1837 // Create a new basic block for the kernel and add it to the CFG. 1838 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 1839 1840 unsigned MaxStageCount = Schedule.getMaxStageCount(); 1841 1842 // Remember the registers that are used in different stages. The index is 1843 // the iteration, or stage, that the instruction is scheduled in. This is 1844 // a map between register names in the original block and the names created 1845 // in each stage of the pipelined loop. 1846 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 1847 InstrMapTy InstrMap; 1848 1849 SmallVector<MachineBasicBlock *, 4> PrologBBs; 1850 // Generate the prolog instructions that set up the pipeline. 1851 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); 1852 MF.insert(BB->getIterator(), KernelBB); 1853 1854 // Rearrange the instructions to generate the new, pipelined loop, 1855 // and update register names as needed. 1856 for (int Cycle = Schedule.getFirstCycle(), 1857 LastCycle = Schedule.getFinalCycle(); 1858 Cycle <= LastCycle; ++Cycle) { 1859 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle); 1860 // This inner loop schedules each instruction in the cycle. 1861 for (SUnit *CI : CycleInstrs) { 1862 if (CI->getInstr()->isPHI()) 1863 continue; 1864 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); 1865 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); 1866 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); 1867 KernelBB->push_back(NewMI); 1868 InstrMap[NewMI] = CI->getInstr(); 1869 } 1870 } 1871 1872 // Copy any terminator instructions to the new kernel, and update 1873 // names as needed. 1874 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), 1875 E = BB->instr_end(); 1876 I != E; ++I) { 1877 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 1878 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); 1879 KernelBB->push_back(NewMI); 1880 InstrMap[NewMI] = &*I; 1881 } 1882 1883 KernelBB->transferSuccessors(BB); 1884 KernelBB->replaceSuccessor(BB, KernelBB); 1885 1886 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, 1887 VRMap, InstrMap, MaxStageCount, MaxStageCount, false); 1888 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, 1889 InstrMap, MaxStageCount, MaxStageCount, false); 1890 1891 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 1892 1893 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 1894 // Generate the epilog instructions to complete the pipeline. 1895 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, 1896 PrologBBs); 1897 1898 // We need this step because the register allocation doesn't handle some 1899 // situations well, so we insert copies to help out. 1900 splitLifetimes(KernelBB, EpilogBBs, Schedule); 1901 1902 // Remove dead instructions due to loop induction variables. 1903 removeDeadInstructions(KernelBB, EpilogBBs); 1904 1905 // Add branches between prolog and epilog blocks. 1906 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); 1907 1908 // Remove the original loop since it's no longer referenced. 1909 for (auto &I : *BB) 1910 LIS.RemoveMachineInstrFromMaps(I); 1911 BB->clear(); 1912 BB->eraseFromParent(); 1913 1914 delete[] VRMap; 1915 } 1916 1917 /// Generate the pipeline prolog code. 1918 void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, 1919 MachineBasicBlock *KernelBB, 1920 ValueMapTy *VRMap, 1921 MBBVectorTy &PrologBBs) { 1922 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); 1923 assert(PreheaderBB != nullptr && 1924 "Need to add code to handle loops w/o preheader"); 1925 MachineBasicBlock *PredBB = PreheaderBB; 1926 InstrMapTy InstrMap; 1927 1928 // Generate a basic block for each stage, not including the last stage, 1929 // which will be generated in the kernel. Each basic block may contain 1930 // instructions from multiple stages/iterations. 1931 for (unsigned i = 0; i < LastStage; ++i) { 1932 // Create and insert the prolog basic block prior to the original loop 1933 // basic block. The original loop is removed later. 1934 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 1935 PrologBBs.push_back(NewBB); 1936 MF.insert(BB->getIterator(), NewBB); 1937 NewBB->transferSuccessors(PredBB); 1938 PredBB->addSuccessor(NewBB); 1939 PredBB = NewBB; 1940 1941 // Generate instructions for each appropriate stage. Process instructions 1942 // in original program order. 1943 for (int StageNum = i; StageNum >= 0; --StageNum) { 1944 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 1945 BBE = BB->getFirstTerminator(); 1946 BBI != BBE; ++BBI) { 1947 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { 1948 if (BBI->isPHI()) 1949 continue; 1950 MachineInstr *NewMI = 1951 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); 1952 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, 1953 VRMap); 1954 NewBB->push_back(NewMI); 1955 InstrMap[NewMI] = &*BBI; 1956 } 1957 } 1958 } 1959 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); 1960 LLVM_DEBUG({ 1961 dbgs() << "prolog:\n"; 1962 NewBB->dump(); 1963 }); 1964 } 1965 1966 PredBB->replaceSuccessor(BB, KernelBB); 1967 1968 // Check if we need to remove the branch from the preheader to the original 1969 // loop, and replace it with a branch to the new loop. 1970 unsigned numBranches = TII->removeBranch(*PreheaderBB); 1971 if (numBranches) { 1972 SmallVector<MachineOperand, 0> Cond; 1973 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc()); 1974 } 1975 } 1976 1977 /// Generate the pipeline epilog code. The epilog code finishes the iterations 1978 /// that were started in either the prolog or the kernel. We create a basic 1979 /// block for each stage that needs to complete. 1980 void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, 1981 MachineBasicBlock *KernelBB, 1982 ValueMapTy *VRMap, 1983 MBBVectorTy &EpilogBBs, 1984 MBBVectorTy &PrologBBs) { 1985 // We need to change the branch from the kernel to the first epilog block, so 1986 // this call to analyze branch uses the kernel rather than the original BB. 1987 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1988 SmallVector<MachineOperand, 4> Cond; 1989 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 1990 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 1991 if (checkBranch) 1992 return; 1993 1994 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 1995 if (*LoopExitI == KernelBB) 1996 ++LoopExitI; 1997 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 1998 MachineBasicBlock *LoopExitBB = *LoopExitI; 1999 2000 MachineBasicBlock *PredBB = KernelBB; 2001 MachineBasicBlock *EpilogStart = LoopExitBB; 2002 InstrMapTy InstrMap; 2003 2004 // Generate a basic block for each stage, not including the last stage, 2005 // which was generated for the kernel. Each basic block may contain 2006 // instructions from multiple stages/iterations. 2007 int EpilogStage = LastStage + 1; 2008 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 2009 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 2010 EpilogBBs.push_back(NewBB); 2011 MF.insert(BB->getIterator(), NewBB); 2012 2013 PredBB->replaceSuccessor(LoopExitBB, NewBB); 2014 NewBB->addSuccessor(LoopExitBB); 2015 2016 if (EpilogStart == LoopExitBB) 2017 EpilogStart = NewBB; 2018 2019 // Add instructions to the epilog depending on the current block. 2020 // Process instructions in original program order. 2021 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 2022 for (auto &BBI : *BB) { 2023 if (BBI.isPHI()) 2024 continue; 2025 MachineInstr *In = &BBI; 2026 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { 2027 // Instructions with memoperands in the epilog are updated with 2028 // conservative values. 2029 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 2030 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); 2031 NewBB->push_back(NewMI); 2032 InstrMap[NewMI] = In; 2033 } 2034 } 2035 } 2036 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, 2037 VRMap, InstrMap, LastStage, EpilogStage, i == 1); 2038 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, 2039 InstrMap, LastStage, EpilogStage, i == 1); 2040 PredBB = NewBB; 2041 2042 LLVM_DEBUG({ 2043 dbgs() << "epilog:\n"; 2044 NewBB->dump(); 2045 }); 2046 } 2047 2048 // Fix any Phi nodes in the loop exit block. 2049 for (MachineInstr &MI : *LoopExitBB) { 2050 if (!MI.isPHI()) 2051 break; 2052 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 2053 MachineOperand &MO = MI.getOperand(i); 2054 if (MO.getMBB() == BB) 2055 MO.setMBB(PredBB); 2056 } 2057 } 2058 2059 // Create a branch to the new epilog from the kernel. 2060 // Remove the original branch and add a new branch to the epilog. 2061 TII->removeBranch(*KernelBB); 2062 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 2063 // Add a branch to the loop exit. 2064 if (EpilogBBs.size() > 0) { 2065 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 2066 SmallVector<MachineOperand, 4> Cond1; 2067 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 2068 } 2069 } 2070 2071 /// Replace all uses of FromReg that appear outside the specified 2072 /// basic block with ToReg. 2073 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 2074 MachineBasicBlock *MBB, 2075 MachineRegisterInfo &MRI, 2076 LiveIntervals &LIS) { 2077 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), 2078 E = MRI.use_end(); 2079 I != E;) { 2080 MachineOperand &O = *I; 2081 ++I; 2082 if (O.getParent()->getParent() != MBB) 2083 O.setReg(ToReg); 2084 } 2085 if (!LIS.hasInterval(ToReg)) 2086 LIS.createEmptyInterval(ToReg); 2087 } 2088 2089 /// Return true if the register has a use that occurs outside the 2090 /// specified loop. 2091 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 2092 MachineRegisterInfo &MRI) { 2093 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 2094 E = MRI.use_end(); 2095 I != E; ++I) 2096 if (I->getParent()->getParent() != BB) 2097 return true; 2098 return false; 2099 } 2100 2101 /// Generate Phis for the specific block in the generated pipelined code. 2102 /// This function looks at the Phis from the original code to guide the 2103 /// creation of new Phis. 2104 void SwingSchedulerDAG::generateExistingPhis( 2105 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2106 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2107 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2108 bool IsLast) { 2109 // Compute the stage number for the initial value of the Phi, which 2110 // comes from the prolog. The prolog to use depends on to which kernel/ 2111 // epilog that we're adding the Phi. 2112 unsigned PrologStage = 0; 2113 unsigned PrevStage = 0; 2114 bool InKernel = (LastStageNum == CurStageNum); 2115 if (InKernel) { 2116 PrologStage = LastStageNum - 1; 2117 PrevStage = CurStageNum; 2118 } else { 2119 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 2120 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 2121 } 2122 2123 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2124 BBE = BB->getFirstNonPHI(); 2125 BBI != BBE; ++BBI) { 2126 unsigned Def = BBI->getOperand(0).getReg(); 2127 2128 unsigned InitVal = 0; 2129 unsigned LoopVal = 0; 2130 getPhiRegs(*BBI, BB, InitVal, LoopVal); 2131 2132 unsigned PhiOp1 = 0; 2133 // The Phi value from the loop body typically is defined in the loop, but 2134 // not always. So, we need to check if the value is defined in the loop. 2135 unsigned PhiOp2 = LoopVal; 2136 if (VRMap[LastStageNum].count(LoopVal)) 2137 PhiOp2 = VRMap[LastStageNum][LoopVal]; 2138 2139 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2140 int LoopValStage = 2141 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 2142 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum); 2143 if (NumStages == 0) { 2144 // We don't need to generate a Phi anymore, but we need to rename any uses 2145 // of the Phi value. 2146 unsigned NewReg = VRMap[PrevStage][LoopVal]; 2147 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI, 2148 Def, InitVal, NewReg); 2149 if (VRMap[CurStageNum].count(LoopVal)) 2150 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 2151 } 2152 // Adjust the number of Phis needed depending on the number of prologs left, 2153 // and the distance from where the Phi is first scheduled. The number of 2154 // Phis cannot exceed the number of prolog stages. Each stage can 2155 // potentially define two values. 2156 unsigned MaxPhis = PrologStage + 2; 2157 if (!InKernel && (int)PrologStage <= LoopValStage) 2158 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 2159 unsigned NumPhis = std::min(NumStages, MaxPhis); 2160 2161 unsigned NewReg = 0; 2162 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 2163 // In the epilog, we may need to look back one stage to get the correct 2164 // Phi name because the epilog and prolog blocks execute the same stage. 2165 // The correct name is from the previous block only when the Phi has 2166 // been completely scheduled prior to the epilog, and Phi value is not 2167 // needed in multiple stages. 2168 int StageDiff = 0; 2169 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 2170 NumPhis == 1) 2171 StageDiff = 1; 2172 // Adjust the computations below when the phi and the loop definition 2173 // are scheduled in different stages. 2174 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 2175 StageDiff = StageScheduled - LoopValStage; 2176 for (unsigned np = 0; np < NumPhis; ++np) { 2177 // If the Phi hasn't been scheduled, then use the initial Phi operand 2178 // value. Otherwise, use the scheduled version of the instruction. This 2179 // is a little complicated when a Phi references another Phi. 2180 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 2181 PhiOp1 = InitVal; 2182 // Check if the Phi has already been scheduled in a prolog stage. 2183 else if (PrologStage >= AccessStage + StageDiff + np && 2184 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 2185 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 2186 // Check if the Phi has already been scheduled, but the loop instruction 2187 // is either another Phi, or doesn't occur in the loop. 2188 else if (PrologStage >= AccessStage + StageDiff + np) { 2189 // If the Phi references another Phi, we need to examine the other 2190 // Phi to get the correct value. 2191 PhiOp1 = LoopVal; 2192 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 2193 int Indirects = 1; 2194 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 2195 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2196 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 2197 PhiOp1 = getInitPhiReg(*InstOp1, BB); 2198 else 2199 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 2200 InstOp1 = MRI.getVRegDef(PhiOp1); 2201 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2202 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 2203 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 2204 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 2205 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 2206 break; 2207 } 2208 ++Indirects; 2209 } 2210 } else 2211 PhiOp1 = InitVal; 2212 // If this references a generated Phi in the kernel, get the Phi operand 2213 // from the incoming block. 2214 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 2215 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2216 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2217 2218 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 2219 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 2220 // In the epilog, a map lookup is needed to get the value from the kernel, 2221 // or previous epilog block. How is does this depends on if the 2222 // instruction is scheduled in the previous block. 2223 if (!InKernel) { 2224 int StageDiffAdj = 0; 2225 if (LoopValStage != -1 && StageScheduled > LoopValStage) 2226 StageDiffAdj = StageScheduled - LoopValStage; 2227 // Use the loop value defined in the kernel, unless the kernel 2228 // contains the last definition of the Phi. 2229 if (np == 0 && PrevStage == LastStageNum && 2230 (StageScheduled != 0 || LoopValStage != 0) && 2231 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 2232 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 2233 // Use the value defined by the Phi. We add one because we switch 2234 // from looking at the loop value to the Phi definition. 2235 else if (np > 0 && PrevStage == LastStageNum && 2236 VRMap[PrevStage - np + 1].count(Def)) 2237 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 2238 // Use the loop value defined in the kernel. 2239 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && 2240 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 2241 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 2242 // Use the value defined by the Phi, unless we're generating the first 2243 // epilog and the Phi refers to a Phi in a different stage. 2244 else if (VRMap[PrevStage - np].count(Def) && 2245 (!LoopDefIsPhi || PrevStage != LastStageNum)) 2246 PhiOp2 = VRMap[PrevStage - np][Def]; 2247 } 2248 2249 // Check if we can reuse an existing Phi. This occurs when a Phi 2250 // references another Phi, and the other Phi is scheduled in an 2251 // earlier stage. We can try to reuse an existing Phi up until the last 2252 // stage of the current Phi. 2253 if (LoopDefIsPhi) { 2254 if (static_cast<int>(PrologStage - np) >= StageScheduled) { 2255 int LVNumStages = Schedule.getStagesForPhi(LoopVal); 2256 int StageDiff = (StageScheduled - LoopValStage); 2257 LVNumStages -= StageDiff; 2258 // Make sure the loop value Phi has been processed already. 2259 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 2260 NewReg = PhiOp2; 2261 unsigned ReuseStage = CurStageNum; 2262 if (Schedule.isLoopCarried(this, *PhiInst)) 2263 ReuseStage -= LVNumStages; 2264 // Check if the Phi to reuse has been generated yet. If not, then 2265 // there is nothing to reuse. 2266 if (VRMap[ReuseStage - np].count(LoopVal)) { 2267 NewReg = VRMap[ReuseStage - np][LoopVal]; 2268 2269 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2270 &*BBI, Def, NewReg); 2271 // Update the map with the new Phi name. 2272 VRMap[CurStageNum - np][Def] = NewReg; 2273 PhiOp2 = NewReg; 2274 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 2275 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 2276 2277 if (IsLast && np == NumPhis - 1) 2278 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2279 continue; 2280 } 2281 } 2282 } 2283 if (InKernel && StageDiff > 0 && 2284 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 2285 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 2286 } 2287 2288 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2289 NewReg = MRI.createVirtualRegister(RC); 2290 2291 MachineInstrBuilder NewPhi = 2292 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2293 TII->get(TargetOpcode::PHI), NewReg); 2294 NewPhi.addReg(PhiOp1).addMBB(BB1); 2295 NewPhi.addReg(PhiOp2).addMBB(BB2); 2296 if (np == 0) 2297 InstrMap[NewPhi] = &*BBI; 2298 2299 // We define the Phis after creating the new pipelined code, so 2300 // we need to rename the Phi values in scheduled instructions. 2301 2302 unsigned PrevReg = 0; 2303 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 2304 PrevReg = VRMap[PrevStage - np][LoopVal]; 2305 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2306 Def, NewReg, PrevReg); 2307 // If the Phi has been scheduled, use the new name for rewriting. 2308 if (VRMap[CurStageNum - np].count(Def)) { 2309 unsigned R = VRMap[CurStageNum - np][Def]; 2310 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2311 R, NewReg); 2312 } 2313 2314 // Check if we need to rename any uses that occurs after the loop. The 2315 // register to replace depends on whether the Phi is scheduled in the 2316 // epilog. 2317 if (IsLast && np == NumPhis - 1) 2318 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2319 2320 // In the kernel, a dependent Phi uses the value from this Phi. 2321 if (InKernel) 2322 PhiOp2 = NewReg; 2323 2324 // Update the map with the new Phi name. 2325 VRMap[CurStageNum - np][Def] = NewReg; 2326 } 2327 2328 while (NumPhis++ < NumStages) { 2329 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis, 2330 &*BBI, Def, NewReg, 0); 2331 } 2332 2333 // Check if we need to rename a Phi that has been eliminated due to 2334 // scheduling. 2335 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 2336 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 2337 } 2338 } 2339 2340 /// Generate Phis for the specified block in the generated pipelined code. 2341 /// These are new Phis needed because the definition is scheduled after the 2342 /// use in the pipelined sequence. 2343 void SwingSchedulerDAG::generatePhis( 2344 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2345 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2346 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2347 bool IsLast) { 2348 // Compute the stage number that contains the initial Phi value, and 2349 // the Phi from the previous stage. 2350 unsigned PrologStage = 0; 2351 unsigned PrevStage = 0; 2352 unsigned StageDiff = CurStageNum - LastStageNum; 2353 bool InKernel = (StageDiff == 0); 2354 if (InKernel) { 2355 PrologStage = LastStageNum - 1; 2356 PrevStage = CurStageNum; 2357 } else { 2358 PrologStage = LastStageNum - StageDiff; 2359 PrevStage = LastStageNum + StageDiff - 1; 2360 } 2361 2362 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 2363 BBE = BB->instr_end(); 2364 BBI != BBE; ++BBI) { 2365 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 2366 MachineOperand &MO = BBI->getOperand(i); 2367 if (!MO.isReg() || !MO.isDef() || 2368 !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2369 continue; 2370 2371 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2372 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 2373 unsigned Def = MO.getReg(); 2374 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum); 2375 // An instruction scheduled in stage 0 and is used after the loop 2376 // requires a phi in the epilog for the last definition from either 2377 // the kernel or prolog. 2378 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 2379 hasUseAfterLoop(Def, BB, MRI)) 2380 NumPhis = 1; 2381 if (!InKernel && (unsigned)StageScheduled > PrologStage) 2382 continue; 2383 2384 unsigned PhiOp2 = VRMap[PrevStage][Def]; 2385 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 2386 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 2387 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 2388 // The number of Phis can't exceed the number of prolog stages. The 2389 // prolog stage number is zero based. 2390 if (NumPhis > PrologStage + 1 - StageScheduled) 2391 NumPhis = PrologStage + 1 - StageScheduled; 2392 for (unsigned np = 0; np < NumPhis; ++np) { 2393 unsigned PhiOp1 = VRMap[PrologStage][Def]; 2394 if (np <= PrologStage) 2395 PhiOp1 = VRMap[PrologStage - np][Def]; 2396 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 2397 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2398 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2399 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 2400 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 2401 } 2402 if (!InKernel) 2403 PhiOp2 = VRMap[PrevStage - np][Def]; 2404 2405 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2406 unsigned NewReg = MRI.createVirtualRegister(RC); 2407 2408 MachineInstrBuilder NewPhi = 2409 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2410 TII->get(TargetOpcode::PHI), NewReg); 2411 NewPhi.addReg(PhiOp1).addMBB(BB1); 2412 NewPhi.addReg(PhiOp2).addMBB(BB2); 2413 if (np == 0) 2414 InstrMap[NewPhi] = &*BBI; 2415 2416 // Rewrite uses and update the map. The actions depend upon whether 2417 // we generating code for the kernel or epilog blocks. 2418 if (InKernel) { 2419 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2420 &*BBI, PhiOp1, NewReg); 2421 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2422 &*BBI, PhiOp2, NewReg); 2423 2424 PhiOp2 = NewReg; 2425 VRMap[PrevStage - np - 1][Def] = NewReg; 2426 } else { 2427 VRMap[CurStageNum - np][Def] = NewReg; 2428 if (np == NumPhis - 1) 2429 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2430 &*BBI, Def, NewReg); 2431 } 2432 if (IsLast && np == NumPhis - 1) 2433 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2434 } 2435 } 2436 } 2437 } 2438 2439 /// Remove instructions that generate values with no uses. 2440 /// Typically, these are induction variable operations that generate values 2441 /// used in the loop itself. A dead instruction has a definition with 2442 /// no uses, or uses that occur in the original loop only. 2443 void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB, 2444 MBBVectorTy &EpilogBBs) { 2445 // For each epilog block, check that the value defined by each instruction 2446 // is used. If not, delete it. 2447 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), 2448 MBE = EpilogBBs.rend(); 2449 MBB != MBE; ++MBB) 2450 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), 2451 ME = (*MBB)->instr_rend(); 2452 MI != ME;) { 2453 // From DeadMachineInstructionElem. Don't delete inline assembly. 2454 if (MI->isInlineAsm()) { 2455 ++MI; 2456 continue; 2457 } 2458 bool SawStore = false; 2459 // Check if it's safe to remove the instruction due to side effects. 2460 // We can, and want to, remove Phis here. 2461 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 2462 ++MI; 2463 continue; 2464 } 2465 bool used = true; 2466 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 2467 MOE = MI->operands_end(); 2468 MOI != MOE; ++MOI) { 2469 if (!MOI->isReg() || !MOI->isDef()) 2470 continue; 2471 unsigned reg = MOI->getReg(); 2472 // Assume physical registers are used, unless they are marked dead. 2473 if (TargetRegisterInfo::isPhysicalRegister(reg)) { 2474 used = !MOI->isDead(); 2475 if (used) 2476 break; 2477 continue; 2478 } 2479 unsigned realUses = 0; 2480 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 2481 EI = MRI.use_end(); 2482 UI != EI; ++UI) { 2483 // Check if there are any uses that occur only in the original 2484 // loop. If so, that's not a real use. 2485 if (UI->getParent()->getParent() != BB) { 2486 realUses++; 2487 used = true; 2488 break; 2489 } 2490 } 2491 if (realUses > 0) 2492 break; 2493 used = false; 2494 } 2495 if (!used) { 2496 LIS.RemoveMachineInstrFromMaps(*MI); 2497 MI++->eraseFromParent(); 2498 continue; 2499 } 2500 ++MI; 2501 } 2502 // In the kernel block, check if we can remove a Phi that generates a value 2503 // used in an instruction removed in the epilog block. 2504 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 2505 BBE = KernelBB->getFirstNonPHI(); 2506 BBI != BBE;) { 2507 MachineInstr *MI = &*BBI; 2508 ++BBI; 2509 unsigned reg = MI->getOperand(0).getReg(); 2510 if (MRI.use_begin(reg) == MRI.use_end()) { 2511 LIS.RemoveMachineInstrFromMaps(*MI); 2512 MI->eraseFromParent(); 2513 } 2514 } 2515 } 2516 2517 /// For loop carried definitions, we split the lifetime of a virtual register 2518 /// that has uses past the definition in the next iteration. A copy with a new 2519 /// virtual register is inserted before the definition, which helps with 2520 /// generating a better register assignment. 2521 /// 2522 /// v1 = phi(a, v2) v1 = phi(a, v2) 2523 /// v2 = phi(b, v3) v2 = phi(b, v3) 2524 /// v3 = .. v4 = copy v1 2525 /// .. = V1 v3 = .. 2526 /// .. = v4 2527 void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB, 2528 MBBVectorTy &EpilogBBs, 2529 SMSchedule &Schedule) { 2530 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2531 for (auto &PHI : KernelBB->phis()) { 2532 unsigned Def = PHI.getOperand(0).getReg(); 2533 // Check for any Phi definition that used as an operand of another Phi 2534 // in the same block. 2535 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 2536 E = MRI.use_instr_end(); 2537 I != E; ++I) { 2538 if (I->isPHI() && I->getParent() == KernelBB) { 2539 // Get the loop carried definition. 2540 unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 2541 if (!LCDef) 2542 continue; 2543 MachineInstr *MI = MRI.getVRegDef(LCDef); 2544 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 2545 continue; 2546 // Search through the rest of the block looking for uses of the Phi 2547 // definition. If one occurs, then split the lifetime. 2548 unsigned SplitReg = 0; 2549 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 2550 KernelBB->instr_end())) 2551 if (BBJ.readsRegister(Def)) { 2552 // We split the lifetime when we find the first use. 2553 if (SplitReg == 0) { 2554 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 2555 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 2556 TII->get(TargetOpcode::COPY), SplitReg) 2557 .addReg(Def); 2558 } 2559 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 2560 } 2561 if (!SplitReg) 2562 continue; 2563 // Search through each of the epilog blocks for any uses to be renamed. 2564 for (auto &Epilog : EpilogBBs) 2565 for (auto &I : *Epilog) 2566 if (I.readsRegister(Def)) 2567 I.substituteRegister(Def, SplitReg, 0, *TRI); 2568 break; 2569 } 2570 } 2571 } 2572 } 2573 2574 /// Remove the incoming block from the Phis in a basic block. 2575 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 2576 for (MachineInstr &MI : *BB) { 2577 if (!MI.isPHI()) 2578 break; 2579 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 2580 if (MI.getOperand(i + 1).getMBB() == Incoming) { 2581 MI.RemoveOperand(i + 1); 2582 MI.RemoveOperand(i); 2583 break; 2584 } 2585 } 2586 } 2587 2588 /// Create branches from each prolog basic block to the appropriate epilog 2589 /// block. These edges are needed if the loop ends before reaching the 2590 /// kernel. 2591 void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs, 2592 MachineBasicBlock *KernelBB, 2593 MBBVectorTy &EpilogBBs, 2594 SMSchedule &Schedule, ValueMapTy *VRMap) { 2595 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 2596 MachineInstr *IndVar = Pass.LI.LoopInductionVar; 2597 MachineInstr *Cmp = Pass.LI.LoopCompare; 2598 MachineBasicBlock *LastPro = KernelBB; 2599 MachineBasicBlock *LastEpi = KernelBB; 2600 2601 // Start from the blocks connected to the kernel and work "out" 2602 // to the first prolog and the last epilog blocks. 2603 SmallVector<MachineInstr *, 4> PrevInsts; 2604 unsigned MaxIter = PrologBBs.size() - 1; 2605 unsigned LC = UINT_MAX; 2606 unsigned LCMin = UINT_MAX; 2607 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 2608 // Add branches to the prolog that go to the corresponding 2609 // epilog, and the fall-thru prolog/kernel block. 2610 MachineBasicBlock *Prolog = PrologBBs[j]; 2611 MachineBasicBlock *Epilog = EpilogBBs[i]; 2612 // We've executed one iteration, so decrement the loop count and check for 2613 // the loop end. 2614 SmallVector<MachineOperand, 4> Cond; 2615 // Check if the LOOP0 has already been removed. If so, then there is no need 2616 // to reduce the trip count. 2617 if (LC != 0) 2618 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j, 2619 MaxIter); 2620 2621 // Record the value of the first trip count, which is used to determine if 2622 // branches and blocks can be removed for constant trip counts. 2623 if (LCMin == UINT_MAX) 2624 LCMin = LC; 2625 2626 unsigned numAdded = 0; 2627 if (TargetRegisterInfo::isVirtualRegister(LC)) { 2628 Prolog->addSuccessor(Epilog); 2629 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 2630 } else if (j >= LCMin) { 2631 Prolog->addSuccessor(Epilog); 2632 Prolog->removeSuccessor(LastPro); 2633 LastEpi->removeSuccessor(Epilog); 2634 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 2635 removePhis(Epilog, LastEpi); 2636 // Remove the blocks that are no longer referenced. 2637 if (LastPro != LastEpi) { 2638 LastEpi->clear(); 2639 LastEpi->eraseFromParent(); 2640 } 2641 LastPro->clear(); 2642 LastPro->eraseFromParent(); 2643 } else { 2644 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 2645 removePhis(Epilog, Prolog); 2646 } 2647 LastPro = Prolog; 2648 LastEpi = Epilog; 2649 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 2650 E = Prolog->instr_rend(); 2651 I != E && numAdded > 0; ++I, --numAdded) 2652 updateInstruction(&*I, false, j, 0, Schedule, VRMap); 2653 } 2654 } 2655 2656 /// Return true if we can compute the amount the instruction changes 2657 /// during each iteration. Set Delta to the amount of the change. 2658 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 2659 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2660 MachineOperand *BaseOp; 2661 int64_t Offset; 2662 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI)) 2663 return false; 2664 2665 if (!BaseOp->isReg()) 2666 return false; 2667 2668 unsigned BaseReg = BaseOp->getReg(); 2669 2670 MachineRegisterInfo &MRI = MF.getRegInfo(); 2671 // Check if there is a Phi. If so, get the definition in the loop. 2672 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 2673 if (BaseDef && BaseDef->isPHI()) { 2674 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 2675 BaseDef = MRI.getVRegDef(BaseReg); 2676 } 2677 if (!BaseDef) 2678 return false; 2679 2680 int D = 0; 2681 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 2682 return false; 2683 2684 Delta = D; 2685 return true; 2686 } 2687 2688 /// Update the memory operand with a new offset when the pipeliner 2689 /// generates a new copy of the instruction that refers to a 2690 /// different memory location. 2691 void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI, 2692 MachineInstr &OldMI, unsigned Num) { 2693 if (Num == 0) 2694 return; 2695 // If the instruction has memory operands, then adjust the offset 2696 // when the instruction appears in different stages. 2697 if (NewMI.memoperands_empty()) 2698 return; 2699 SmallVector<MachineMemOperand *, 2> NewMMOs; 2700 for (MachineMemOperand *MMO : NewMI.memoperands()) { 2701 if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) || 2702 (!MMO->getValue())) { 2703 NewMMOs.push_back(MMO); 2704 continue; 2705 } 2706 unsigned Delta; 2707 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 2708 int64_t AdjOffset = Delta * Num; 2709 NewMMOs.push_back( 2710 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); 2711 } else { 2712 NewMMOs.push_back( 2713 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); 2714 } 2715 } 2716 NewMI.setMemRefs(MF, NewMMOs); 2717 } 2718 2719 /// Clone the instruction for the new pipelined loop and update the 2720 /// memory operands, if needed. 2721 MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI, 2722 unsigned CurStageNum, 2723 unsigned InstStageNum) { 2724 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 2725 // Check for tied operands in inline asm instructions. This should be handled 2726 // elsewhere, but I'm not sure of the best solution. 2727 if (OldMI->isInlineAsm()) 2728 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 2729 const auto &MO = OldMI->getOperand(i); 2730 if (MO.isReg() && MO.isUse()) 2731 break; 2732 unsigned UseIdx; 2733 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 2734 NewMI->tieOperands(i, UseIdx); 2735 } 2736 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 2737 return NewMI; 2738 } 2739 2740 /// Clone the instruction for the new pipelined loop. If needed, this 2741 /// function updates the instruction using the values saved in the 2742 /// InstrChanges structure. 2743 MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI, 2744 unsigned CurStageNum, 2745 unsigned InstStageNum, 2746 SMSchedule &Schedule) { 2747 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 2748 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2749 InstrChanges.find(getSUnit(OldMI)); 2750 if (It != InstrChanges.end()) { 2751 std::pair<unsigned, int64_t> RegAndOffset = It->second; 2752 unsigned BasePos, OffsetPos; 2753 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 2754 return nullptr; 2755 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 2756 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 2757 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum) 2758 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 2759 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2760 } 2761 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 2762 return NewMI; 2763 } 2764 2765 /// Update the machine instruction with new virtual registers. This 2766 /// function may change the defintions and/or uses. 2767 void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef, 2768 unsigned CurStageNum, 2769 unsigned InstrStageNum, 2770 SMSchedule &Schedule, 2771 ValueMapTy *VRMap) { 2772 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 2773 MachineOperand &MO = NewMI->getOperand(i); 2774 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2775 continue; 2776 unsigned reg = MO.getReg(); 2777 if (MO.isDef()) { 2778 // Create a new virtual register for the definition. 2779 const TargetRegisterClass *RC = MRI.getRegClass(reg); 2780 unsigned NewReg = MRI.createVirtualRegister(RC); 2781 MO.setReg(NewReg); 2782 VRMap[CurStageNum][reg] = NewReg; 2783 if (LastDef) 2784 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 2785 } else if (MO.isUse()) { 2786 MachineInstr *Def = MRI.getVRegDef(reg); 2787 // Compute the stage that contains the last definition for instruction. 2788 int DefStageNum = Schedule.stageScheduled(getSUnit(Def)); 2789 unsigned StageNum = CurStageNum; 2790 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 2791 // Compute the difference in stages between the defintion and the use. 2792 unsigned StageDiff = (InstrStageNum - DefStageNum); 2793 // Make an adjustment to get the last definition. 2794 StageNum -= StageDiff; 2795 } 2796 if (VRMap[StageNum].count(reg)) 2797 MO.setReg(VRMap[StageNum][reg]); 2798 } 2799 } 2800 } 2801 2802 /// Return the instruction in the loop that defines the register. 2803 /// If the definition is a Phi, then follow the Phi operand to 2804 /// the instruction in the loop. 2805 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { 2806 SmallPtrSet<MachineInstr *, 8> Visited; 2807 MachineInstr *Def = MRI.getVRegDef(Reg); 2808 while (Def->isPHI()) { 2809 if (!Visited.insert(Def).second) 2810 break; 2811 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 2812 if (Def->getOperand(i + 1).getMBB() == BB) { 2813 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 2814 break; 2815 } 2816 } 2817 return Def; 2818 } 2819 2820 /// Return the new name for the value from the previous stage. 2821 unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage, 2822 unsigned LoopVal, unsigned LoopStage, 2823 ValueMapTy *VRMap, 2824 MachineBasicBlock *BB) { 2825 unsigned PrevVal = 0; 2826 if (StageNum > PhiStage) { 2827 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 2828 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 2829 // The name is defined in the previous stage. 2830 PrevVal = VRMap[StageNum - 1][LoopVal]; 2831 else if (VRMap[StageNum].count(LoopVal)) 2832 // The previous name is defined in the current stage when the instruction 2833 // order is swapped. 2834 PrevVal = VRMap[StageNum][LoopVal]; 2835 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 2836 // The loop value hasn't yet been scheduled. 2837 PrevVal = LoopVal; 2838 else if (StageNum == PhiStage + 1) 2839 // The loop value is another phi, which has not been scheduled. 2840 PrevVal = getInitPhiReg(*LoopInst, BB); 2841 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 2842 // The loop value is another phi, which has been scheduled. 2843 PrevVal = 2844 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 2845 LoopStage, VRMap, BB); 2846 } 2847 return PrevVal; 2848 } 2849 2850 /// Rewrite the Phi values in the specified block to use the mappings 2851 /// from the initial operand. Once the Phi is scheduled, we switch 2852 /// to using the loop value instead of the Phi value, so those names 2853 /// do not need to be rewritten. 2854 void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB, 2855 unsigned StageNum, 2856 SMSchedule &Schedule, 2857 ValueMapTy *VRMap, 2858 InstrMapTy &InstrMap) { 2859 for (auto &PHI : BB->phis()) { 2860 unsigned InitVal = 0; 2861 unsigned LoopVal = 0; 2862 getPhiRegs(PHI, BB, InitVal, LoopVal); 2863 unsigned PhiDef = PHI.getOperand(0).getReg(); 2864 2865 unsigned PhiStage = 2866 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef))); 2867 unsigned LoopStage = 2868 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 2869 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef); 2870 if (NumPhis > StageNum) 2871 NumPhis = StageNum; 2872 for (unsigned np = 0; np <= NumPhis; ++np) { 2873 unsigned NewVal = 2874 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 2875 if (!NewVal) 2876 NewVal = InitVal; 2877 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI, 2878 PhiDef, NewVal); 2879 } 2880 } 2881 } 2882 2883 /// Rewrite a previously scheduled instruction to use the register value 2884 /// from the new instruction. Make sure the instruction occurs in the 2885 /// basic block, and we don't change the uses in the new instruction. 2886 void SwingSchedulerDAG::rewriteScheduledInstr( 2887 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, 2888 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, 2889 unsigned NewReg, unsigned PrevReg) { 2890 bool InProlog = (CurStageNum < Schedule.getMaxStageCount()); 2891 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum; 2892 // Rewrite uses that have been scheduled already to use the new 2893 // Phi register. 2894 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), 2895 EI = MRI.use_end(); 2896 UI != EI;) { 2897 MachineOperand &UseOp = *UI; 2898 MachineInstr *UseMI = UseOp.getParent(); 2899 ++UI; 2900 if (UseMI->getParent() != BB) 2901 continue; 2902 if (UseMI->isPHI()) { 2903 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 2904 continue; 2905 if (getLoopPhiReg(*UseMI, BB) != OldReg) 2906 continue; 2907 } 2908 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 2909 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 2910 SUnit *OrigMISU = getSUnit(OrigInstr->second); 2911 int StageSched = Schedule.stageScheduled(OrigMISU); 2912 int CycleSched = Schedule.cycleScheduled(OrigMISU); 2913 unsigned ReplaceReg = 0; 2914 // This is the stage for the scheduled instruction. 2915 if (StagePhi == StageSched && Phi->isPHI()) { 2916 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi)); 2917 if (PrevReg && InProlog) 2918 ReplaceReg = PrevReg; 2919 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) && 2920 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI())) 2921 ReplaceReg = PrevReg; 2922 else 2923 ReplaceReg = NewReg; 2924 } 2925 // The scheduled instruction occurs before the scheduled Phi, and the 2926 // Phi is not loop carried. 2927 if (!InProlog && StagePhi + 1 == StageSched && 2928 !Schedule.isLoopCarried(this, *Phi)) 2929 ReplaceReg = NewReg; 2930 if (StagePhi > StageSched && Phi->isPHI()) 2931 ReplaceReg = NewReg; 2932 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 2933 ReplaceReg = NewReg; 2934 if (ReplaceReg) { 2935 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 2936 UseOp.setReg(ReplaceReg); 2937 } 2938 } 2939 } 2940 2941 /// Check if we can change the instruction to use an offset value from the 2942 /// previous iteration. If so, return true and set the base and offset values 2943 /// so that we can rewrite the load, if necessary. 2944 /// v1 = Phi(v0, v3) 2945 /// v2 = load v1, 0 2946 /// v3 = post_store v1, 4, x 2947 /// This function enables the load to be rewritten as v2 = load v3, 4. 2948 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 2949 unsigned &BasePos, 2950 unsigned &OffsetPos, 2951 unsigned &NewBase, 2952 int64_t &Offset) { 2953 // Get the load instruction. 2954 if (TII->isPostIncrement(*MI)) 2955 return false; 2956 unsigned BasePosLd, OffsetPosLd; 2957 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 2958 return false; 2959 unsigned BaseReg = MI->getOperand(BasePosLd).getReg(); 2960 2961 // Look for the Phi instruction. 2962 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 2963 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 2964 if (!Phi || !Phi->isPHI()) 2965 return false; 2966 // Get the register defined in the loop block. 2967 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 2968 if (!PrevReg) 2969 return false; 2970 2971 // Check for the post-increment load/store instruction. 2972 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 2973 if (!PrevDef || PrevDef == MI) 2974 return false; 2975 2976 if (!TII->isPostIncrement(*PrevDef)) 2977 return false; 2978 2979 unsigned BasePos1 = 0, OffsetPos1 = 0; 2980 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 2981 return false; 2982 2983 // Make sure that the instructions do not access the same memory location in 2984 // the next iteration. 2985 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 2986 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 2987 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2988 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 2989 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 2990 MF.DeleteMachineInstr(NewMI); 2991 if (!Disjoint) 2992 return false; 2993 2994 // Set the return value once we determine that we return true. 2995 BasePos = BasePosLd; 2996 OffsetPos = OffsetPosLd; 2997 NewBase = PrevReg; 2998 Offset = StoreOffset; 2999 return true; 3000 } 3001 3002 /// Apply changes to the instruction if needed. The changes are need 3003 /// to improve the scheduling and depend up on the final schedule. 3004 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 3005 SMSchedule &Schedule) { 3006 SUnit *SU = getSUnit(MI); 3007 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3008 InstrChanges.find(SU); 3009 if (It != InstrChanges.end()) { 3010 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3011 unsigned BasePos, OffsetPos; 3012 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3013 return; 3014 unsigned BaseReg = MI->getOperand(BasePos).getReg(); 3015 MachineInstr *LoopDef = findDefInLoop(BaseReg); 3016 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 3017 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 3018 int BaseStageNum = Schedule.stageScheduled(SU); 3019 int BaseCycleNum = Schedule.cycleScheduled(SU); 3020 if (BaseStageNum < DefStageNum) { 3021 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3022 int OffsetDiff = DefStageNum - BaseStageNum; 3023 if (DefCycleNum < BaseCycleNum) { 3024 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 3025 if (OffsetDiff > 0) 3026 --OffsetDiff; 3027 } 3028 int64_t NewOffset = 3029 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 3030 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3031 SU->setInstr(NewMI); 3032 MISUnitMap[NewMI] = SU; 3033 NewMIs.insert(NewMI); 3034 } 3035 } 3036 } 3037 3038 /// Return true for an order or output dependence that is loop carried 3039 /// potentially. A dependence is loop carried if the destination defines a valu 3040 /// that may be used or defined by the source in a subsequent iteration. 3041 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 3042 bool isSucc) { 3043 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 3044 Dep.isArtificial()) 3045 return false; 3046 3047 if (!SwpPruneLoopCarried) 3048 return true; 3049 3050 if (Dep.getKind() == SDep::Output) 3051 return true; 3052 3053 MachineInstr *SI = Source->getInstr(); 3054 MachineInstr *DI = Dep.getSUnit()->getInstr(); 3055 if (!isSucc) 3056 std::swap(SI, DI); 3057 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 3058 3059 // Assume ordered loads and stores may have a loop carried dependence. 3060 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 3061 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 3062 return true; 3063 3064 // Only chain dependences between a load and store can be loop carried. 3065 if (!DI->mayStore() || !SI->mayLoad()) 3066 return false; 3067 3068 unsigned DeltaS, DeltaD; 3069 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 3070 return true; 3071 3072 MachineOperand *BaseOpS, *BaseOpD; 3073 int64_t OffsetS, OffsetD; 3074 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3075 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, TRI) || 3076 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, TRI)) 3077 return true; 3078 3079 if (!BaseOpS->isIdenticalTo(*BaseOpD)) 3080 return true; 3081 3082 // Check that the base register is incremented by a constant value for each 3083 // iteration. 3084 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg()); 3085 if (!Def || !Def->isPHI()) 3086 return true; 3087 unsigned InitVal = 0; 3088 unsigned LoopVal = 0; 3089 getPhiRegs(*Def, BB, InitVal, LoopVal); 3090 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); 3091 int D = 0; 3092 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) 3093 return true; 3094 3095 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 3096 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 3097 3098 // This is the main test, which checks the offset values and the loop 3099 // increment value to determine if the accesses may be loop carried. 3100 if (OffsetS >= OffsetD) 3101 return OffsetS + AccessSizeS > DeltaS; 3102 else 3103 return OffsetD + AccessSizeD > DeltaD; 3104 3105 return true; 3106 } 3107 3108 void SwingSchedulerDAG::postprocessDAG() { 3109 for (auto &M : Mutations) 3110 M->apply(this); 3111 } 3112 3113 /// Try to schedule the node at the specified StartCycle and continue 3114 /// until the node is schedule or the EndCycle is reached. This function 3115 /// returns true if the node is scheduled. This routine may search either 3116 /// forward or backward for a place to insert the instruction based upon 3117 /// the relative values of StartCycle and EndCycle. 3118 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 3119 bool forward = true; 3120 if (StartCycle > EndCycle) 3121 forward = false; 3122 3123 // The terminating condition depends on the direction. 3124 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 3125 for (int curCycle = StartCycle; curCycle != termCycle; 3126 forward ? ++curCycle : --curCycle) { 3127 3128 // Add the already scheduled instructions at the specified cycle to the DFA. 3129 Resources->clearResources(); 3130 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 3131 checkCycle <= LastCycle; checkCycle += II) { 3132 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 3133 3134 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), 3135 E = cycleInstrs.end(); 3136 I != E; ++I) { 3137 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) 3138 continue; 3139 assert(Resources->canReserveResources(*(*I)->getInstr()) && 3140 "These instructions have already been scheduled."); 3141 Resources->reserveResources(*(*I)->getInstr()); 3142 } 3143 } 3144 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 3145 Resources->canReserveResources(*SU->getInstr())) { 3146 LLVM_DEBUG({ 3147 dbgs() << "\tinsert at cycle " << curCycle << " "; 3148 SU->getInstr()->dump(); 3149 }); 3150 3151 ScheduledInstrs[curCycle].push_back(SU); 3152 InstrToCycle.insert(std::make_pair(SU, curCycle)); 3153 if (curCycle > LastCycle) 3154 LastCycle = curCycle; 3155 if (curCycle < FirstCycle) 3156 FirstCycle = curCycle; 3157 return true; 3158 } 3159 LLVM_DEBUG({ 3160 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 3161 SU->getInstr()->dump(); 3162 }); 3163 } 3164 return false; 3165 } 3166 3167 // Return the cycle of the earliest scheduled instruction in the chain. 3168 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 3169 SmallPtrSet<SUnit *, 8> Visited; 3170 SmallVector<SDep, 8> Worklist; 3171 Worklist.push_back(Dep); 3172 int EarlyCycle = INT_MAX; 3173 while (!Worklist.empty()) { 3174 const SDep &Cur = Worklist.pop_back_val(); 3175 SUnit *PrevSU = Cur.getSUnit(); 3176 if (Visited.count(PrevSU)) 3177 continue; 3178 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 3179 if (it == InstrToCycle.end()) 3180 continue; 3181 EarlyCycle = std::min(EarlyCycle, it->second); 3182 for (const auto &PI : PrevSU->Preds) 3183 if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) 3184 Worklist.push_back(PI); 3185 Visited.insert(PrevSU); 3186 } 3187 return EarlyCycle; 3188 } 3189 3190 // Return the cycle of the latest scheduled instruction in the chain. 3191 int SMSchedule::latestCycleInChain(const SDep &Dep) { 3192 SmallPtrSet<SUnit *, 8> Visited; 3193 SmallVector<SDep, 8> Worklist; 3194 Worklist.push_back(Dep); 3195 int LateCycle = INT_MIN; 3196 while (!Worklist.empty()) { 3197 const SDep &Cur = Worklist.pop_back_val(); 3198 SUnit *SuccSU = Cur.getSUnit(); 3199 if (Visited.count(SuccSU)) 3200 continue; 3201 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 3202 if (it == InstrToCycle.end()) 3203 continue; 3204 LateCycle = std::max(LateCycle, it->second); 3205 for (const auto &SI : SuccSU->Succs) 3206 if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) 3207 Worklist.push_back(SI); 3208 Visited.insert(SuccSU); 3209 } 3210 return LateCycle; 3211 } 3212 3213 /// If an instruction has a use that spans multiple iterations, then 3214 /// return true. These instructions are characterized by having a back-ege 3215 /// to a Phi, which contains a reference to another Phi. 3216 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 3217 for (auto &P : SU->Preds) 3218 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 3219 for (auto &S : P.getSUnit()->Succs) 3220 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 3221 return P.getSUnit(); 3222 return nullptr; 3223 } 3224 3225 /// Compute the scheduling start slot for the instruction. The start slot 3226 /// depends on any predecessor or successor nodes scheduled already. 3227 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 3228 int *MinEnd, int *MaxStart, int II, 3229 SwingSchedulerDAG *DAG) { 3230 // Iterate over each instruction that has been scheduled already. The start 3231 // slot computation depends on whether the previously scheduled instruction 3232 // is a predecessor or successor of the specified instruction. 3233 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 3234 3235 // Iterate over each instruction in the current cycle. 3236 for (SUnit *I : getInstructions(cycle)) { 3237 // Because we're processing a DAG for the dependences, we recognize 3238 // the back-edge in recurrences by anti dependences. 3239 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 3240 const SDep &Dep = SU->Preds[i]; 3241 if (Dep.getSUnit() == I) { 3242 if (!DAG->isBackedge(SU, Dep)) { 3243 int EarlyStart = cycle + Dep.getLatency() - 3244 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3245 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3246 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 3247 int End = earliestCycleInChain(Dep) + (II - 1); 3248 *MinEnd = std::min(*MinEnd, End); 3249 } 3250 } else { 3251 int LateStart = cycle - Dep.getLatency() + 3252 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3253 *MinLateStart = std::min(*MinLateStart, LateStart); 3254 } 3255 } 3256 // For instruction that requires multiple iterations, make sure that 3257 // the dependent instruction is not scheduled past the definition. 3258 SUnit *BE = multipleIterations(I, DAG); 3259 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 3260 !SU->isPred(I)) 3261 *MinLateStart = std::min(*MinLateStart, cycle); 3262 } 3263 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 3264 if (SU->Succs[i].getSUnit() == I) { 3265 const SDep &Dep = SU->Succs[i]; 3266 if (!DAG->isBackedge(SU, Dep)) { 3267 int LateStart = cycle - Dep.getLatency() + 3268 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3269 *MinLateStart = std::min(*MinLateStart, LateStart); 3270 if (DAG->isLoopCarriedDep(SU, Dep)) { 3271 int Start = latestCycleInChain(Dep) + 1 - II; 3272 *MaxStart = std::max(*MaxStart, Start); 3273 } 3274 } else { 3275 int EarlyStart = cycle + Dep.getLatency() - 3276 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3277 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3278 } 3279 } 3280 } 3281 } 3282 } 3283 } 3284 3285 /// Order the instructions within a cycle so that the definitions occur 3286 /// before the uses. Returns true if the instruction is added to the start 3287 /// of the list, or false if added to the end. 3288 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 3289 std::deque<SUnit *> &Insts) { 3290 MachineInstr *MI = SU->getInstr(); 3291 bool OrderBeforeUse = false; 3292 bool OrderAfterDef = false; 3293 bool OrderBeforeDef = false; 3294 unsigned MoveDef = 0; 3295 unsigned MoveUse = 0; 3296 int StageInst1 = stageScheduled(SU); 3297 3298 unsigned Pos = 0; 3299 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 3300 ++I, ++Pos) { 3301 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3302 MachineOperand &MO = MI->getOperand(i); 3303 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3304 continue; 3305 3306 unsigned Reg = MO.getReg(); 3307 unsigned BasePos, OffsetPos; 3308 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3309 if (MI->getOperand(BasePos).getReg() == Reg) 3310 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 3311 Reg = NewReg; 3312 bool Reads, Writes; 3313 std::tie(Reads, Writes) = 3314 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 3315 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 3316 OrderBeforeUse = true; 3317 if (MoveUse == 0) 3318 MoveUse = Pos; 3319 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 3320 // Add the instruction after the scheduled instruction. 3321 OrderAfterDef = true; 3322 MoveDef = Pos; 3323 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 3324 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 3325 OrderBeforeUse = true; 3326 if (MoveUse == 0) 3327 MoveUse = Pos; 3328 } else { 3329 OrderAfterDef = true; 3330 MoveDef = Pos; 3331 } 3332 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 3333 OrderBeforeUse = true; 3334 if (MoveUse == 0) 3335 MoveUse = Pos; 3336 if (MoveUse != 0) { 3337 OrderAfterDef = true; 3338 MoveDef = Pos - 1; 3339 } 3340 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 3341 // Add the instruction before the scheduled instruction. 3342 OrderBeforeUse = true; 3343 if (MoveUse == 0) 3344 MoveUse = Pos; 3345 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 3346 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 3347 if (MoveUse == 0) { 3348 OrderBeforeDef = true; 3349 MoveUse = Pos; 3350 } 3351 } 3352 } 3353 // Check for order dependences between instructions. Make sure the source 3354 // is ordered before the destination. 3355 for (auto &S : SU->Succs) { 3356 if (S.getSUnit() != *I) 3357 continue; 3358 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3359 OrderBeforeUse = true; 3360 if (Pos < MoveUse) 3361 MoveUse = Pos; 3362 } 3363 } 3364 for (auto &P : SU->Preds) { 3365 if (P.getSUnit() != *I) 3366 continue; 3367 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3368 OrderAfterDef = true; 3369 MoveDef = Pos; 3370 } 3371 } 3372 } 3373 3374 // A circular dependence. 3375 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 3376 OrderBeforeUse = false; 3377 3378 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 3379 // to a loop-carried dependence. 3380 if (OrderBeforeDef) 3381 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 3382 3383 // The uncommon case when the instruction order needs to be updated because 3384 // there is both a use and def. 3385 if (OrderBeforeUse && OrderAfterDef) { 3386 SUnit *UseSU = Insts.at(MoveUse); 3387 SUnit *DefSU = Insts.at(MoveDef); 3388 if (MoveUse > MoveDef) { 3389 Insts.erase(Insts.begin() + MoveUse); 3390 Insts.erase(Insts.begin() + MoveDef); 3391 } else { 3392 Insts.erase(Insts.begin() + MoveDef); 3393 Insts.erase(Insts.begin() + MoveUse); 3394 } 3395 orderDependence(SSD, UseSU, Insts); 3396 orderDependence(SSD, SU, Insts); 3397 orderDependence(SSD, DefSU, Insts); 3398 return; 3399 } 3400 // Put the new instruction first if there is a use in the list. Otherwise, 3401 // put it at the end of the list. 3402 if (OrderBeforeUse) 3403 Insts.push_front(SU); 3404 else 3405 Insts.push_back(SU); 3406 } 3407 3408 /// Return true if the scheduled Phi has a loop carried operand. 3409 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 3410 if (!Phi.isPHI()) 3411 return false; 3412 assert(Phi.isPHI() && "Expecting a Phi."); 3413 SUnit *DefSU = SSD->getSUnit(&Phi); 3414 unsigned DefCycle = cycleScheduled(DefSU); 3415 int DefStage = stageScheduled(DefSU); 3416 3417 unsigned InitVal = 0; 3418 unsigned LoopVal = 0; 3419 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 3420 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 3421 if (!UseSU) 3422 return true; 3423 if (UseSU->getInstr()->isPHI()) 3424 return true; 3425 unsigned LoopCycle = cycleScheduled(UseSU); 3426 int LoopStage = stageScheduled(UseSU); 3427 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 3428 } 3429 3430 /// Return true if the instruction is a definition that is loop carried 3431 /// and defines the use on the next iteration. 3432 /// v1 = phi(v2, v3) 3433 /// (Def) v3 = op v1 3434 /// (MO) = v1 3435 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 3436 /// register. 3437 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 3438 MachineInstr *Def, MachineOperand &MO) { 3439 if (!MO.isReg()) 3440 return false; 3441 if (Def->isPHI()) 3442 return false; 3443 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 3444 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 3445 return false; 3446 if (!isLoopCarried(SSD, *Phi)) 3447 return false; 3448 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 3449 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 3450 MachineOperand &DMO = Def->getOperand(i); 3451 if (!DMO.isReg() || !DMO.isDef()) 3452 continue; 3453 if (DMO.getReg() == LoopReg) 3454 return true; 3455 } 3456 return false; 3457 } 3458 3459 // Check if the generated schedule is valid. This function checks if 3460 // an instruction that uses a physical register is scheduled in a 3461 // different stage than the definition. The pipeliner does not handle 3462 // physical register values that may cross a basic block boundary. 3463 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 3464 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { 3465 SUnit &SU = SSD->SUnits[i]; 3466 if (!SU.hasPhysRegDefs) 3467 continue; 3468 int StageDef = stageScheduled(&SU); 3469 assert(StageDef != -1 && "Instruction should have been scheduled."); 3470 for (auto &SI : SU.Succs) 3471 if (SI.isAssignedRegDep()) 3472 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg())) 3473 if (stageScheduled(SI.getSUnit()) != StageDef) 3474 return false; 3475 } 3476 return true; 3477 } 3478 3479 /// A property of the node order in swing-modulo-scheduling is 3480 /// that for nodes outside circuits the following holds: 3481 /// none of them is scheduled after both a successor and a 3482 /// predecessor. 3483 /// The method below checks whether the property is met. 3484 /// If not, debug information is printed and statistics information updated. 3485 /// Note that we do not use an assert statement. 3486 /// The reason is that although an invalid node oder may prevent 3487 /// the pipeliner from finding a pipelined schedule for arbitrary II, 3488 /// it does not lead to the generation of incorrect code. 3489 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 3490 3491 // a sorted vector that maps each SUnit to its index in the NodeOrder 3492 typedef std::pair<SUnit *, unsigned> UnitIndex; 3493 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 3494 3495 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 3496 Indices.push_back(std::make_pair(NodeOrder[i], i)); 3497 3498 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 3499 return std::get<0>(i1) < std::get<0>(i2); 3500 }; 3501 3502 // sort, so that we can perform a binary search 3503 llvm::sort(Indices, CompareKey); 3504 3505 bool Valid = true; 3506 (void)Valid; 3507 // for each SUnit in the NodeOrder, check whether 3508 // it appears after both a successor and a predecessor 3509 // of the SUnit. If this is the case, and the SUnit 3510 // is not part of circuit, then the NodeOrder is not 3511 // valid. 3512 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 3513 SUnit *SU = NodeOrder[i]; 3514 unsigned Index = i; 3515 3516 bool PredBefore = false; 3517 bool SuccBefore = false; 3518 3519 SUnit *Succ; 3520 SUnit *Pred; 3521 (void)Succ; 3522 (void)Pred; 3523 3524 for (SDep &PredEdge : SU->Preds) { 3525 SUnit *PredSU = PredEdge.getSUnit(); 3526 unsigned PredIndex = 3527 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), 3528 std::make_pair(PredSU, 0), CompareKey)); 3529 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 3530 PredBefore = true; 3531 Pred = PredSU; 3532 break; 3533 } 3534 } 3535 3536 for (SDep &SuccEdge : SU->Succs) { 3537 SUnit *SuccSU = SuccEdge.getSUnit(); 3538 unsigned SuccIndex = 3539 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), 3540 std::make_pair(SuccSU, 0), CompareKey)); 3541 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 3542 SuccBefore = true; 3543 Succ = SuccSU; 3544 break; 3545 } 3546 } 3547 3548 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 3549 // instructions in circuits are allowed to be scheduled 3550 // after both a successor and predecessor. 3551 bool InCircuit = std::any_of( 3552 Circuits.begin(), Circuits.end(), 3553 [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 3554 if (InCircuit) 3555 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); 3556 else { 3557 Valid = false; 3558 NumNodeOrderIssues++; 3559 LLVM_DEBUG(dbgs() << "Predecessor ";); 3560 } 3561 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 3562 << " are scheduled before node " << SU->NodeNum 3563 << "\n";); 3564 } 3565 } 3566 3567 LLVM_DEBUG({ 3568 if (!Valid) 3569 dbgs() << "Invalid node order found!\n"; 3570 }); 3571 } 3572 3573 /// Attempt to fix the degenerate cases when the instruction serialization 3574 /// causes the register lifetimes to overlap. For example, 3575 /// p' = store_pi(p, b) 3576 /// = load p, offset 3577 /// In this case p and p' overlap, which means that two registers are needed. 3578 /// Instead, this function changes the load to use p' and updates the offset. 3579 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 3580 unsigned OverlapReg = 0; 3581 unsigned NewBaseReg = 0; 3582 for (SUnit *SU : Instrs) { 3583 MachineInstr *MI = SU->getInstr(); 3584 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3585 const MachineOperand &MO = MI->getOperand(i); 3586 // Look for an instruction that uses p. The instruction occurs in the 3587 // same cycle but occurs later in the serialized order. 3588 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 3589 // Check that the instruction appears in the InstrChanges structure, 3590 // which contains instructions that can have the offset updated. 3591 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3592 InstrChanges.find(SU); 3593 if (It != InstrChanges.end()) { 3594 unsigned BasePos, OffsetPos; 3595 // Update the base register and adjust the offset. 3596 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 3597 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3598 NewMI->getOperand(BasePos).setReg(NewBaseReg); 3599 int64_t NewOffset = 3600 MI->getOperand(OffsetPos).getImm() - It->second.second; 3601 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3602 SU->setInstr(NewMI); 3603 MISUnitMap[NewMI] = SU; 3604 NewMIs.insert(NewMI); 3605 } 3606 } 3607 OverlapReg = 0; 3608 NewBaseReg = 0; 3609 break; 3610 } 3611 // Look for an instruction of the form p' = op(p), which uses and defines 3612 // two virtual registers that get allocated to the same physical register. 3613 unsigned TiedUseIdx = 0; 3614 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 3615 // OverlapReg is p in the example above. 3616 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 3617 // NewBaseReg is p' in the example above. 3618 NewBaseReg = MI->getOperand(i).getReg(); 3619 break; 3620 } 3621 } 3622 } 3623 } 3624 3625 /// After the schedule has been formed, call this function to combine 3626 /// the instructions from the different stages/cycles. That is, this 3627 /// function creates a schedule that represents a single iteration. 3628 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 3629 // Move all instructions to the first stage from later stages. 3630 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3631 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 3632 ++stage) { 3633 std::deque<SUnit *> &cycleInstrs = 3634 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 3635 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 3636 E = cycleInstrs.rend(); 3637 I != E; ++I) 3638 ScheduledInstrs[cycle].push_front(*I); 3639 } 3640 } 3641 // Iterate over the definitions in each instruction, and compute the 3642 // stage difference for each use. Keep the maximum value. 3643 for (auto &I : InstrToCycle) { 3644 int DefStage = stageScheduled(I.first); 3645 MachineInstr *MI = I.first->getInstr(); 3646 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3647 MachineOperand &Op = MI->getOperand(i); 3648 if (!Op.isReg() || !Op.isDef()) 3649 continue; 3650 3651 unsigned Reg = Op.getReg(); 3652 unsigned MaxDiff = 0; 3653 bool PhiIsSwapped = false; 3654 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 3655 EI = MRI.use_end(); 3656 UI != EI; ++UI) { 3657 MachineOperand &UseOp = *UI; 3658 MachineInstr *UseMI = UseOp.getParent(); 3659 SUnit *SUnitUse = SSD->getSUnit(UseMI); 3660 int UseStage = stageScheduled(SUnitUse); 3661 unsigned Diff = 0; 3662 if (UseStage != -1 && UseStage >= DefStage) 3663 Diff = UseStage - DefStage; 3664 if (MI->isPHI()) { 3665 if (isLoopCarried(SSD, *MI)) 3666 ++Diff; 3667 else 3668 PhiIsSwapped = true; 3669 } 3670 MaxDiff = std::max(Diff, MaxDiff); 3671 } 3672 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 3673 } 3674 } 3675 3676 // Erase all the elements in the later stages. Only one iteration should 3677 // remain in the scheduled list, and it contains all the instructions. 3678 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 3679 ScheduledInstrs.erase(cycle); 3680 3681 // Change the registers in instruction as specified in the InstrChanges 3682 // map. We need to use the new registers to create the correct order. 3683 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 3684 SUnit *SU = &SSD->SUnits[i]; 3685 SSD->applyInstrChange(SU->getInstr(), *this); 3686 } 3687 3688 // Reorder the instructions in each cycle to fix and improve the 3689 // generated code. 3690 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 3691 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 3692 std::deque<SUnit *> newOrderPhi; 3693 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 3694 SUnit *SU = cycleInstrs[i]; 3695 if (SU->getInstr()->isPHI()) 3696 newOrderPhi.push_back(SU); 3697 } 3698 std::deque<SUnit *> newOrderI; 3699 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 3700 SUnit *SU = cycleInstrs[i]; 3701 if (!SU->getInstr()->isPHI()) 3702 orderDependence(SSD, SU, newOrderI); 3703 } 3704 // Replace the old order with the new order. 3705 cycleInstrs.swap(newOrderPhi); 3706 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); 3707 SSD->fixupRegisterOverlaps(cycleInstrs); 3708 } 3709 3710 LLVM_DEBUG(dump();); 3711 } 3712 3713 void NodeSet::print(raw_ostream &os) const { 3714 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 3715 << " depth " << MaxDepth << " col " << Colocate << "\n"; 3716 for (const auto &I : Nodes) 3717 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 3718 os << "\n"; 3719 } 3720 3721 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3722 /// Print the schedule information to the given output. 3723 void SMSchedule::print(raw_ostream &os) const { 3724 // Iterate over each cycle. 3725 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3726 // Iterate over each instruction in the cycle. 3727 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 3728 for (SUnit *CI : cycleInstrs->second) { 3729 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 3730 os << "(" << CI->NodeNum << ") "; 3731 CI->getInstr()->print(os); 3732 os << "\n"; 3733 } 3734 } 3735 } 3736 3737 /// Utility function used for debugging to print the schedule. 3738 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 3739 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } 3740 3741 #endif 3742 3743 3744 3745