12cab237bSDimitry Andric //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
2d88c1a5aSDimitry Andric //
3d88c1a5aSDimitry Andric //                     The LLVM Compiler Infrastructure
4d88c1a5aSDimitry Andric //
5d88c1a5aSDimitry Andric // This file is distributed under the University of Illinois Open Source
6d88c1a5aSDimitry Andric // License. See LICENSE.TXT for details.
7d88c1a5aSDimitry Andric //
8d88c1a5aSDimitry Andric //===----------------------------------------------------------------------===//
9d88c1a5aSDimitry Andric //
10d88c1a5aSDimitry Andric // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
11d88c1a5aSDimitry Andric //
12d88c1a5aSDimitry Andric // This SMS implementation is a target-independent back-end pass. When enabled,
13d88c1a5aSDimitry Andric // the pass runs just prior to the register allocation pass, while the machine
14d88c1a5aSDimitry Andric // IR is in SSA form. If software pipelining is successful, then the original
15d88c1a5aSDimitry Andric // loop is replaced by the optimized loop. The optimized loop contains one or
16d88c1a5aSDimitry Andric // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
17d88c1a5aSDimitry Andric // the instructions cannot be scheduled in a given MII, we increase the MII by
18d88c1a5aSDimitry Andric // one and try again.
19d88c1a5aSDimitry Andric //
20d88c1a5aSDimitry Andric // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
21d88c1a5aSDimitry Andric // represent loop carried dependences in the DAG as order edges to the Phi
22d88c1a5aSDimitry Andric // nodes. We also perform several passes over the DAG to eliminate unnecessary
23d88c1a5aSDimitry Andric // edges that inhibit the ability to pipeline. The implementation uses the
24d88c1a5aSDimitry Andric // DFAPacketizer class to compute the minimum initiation interval and the check
25d88c1a5aSDimitry Andric // where an instruction may be inserted in the pipelined schedule.
26d88c1a5aSDimitry Andric //
27d88c1a5aSDimitry Andric // In order for the SMS pass to work, several target specific hooks need to be
28d88c1a5aSDimitry Andric // implemented to get information about the loop structure and to rewrite
29d88c1a5aSDimitry Andric // instructions.
30d88c1a5aSDimitry Andric //
31d88c1a5aSDimitry Andric //===----------------------------------------------------------------------===//
32d88c1a5aSDimitry Andric 
33d88c1a5aSDimitry Andric #include "llvm/ADT/ArrayRef.h"
34d88c1a5aSDimitry Andric #include "llvm/ADT/BitVector.h"
35d88c1a5aSDimitry Andric #include "llvm/ADT/DenseMap.h"
36d88c1a5aSDimitry Andric #include "llvm/ADT/MapVector.h"
37d88c1a5aSDimitry Andric #include "llvm/ADT/PriorityQueue.h"
38d88c1a5aSDimitry Andric #include "llvm/ADT/SetVector.h"
39d88c1a5aSDimitry Andric #include "llvm/ADT/SmallPtrSet.h"
40d88c1a5aSDimitry Andric #include "llvm/ADT/SmallSet.h"
41d88c1a5aSDimitry Andric #include "llvm/ADT/SmallVector.h"
42d88c1a5aSDimitry Andric #include "llvm/ADT/Statistic.h"
43db17bf38SDimitry Andric #include "llvm/ADT/iterator_range.h"
44d88c1a5aSDimitry Andric #include "llvm/Analysis/AliasAnalysis.h"
45d88c1a5aSDimitry Andric #include "llvm/Analysis/MemoryLocation.h"
46d88c1a5aSDimitry Andric #include "llvm/Analysis/ValueTracking.h"
47d88c1a5aSDimitry Andric #include "llvm/CodeGen/DFAPacketizer.h"
482cab237bSDimitry Andric #include "llvm/CodeGen/LiveIntervals.h"
49d88c1a5aSDimitry Andric #include "llvm/CodeGen/MachineBasicBlock.h"
50d88c1a5aSDimitry Andric #include "llvm/CodeGen/MachineDominators.h"
51d88c1a5aSDimitry Andric #include "llvm/CodeGen/MachineFunction.h"
52d88c1a5aSDimitry Andric #include "llvm/CodeGen/MachineFunctionPass.h"
53d88c1a5aSDimitry Andric #include "llvm/CodeGen/MachineInstr.h"
54d88c1a5aSDimitry Andric #include "llvm/CodeGen/MachineInstrBuilder.h"
55d88c1a5aSDimitry Andric #include "llvm/CodeGen/MachineLoopInfo.h"
56d88c1a5aSDimitry Andric #include "llvm/CodeGen/MachineMemOperand.h"
57d88c1a5aSDimitry Andric #include "llvm/CodeGen/MachineOperand.h"
58*b5893f02SDimitry Andric #include "llvm/CodeGen/MachinePipeliner.h"
59d88c1a5aSDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h"
60d88c1a5aSDimitry Andric #include "llvm/CodeGen/RegisterPressure.h"
61d88c1a5aSDimitry Andric #include "llvm/CodeGen/ScheduleDAG.h"
62d88c1a5aSDimitry Andric #include "llvm/CodeGen/ScheduleDAGMutation.h"
632cab237bSDimitry Andric #include "llvm/CodeGen/TargetOpcodes.h"
642cab237bSDimitry Andric #include "llvm/CodeGen/TargetRegisterInfo.h"
652cab237bSDimitry Andric #include "llvm/CodeGen/TargetSubtargetInfo.h"
664ba319b5SDimitry Andric #include "llvm/Config/llvm-config.h"
67d88c1a5aSDimitry Andric #include "llvm/IR/Attributes.h"
68d88c1a5aSDimitry Andric #include "llvm/IR/DebugLoc.h"
692cab237bSDimitry Andric #include "llvm/IR/Function.h"
702cab237bSDimitry Andric #include "llvm/MC/LaneBitmask.h"
712cab237bSDimitry Andric #include "llvm/MC/MCInstrDesc.h"
72d88c1a5aSDimitry Andric #include "llvm/MC/MCInstrItineraries.h"
732cab237bSDimitry Andric #include "llvm/MC/MCRegisterInfo.h"
742cab237bSDimitry Andric #include "llvm/Pass.h"
75d88c1a5aSDimitry Andric #include "llvm/Support/CommandLine.h"
762cab237bSDimitry Andric #include "llvm/Support/Compiler.h"
77d88c1a5aSDimitry Andric #include "llvm/Support/Debug.h"
78d88c1a5aSDimitry Andric #include "llvm/Support/MathExtras.h"
79d88c1a5aSDimitry Andric #include "llvm/Support/raw_ostream.h"
80d88c1a5aSDimitry Andric #include <algorithm>
81d88c1a5aSDimitry Andric #include <cassert>
82d88c1a5aSDimitry Andric #include <climits>
83d88c1a5aSDimitry Andric #include <cstdint>
84d88c1a5aSDimitry Andric #include <deque>
85d88c1a5aSDimitry Andric #include <functional>
86d88c1a5aSDimitry Andric #include <iterator>
87d88c1a5aSDimitry Andric #include <map>
882cab237bSDimitry Andric #include <memory>
89d88c1a5aSDimitry Andric #include <tuple>
90d88c1a5aSDimitry Andric #include <utility>
91d88c1a5aSDimitry Andric #include <vector>
92d88c1a5aSDimitry Andric 
93d88c1a5aSDimitry Andric using namespace llvm;
94d88c1a5aSDimitry Andric 
95d88c1a5aSDimitry Andric #define DEBUG_TYPE "pipeliner"
96d88c1a5aSDimitry Andric 
97d88c1a5aSDimitry Andric STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
98d88c1a5aSDimitry Andric STATISTIC(NumPipelined, "Number of loops software pipelined");
994ba319b5SDimitry Andric STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
100d88c1a5aSDimitry Andric 
101d88c1a5aSDimitry Andric /// A command line option to turn software pipelining on or off.
102d88c1a5aSDimitry Andric static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
103d88c1a5aSDimitry Andric                                cl::ZeroOrMore,
104d88c1a5aSDimitry Andric                                cl::desc("Enable Software Pipelining"));
105d88c1a5aSDimitry Andric 
106d88c1a5aSDimitry Andric /// A command line option to enable SWP at -Os.
107d88c1a5aSDimitry Andric static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
108d88c1a5aSDimitry Andric                                       cl::desc("Enable SWP at Os."), cl::Hidden,
109d88c1a5aSDimitry Andric                                       cl::init(false));
110d88c1a5aSDimitry Andric 
111d88c1a5aSDimitry Andric /// A command line argument to limit minimum initial interval for pipelining.
112d88c1a5aSDimitry Andric static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
1134ba319b5SDimitry Andric                               cl::desc("Size limit for the MII."),
114d88c1a5aSDimitry Andric                               cl::Hidden, cl::init(27));
115d88c1a5aSDimitry Andric 
116d88c1a5aSDimitry Andric /// A command line argument to limit the number of stages in the pipeline.
117d88c1a5aSDimitry Andric static cl::opt<int>
118d88c1a5aSDimitry Andric     SwpMaxStages("pipeliner-max-stages",
119d88c1a5aSDimitry Andric                  cl::desc("Maximum stages allowed in the generated scheduled."),
120d88c1a5aSDimitry Andric                  cl::Hidden, cl::init(3));
121d88c1a5aSDimitry Andric 
122d88c1a5aSDimitry Andric /// A command line option to disable the pruning of chain dependences due to
123d88c1a5aSDimitry Andric /// an unrelated Phi.
124d88c1a5aSDimitry Andric static cl::opt<bool>
125d88c1a5aSDimitry Andric     SwpPruneDeps("pipeliner-prune-deps",
126d88c1a5aSDimitry Andric                  cl::desc("Prune dependences between unrelated Phi nodes."),
127d88c1a5aSDimitry Andric                  cl::Hidden, cl::init(true));
128d88c1a5aSDimitry Andric 
129d88c1a5aSDimitry Andric /// A command line option to disable the pruning of loop carried order
130d88c1a5aSDimitry Andric /// dependences.
131d88c1a5aSDimitry Andric static cl::opt<bool>
132d88c1a5aSDimitry Andric     SwpPruneLoopCarried("pipeliner-prune-loop-carried",
133d88c1a5aSDimitry Andric                         cl::desc("Prune loop carried order dependences."),
134d88c1a5aSDimitry Andric                         cl::Hidden, cl::init(true));
135d88c1a5aSDimitry Andric 
136d88c1a5aSDimitry Andric #ifndef NDEBUG
137d88c1a5aSDimitry Andric static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
138d88c1a5aSDimitry Andric #endif
139d88c1a5aSDimitry Andric 
140d88c1a5aSDimitry Andric static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
141d88c1a5aSDimitry Andric                                      cl::ReallyHidden, cl::init(false),
142d88c1a5aSDimitry Andric                                      cl::ZeroOrMore, cl::desc("Ignore RecMII"));
143d88c1a5aSDimitry Andric 
144*b5893f02SDimitry Andric namespace llvm {
145d88c1a5aSDimitry Andric 
146*b5893f02SDimitry Andric // A command line option to enable the CopyToPhi DAG mutation.
147*b5893f02SDimitry Andric cl::opt<bool>
148*b5893f02SDimitry Andric     SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
149*b5893f02SDimitry Andric                        cl::init(true), cl::ZeroOrMore,
150*b5893f02SDimitry Andric                        cl::desc("Enable CopyToPhi DAG Mutation"));
151d88c1a5aSDimitry Andric 
152*b5893f02SDimitry Andric } // end namespace llvm
153d88c1a5aSDimitry Andric 
154d88c1a5aSDimitry Andric unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
155d88c1a5aSDimitry Andric char MachinePipeliner::ID = 0;
156d88c1a5aSDimitry Andric #ifndef NDEBUG
157d88c1a5aSDimitry Andric int MachinePipeliner::NumTries = 0;
158d88c1a5aSDimitry Andric #endif
159d88c1a5aSDimitry Andric char &llvm::MachinePipelinerID = MachinePipeliner::ID;
1602cab237bSDimitry Andric 
161302affcbSDimitry Andric INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
162d88c1a5aSDimitry Andric                       "Modulo Software Pipelining", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)163d88c1a5aSDimitry Andric INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
164d88c1a5aSDimitry Andric INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
165d88c1a5aSDimitry Andric INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
166d88c1a5aSDimitry Andric INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
167302affcbSDimitry Andric INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
168d88c1a5aSDimitry Andric                     "Modulo Software Pipelining", false, false)
169d88c1a5aSDimitry Andric 
170d88c1a5aSDimitry Andric /// The "main" function for implementing Swing Modulo Scheduling.
171d88c1a5aSDimitry Andric bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
1722cab237bSDimitry Andric   if (skipFunction(mf.getFunction()))
173d88c1a5aSDimitry Andric     return false;
174d88c1a5aSDimitry Andric 
175d88c1a5aSDimitry Andric   if (!EnableSWP)
176d88c1a5aSDimitry Andric     return false;
177d88c1a5aSDimitry Andric 
1782cab237bSDimitry Andric   if (mf.getFunction().getAttributes().hasAttribute(
1797a7e6055SDimitry Andric           AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
180d88c1a5aSDimitry Andric       !EnableSWPOptSize.getPosition())
181d88c1a5aSDimitry Andric     return false;
182d88c1a5aSDimitry Andric 
183d88c1a5aSDimitry Andric   MF = &mf;
184d88c1a5aSDimitry Andric   MLI = &getAnalysis<MachineLoopInfo>();
185d88c1a5aSDimitry Andric   MDT = &getAnalysis<MachineDominatorTree>();
186d88c1a5aSDimitry Andric   TII = MF->getSubtarget().getInstrInfo();
187d88c1a5aSDimitry Andric   RegClassInfo.runOnMachineFunction(*MF);
188d88c1a5aSDimitry Andric 
189d88c1a5aSDimitry Andric   for (auto &L : *MLI)
190d88c1a5aSDimitry Andric     scheduleLoop(*L);
191d88c1a5aSDimitry Andric 
192d88c1a5aSDimitry Andric   return false;
193d88c1a5aSDimitry Andric }
194d88c1a5aSDimitry Andric 
195d88c1a5aSDimitry Andric /// Attempt to perform the SMS algorithm on the specified loop. This function is
196d88c1a5aSDimitry Andric /// the main entry point for the algorithm.  The function identifies candidate
197d88c1a5aSDimitry Andric /// loops, calculates the minimum initiation interval, and attempts to schedule
198d88c1a5aSDimitry Andric /// the loop.
scheduleLoop(MachineLoop & L)199d88c1a5aSDimitry Andric bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
200d88c1a5aSDimitry Andric   bool Changed = false;
201d88c1a5aSDimitry Andric   for (auto &InnerLoop : L)
202d88c1a5aSDimitry Andric     Changed |= scheduleLoop(*InnerLoop);
203d88c1a5aSDimitry Andric 
204d88c1a5aSDimitry Andric #ifndef NDEBUG
205d88c1a5aSDimitry Andric   // Stop trying after reaching the limit (if any).
206d88c1a5aSDimitry Andric   int Limit = SwpLoopLimit;
207d88c1a5aSDimitry Andric   if (Limit >= 0) {
208d88c1a5aSDimitry Andric     if (NumTries >= SwpLoopLimit)
209d88c1a5aSDimitry Andric       return Changed;
210d88c1a5aSDimitry Andric     NumTries++;
211d88c1a5aSDimitry Andric   }
212d88c1a5aSDimitry Andric #endif
213d88c1a5aSDimitry Andric 
214d88c1a5aSDimitry Andric   if (!canPipelineLoop(L))
215d88c1a5aSDimitry Andric     return Changed;
216d88c1a5aSDimitry Andric 
217d88c1a5aSDimitry Andric   ++NumTrytoPipeline;
218d88c1a5aSDimitry Andric 
219d88c1a5aSDimitry Andric   Changed = swingModuloScheduler(L);
220d88c1a5aSDimitry Andric 
221d88c1a5aSDimitry Andric   return Changed;
222d88c1a5aSDimitry Andric }
223d88c1a5aSDimitry Andric 
224d88c1a5aSDimitry Andric /// Return true if the loop can be software pipelined.  The algorithm is
225d88c1a5aSDimitry Andric /// restricted to loops with a single basic block.  Make sure that the
226d88c1a5aSDimitry Andric /// branch in the loop can be analyzed.
canPipelineLoop(MachineLoop & L)227d88c1a5aSDimitry Andric bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
228d88c1a5aSDimitry Andric   if (L.getNumBlocks() != 1)
229d88c1a5aSDimitry Andric     return false;
230d88c1a5aSDimitry Andric 
231d88c1a5aSDimitry Andric   // Check if the branch can't be understood because we can't do pipelining
232d88c1a5aSDimitry Andric   // if that's the case.
233d88c1a5aSDimitry Andric   LI.TBB = nullptr;
234d88c1a5aSDimitry Andric   LI.FBB = nullptr;
235d88c1a5aSDimitry Andric   LI.BrCond.clear();
236d88c1a5aSDimitry Andric   if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond))
237d88c1a5aSDimitry Andric     return false;
238d88c1a5aSDimitry Andric 
239d88c1a5aSDimitry Andric   LI.LoopInductionVar = nullptr;
240d88c1a5aSDimitry Andric   LI.LoopCompare = nullptr;
241d88c1a5aSDimitry Andric   if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare))
242d88c1a5aSDimitry Andric     return false;
243d88c1a5aSDimitry Andric 
244d88c1a5aSDimitry Andric   if (!L.getLoopPreheader())
245d88c1a5aSDimitry Andric     return false;
246d88c1a5aSDimitry Andric 
2474ba319b5SDimitry Andric   // Remove any subregisters from inputs to phi nodes.
2484ba319b5SDimitry Andric   preprocessPhiNodes(*L.getHeader());
249d88c1a5aSDimitry Andric   return true;
250d88c1a5aSDimitry Andric }
251d88c1a5aSDimitry Andric 
preprocessPhiNodes(MachineBasicBlock & B)2524ba319b5SDimitry Andric void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
2534ba319b5SDimitry Andric   MachineRegisterInfo &MRI = MF->getRegInfo();
2544ba319b5SDimitry Andric   SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
2554ba319b5SDimitry Andric 
2564ba319b5SDimitry Andric   for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) {
2574ba319b5SDimitry Andric     MachineOperand &DefOp = PI.getOperand(0);
2584ba319b5SDimitry Andric     assert(DefOp.getSubReg() == 0);
2594ba319b5SDimitry Andric     auto *RC = MRI.getRegClass(DefOp.getReg());
2604ba319b5SDimitry Andric 
2614ba319b5SDimitry Andric     for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
2624ba319b5SDimitry Andric       MachineOperand &RegOp = PI.getOperand(i);
2634ba319b5SDimitry Andric       if (RegOp.getSubReg() == 0)
2644ba319b5SDimitry Andric         continue;
2654ba319b5SDimitry Andric 
2664ba319b5SDimitry Andric       // If the operand uses a subregister, replace it with a new register
2674ba319b5SDimitry Andric       // without subregisters, and generate a copy to the new register.
2684ba319b5SDimitry Andric       unsigned NewReg = MRI.createVirtualRegister(RC);
2694ba319b5SDimitry Andric       MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
2704ba319b5SDimitry Andric       MachineBasicBlock::iterator At = PredB.getFirstTerminator();
2714ba319b5SDimitry Andric       const DebugLoc &DL = PredB.findDebugLoc(At);
2724ba319b5SDimitry Andric       auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
2734ba319b5SDimitry Andric                     .addReg(RegOp.getReg(), getRegState(RegOp),
2744ba319b5SDimitry Andric                             RegOp.getSubReg());
2754ba319b5SDimitry Andric       Slots.insertMachineInstrInMaps(*Copy);
2764ba319b5SDimitry Andric       RegOp.setReg(NewReg);
2774ba319b5SDimitry Andric       RegOp.setSubReg(0);
2784ba319b5SDimitry Andric     }
2794ba319b5SDimitry Andric   }
2804ba319b5SDimitry Andric }
2814ba319b5SDimitry Andric 
282d88c1a5aSDimitry Andric /// The SMS algorithm consists of the following main steps:
283d88c1a5aSDimitry Andric /// 1. Computation and analysis of the dependence graph.
284d88c1a5aSDimitry Andric /// 2. Ordering of the nodes (instructions).
285d88c1a5aSDimitry Andric /// 3. Attempt to Schedule the loop.
swingModuloScheduler(MachineLoop & L)286d88c1a5aSDimitry Andric bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
287d88c1a5aSDimitry Andric   assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
288d88c1a5aSDimitry Andric 
289d88c1a5aSDimitry Andric   SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo);
290d88c1a5aSDimitry Andric 
291d88c1a5aSDimitry Andric   MachineBasicBlock *MBB = L.getHeader();
292d88c1a5aSDimitry Andric   // The kernel should not include any terminator instructions.  These
293d88c1a5aSDimitry Andric   // will be added back later.
294d88c1a5aSDimitry Andric   SMS.startBlock(MBB);
295d88c1a5aSDimitry Andric 
296d88c1a5aSDimitry Andric   // Compute the number of 'real' instructions in the basic block by
297d88c1a5aSDimitry Andric   // ignoring terminators.
298d88c1a5aSDimitry Andric   unsigned size = MBB->size();
299d88c1a5aSDimitry Andric   for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
300d88c1a5aSDimitry Andric                                    E = MBB->instr_end();
301d88c1a5aSDimitry Andric        I != E; ++I, --size)
302d88c1a5aSDimitry Andric     ;
303d88c1a5aSDimitry Andric 
304d88c1a5aSDimitry Andric   SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
305d88c1a5aSDimitry Andric   SMS.schedule();
306d88c1a5aSDimitry Andric   SMS.exitRegion();
307d88c1a5aSDimitry Andric 
308d88c1a5aSDimitry Andric   SMS.finishBlock();
309d88c1a5aSDimitry Andric   return SMS.hasNewSchedule();
310d88c1a5aSDimitry Andric }
311d88c1a5aSDimitry Andric 
312d88c1a5aSDimitry Andric /// We override the schedule function in ScheduleDAGInstrs to implement the
313d88c1a5aSDimitry Andric /// scheduling part of the Swing Modulo Scheduling algorithm.
schedule()314d88c1a5aSDimitry Andric void SwingSchedulerDAG::schedule() {
315d88c1a5aSDimitry Andric   AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
316d88c1a5aSDimitry Andric   buildSchedGraph(AA);
317d88c1a5aSDimitry Andric   addLoopCarriedDependences(AA);
318d88c1a5aSDimitry Andric   updatePhiDependences();
319d88c1a5aSDimitry Andric   Topo.InitDAGTopologicalSorting();
320d88c1a5aSDimitry Andric   changeDependences();
321*b5893f02SDimitry Andric   postprocessDAG();
322*b5893f02SDimitry Andric   LLVM_DEBUG(dump());
323d88c1a5aSDimitry Andric 
324d88c1a5aSDimitry Andric   NodeSetType NodeSets;
325d88c1a5aSDimitry Andric   findCircuits(NodeSets);
3264ba319b5SDimitry Andric   NodeSetType Circuits = NodeSets;
327d88c1a5aSDimitry Andric 
328d88c1a5aSDimitry Andric   // Calculate the MII.
329d88c1a5aSDimitry Andric   unsigned ResMII = calculateResMII();
330d88c1a5aSDimitry Andric   unsigned RecMII = calculateRecMII(NodeSets);
331d88c1a5aSDimitry Andric 
332d88c1a5aSDimitry Andric   fuseRecs(NodeSets);
333d88c1a5aSDimitry Andric 
334d88c1a5aSDimitry Andric   // This flag is used for testing and can cause correctness problems.
335d88c1a5aSDimitry Andric   if (SwpIgnoreRecMII)
336d88c1a5aSDimitry Andric     RecMII = 0;
337d88c1a5aSDimitry Andric 
338d88c1a5aSDimitry Andric   MII = std::max(ResMII, RecMII);
3394ba319b5SDimitry Andric   LLVM_DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII
3404ba319b5SDimitry Andric                     << ", res=" << ResMII << ")\n");
341d88c1a5aSDimitry Andric 
342d88c1a5aSDimitry Andric   // Can't schedule a loop without a valid MII.
343d88c1a5aSDimitry Andric   if (MII == 0)
344d88c1a5aSDimitry Andric     return;
345d88c1a5aSDimitry Andric 
346d88c1a5aSDimitry Andric   // Don't pipeline large loops.
347d88c1a5aSDimitry Andric   if (SwpMaxMii != -1 && (int)MII > SwpMaxMii)
348d88c1a5aSDimitry Andric     return;
349d88c1a5aSDimitry Andric 
350d88c1a5aSDimitry Andric   computeNodeFunctions(NodeSets);
351d88c1a5aSDimitry Andric 
352d88c1a5aSDimitry Andric   registerPressureFilter(NodeSets);
353d88c1a5aSDimitry Andric 
354d88c1a5aSDimitry Andric   colocateNodeSets(NodeSets);
355d88c1a5aSDimitry Andric 
356d88c1a5aSDimitry Andric   checkNodeSets(NodeSets);
357d88c1a5aSDimitry Andric 
3584ba319b5SDimitry Andric   LLVM_DEBUG({
359d88c1a5aSDimitry Andric     for (auto &I : NodeSets) {
360d88c1a5aSDimitry Andric       dbgs() << "  Rec NodeSet ";
361d88c1a5aSDimitry Andric       I.dump();
362d88c1a5aSDimitry Andric     }
363d88c1a5aSDimitry Andric   });
364d88c1a5aSDimitry Andric 
3654ba319b5SDimitry Andric   std::stable_sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>());
366d88c1a5aSDimitry Andric 
367d88c1a5aSDimitry Andric   groupRemainingNodes(NodeSets);
368d88c1a5aSDimitry Andric 
369d88c1a5aSDimitry Andric   removeDuplicateNodes(NodeSets);
370d88c1a5aSDimitry Andric 
3714ba319b5SDimitry Andric   LLVM_DEBUG({
372d88c1a5aSDimitry Andric     for (auto &I : NodeSets) {
373d88c1a5aSDimitry Andric       dbgs() << "  NodeSet ";
374d88c1a5aSDimitry Andric       I.dump();
375d88c1a5aSDimitry Andric     }
376d88c1a5aSDimitry Andric   });
377d88c1a5aSDimitry Andric 
378d88c1a5aSDimitry Andric   computeNodeOrder(NodeSets);
379d88c1a5aSDimitry Andric 
3804ba319b5SDimitry Andric   // check for node order issues
3814ba319b5SDimitry Andric   checkValidNodeOrder(Circuits);
3824ba319b5SDimitry Andric 
383d88c1a5aSDimitry Andric   SMSchedule Schedule(Pass.MF);
384d88c1a5aSDimitry Andric   Scheduled = schedulePipeline(Schedule);
385d88c1a5aSDimitry Andric 
386d88c1a5aSDimitry Andric   if (!Scheduled)
387d88c1a5aSDimitry Andric     return;
388d88c1a5aSDimitry Andric 
389d88c1a5aSDimitry Andric   unsigned numStages = Schedule.getMaxStageCount();
390d88c1a5aSDimitry Andric   // No need to generate pipeline if there are no overlapped iterations.
391d88c1a5aSDimitry Andric   if (numStages == 0)
392d88c1a5aSDimitry Andric     return;
393d88c1a5aSDimitry Andric 
394d88c1a5aSDimitry Andric   // Check that the maximum stage count is less than user-defined limit.
395d88c1a5aSDimitry Andric   if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages)
396d88c1a5aSDimitry Andric     return;
397d88c1a5aSDimitry Andric 
398d88c1a5aSDimitry Andric   generatePipelinedLoop(Schedule);
399d88c1a5aSDimitry Andric   ++NumPipelined;
400d88c1a5aSDimitry Andric }
401d88c1a5aSDimitry Andric 
402d88c1a5aSDimitry Andric /// Clean up after the software pipeliner runs.
finishBlock()403d88c1a5aSDimitry Andric void SwingSchedulerDAG::finishBlock() {
404d88c1a5aSDimitry Andric   for (MachineInstr *I : NewMIs)
405d88c1a5aSDimitry Andric     MF.DeleteMachineInstr(I);
406d88c1a5aSDimitry Andric   NewMIs.clear();
407d88c1a5aSDimitry Andric 
408d88c1a5aSDimitry Andric   // Call the superclass.
409d88c1a5aSDimitry Andric   ScheduleDAGInstrs::finishBlock();
410d88c1a5aSDimitry Andric }
411d88c1a5aSDimitry Andric 
412d88c1a5aSDimitry Andric /// Return the register values for  the operands of a Phi instruction.
413d88c1a5aSDimitry Andric /// This function assume the instruction is a Phi.
getPhiRegs(MachineInstr & Phi,MachineBasicBlock * Loop,unsigned & InitVal,unsigned & LoopVal)414d88c1a5aSDimitry Andric static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
415d88c1a5aSDimitry Andric                        unsigned &InitVal, unsigned &LoopVal) {
416d88c1a5aSDimitry Andric   assert(Phi.isPHI() && "Expecting a Phi.");
417d88c1a5aSDimitry Andric 
418d88c1a5aSDimitry Andric   InitVal = 0;
419d88c1a5aSDimitry Andric   LoopVal = 0;
420d88c1a5aSDimitry Andric   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
421d88c1a5aSDimitry Andric     if (Phi.getOperand(i + 1).getMBB() != Loop)
422d88c1a5aSDimitry Andric       InitVal = Phi.getOperand(i).getReg();
4237a7e6055SDimitry Andric     else
424d88c1a5aSDimitry Andric       LoopVal = Phi.getOperand(i).getReg();
425d88c1a5aSDimitry Andric 
426d88c1a5aSDimitry Andric   assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
427d88c1a5aSDimitry Andric }
428d88c1a5aSDimitry Andric 
429d88c1a5aSDimitry Andric /// Return the Phi register value that comes from the incoming block.
getInitPhiReg(MachineInstr & Phi,MachineBasicBlock * LoopBB)430d88c1a5aSDimitry Andric static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
431d88c1a5aSDimitry Andric   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
432d88c1a5aSDimitry Andric     if (Phi.getOperand(i + 1).getMBB() != LoopBB)
433d88c1a5aSDimitry Andric       return Phi.getOperand(i).getReg();
434d88c1a5aSDimitry Andric   return 0;
435d88c1a5aSDimitry Andric }
436d88c1a5aSDimitry Andric 
4374ba319b5SDimitry Andric /// Return the Phi register value that comes the loop block.
getLoopPhiReg(MachineInstr & Phi,MachineBasicBlock * LoopBB)438d88c1a5aSDimitry Andric static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
439d88c1a5aSDimitry Andric   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
440d88c1a5aSDimitry Andric     if (Phi.getOperand(i + 1).getMBB() == LoopBB)
441d88c1a5aSDimitry Andric       return Phi.getOperand(i).getReg();
442d88c1a5aSDimitry Andric   return 0;
443d88c1a5aSDimitry Andric }
444d88c1a5aSDimitry Andric 
445d88c1a5aSDimitry Andric /// Return true if SUb can be reached from SUa following the chain edges.
isSuccOrder(SUnit * SUa,SUnit * SUb)446d88c1a5aSDimitry Andric static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
447d88c1a5aSDimitry Andric   SmallPtrSet<SUnit *, 8> Visited;
448d88c1a5aSDimitry Andric   SmallVector<SUnit *, 8> Worklist;
449d88c1a5aSDimitry Andric   Worklist.push_back(SUa);
450d88c1a5aSDimitry Andric   while (!Worklist.empty()) {
451d88c1a5aSDimitry Andric     const SUnit *SU = Worklist.pop_back_val();
452d88c1a5aSDimitry Andric     for (auto &SI : SU->Succs) {
453d88c1a5aSDimitry Andric       SUnit *SuccSU = SI.getSUnit();
454d88c1a5aSDimitry Andric       if (SI.getKind() == SDep::Order) {
455d88c1a5aSDimitry Andric         if (Visited.count(SuccSU))
456d88c1a5aSDimitry Andric           continue;
457d88c1a5aSDimitry Andric         if (SuccSU == SUb)
458d88c1a5aSDimitry Andric           return true;
459d88c1a5aSDimitry Andric         Worklist.push_back(SuccSU);
460d88c1a5aSDimitry Andric         Visited.insert(SuccSU);
461d88c1a5aSDimitry Andric       }
462d88c1a5aSDimitry Andric     }
463d88c1a5aSDimitry Andric   }
464d88c1a5aSDimitry Andric   return false;
465d88c1a5aSDimitry Andric }
466d88c1a5aSDimitry Andric 
467d88c1a5aSDimitry Andric /// Return true if the instruction causes a chain between memory
468d88c1a5aSDimitry Andric /// references before and after it.
isDependenceBarrier(MachineInstr & MI,AliasAnalysis * AA)469d88c1a5aSDimitry Andric static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
470d88c1a5aSDimitry Andric   return MI.isCall() || MI.hasUnmodeledSideEffects() ||
471d88c1a5aSDimitry Andric          (MI.hasOrderedMemoryRef() &&
472d88c1a5aSDimitry Andric           (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
473d88c1a5aSDimitry Andric }
474d88c1a5aSDimitry Andric 
475d88c1a5aSDimitry Andric /// Return the underlying objects for the memory references of an instruction.
476d88c1a5aSDimitry Andric /// This function calls the code in ValueTracking, but first checks that the
477d88c1a5aSDimitry Andric /// instruction has a memory operand.
getUnderlyingObjects(MachineInstr * MI,SmallVectorImpl<Value * > & Objs,const DataLayout & DL)478d88c1a5aSDimitry Andric static void getUnderlyingObjects(MachineInstr *MI,
479d88c1a5aSDimitry Andric                                  SmallVectorImpl<Value *> &Objs,
480d88c1a5aSDimitry Andric                                  const DataLayout &DL) {
481d88c1a5aSDimitry Andric   if (!MI->hasOneMemOperand())
482d88c1a5aSDimitry Andric     return;
483d88c1a5aSDimitry Andric   MachineMemOperand *MM = *MI->memoperands_begin();
484d88c1a5aSDimitry Andric   if (!MM->getValue())
485d88c1a5aSDimitry Andric     return;
486d88c1a5aSDimitry Andric   GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL);
4874ba319b5SDimitry Andric   for (Value *V : Objs) {
4884ba319b5SDimitry Andric     if (!isIdentifiedObject(V)) {
4894ba319b5SDimitry Andric       Objs.clear();
4904ba319b5SDimitry Andric       return;
4914ba319b5SDimitry Andric     }
4924ba319b5SDimitry Andric     Objs.push_back(V);
4934ba319b5SDimitry Andric   }
494d88c1a5aSDimitry Andric }
495d88c1a5aSDimitry Andric 
496d88c1a5aSDimitry Andric /// Add a chain edge between a load and store if the store can be an
497d88c1a5aSDimitry Andric /// alias of the load on a subsequent iteration, i.e., a loop carried
498d88c1a5aSDimitry Andric /// dependence. This code is very similar to the code in ScheduleDAGInstrs
499d88c1a5aSDimitry Andric /// but that code doesn't create loop carried dependences.
addLoopCarriedDependences(AliasAnalysis * AA)500d88c1a5aSDimitry Andric void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
501d88c1a5aSDimitry Andric   MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads;
5024ba319b5SDimitry Andric   Value *UnknownValue =
5034ba319b5SDimitry Andric     UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
504d88c1a5aSDimitry Andric   for (auto &SU : SUnits) {
505d88c1a5aSDimitry Andric     MachineInstr &MI = *SU.getInstr();
506d88c1a5aSDimitry Andric     if (isDependenceBarrier(MI, AA))
507d88c1a5aSDimitry Andric       PendingLoads.clear();
508d88c1a5aSDimitry Andric     else if (MI.mayLoad()) {
509d88c1a5aSDimitry Andric       SmallVector<Value *, 4> Objs;
510d88c1a5aSDimitry Andric       getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
5114ba319b5SDimitry Andric       if (Objs.empty())
5124ba319b5SDimitry Andric         Objs.push_back(UnknownValue);
513d88c1a5aSDimitry Andric       for (auto V : Objs) {
514d88c1a5aSDimitry Andric         SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
515d88c1a5aSDimitry Andric         SUs.push_back(&SU);
516d88c1a5aSDimitry Andric       }
517d88c1a5aSDimitry Andric     } else if (MI.mayStore()) {
518d88c1a5aSDimitry Andric       SmallVector<Value *, 4> Objs;
519d88c1a5aSDimitry Andric       getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
5204ba319b5SDimitry Andric       if (Objs.empty())
5214ba319b5SDimitry Andric         Objs.push_back(UnknownValue);
522d88c1a5aSDimitry Andric       for (auto V : Objs) {
523d88c1a5aSDimitry Andric         MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I =
524d88c1a5aSDimitry Andric             PendingLoads.find(V);
525d88c1a5aSDimitry Andric         if (I == PendingLoads.end())
526d88c1a5aSDimitry Andric           continue;
527d88c1a5aSDimitry Andric         for (auto Load : I->second) {
528d88c1a5aSDimitry Andric           if (isSuccOrder(Load, &SU))
529d88c1a5aSDimitry Andric             continue;
530d88c1a5aSDimitry Andric           MachineInstr &LdMI = *Load->getInstr();
531d88c1a5aSDimitry Andric           // First, perform the cheaper check that compares the base register.
532d88c1a5aSDimitry Andric           // If they are the same and the load offset is less than the store
533d88c1a5aSDimitry Andric           // offset, then mark the dependence as loop carried potentially.
534*b5893f02SDimitry Andric           MachineOperand *BaseOp1, *BaseOp2;
535d88c1a5aSDimitry Andric           int64_t Offset1, Offset2;
536*b5893f02SDimitry Andric           if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, TRI) &&
537*b5893f02SDimitry Andric               TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, TRI)) {
538*b5893f02SDimitry Andric             if (BaseOp1->isIdenticalTo(*BaseOp2) &&
539*b5893f02SDimitry Andric                 (int)Offset1 < (int)Offset2) {
540d88c1a5aSDimitry Andric               assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
541d88c1a5aSDimitry Andric                      "What happened to the chain edge?");
5424ba319b5SDimitry Andric               SDep Dep(Load, SDep::Barrier);
5434ba319b5SDimitry Andric               Dep.setLatency(1);
5444ba319b5SDimitry Andric               SU.addPred(Dep);
545d88c1a5aSDimitry Andric               continue;
546d88c1a5aSDimitry Andric             }
5474ba319b5SDimitry Andric           }
548d88c1a5aSDimitry Andric           // Second, the more expensive check that uses alias analysis on the
549d88c1a5aSDimitry Andric           // base registers. If they alias, and the load offset is less than
550d88c1a5aSDimitry Andric           // the store offset, the mark the dependence as loop carried.
551d88c1a5aSDimitry Andric           if (!AA) {
5524ba319b5SDimitry Andric             SDep Dep(Load, SDep::Barrier);
5534ba319b5SDimitry Andric             Dep.setLatency(1);
5544ba319b5SDimitry Andric             SU.addPred(Dep);
555d88c1a5aSDimitry Andric             continue;
556d88c1a5aSDimitry Andric           }
557d88c1a5aSDimitry Andric           MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
558d88c1a5aSDimitry Andric           MachineMemOperand *MMO2 = *MI.memoperands_begin();
559d88c1a5aSDimitry Andric           if (!MMO1->getValue() || !MMO2->getValue()) {
5604ba319b5SDimitry Andric             SDep Dep(Load, SDep::Barrier);
5614ba319b5SDimitry Andric             Dep.setLatency(1);
5624ba319b5SDimitry Andric             SU.addPred(Dep);
563d88c1a5aSDimitry Andric             continue;
564d88c1a5aSDimitry Andric           }
565d88c1a5aSDimitry Andric           if (MMO1->getValue() == MMO2->getValue() &&
566d88c1a5aSDimitry Andric               MMO1->getOffset() <= MMO2->getOffset()) {
5674ba319b5SDimitry Andric             SDep Dep(Load, SDep::Barrier);
5684ba319b5SDimitry Andric             Dep.setLatency(1);
5694ba319b5SDimitry Andric             SU.addPred(Dep);
570d88c1a5aSDimitry Andric             continue;
571d88c1a5aSDimitry Andric           }
572d88c1a5aSDimitry Andric           AliasResult AAResult = AA->alias(
573*b5893f02SDimitry Andric               MemoryLocation(MMO1->getValue(), LocationSize::unknown(),
574d88c1a5aSDimitry Andric                              MMO1->getAAInfo()),
575*b5893f02SDimitry Andric               MemoryLocation(MMO2->getValue(), LocationSize::unknown(),
576d88c1a5aSDimitry Andric                              MMO2->getAAInfo()));
577d88c1a5aSDimitry Andric 
5784ba319b5SDimitry Andric           if (AAResult != NoAlias) {
5794ba319b5SDimitry Andric             SDep Dep(Load, SDep::Barrier);
5804ba319b5SDimitry Andric             Dep.setLatency(1);
5814ba319b5SDimitry Andric             SU.addPred(Dep);
5824ba319b5SDimitry Andric           }
583d88c1a5aSDimitry Andric         }
584d88c1a5aSDimitry Andric       }
585d88c1a5aSDimitry Andric     }
586d88c1a5aSDimitry Andric   }
587d88c1a5aSDimitry Andric }
588d88c1a5aSDimitry Andric 
589d88c1a5aSDimitry Andric /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
590d88c1a5aSDimitry Andric /// processes dependences for PHIs. This function adds true dependences
591d88c1a5aSDimitry Andric /// from a PHI to a use, and a loop carried dependence from the use to the
592d88c1a5aSDimitry Andric /// PHI. The loop carried dependence is represented as an anti dependence
593d88c1a5aSDimitry Andric /// edge. This function also removes chain dependences between unrelated
594d88c1a5aSDimitry Andric /// PHIs.
updatePhiDependences()595d88c1a5aSDimitry Andric void SwingSchedulerDAG::updatePhiDependences() {
596d88c1a5aSDimitry Andric   SmallVector<SDep, 4> RemoveDeps;
597d88c1a5aSDimitry Andric   const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
598d88c1a5aSDimitry Andric 
599d88c1a5aSDimitry Andric   // Iterate over each DAG node.
600d88c1a5aSDimitry Andric   for (SUnit &I : SUnits) {
601d88c1a5aSDimitry Andric     RemoveDeps.clear();
602d88c1a5aSDimitry Andric     // Set to true if the instruction has an operand defined by a Phi.
603d88c1a5aSDimitry Andric     unsigned HasPhiUse = 0;
604d88c1a5aSDimitry Andric     unsigned HasPhiDef = 0;
605d88c1a5aSDimitry Andric     MachineInstr *MI = I.getInstr();
606d88c1a5aSDimitry Andric     // Iterate over each operand, and we process the definitions.
607d88c1a5aSDimitry Andric     for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
608d88c1a5aSDimitry Andric                                     MOE = MI->operands_end();
609d88c1a5aSDimitry Andric          MOI != MOE; ++MOI) {
610d88c1a5aSDimitry Andric       if (!MOI->isReg())
611d88c1a5aSDimitry Andric         continue;
612d88c1a5aSDimitry Andric       unsigned Reg = MOI->getReg();
613d88c1a5aSDimitry Andric       if (MOI->isDef()) {
614d88c1a5aSDimitry Andric         // If the register is used by a Phi, then create an anti dependence.
615d88c1a5aSDimitry Andric         for (MachineRegisterInfo::use_instr_iterator
616d88c1a5aSDimitry Andric                  UI = MRI.use_instr_begin(Reg),
617d88c1a5aSDimitry Andric                  UE = MRI.use_instr_end();
618d88c1a5aSDimitry Andric              UI != UE; ++UI) {
619d88c1a5aSDimitry Andric           MachineInstr *UseMI = &*UI;
620d88c1a5aSDimitry Andric           SUnit *SU = getSUnit(UseMI);
621d88c1a5aSDimitry Andric           if (SU != nullptr && UseMI->isPHI()) {
622d88c1a5aSDimitry Andric             if (!MI->isPHI()) {
623d88c1a5aSDimitry Andric               SDep Dep(SU, SDep::Anti, Reg);
6244ba319b5SDimitry Andric               Dep.setLatency(1);
625d88c1a5aSDimitry Andric               I.addPred(Dep);
626d88c1a5aSDimitry Andric             } else {
627d88c1a5aSDimitry Andric               HasPhiDef = Reg;
628d88c1a5aSDimitry Andric               // Add a chain edge to a dependent Phi that isn't an existing
629d88c1a5aSDimitry Andric               // predecessor.
630d88c1a5aSDimitry Andric               if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
631d88c1a5aSDimitry Andric                 I.addPred(SDep(SU, SDep::Barrier));
632d88c1a5aSDimitry Andric             }
633d88c1a5aSDimitry Andric           }
634d88c1a5aSDimitry Andric         }
635d88c1a5aSDimitry Andric       } else if (MOI->isUse()) {
636d88c1a5aSDimitry Andric         // If the register is defined by a Phi, then create a true dependence.
637d88c1a5aSDimitry Andric         MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
638d88c1a5aSDimitry Andric         if (DefMI == nullptr)
639d88c1a5aSDimitry Andric           continue;
640d88c1a5aSDimitry Andric         SUnit *SU = getSUnit(DefMI);
641d88c1a5aSDimitry Andric         if (SU != nullptr && DefMI->isPHI()) {
642d88c1a5aSDimitry Andric           if (!MI->isPHI()) {
643d88c1a5aSDimitry Andric             SDep Dep(SU, SDep::Data, Reg);
644d88c1a5aSDimitry Andric             Dep.setLatency(0);
645d88c1a5aSDimitry Andric             ST.adjustSchedDependency(SU, &I, Dep);
646d88c1a5aSDimitry Andric             I.addPred(Dep);
647d88c1a5aSDimitry Andric           } else {
648d88c1a5aSDimitry Andric             HasPhiUse = Reg;
649d88c1a5aSDimitry Andric             // Add a chain edge to a dependent Phi that isn't an existing
650d88c1a5aSDimitry Andric             // predecessor.
651d88c1a5aSDimitry Andric             if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
652d88c1a5aSDimitry Andric               I.addPred(SDep(SU, SDep::Barrier));
653d88c1a5aSDimitry Andric           }
654d88c1a5aSDimitry Andric         }
655d88c1a5aSDimitry Andric       }
656d88c1a5aSDimitry Andric     }
657d88c1a5aSDimitry Andric     // Remove order dependences from an unrelated Phi.
658d88c1a5aSDimitry Andric     if (!SwpPruneDeps)
659d88c1a5aSDimitry Andric       continue;
660d88c1a5aSDimitry Andric     for (auto &PI : I.Preds) {
661d88c1a5aSDimitry Andric       MachineInstr *PMI = PI.getSUnit()->getInstr();
662d88c1a5aSDimitry Andric       if (PMI->isPHI() && PI.getKind() == SDep::Order) {
663d88c1a5aSDimitry Andric         if (I.getInstr()->isPHI()) {
664d88c1a5aSDimitry Andric           if (PMI->getOperand(0).getReg() == HasPhiUse)
665d88c1a5aSDimitry Andric             continue;
666d88c1a5aSDimitry Andric           if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
667d88c1a5aSDimitry Andric             continue;
668d88c1a5aSDimitry Andric         }
669d88c1a5aSDimitry Andric         RemoveDeps.push_back(PI);
670d88c1a5aSDimitry Andric       }
671d88c1a5aSDimitry Andric     }
672d88c1a5aSDimitry Andric     for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
673d88c1a5aSDimitry Andric       I.removePred(RemoveDeps[i]);
674d88c1a5aSDimitry Andric   }
675d88c1a5aSDimitry Andric }
676d88c1a5aSDimitry Andric 
677d88c1a5aSDimitry Andric /// Iterate over each DAG node and see if we can change any dependences
678d88c1a5aSDimitry Andric /// in order to reduce the recurrence MII.
changeDependences()679d88c1a5aSDimitry Andric void SwingSchedulerDAG::changeDependences() {
680d88c1a5aSDimitry Andric   // See if an instruction can use a value from the previous iteration.
681d88c1a5aSDimitry Andric   // If so, we update the base and offset of the instruction and change
682d88c1a5aSDimitry Andric   // the dependences.
683d88c1a5aSDimitry Andric   for (SUnit &I : SUnits) {
684d88c1a5aSDimitry Andric     unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
685d88c1a5aSDimitry Andric     int64_t NewOffset = 0;
686d88c1a5aSDimitry Andric     if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
687d88c1a5aSDimitry Andric                                NewOffset))
688d88c1a5aSDimitry Andric       continue;
689d88c1a5aSDimitry Andric 
690d88c1a5aSDimitry Andric     // Get the MI and SUnit for the instruction that defines the original base.
691d88c1a5aSDimitry Andric     unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg();
692d88c1a5aSDimitry Andric     MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
693d88c1a5aSDimitry Andric     if (!DefMI)
694d88c1a5aSDimitry Andric       continue;
695d88c1a5aSDimitry Andric     SUnit *DefSU = getSUnit(DefMI);
696d88c1a5aSDimitry Andric     if (!DefSU)
697d88c1a5aSDimitry Andric       continue;
698d88c1a5aSDimitry Andric     // Get the MI and SUnit for the instruction that defins the new base.
699d88c1a5aSDimitry Andric     MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
700d88c1a5aSDimitry Andric     if (!LastMI)
701d88c1a5aSDimitry Andric       continue;
702d88c1a5aSDimitry Andric     SUnit *LastSU = getSUnit(LastMI);
703d88c1a5aSDimitry Andric     if (!LastSU)
704d88c1a5aSDimitry Andric       continue;
705d88c1a5aSDimitry Andric 
706d88c1a5aSDimitry Andric     if (Topo.IsReachable(&I, LastSU))
707d88c1a5aSDimitry Andric       continue;
708d88c1a5aSDimitry Andric 
709d88c1a5aSDimitry Andric     // Remove the dependence. The value now depends on a prior iteration.
710d88c1a5aSDimitry Andric     SmallVector<SDep, 4> Deps;
711d88c1a5aSDimitry Andric     for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
712d88c1a5aSDimitry Andric          ++P)
713d88c1a5aSDimitry Andric       if (P->getSUnit() == DefSU)
714d88c1a5aSDimitry Andric         Deps.push_back(*P);
715d88c1a5aSDimitry Andric     for (int i = 0, e = Deps.size(); i != e; i++) {
716d88c1a5aSDimitry Andric       Topo.RemovePred(&I, Deps[i].getSUnit());
717d88c1a5aSDimitry Andric       I.removePred(Deps[i]);
718d88c1a5aSDimitry Andric     }
719d88c1a5aSDimitry Andric     // Remove the chain dependence between the instructions.
720d88c1a5aSDimitry Andric     Deps.clear();
721d88c1a5aSDimitry Andric     for (auto &P : LastSU->Preds)
722d88c1a5aSDimitry Andric       if (P.getSUnit() == &I && P.getKind() == SDep::Order)
723d88c1a5aSDimitry Andric         Deps.push_back(P);
724d88c1a5aSDimitry Andric     for (int i = 0, e = Deps.size(); i != e; i++) {
725d88c1a5aSDimitry Andric       Topo.RemovePred(LastSU, Deps[i].getSUnit());
726d88c1a5aSDimitry Andric       LastSU->removePred(Deps[i]);
727d88c1a5aSDimitry Andric     }
728d88c1a5aSDimitry Andric 
729d88c1a5aSDimitry Andric     // Add a dependence between the new instruction and the instruction
730d88c1a5aSDimitry Andric     // that defines the new base.
731d88c1a5aSDimitry Andric     SDep Dep(&I, SDep::Anti, NewBase);
732*b5893f02SDimitry Andric     Topo.AddPred(LastSU, &I);
733d88c1a5aSDimitry Andric     LastSU->addPred(Dep);
734d88c1a5aSDimitry Andric 
735d88c1a5aSDimitry Andric     // Remember the base and offset information so that we can update the
736d88c1a5aSDimitry Andric     // instruction during code generation.
737d88c1a5aSDimitry Andric     InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
738d88c1a5aSDimitry Andric   }
739d88c1a5aSDimitry Andric }
740d88c1a5aSDimitry Andric 
741d88c1a5aSDimitry Andric namespace {
742d88c1a5aSDimitry Andric 
743d88c1a5aSDimitry Andric // FuncUnitSorter - Comparison operator used to sort instructions by
744d88c1a5aSDimitry Andric // the number of functional unit choices.
745d88c1a5aSDimitry Andric struct FuncUnitSorter {
746d88c1a5aSDimitry Andric   const InstrItineraryData *InstrItins;
747d88c1a5aSDimitry Andric   DenseMap<unsigned, unsigned> Resources;
748d88c1a5aSDimitry Andric 
FuncUnitSorter__anona6d695360111::FuncUnitSorter7492cab237bSDimitry Andric   FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {}
7502cab237bSDimitry Andric 
751d88c1a5aSDimitry Andric   // Compute the number of functional unit alternatives needed
752d88c1a5aSDimitry Andric   // at each stage, and take the minimum value. We prioritize the
753d88c1a5aSDimitry Andric   // instructions by the least number of choices first.
minFuncUnits__anona6d695360111::FuncUnitSorter754d88c1a5aSDimitry Andric   unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
755d88c1a5aSDimitry Andric     unsigned schedClass = Inst->getDesc().getSchedClass();
756d88c1a5aSDimitry Andric     unsigned min = UINT_MAX;
757d88c1a5aSDimitry Andric     for (const InstrStage *IS = InstrItins->beginStage(schedClass),
758d88c1a5aSDimitry Andric                           *IE = InstrItins->endStage(schedClass);
759d88c1a5aSDimitry Andric          IS != IE; ++IS) {
760d88c1a5aSDimitry Andric       unsigned funcUnits = IS->getUnits();
761d88c1a5aSDimitry Andric       unsigned numAlternatives = countPopulation(funcUnits);
762d88c1a5aSDimitry Andric       if (numAlternatives < min) {
763d88c1a5aSDimitry Andric         min = numAlternatives;
764d88c1a5aSDimitry Andric         F = funcUnits;
765d88c1a5aSDimitry Andric       }
766d88c1a5aSDimitry Andric     }
767d88c1a5aSDimitry Andric     return min;
768d88c1a5aSDimitry Andric   }
769d88c1a5aSDimitry Andric 
770d88c1a5aSDimitry Andric   // Compute the critical resources needed by the instruction. This
771d88c1a5aSDimitry Andric   // function records the functional units needed by instructions that
772d88c1a5aSDimitry Andric   // must use only one functional unit. We use this as a tie breaker
773d88c1a5aSDimitry Andric   // for computing the resource MII. The instrutions that require
774d88c1a5aSDimitry Andric   // the same, highly used, functional unit have high priority.
calcCriticalResources__anona6d695360111::FuncUnitSorter775d88c1a5aSDimitry Andric   void calcCriticalResources(MachineInstr &MI) {
776d88c1a5aSDimitry Andric     unsigned SchedClass = MI.getDesc().getSchedClass();
777d88c1a5aSDimitry Andric     for (const InstrStage *IS = InstrItins->beginStage(SchedClass),
778d88c1a5aSDimitry Andric                           *IE = InstrItins->endStage(SchedClass);
779d88c1a5aSDimitry Andric          IS != IE; ++IS) {
780d88c1a5aSDimitry Andric       unsigned FuncUnits = IS->getUnits();
781d88c1a5aSDimitry Andric       if (countPopulation(FuncUnits) == 1)
782d88c1a5aSDimitry Andric         Resources[FuncUnits]++;
783d88c1a5aSDimitry Andric     }
784d88c1a5aSDimitry Andric   }
785d88c1a5aSDimitry Andric 
786d88c1a5aSDimitry Andric   /// Return true if IS1 has less priority than IS2.
operator ()__anona6d695360111::FuncUnitSorter787d88c1a5aSDimitry Andric   bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
788d88c1a5aSDimitry Andric     unsigned F1 = 0, F2 = 0;
789d88c1a5aSDimitry Andric     unsigned MFUs1 = minFuncUnits(IS1, F1);
790d88c1a5aSDimitry Andric     unsigned MFUs2 = minFuncUnits(IS2, F2);
791d88c1a5aSDimitry Andric     if (MFUs1 == 1 && MFUs2 == 1)
792d88c1a5aSDimitry Andric       return Resources.lookup(F1) < Resources.lookup(F2);
793d88c1a5aSDimitry Andric     return MFUs1 > MFUs2;
794d88c1a5aSDimitry Andric   }
795d88c1a5aSDimitry Andric };
796d88c1a5aSDimitry Andric 
797d88c1a5aSDimitry Andric } // end anonymous namespace
798d88c1a5aSDimitry Andric 
799d88c1a5aSDimitry Andric /// Calculate the resource constrained minimum initiation interval for the
800d88c1a5aSDimitry Andric /// specified loop. We use the DFA to model the resources needed for
801d88c1a5aSDimitry Andric /// each instruction, and we ignore dependences. A different DFA is created
802d88c1a5aSDimitry Andric /// for each cycle that is required. When adding a new instruction, we attempt
803d88c1a5aSDimitry Andric /// to add it to each existing DFA, until a legal space is found. If the
804d88c1a5aSDimitry Andric /// instruction cannot be reserved in an existing DFA, we create a new one.
calculateResMII()805d88c1a5aSDimitry Andric unsigned SwingSchedulerDAG::calculateResMII() {
806d88c1a5aSDimitry Andric   SmallVector<DFAPacketizer *, 8> Resources;
807d88c1a5aSDimitry Andric   MachineBasicBlock *MBB = Loop.getHeader();
808d88c1a5aSDimitry Andric   Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget()));
809d88c1a5aSDimitry Andric 
810d88c1a5aSDimitry Andric   // Sort the instructions by the number of available choices for scheduling,
811d88c1a5aSDimitry Andric   // least to most. Use the number of critical resources as the tie breaker.
812d88c1a5aSDimitry Andric   FuncUnitSorter FUS =
813d88c1a5aSDimitry Andric       FuncUnitSorter(MF.getSubtarget().getInstrItineraryData());
814d88c1a5aSDimitry Andric   for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
815d88c1a5aSDimitry Andric                                    E = MBB->getFirstTerminator();
816d88c1a5aSDimitry Andric        I != E; ++I)
817d88c1a5aSDimitry Andric     FUS.calcCriticalResources(*I);
818d88c1a5aSDimitry Andric   PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
819d88c1a5aSDimitry Andric       FuncUnitOrder(FUS);
820d88c1a5aSDimitry Andric 
821d88c1a5aSDimitry Andric   for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
822d88c1a5aSDimitry Andric                                    E = MBB->getFirstTerminator();
823d88c1a5aSDimitry Andric        I != E; ++I)
824d88c1a5aSDimitry Andric     FuncUnitOrder.push(&*I);
825d88c1a5aSDimitry Andric 
826d88c1a5aSDimitry Andric   while (!FuncUnitOrder.empty()) {
827d88c1a5aSDimitry Andric     MachineInstr *MI = FuncUnitOrder.top();
828d88c1a5aSDimitry Andric     FuncUnitOrder.pop();
829d88c1a5aSDimitry Andric     if (TII->isZeroCost(MI->getOpcode()))
830d88c1a5aSDimitry Andric       continue;
831d88c1a5aSDimitry Andric     // Attempt to reserve the instruction in an existing DFA. At least one
832d88c1a5aSDimitry Andric     // DFA is needed for each cycle.
833d88c1a5aSDimitry Andric     unsigned NumCycles = getSUnit(MI)->Latency;
834d88c1a5aSDimitry Andric     unsigned ReservedCycles = 0;
835d88c1a5aSDimitry Andric     SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin();
836d88c1a5aSDimitry Andric     SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end();
837d88c1a5aSDimitry Andric     for (unsigned C = 0; C < NumCycles; ++C)
838d88c1a5aSDimitry Andric       while (RI != RE) {
839d88c1a5aSDimitry Andric         if ((*RI++)->canReserveResources(*MI)) {
840d88c1a5aSDimitry Andric           ++ReservedCycles;
841d88c1a5aSDimitry Andric           break;
842d88c1a5aSDimitry Andric         }
843d88c1a5aSDimitry Andric       }
844d88c1a5aSDimitry Andric     // Start reserving resources using existing DFAs.
845d88c1a5aSDimitry Andric     for (unsigned C = 0; C < ReservedCycles; ++C) {
846d88c1a5aSDimitry Andric       --RI;
847d88c1a5aSDimitry Andric       (*RI)->reserveResources(*MI);
848d88c1a5aSDimitry Andric     }
849d88c1a5aSDimitry Andric     // Add new DFAs, if needed, to reserve resources.
850d88c1a5aSDimitry Andric     for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
851d88c1a5aSDimitry Andric       DFAPacketizer *NewResource =
852d88c1a5aSDimitry Andric           TII->CreateTargetScheduleState(MF.getSubtarget());
853d88c1a5aSDimitry Andric       assert(NewResource->canReserveResources(*MI) && "Reserve error.");
854d88c1a5aSDimitry Andric       NewResource->reserveResources(*MI);
855d88c1a5aSDimitry Andric       Resources.push_back(NewResource);
856d88c1a5aSDimitry Andric     }
857d88c1a5aSDimitry Andric   }
858d88c1a5aSDimitry Andric   int Resmii = Resources.size();
859d88c1a5aSDimitry Andric   // Delete the memory for each of the DFAs that were created earlier.
860d88c1a5aSDimitry Andric   for (DFAPacketizer *RI : Resources) {
861d88c1a5aSDimitry Andric     DFAPacketizer *D = RI;
862d88c1a5aSDimitry Andric     delete D;
863d88c1a5aSDimitry Andric   }
864d88c1a5aSDimitry Andric   Resources.clear();
865d88c1a5aSDimitry Andric   return Resmii;
866d88c1a5aSDimitry Andric }
867d88c1a5aSDimitry Andric 
868d88c1a5aSDimitry Andric /// Calculate the recurrence-constrainted minimum initiation interval.
869d88c1a5aSDimitry Andric /// Iterate over each circuit.  Compute the delay(c) and distance(c)
870d88c1a5aSDimitry Andric /// for each circuit. The II needs to satisfy the inequality
871d88c1a5aSDimitry Andric /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
8724ba319b5SDimitry Andric /// II that satisfies the inequality, and the RecMII is the maximum
873d88c1a5aSDimitry Andric /// of those values.
calculateRecMII(NodeSetType & NodeSets)874d88c1a5aSDimitry Andric unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
875d88c1a5aSDimitry Andric   unsigned RecMII = 0;
876d88c1a5aSDimitry Andric 
877d88c1a5aSDimitry Andric   for (NodeSet &Nodes : NodeSets) {
8782cab237bSDimitry Andric     if (Nodes.empty())
879d88c1a5aSDimitry Andric       continue;
880d88c1a5aSDimitry Andric 
8814ba319b5SDimitry Andric     unsigned Delay = Nodes.getLatency();
882d88c1a5aSDimitry Andric     unsigned Distance = 1;
883d88c1a5aSDimitry Andric 
884d88c1a5aSDimitry Andric     // ii = ceil(delay / distance)
885d88c1a5aSDimitry Andric     unsigned CurMII = (Delay + Distance - 1) / Distance;
886d88c1a5aSDimitry Andric     Nodes.setRecMII(CurMII);
887d88c1a5aSDimitry Andric     if (CurMII > RecMII)
888d88c1a5aSDimitry Andric       RecMII = CurMII;
889d88c1a5aSDimitry Andric   }
890d88c1a5aSDimitry Andric 
891d88c1a5aSDimitry Andric   return RecMII;
892d88c1a5aSDimitry Andric }
893d88c1a5aSDimitry Andric 
894d88c1a5aSDimitry Andric /// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
895d88c1a5aSDimitry Andric /// but we do this to find the circuits, and then change them back.
swapAntiDependences(std::vector<SUnit> & SUnits)896d88c1a5aSDimitry Andric static void swapAntiDependences(std::vector<SUnit> &SUnits) {
897d88c1a5aSDimitry Andric   SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
898d88c1a5aSDimitry Andric   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
899d88c1a5aSDimitry Andric     SUnit *SU = &SUnits[i];
900d88c1a5aSDimitry Andric     for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
901d88c1a5aSDimitry Andric          IP != EP; ++IP) {
902d88c1a5aSDimitry Andric       if (IP->getKind() != SDep::Anti)
903d88c1a5aSDimitry Andric         continue;
904d88c1a5aSDimitry Andric       DepsAdded.push_back(std::make_pair(SU, *IP));
905d88c1a5aSDimitry Andric     }
906d88c1a5aSDimitry Andric   }
907d88c1a5aSDimitry Andric   for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
908d88c1a5aSDimitry Andric                                                           E = DepsAdded.end();
909d88c1a5aSDimitry Andric        I != E; ++I) {
910d88c1a5aSDimitry Andric     // Remove this anti dependency and add one in the reverse direction.
911d88c1a5aSDimitry Andric     SUnit *SU = I->first;
912d88c1a5aSDimitry Andric     SDep &D = I->second;
913d88c1a5aSDimitry Andric     SUnit *TargetSU = D.getSUnit();
914d88c1a5aSDimitry Andric     unsigned Reg = D.getReg();
915d88c1a5aSDimitry Andric     unsigned Lat = D.getLatency();
916d88c1a5aSDimitry Andric     SU->removePred(D);
917d88c1a5aSDimitry Andric     SDep Dep(SU, SDep::Anti, Reg);
918d88c1a5aSDimitry Andric     Dep.setLatency(Lat);
919d88c1a5aSDimitry Andric     TargetSU->addPred(Dep);
920d88c1a5aSDimitry Andric   }
921d88c1a5aSDimitry Andric }
922d88c1a5aSDimitry Andric 
923d88c1a5aSDimitry Andric /// Create the adjacency structure of the nodes in the graph.
createAdjacencyStructure(SwingSchedulerDAG * DAG)924d88c1a5aSDimitry Andric void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
925d88c1a5aSDimitry Andric     SwingSchedulerDAG *DAG) {
926d88c1a5aSDimitry Andric   BitVector Added(SUnits.size());
9274ba319b5SDimitry Andric   DenseMap<int, int> OutputDeps;
928d88c1a5aSDimitry Andric   for (int i = 0, e = SUnits.size(); i != e; ++i) {
929d88c1a5aSDimitry Andric     Added.reset();
930d88c1a5aSDimitry Andric     // Add any successor to the adjacency matrix and exclude duplicates.
931d88c1a5aSDimitry Andric     for (auto &SI : SUnits[i].Succs) {
9324ba319b5SDimitry Andric       // Only create a back-edge on the first and last nodes of a dependence
9334ba319b5SDimitry Andric       // chain. This records any chains and adds them later.
9344ba319b5SDimitry Andric       if (SI.getKind() == SDep::Output) {
9354ba319b5SDimitry Andric         int N = SI.getSUnit()->NodeNum;
9364ba319b5SDimitry Andric         int BackEdge = i;
9374ba319b5SDimitry Andric         auto Dep = OutputDeps.find(BackEdge);
9384ba319b5SDimitry Andric         if (Dep != OutputDeps.end()) {
9394ba319b5SDimitry Andric           BackEdge = Dep->second;
9404ba319b5SDimitry Andric           OutputDeps.erase(Dep);
9414ba319b5SDimitry Andric         }
9424ba319b5SDimitry Andric         OutputDeps[N] = BackEdge;
9434ba319b5SDimitry Andric       }
944*b5893f02SDimitry Andric       // Do not process a boundary node, an artificial node.
945*b5893f02SDimitry Andric       // A back-edge is processed only if it goes to a Phi.
946*b5893f02SDimitry Andric       if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
947d88c1a5aSDimitry Andric           (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
948d88c1a5aSDimitry Andric         continue;
949d88c1a5aSDimitry Andric       int N = SI.getSUnit()->NodeNum;
950d88c1a5aSDimitry Andric       if (!Added.test(N)) {
951d88c1a5aSDimitry Andric         AdjK[i].push_back(N);
952d88c1a5aSDimitry Andric         Added.set(N);
953d88c1a5aSDimitry Andric       }
954d88c1a5aSDimitry Andric     }
955d88c1a5aSDimitry Andric     // A chain edge between a store and a load is treated as a back-edge in the
956d88c1a5aSDimitry Andric     // adjacency matrix.
957d88c1a5aSDimitry Andric     for (auto &PI : SUnits[i].Preds) {
958d88c1a5aSDimitry Andric       if (!SUnits[i].getInstr()->mayStore() ||
9594ba319b5SDimitry Andric           !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
960d88c1a5aSDimitry Andric         continue;
961d88c1a5aSDimitry Andric       if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
962d88c1a5aSDimitry Andric         int N = PI.getSUnit()->NodeNum;
963d88c1a5aSDimitry Andric         if (!Added.test(N)) {
964d88c1a5aSDimitry Andric           AdjK[i].push_back(N);
965d88c1a5aSDimitry Andric           Added.set(N);
966d88c1a5aSDimitry Andric         }
967d88c1a5aSDimitry Andric       }
968d88c1a5aSDimitry Andric     }
969d88c1a5aSDimitry Andric   }
970*b5893f02SDimitry Andric   // Add back-edges in the adjacency matrix for the output dependences.
9714ba319b5SDimitry Andric   for (auto &OD : OutputDeps)
9724ba319b5SDimitry Andric     if (!Added.test(OD.second)) {
9734ba319b5SDimitry Andric       AdjK[OD.first].push_back(OD.second);
9744ba319b5SDimitry Andric       Added.set(OD.second);
9754ba319b5SDimitry Andric     }
976d88c1a5aSDimitry Andric }
977d88c1a5aSDimitry Andric 
978d88c1a5aSDimitry Andric /// Identify an elementary circuit in the dependence graph starting at the
979d88c1a5aSDimitry Andric /// specified node.
circuit(int V,int S,NodeSetType & NodeSets,bool HasBackedge)980d88c1a5aSDimitry Andric bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
981d88c1a5aSDimitry Andric                                           bool HasBackedge) {
982d88c1a5aSDimitry Andric   SUnit *SV = &SUnits[V];
983d88c1a5aSDimitry Andric   bool F = false;
984d88c1a5aSDimitry Andric   Stack.insert(SV);
985d88c1a5aSDimitry Andric   Blocked.set(V);
986d88c1a5aSDimitry Andric 
987d88c1a5aSDimitry Andric   for (auto W : AdjK[V]) {
988d88c1a5aSDimitry Andric     if (NumPaths > MaxPaths)
989d88c1a5aSDimitry Andric       break;
990d88c1a5aSDimitry Andric     if (W < S)
991d88c1a5aSDimitry Andric       continue;
992d88c1a5aSDimitry Andric     if (W == S) {
993d88c1a5aSDimitry Andric       if (!HasBackedge)
994d88c1a5aSDimitry Andric         NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
995d88c1a5aSDimitry Andric       F = true;
996d88c1a5aSDimitry Andric       ++NumPaths;
997d88c1a5aSDimitry Andric       break;
998d88c1a5aSDimitry Andric     } else if (!Blocked.test(W)) {
999*b5893f02SDimitry Andric       if (circuit(W, S, NodeSets,
1000*b5893f02SDimitry Andric                   Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
1001d88c1a5aSDimitry Andric         F = true;
1002d88c1a5aSDimitry Andric     }
1003d88c1a5aSDimitry Andric   }
1004d88c1a5aSDimitry Andric 
1005d88c1a5aSDimitry Andric   if (F)
1006d88c1a5aSDimitry Andric     unblock(V);
1007d88c1a5aSDimitry Andric   else {
1008d88c1a5aSDimitry Andric     for (auto W : AdjK[V]) {
1009d88c1a5aSDimitry Andric       if (W < S)
1010d88c1a5aSDimitry Andric         continue;
1011d88c1a5aSDimitry Andric       if (B[W].count(SV) == 0)
1012d88c1a5aSDimitry Andric         B[W].insert(SV);
1013d88c1a5aSDimitry Andric     }
1014d88c1a5aSDimitry Andric   }
1015d88c1a5aSDimitry Andric   Stack.pop_back();
1016d88c1a5aSDimitry Andric   return F;
1017d88c1a5aSDimitry Andric }
1018d88c1a5aSDimitry Andric 
1019d88c1a5aSDimitry Andric /// Unblock a node in the circuit finding algorithm.
unblock(int U)1020d88c1a5aSDimitry Andric void SwingSchedulerDAG::Circuits::unblock(int U) {
1021d88c1a5aSDimitry Andric   Blocked.reset(U);
1022d88c1a5aSDimitry Andric   SmallPtrSet<SUnit *, 4> &BU = B[U];
1023d88c1a5aSDimitry Andric   while (!BU.empty()) {
1024d88c1a5aSDimitry Andric     SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1025d88c1a5aSDimitry Andric     assert(SI != BU.end() && "Invalid B set.");
1026d88c1a5aSDimitry Andric     SUnit *W = *SI;
1027d88c1a5aSDimitry Andric     BU.erase(W);
1028d88c1a5aSDimitry Andric     if (Blocked.test(W->NodeNum))
1029d88c1a5aSDimitry Andric       unblock(W->NodeNum);
1030d88c1a5aSDimitry Andric   }
1031d88c1a5aSDimitry Andric }
1032d88c1a5aSDimitry Andric 
1033d88c1a5aSDimitry Andric /// Identify all the elementary circuits in the dependence graph using
1034d88c1a5aSDimitry Andric /// Johnson's circuit algorithm.
findCircuits(NodeSetType & NodeSets)1035d88c1a5aSDimitry Andric void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1036d88c1a5aSDimitry Andric   // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1037d88c1a5aSDimitry Andric   // but we do this to find the circuits, and then change them back.
1038d88c1a5aSDimitry Andric   swapAntiDependences(SUnits);
1039d88c1a5aSDimitry Andric 
1040*b5893f02SDimitry Andric   Circuits Cir(SUnits, Topo);
1041d88c1a5aSDimitry Andric   // Create the adjacency structure.
1042d88c1a5aSDimitry Andric   Cir.createAdjacencyStructure(this);
1043d88c1a5aSDimitry Andric   for (int i = 0, e = SUnits.size(); i != e; ++i) {
1044d88c1a5aSDimitry Andric     Cir.reset();
1045d88c1a5aSDimitry Andric     Cir.circuit(i, i, NodeSets);
1046d88c1a5aSDimitry Andric   }
1047d88c1a5aSDimitry Andric 
1048d88c1a5aSDimitry Andric   // Change the dependences back so that we've created a DAG again.
1049d88c1a5aSDimitry Andric   swapAntiDependences(SUnits);
1050d88c1a5aSDimitry Andric }
1051d88c1a5aSDimitry Andric 
1052*b5893f02SDimitry Andric // Create artificial dependencies between the source of COPY/REG_SEQUENCE that
1053*b5893f02SDimitry Andric // is loop-carried to the USE in next iteration. This will help pipeliner avoid
1054*b5893f02SDimitry Andric // additional copies that are needed across iterations. An artificial dependence
1055*b5893f02SDimitry Andric // edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
1056*b5893f02SDimitry Andric 
1057*b5893f02SDimitry Andric // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
1058*b5893f02SDimitry Andric // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
1059*b5893f02SDimitry Andric // PHI-------True-Dep------> USEOfPhi
1060*b5893f02SDimitry Andric 
1061*b5893f02SDimitry Andric // The mutation creates
1062*b5893f02SDimitry Andric // USEOfPHI -------Artificial-Dep---> SRCOfCopy
1063*b5893f02SDimitry Andric 
1064*b5893f02SDimitry Andric // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
1065*b5893f02SDimitry Andric // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
1066*b5893f02SDimitry Andric // late  to avoid additional copies across iterations. The possible scheduling
1067*b5893f02SDimitry Andric // order would be
1068*b5893f02SDimitry Andric // USEOfPHI --- SRCOfCopy---  COPY/REG_SEQUENCE.
1069*b5893f02SDimitry Andric 
apply(ScheduleDAGInstrs * DAG)1070*b5893f02SDimitry Andric void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
1071*b5893f02SDimitry Andric   for (SUnit &SU : DAG->SUnits) {
1072*b5893f02SDimitry Andric     // Find the COPY/REG_SEQUENCE instruction.
1073*b5893f02SDimitry Andric     if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
1074*b5893f02SDimitry Andric       continue;
1075*b5893f02SDimitry Andric 
1076*b5893f02SDimitry Andric     // Record the loop carried PHIs.
1077*b5893f02SDimitry Andric     SmallVector<SUnit *, 4> PHISUs;
1078*b5893f02SDimitry Andric     // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
1079*b5893f02SDimitry Andric     SmallVector<SUnit *, 4> SrcSUs;
1080*b5893f02SDimitry Andric 
1081*b5893f02SDimitry Andric     for (auto &Dep : SU.Preds) {
1082*b5893f02SDimitry Andric       SUnit *TmpSU = Dep.getSUnit();
1083*b5893f02SDimitry Andric       MachineInstr *TmpMI = TmpSU->getInstr();
1084*b5893f02SDimitry Andric       SDep::Kind DepKind = Dep.getKind();
1085*b5893f02SDimitry Andric       // Save the loop carried PHI.
1086*b5893f02SDimitry Andric       if (DepKind == SDep::Anti && TmpMI->isPHI())
1087*b5893f02SDimitry Andric         PHISUs.push_back(TmpSU);
1088*b5893f02SDimitry Andric       // Save the source of COPY/REG_SEQUENCE.
1089*b5893f02SDimitry Andric       // If the source has no pre-decessors, we will end up creating cycles.
1090*b5893f02SDimitry Andric       else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
1091*b5893f02SDimitry Andric         SrcSUs.push_back(TmpSU);
1092*b5893f02SDimitry Andric     }
1093*b5893f02SDimitry Andric 
1094*b5893f02SDimitry Andric     if (PHISUs.size() == 0 || SrcSUs.size() == 0)
1095*b5893f02SDimitry Andric       continue;
1096*b5893f02SDimitry Andric 
1097*b5893f02SDimitry Andric     // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
1098*b5893f02SDimitry Andric     // SUnit to the container.
1099*b5893f02SDimitry Andric     SmallVector<SUnit *, 8> UseSUs;
1100*b5893f02SDimitry Andric     for (auto I = PHISUs.begin(); I != PHISUs.end(); ++I) {
1101*b5893f02SDimitry Andric       for (auto &Dep : (*I)->Succs) {
1102*b5893f02SDimitry Andric         if (Dep.getKind() != SDep::Data)
1103*b5893f02SDimitry Andric           continue;
1104*b5893f02SDimitry Andric 
1105*b5893f02SDimitry Andric         SUnit *TmpSU = Dep.getSUnit();
1106*b5893f02SDimitry Andric         MachineInstr *TmpMI = TmpSU->getInstr();
1107*b5893f02SDimitry Andric         if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
1108*b5893f02SDimitry Andric           PHISUs.push_back(TmpSU);
1109*b5893f02SDimitry Andric           continue;
1110*b5893f02SDimitry Andric         }
1111*b5893f02SDimitry Andric         UseSUs.push_back(TmpSU);
1112*b5893f02SDimitry Andric       }
1113*b5893f02SDimitry Andric     }
1114*b5893f02SDimitry Andric 
1115*b5893f02SDimitry Andric     if (UseSUs.size() == 0)
1116*b5893f02SDimitry Andric       continue;
1117*b5893f02SDimitry Andric 
1118*b5893f02SDimitry Andric     SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
1119*b5893f02SDimitry Andric     // Add the artificial dependencies if it does not form a cycle.
1120*b5893f02SDimitry Andric     for (auto I : UseSUs) {
1121*b5893f02SDimitry Andric       for (auto Src : SrcSUs) {
1122*b5893f02SDimitry Andric         if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
1123*b5893f02SDimitry Andric           Src->addPred(SDep(I, SDep::Artificial));
1124*b5893f02SDimitry Andric           SDAG->Topo.AddPred(Src, I);
1125*b5893f02SDimitry Andric         }
1126*b5893f02SDimitry Andric       }
1127*b5893f02SDimitry Andric     }
1128*b5893f02SDimitry Andric   }
1129*b5893f02SDimitry Andric }
1130*b5893f02SDimitry Andric 
1131d88c1a5aSDimitry Andric /// Return true for DAG nodes that we ignore when computing the cost functions.
11324ba319b5SDimitry Andric /// We ignore the back-edge recurrence in order to avoid unbounded recursion
1133d88c1a5aSDimitry Andric /// in the calculation of the ASAP, ALAP, etc functions.
ignoreDependence(const SDep & D,bool isPred)1134d88c1a5aSDimitry Andric static bool ignoreDependence(const SDep &D, bool isPred) {
1135d88c1a5aSDimitry Andric   if (D.isArtificial())
1136d88c1a5aSDimitry Andric     return true;
1137d88c1a5aSDimitry Andric   return D.getKind() == SDep::Anti && isPred;
1138d88c1a5aSDimitry Andric }
1139d88c1a5aSDimitry Andric 
1140d88c1a5aSDimitry Andric /// Compute several functions need to order the nodes for scheduling.
1141d88c1a5aSDimitry Andric ///  ASAP - Earliest time to schedule a node.
1142d88c1a5aSDimitry Andric ///  ALAP - Latest time to schedule a node.
1143d88c1a5aSDimitry Andric ///  MOV - Mobility function, difference between ALAP and ASAP.
1144d88c1a5aSDimitry Andric ///  D - Depth of each node.
1145d88c1a5aSDimitry Andric ///  H - Height of each node.
computeNodeFunctions(NodeSetType & NodeSets)1146d88c1a5aSDimitry Andric void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1147d88c1a5aSDimitry Andric   ScheduleInfo.resize(SUnits.size());
1148d88c1a5aSDimitry Andric 
11494ba319b5SDimitry Andric   LLVM_DEBUG({
1150d88c1a5aSDimitry Andric     for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1151d88c1a5aSDimitry Andric                                                     E = Topo.end();
1152d88c1a5aSDimitry Andric          I != E; ++I) {
1153*b5893f02SDimitry Andric       const SUnit &SU = SUnits[*I];
1154*b5893f02SDimitry Andric       dumpNode(SU);
1155d88c1a5aSDimitry Andric     }
1156d88c1a5aSDimitry Andric   });
1157d88c1a5aSDimitry Andric 
1158d88c1a5aSDimitry Andric   int maxASAP = 0;
11594ba319b5SDimitry Andric   // Compute ASAP and ZeroLatencyDepth.
1160d88c1a5aSDimitry Andric   for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1161d88c1a5aSDimitry Andric                                                   E = Topo.end();
1162d88c1a5aSDimitry Andric        I != E; ++I) {
1163d88c1a5aSDimitry Andric     int asap = 0;
11644ba319b5SDimitry Andric     int zeroLatencyDepth = 0;
1165d88c1a5aSDimitry Andric     SUnit *SU = &SUnits[*I];
1166d88c1a5aSDimitry Andric     for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
1167d88c1a5aSDimitry Andric                                     EP = SU->Preds.end();
1168d88c1a5aSDimitry Andric          IP != EP; ++IP) {
11694ba319b5SDimitry Andric       SUnit *pred = IP->getSUnit();
11704ba319b5SDimitry Andric       if (IP->getLatency() == 0)
11714ba319b5SDimitry Andric         zeroLatencyDepth =
11724ba319b5SDimitry Andric             std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
1173d88c1a5aSDimitry Andric       if (ignoreDependence(*IP, true))
1174d88c1a5aSDimitry Andric         continue;
11754ba319b5SDimitry Andric       asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() -
1176d88c1a5aSDimitry Andric                                   getDistance(pred, SU, *IP) * MII));
1177d88c1a5aSDimitry Andric     }
1178d88c1a5aSDimitry Andric     maxASAP = std::max(maxASAP, asap);
1179d88c1a5aSDimitry Andric     ScheduleInfo[*I].ASAP = asap;
11804ba319b5SDimitry Andric     ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth;
1181d88c1a5aSDimitry Andric   }
1182d88c1a5aSDimitry Andric 
11834ba319b5SDimitry Andric   // Compute ALAP, ZeroLatencyHeight, and MOV.
1184d88c1a5aSDimitry Andric   for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
1185d88c1a5aSDimitry Andric                                                           E = Topo.rend();
1186d88c1a5aSDimitry Andric        I != E; ++I) {
1187d88c1a5aSDimitry Andric     int alap = maxASAP;
11884ba319b5SDimitry Andric     int zeroLatencyHeight = 0;
1189d88c1a5aSDimitry Andric     SUnit *SU = &SUnits[*I];
1190d88c1a5aSDimitry Andric     for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
1191d88c1a5aSDimitry Andric                                     ES = SU->Succs.end();
1192d88c1a5aSDimitry Andric          IS != ES; ++IS) {
11934ba319b5SDimitry Andric       SUnit *succ = IS->getSUnit();
11944ba319b5SDimitry Andric       if (IS->getLatency() == 0)
11954ba319b5SDimitry Andric         zeroLatencyHeight =
11964ba319b5SDimitry Andric             std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
1197d88c1a5aSDimitry Andric       if (ignoreDependence(*IS, true))
1198d88c1a5aSDimitry Andric         continue;
11994ba319b5SDimitry Andric       alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() +
1200d88c1a5aSDimitry Andric                                   getDistance(SU, succ, *IS) * MII));
1201d88c1a5aSDimitry Andric     }
1202d88c1a5aSDimitry Andric 
1203d88c1a5aSDimitry Andric     ScheduleInfo[*I].ALAP = alap;
12044ba319b5SDimitry Andric     ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight;
1205d88c1a5aSDimitry Andric   }
1206d88c1a5aSDimitry Andric 
1207d88c1a5aSDimitry Andric   // After computing the node functions, compute the summary for each node set.
1208d88c1a5aSDimitry Andric   for (NodeSet &I : NodeSets)
1209d88c1a5aSDimitry Andric     I.computeNodeSetInfo(this);
1210d88c1a5aSDimitry Andric 
12114ba319b5SDimitry Andric   LLVM_DEBUG({
1212d88c1a5aSDimitry Andric     for (unsigned i = 0; i < SUnits.size(); i++) {
1213d88c1a5aSDimitry Andric       dbgs() << "\tNode " << i << ":\n";
1214d88c1a5aSDimitry Andric       dbgs() << "\t   ASAP = " << getASAP(&SUnits[i]) << "\n";
1215d88c1a5aSDimitry Andric       dbgs() << "\t   ALAP = " << getALAP(&SUnits[i]) << "\n";
1216d88c1a5aSDimitry Andric       dbgs() << "\t   MOV  = " << getMOV(&SUnits[i]) << "\n";
1217d88c1a5aSDimitry Andric       dbgs() << "\t   D    = " << getDepth(&SUnits[i]) << "\n";
1218d88c1a5aSDimitry Andric       dbgs() << "\t   H    = " << getHeight(&SUnits[i]) << "\n";
12194ba319b5SDimitry Andric       dbgs() << "\t   ZLD  = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
12204ba319b5SDimitry Andric       dbgs() << "\t   ZLH  = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
1221d88c1a5aSDimitry Andric     }
1222d88c1a5aSDimitry Andric   });
1223d88c1a5aSDimitry Andric }
1224d88c1a5aSDimitry Andric 
1225d88c1a5aSDimitry Andric /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1226d88c1a5aSDimitry Andric /// as the predecessors of the elements of NodeOrder that are not also in
1227d88c1a5aSDimitry Andric /// NodeOrder.
pred_L(SetVector<SUnit * > & NodeOrder,SmallSetVector<SUnit *,8> & Preds,const NodeSet * S=nullptr)1228d88c1a5aSDimitry Andric static bool pred_L(SetVector<SUnit *> &NodeOrder,
1229d88c1a5aSDimitry Andric                    SmallSetVector<SUnit *, 8> &Preds,
1230d88c1a5aSDimitry Andric                    const NodeSet *S = nullptr) {
1231d88c1a5aSDimitry Andric   Preds.clear();
1232d88c1a5aSDimitry Andric   for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1233d88c1a5aSDimitry Andric        I != E; ++I) {
1234d88c1a5aSDimitry Andric     for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
1235d88c1a5aSDimitry Andric          PI != PE; ++PI) {
1236d88c1a5aSDimitry Andric       if (S && S->count(PI->getSUnit()) == 0)
1237d88c1a5aSDimitry Andric         continue;
1238d88c1a5aSDimitry Andric       if (ignoreDependence(*PI, true))
1239d88c1a5aSDimitry Andric         continue;
1240d88c1a5aSDimitry Andric       if (NodeOrder.count(PI->getSUnit()) == 0)
1241d88c1a5aSDimitry Andric         Preds.insert(PI->getSUnit());
1242d88c1a5aSDimitry Andric     }
1243d88c1a5aSDimitry Andric     // Back-edges are predecessors with an anti-dependence.
1244d88c1a5aSDimitry Andric     for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
1245d88c1a5aSDimitry Andric                                     ES = (*I)->Succs.end();
1246d88c1a5aSDimitry Andric          IS != ES; ++IS) {
1247d88c1a5aSDimitry Andric       if (IS->getKind() != SDep::Anti)
1248d88c1a5aSDimitry Andric         continue;
1249d88c1a5aSDimitry Andric       if (S && S->count(IS->getSUnit()) == 0)
1250d88c1a5aSDimitry Andric         continue;
1251d88c1a5aSDimitry Andric       if (NodeOrder.count(IS->getSUnit()) == 0)
1252d88c1a5aSDimitry Andric         Preds.insert(IS->getSUnit());
1253d88c1a5aSDimitry Andric     }
1254d88c1a5aSDimitry Andric   }
12552cab237bSDimitry Andric   return !Preds.empty();
1256d88c1a5aSDimitry Andric }
1257d88c1a5aSDimitry Andric 
1258d88c1a5aSDimitry Andric /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1259d88c1a5aSDimitry Andric /// as the successors of the elements of NodeOrder that are not also in
1260d88c1a5aSDimitry Andric /// NodeOrder.
succ_L(SetVector<SUnit * > & NodeOrder,SmallSetVector<SUnit *,8> & Succs,const NodeSet * S=nullptr)1261d88c1a5aSDimitry Andric static bool succ_L(SetVector<SUnit *> &NodeOrder,
1262d88c1a5aSDimitry Andric                    SmallSetVector<SUnit *, 8> &Succs,
1263d88c1a5aSDimitry Andric                    const NodeSet *S = nullptr) {
1264d88c1a5aSDimitry Andric   Succs.clear();
1265d88c1a5aSDimitry Andric   for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1266d88c1a5aSDimitry Andric        I != E; ++I) {
1267d88c1a5aSDimitry Andric     for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
1268d88c1a5aSDimitry Andric          SI != SE; ++SI) {
1269d88c1a5aSDimitry Andric       if (S && S->count(SI->getSUnit()) == 0)
1270d88c1a5aSDimitry Andric         continue;
1271d88c1a5aSDimitry Andric       if (ignoreDependence(*SI, false))
1272d88c1a5aSDimitry Andric         continue;
1273d88c1a5aSDimitry Andric       if (NodeOrder.count(SI->getSUnit()) == 0)
1274d88c1a5aSDimitry Andric         Succs.insert(SI->getSUnit());
1275d88c1a5aSDimitry Andric     }
1276d88c1a5aSDimitry Andric     for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
1277d88c1a5aSDimitry Andric                                     PE = (*I)->Preds.end();
1278d88c1a5aSDimitry Andric          PI != PE; ++PI) {
1279d88c1a5aSDimitry Andric       if (PI->getKind() != SDep::Anti)
1280d88c1a5aSDimitry Andric         continue;
1281d88c1a5aSDimitry Andric       if (S && S->count(PI->getSUnit()) == 0)
1282d88c1a5aSDimitry Andric         continue;
1283d88c1a5aSDimitry Andric       if (NodeOrder.count(PI->getSUnit()) == 0)
1284d88c1a5aSDimitry Andric         Succs.insert(PI->getSUnit());
1285d88c1a5aSDimitry Andric     }
1286d88c1a5aSDimitry Andric   }
12872cab237bSDimitry Andric   return !Succs.empty();
1288d88c1a5aSDimitry Andric }
1289d88c1a5aSDimitry Andric 
1290d88c1a5aSDimitry Andric /// Return true if there is a path from the specified node to any of the nodes
1291d88c1a5aSDimitry Andric /// in DestNodes. Keep track and return the nodes in any path.
computePath(SUnit * Cur,SetVector<SUnit * > & Path,SetVector<SUnit * > & DestNodes,SetVector<SUnit * > & Exclude,SmallPtrSet<SUnit *,8> & Visited)1292d88c1a5aSDimitry Andric static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1293d88c1a5aSDimitry Andric                         SetVector<SUnit *> &DestNodes,
1294d88c1a5aSDimitry Andric                         SetVector<SUnit *> &Exclude,
1295d88c1a5aSDimitry Andric                         SmallPtrSet<SUnit *, 8> &Visited) {
1296d88c1a5aSDimitry Andric   if (Cur->isBoundaryNode())
1297d88c1a5aSDimitry Andric     return false;
1298d88c1a5aSDimitry Andric   if (Exclude.count(Cur) != 0)
1299d88c1a5aSDimitry Andric     return false;
1300d88c1a5aSDimitry Andric   if (DestNodes.count(Cur) != 0)
1301d88c1a5aSDimitry Andric     return true;
1302d88c1a5aSDimitry Andric   if (!Visited.insert(Cur).second)
1303d88c1a5aSDimitry Andric     return Path.count(Cur) != 0;
1304d88c1a5aSDimitry Andric   bool FoundPath = false;
1305d88c1a5aSDimitry Andric   for (auto &SI : Cur->Succs)
1306d88c1a5aSDimitry Andric     FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1307d88c1a5aSDimitry Andric   for (auto &PI : Cur->Preds)
1308d88c1a5aSDimitry Andric     if (PI.getKind() == SDep::Anti)
1309d88c1a5aSDimitry Andric       FoundPath |=
1310d88c1a5aSDimitry Andric           computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1311d88c1a5aSDimitry Andric   if (FoundPath)
1312d88c1a5aSDimitry Andric     Path.insert(Cur);
1313d88c1a5aSDimitry Andric   return FoundPath;
1314d88c1a5aSDimitry Andric }
1315d88c1a5aSDimitry Andric 
1316d88c1a5aSDimitry Andric /// Return true if Set1 is a subset of Set2.
isSubset(S1Ty & Set1,S2Ty & Set2)1317d88c1a5aSDimitry Andric template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
1318d88c1a5aSDimitry Andric   for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
1319d88c1a5aSDimitry Andric     if (Set2.count(*I) == 0)
1320d88c1a5aSDimitry Andric       return false;
1321d88c1a5aSDimitry Andric   return true;
1322d88c1a5aSDimitry Andric }
1323d88c1a5aSDimitry Andric 
1324d88c1a5aSDimitry Andric /// Compute the live-out registers for the instructions in a node-set.
1325d88c1a5aSDimitry Andric /// The live-out registers are those that are defined in the node-set,
1326d88c1a5aSDimitry Andric /// but not used. Except for use operands of Phis.
computeLiveOuts(MachineFunction & MF,RegPressureTracker & RPTracker,NodeSet & NS)1327d88c1a5aSDimitry Andric static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1328d88c1a5aSDimitry Andric                             NodeSet &NS) {
1329d88c1a5aSDimitry Andric   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1330d88c1a5aSDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
1331d88c1a5aSDimitry Andric   SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1332d88c1a5aSDimitry Andric   SmallSet<unsigned, 4> Uses;
1333d88c1a5aSDimitry Andric   for (SUnit *SU : NS) {
1334d88c1a5aSDimitry Andric     const MachineInstr *MI = SU->getInstr();
1335d88c1a5aSDimitry Andric     if (MI->isPHI())
1336d88c1a5aSDimitry Andric       continue;
1337d88c1a5aSDimitry Andric     for (const MachineOperand &MO : MI->operands())
1338d88c1a5aSDimitry Andric       if (MO.isReg() && MO.isUse()) {
1339d88c1a5aSDimitry Andric         unsigned Reg = MO.getReg();
1340d88c1a5aSDimitry Andric         if (TargetRegisterInfo::isVirtualRegister(Reg))
1341d88c1a5aSDimitry Andric           Uses.insert(Reg);
1342d88c1a5aSDimitry Andric         else if (MRI.isAllocatable(Reg))
1343d88c1a5aSDimitry Andric           for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1344d88c1a5aSDimitry Andric             Uses.insert(*Units);
1345d88c1a5aSDimitry Andric       }
1346d88c1a5aSDimitry Andric   }
1347d88c1a5aSDimitry Andric   for (SUnit *SU : NS)
1348d88c1a5aSDimitry Andric     for (const MachineOperand &MO : SU->getInstr()->operands())
1349d88c1a5aSDimitry Andric       if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1350d88c1a5aSDimitry Andric         unsigned Reg = MO.getReg();
1351d88c1a5aSDimitry Andric         if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1352d88c1a5aSDimitry Andric           if (!Uses.count(Reg))
1353d88c1a5aSDimitry Andric             LiveOutRegs.push_back(RegisterMaskPair(Reg,
1354d88c1a5aSDimitry Andric                                                    LaneBitmask::getNone()));
1355d88c1a5aSDimitry Andric         } else if (MRI.isAllocatable(Reg)) {
1356d88c1a5aSDimitry Andric           for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1357d88c1a5aSDimitry Andric             if (!Uses.count(*Units))
1358d88c1a5aSDimitry Andric               LiveOutRegs.push_back(RegisterMaskPair(*Units,
1359d88c1a5aSDimitry Andric                                                      LaneBitmask::getNone()));
1360d88c1a5aSDimitry Andric         }
1361d88c1a5aSDimitry Andric       }
1362d88c1a5aSDimitry Andric   RPTracker.addLiveRegs(LiveOutRegs);
1363d88c1a5aSDimitry Andric }
1364d88c1a5aSDimitry Andric 
1365d88c1a5aSDimitry Andric /// A heuristic to filter nodes in recurrent node-sets if the register
1366d88c1a5aSDimitry Andric /// pressure of a set is too high.
registerPressureFilter(NodeSetType & NodeSets)1367d88c1a5aSDimitry Andric void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1368d88c1a5aSDimitry Andric   for (auto &NS : NodeSets) {
1369d88c1a5aSDimitry Andric     // Skip small node-sets since they won't cause register pressure problems.
1370d88c1a5aSDimitry Andric     if (NS.size() <= 2)
1371d88c1a5aSDimitry Andric       continue;
1372d88c1a5aSDimitry Andric     IntervalPressure RecRegPressure;
1373d88c1a5aSDimitry Andric     RegPressureTracker RecRPTracker(RecRegPressure);
1374d88c1a5aSDimitry Andric     RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1375d88c1a5aSDimitry Andric     computeLiveOuts(MF, RecRPTracker, NS);
1376d88c1a5aSDimitry Andric     RecRPTracker.closeBottom();
1377d88c1a5aSDimitry Andric 
1378d88c1a5aSDimitry Andric     std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1379*b5893f02SDimitry Andric     llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
1380d88c1a5aSDimitry Andric       return A->NodeNum > B->NodeNum;
1381d88c1a5aSDimitry Andric     });
1382d88c1a5aSDimitry Andric 
1383d88c1a5aSDimitry Andric     for (auto &SU : SUnits) {
1384d88c1a5aSDimitry Andric       // Since we're computing the register pressure for a subset of the
1385d88c1a5aSDimitry Andric       // instructions in a block, we need to set the tracker for each
1386d88c1a5aSDimitry Andric       // instruction in the node-set. The tracker is set to the instruction
1387d88c1a5aSDimitry Andric       // just after the one we're interested in.
1388d88c1a5aSDimitry Andric       MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1389d88c1a5aSDimitry Andric       RecRPTracker.setPos(std::next(CurInstI));
1390d88c1a5aSDimitry Andric 
1391d88c1a5aSDimitry Andric       RegPressureDelta RPDelta;
1392d88c1a5aSDimitry Andric       ArrayRef<PressureChange> CriticalPSets;
1393d88c1a5aSDimitry Andric       RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1394d88c1a5aSDimitry Andric                                              CriticalPSets,
1395d88c1a5aSDimitry Andric                                              RecRegPressure.MaxSetPressure);
1396d88c1a5aSDimitry Andric       if (RPDelta.Excess.isValid()) {
13974ba319b5SDimitry Andric         LLVM_DEBUG(
13984ba319b5SDimitry Andric             dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1399d88c1a5aSDimitry Andric                    << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1400d88c1a5aSDimitry Andric                    << ":" << RPDelta.Excess.getUnitInc());
1401d88c1a5aSDimitry Andric         NS.setExceedPressure(SU);
1402d88c1a5aSDimitry Andric         break;
1403d88c1a5aSDimitry Andric       }
1404d88c1a5aSDimitry Andric       RecRPTracker.recede();
1405d88c1a5aSDimitry Andric     }
1406d88c1a5aSDimitry Andric   }
1407d88c1a5aSDimitry Andric }
1408d88c1a5aSDimitry Andric 
1409d88c1a5aSDimitry Andric /// A heuristic to colocate node sets that have the same set of
1410d88c1a5aSDimitry Andric /// successors.
colocateNodeSets(NodeSetType & NodeSets)1411d88c1a5aSDimitry Andric void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1412d88c1a5aSDimitry Andric   unsigned Colocate = 0;
1413d88c1a5aSDimitry Andric   for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1414d88c1a5aSDimitry Andric     NodeSet &N1 = NodeSets[i];
1415d88c1a5aSDimitry Andric     SmallSetVector<SUnit *, 8> S1;
1416d88c1a5aSDimitry Andric     if (N1.empty() || !succ_L(N1, S1))
1417d88c1a5aSDimitry Andric       continue;
1418d88c1a5aSDimitry Andric     for (int j = i + 1; j < e; ++j) {
1419d88c1a5aSDimitry Andric       NodeSet &N2 = NodeSets[j];
1420d88c1a5aSDimitry Andric       if (N1.compareRecMII(N2) != 0)
1421d88c1a5aSDimitry Andric         continue;
1422d88c1a5aSDimitry Andric       SmallSetVector<SUnit *, 8> S2;
1423d88c1a5aSDimitry Andric       if (N2.empty() || !succ_L(N2, S2))
1424d88c1a5aSDimitry Andric         continue;
1425d88c1a5aSDimitry Andric       if (isSubset(S1, S2) && S1.size() == S2.size()) {
1426d88c1a5aSDimitry Andric         N1.setColocate(++Colocate);
1427d88c1a5aSDimitry Andric         N2.setColocate(Colocate);
1428d88c1a5aSDimitry Andric         break;
1429d88c1a5aSDimitry Andric       }
1430d88c1a5aSDimitry Andric     }
1431d88c1a5aSDimitry Andric   }
1432d88c1a5aSDimitry Andric }
1433d88c1a5aSDimitry Andric 
1434d88c1a5aSDimitry Andric /// Check if the existing node-sets are profitable. If not, then ignore the
1435d88c1a5aSDimitry Andric /// recurrent node-sets, and attempt to schedule all nodes together. This is
14364ba319b5SDimitry Andric /// a heuristic. If the MII is large and all the recurrent node-sets are small,
14374ba319b5SDimitry Andric /// then it's best to try to schedule all instructions together instead of
14384ba319b5SDimitry Andric /// starting with the recurrent node-sets.
checkNodeSets(NodeSetType & NodeSets)1439d88c1a5aSDimitry Andric void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1440d88c1a5aSDimitry Andric   // Look for loops with a large MII.
14414ba319b5SDimitry Andric   if (MII < 17)
1442d88c1a5aSDimitry Andric     return;
1443d88c1a5aSDimitry Andric   // Check if the node-set contains only a simple add recurrence.
14444ba319b5SDimitry Andric   for (auto &NS : NodeSets) {
14454ba319b5SDimitry Andric     if (NS.getRecMII() > 2)
1446d88c1a5aSDimitry Andric       return;
14474ba319b5SDimitry Andric     if (NS.getMaxDepth() > MII)
1448d88c1a5aSDimitry Andric       return;
1449d88c1a5aSDimitry Andric   }
14504ba319b5SDimitry Andric   NodeSets.clear();
14514ba319b5SDimitry Andric   LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
14524ba319b5SDimitry Andric   return;
1453d88c1a5aSDimitry Andric }
1454d88c1a5aSDimitry Andric 
1455d88c1a5aSDimitry Andric /// Add the nodes that do not belong to a recurrence set into groups
1456d88c1a5aSDimitry Andric /// based upon connected componenets.
groupRemainingNodes(NodeSetType & NodeSets)1457d88c1a5aSDimitry Andric void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1458d88c1a5aSDimitry Andric   SetVector<SUnit *> NodesAdded;
1459d88c1a5aSDimitry Andric   SmallPtrSet<SUnit *, 8> Visited;
1460d88c1a5aSDimitry Andric   // Add the nodes that are on a path between the previous node sets and
1461d88c1a5aSDimitry Andric   // the current node set.
1462d88c1a5aSDimitry Andric   for (NodeSet &I : NodeSets) {
1463d88c1a5aSDimitry Andric     SmallSetVector<SUnit *, 8> N;
1464d88c1a5aSDimitry Andric     // Add the nodes from the current node set to the previous node set.
1465d88c1a5aSDimitry Andric     if (succ_L(I, N)) {
1466d88c1a5aSDimitry Andric       SetVector<SUnit *> Path;
1467d88c1a5aSDimitry Andric       for (SUnit *NI : N) {
1468d88c1a5aSDimitry Andric         Visited.clear();
1469d88c1a5aSDimitry Andric         computePath(NI, Path, NodesAdded, I, Visited);
1470d88c1a5aSDimitry Andric       }
14712cab237bSDimitry Andric       if (!Path.empty())
1472d88c1a5aSDimitry Andric         I.insert(Path.begin(), Path.end());
1473d88c1a5aSDimitry Andric     }
1474d88c1a5aSDimitry Andric     // Add the nodes from the previous node set to the current node set.
1475d88c1a5aSDimitry Andric     N.clear();
1476d88c1a5aSDimitry Andric     if (succ_L(NodesAdded, N)) {
1477d88c1a5aSDimitry Andric       SetVector<SUnit *> Path;
1478d88c1a5aSDimitry Andric       for (SUnit *NI : N) {
1479d88c1a5aSDimitry Andric         Visited.clear();
1480d88c1a5aSDimitry Andric         computePath(NI, Path, I, NodesAdded, Visited);
1481d88c1a5aSDimitry Andric       }
14822cab237bSDimitry Andric       if (!Path.empty())
1483d88c1a5aSDimitry Andric         I.insert(Path.begin(), Path.end());
1484d88c1a5aSDimitry Andric     }
1485d88c1a5aSDimitry Andric     NodesAdded.insert(I.begin(), I.end());
1486d88c1a5aSDimitry Andric   }
1487d88c1a5aSDimitry Andric 
1488d88c1a5aSDimitry Andric   // Create a new node set with the connected nodes of any successor of a node
1489d88c1a5aSDimitry Andric   // in a recurrent set.
1490d88c1a5aSDimitry Andric   NodeSet NewSet;
1491d88c1a5aSDimitry Andric   SmallSetVector<SUnit *, 8> N;
1492d88c1a5aSDimitry Andric   if (succ_L(NodesAdded, N))
1493d88c1a5aSDimitry Andric     for (SUnit *I : N)
1494d88c1a5aSDimitry Andric       addConnectedNodes(I, NewSet, NodesAdded);
14952cab237bSDimitry Andric   if (!NewSet.empty())
1496d88c1a5aSDimitry Andric     NodeSets.push_back(NewSet);
1497d88c1a5aSDimitry Andric 
1498d88c1a5aSDimitry Andric   // Create a new node set with the connected nodes of any predecessor of a node
1499d88c1a5aSDimitry Andric   // in a recurrent set.
1500d88c1a5aSDimitry Andric   NewSet.clear();
1501d88c1a5aSDimitry Andric   if (pred_L(NodesAdded, N))
1502d88c1a5aSDimitry Andric     for (SUnit *I : N)
1503d88c1a5aSDimitry Andric       addConnectedNodes(I, NewSet, NodesAdded);
15042cab237bSDimitry Andric   if (!NewSet.empty())
1505d88c1a5aSDimitry Andric     NodeSets.push_back(NewSet);
1506d88c1a5aSDimitry Andric 
15074ba319b5SDimitry Andric   // Create new nodes sets with the connected nodes any remaining node that
1508d88c1a5aSDimitry Andric   // has no predecessor.
1509d88c1a5aSDimitry Andric   for (unsigned i = 0; i < SUnits.size(); ++i) {
1510d88c1a5aSDimitry Andric     SUnit *SU = &SUnits[i];
1511d88c1a5aSDimitry Andric     if (NodesAdded.count(SU) == 0) {
1512d88c1a5aSDimitry Andric       NewSet.clear();
1513d88c1a5aSDimitry Andric       addConnectedNodes(SU, NewSet, NodesAdded);
15142cab237bSDimitry Andric       if (!NewSet.empty())
1515d88c1a5aSDimitry Andric         NodeSets.push_back(NewSet);
1516d88c1a5aSDimitry Andric     }
1517d88c1a5aSDimitry Andric   }
1518d88c1a5aSDimitry Andric }
1519d88c1a5aSDimitry Andric 
1520d88c1a5aSDimitry Andric /// Add the node to the set, and add all is its connected nodes to the set.
addConnectedNodes(SUnit * SU,NodeSet & NewSet,SetVector<SUnit * > & NodesAdded)1521d88c1a5aSDimitry Andric void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1522d88c1a5aSDimitry Andric                                           SetVector<SUnit *> &NodesAdded) {
1523d88c1a5aSDimitry Andric   NewSet.insert(SU);
1524d88c1a5aSDimitry Andric   NodesAdded.insert(SU);
1525d88c1a5aSDimitry Andric   for (auto &SI : SU->Succs) {
1526d88c1a5aSDimitry Andric     SUnit *Successor = SI.getSUnit();
1527d88c1a5aSDimitry Andric     if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
1528d88c1a5aSDimitry Andric       addConnectedNodes(Successor, NewSet, NodesAdded);
1529d88c1a5aSDimitry Andric   }
1530d88c1a5aSDimitry Andric   for (auto &PI : SU->Preds) {
1531d88c1a5aSDimitry Andric     SUnit *Predecessor = PI.getSUnit();
1532d88c1a5aSDimitry Andric     if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1533d88c1a5aSDimitry Andric       addConnectedNodes(Predecessor, NewSet, NodesAdded);
1534d88c1a5aSDimitry Andric   }
1535d88c1a5aSDimitry Andric }
1536d88c1a5aSDimitry Andric 
1537d88c1a5aSDimitry Andric /// Return true if Set1 contains elements in Set2. The elements in common
1538d88c1a5aSDimitry Andric /// are returned in a different container.
isIntersect(SmallSetVector<SUnit *,8> & Set1,const NodeSet & Set2,SmallSetVector<SUnit *,8> & Result)1539d88c1a5aSDimitry Andric static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1540d88c1a5aSDimitry Andric                         SmallSetVector<SUnit *, 8> &Result) {
1541d88c1a5aSDimitry Andric   Result.clear();
1542d88c1a5aSDimitry Andric   for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
1543d88c1a5aSDimitry Andric     SUnit *SU = Set1[i];
1544d88c1a5aSDimitry Andric     if (Set2.count(SU) != 0)
1545d88c1a5aSDimitry Andric       Result.insert(SU);
1546d88c1a5aSDimitry Andric   }
1547d88c1a5aSDimitry Andric   return !Result.empty();
1548d88c1a5aSDimitry Andric }
1549d88c1a5aSDimitry Andric 
1550d88c1a5aSDimitry Andric /// Merge the recurrence node sets that have the same initial node.
fuseRecs(NodeSetType & NodeSets)1551d88c1a5aSDimitry Andric void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1552d88c1a5aSDimitry Andric   for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1553d88c1a5aSDimitry Andric        ++I) {
1554d88c1a5aSDimitry Andric     NodeSet &NI = *I;
1555d88c1a5aSDimitry Andric     for (NodeSetType::iterator J = I + 1; J != E;) {
1556d88c1a5aSDimitry Andric       NodeSet &NJ = *J;
1557d88c1a5aSDimitry Andric       if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1558d88c1a5aSDimitry Andric         if (NJ.compareRecMII(NI) > 0)
1559d88c1a5aSDimitry Andric           NI.setRecMII(NJ.getRecMII());
1560d88c1a5aSDimitry Andric         for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
1561d88c1a5aSDimitry Andric              ++NII)
1562d88c1a5aSDimitry Andric           I->insert(*NII);
1563d88c1a5aSDimitry Andric         NodeSets.erase(J);
1564d88c1a5aSDimitry Andric         E = NodeSets.end();
1565d88c1a5aSDimitry Andric       } else {
1566d88c1a5aSDimitry Andric         ++J;
1567d88c1a5aSDimitry Andric       }
1568d88c1a5aSDimitry Andric     }
1569d88c1a5aSDimitry Andric   }
1570d88c1a5aSDimitry Andric }
1571d88c1a5aSDimitry Andric 
1572d88c1a5aSDimitry Andric /// Remove nodes that have been scheduled in previous NodeSets.
removeDuplicateNodes(NodeSetType & NodeSets)1573d88c1a5aSDimitry Andric void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
1574d88c1a5aSDimitry Andric   for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1575d88c1a5aSDimitry Andric        ++I)
1576d88c1a5aSDimitry Andric     for (NodeSetType::iterator J = I + 1; J != E;) {
1577d88c1a5aSDimitry Andric       J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
1578d88c1a5aSDimitry Andric 
15792cab237bSDimitry Andric       if (J->empty()) {
1580d88c1a5aSDimitry Andric         NodeSets.erase(J);
1581d88c1a5aSDimitry Andric         E = NodeSets.end();
1582d88c1a5aSDimitry Andric       } else {
1583d88c1a5aSDimitry Andric         ++J;
1584d88c1a5aSDimitry Andric       }
1585d88c1a5aSDimitry Andric     }
1586d88c1a5aSDimitry Andric }
1587d88c1a5aSDimitry Andric 
1588d88c1a5aSDimitry Andric /// Compute an ordered list of the dependence graph nodes, which
1589d88c1a5aSDimitry Andric /// indicates the order that the nodes will be scheduled.  This is a
1590d88c1a5aSDimitry Andric /// two-level algorithm. First, a partial order is created, which
1591d88c1a5aSDimitry Andric /// consists of a list of sets ordered from highest to lowest priority.
computeNodeOrder(NodeSetType & NodeSets)1592d88c1a5aSDimitry Andric void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
1593d88c1a5aSDimitry Andric   SmallSetVector<SUnit *, 8> R;
1594d88c1a5aSDimitry Andric   NodeOrder.clear();
1595d88c1a5aSDimitry Andric 
1596d88c1a5aSDimitry Andric   for (auto &Nodes : NodeSets) {
15974ba319b5SDimitry Andric     LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
1598d88c1a5aSDimitry Andric     OrderKind Order;
1599d88c1a5aSDimitry Andric     SmallSetVector<SUnit *, 8> N;
1600d88c1a5aSDimitry Andric     if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
1601d88c1a5aSDimitry Andric       R.insert(N.begin(), N.end());
1602d88c1a5aSDimitry Andric       Order = BottomUp;
16034ba319b5SDimitry Andric       LLVM_DEBUG(dbgs() << "  Bottom up (preds) ");
1604d88c1a5aSDimitry Andric     } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
1605d88c1a5aSDimitry Andric       R.insert(N.begin(), N.end());
1606d88c1a5aSDimitry Andric       Order = TopDown;
16074ba319b5SDimitry Andric       LLVM_DEBUG(dbgs() << "  Top down (succs) ");
1608d88c1a5aSDimitry Andric     } else if (isIntersect(N, Nodes, R)) {
1609d88c1a5aSDimitry Andric       // If some of the successors are in the existing node-set, then use the
1610d88c1a5aSDimitry Andric       // top-down ordering.
1611d88c1a5aSDimitry Andric       Order = TopDown;
16124ba319b5SDimitry Andric       LLVM_DEBUG(dbgs() << "  Top down (intersect) ");
1613d88c1a5aSDimitry Andric     } else if (NodeSets.size() == 1) {
1614d88c1a5aSDimitry Andric       for (auto &N : Nodes)
1615d88c1a5aSDimitry Andric         if (N->Succs.size() == 0)
1616d88c1a5aSDimitry Andric           R.insert(N);
1617d88c1a5aSDimitry Andric       Order = BottomUp;
16184ba319b5SDimitry Andric       LLVM_DEBUG(dbgs() << "  Bottom up (all) ");
1619d88c1a5aSDimitry Andric     } else {
1620d88c1a5aSDimitry Andric       // Find the node with the highest ASAP.
1621d88c1a5aSDimitry Andric       SUnit *maxASAP = nullptr;
1622d88c1a5aSDimitry Andric       for (SUnit *SU : Nodes) {
16234ba319b5SDimitry Andric         if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
16244ba319b5SDimitry Andric             (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
1625d88c1a5aSDimitry Andric           maxASAP = SU;
1626d88c1a5aSDimitry Andric       }
1627d88c1a5aSDimitry Andric       R.insert(maxASAP);
1628d88c1a5aSDimitry Andric       Order = BottomUp;
16294ba319b5SDimitry Andric       LLVM_DEBUG(dbgs() << "  Bottom up (default) ");
1630d88c1a5aSDimitry Andric     }
1631d88c1a5aSDimitry Andric 
1632d88c1a5aSDimitry Andric     while (!R.empty()) {
1633d88c1a5aSDimitry Andric       if (Order == TopDown) {
1634d88c1a5aSDimitry Andric         // Choose the node with the maximum height.  If more than one, choose
16354ba319b5SDimitry Andric         // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
16364ba319b5SDimitry Andric         // choose the node with the lowest MOV.
1637d88c1a5aSDimitry Andric         while (!R.empty()) {
1638d88c1a5aSDimitry Andric           SUnit *maxHeight = nullptr;
1639d88c1a5aSDimitry Andric           for (SUnit *I : R) {
1640d88c1a5aSDimitry Andric             if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
1641d88c1a5aSDimitry Andric               maxHeight = I;
1642d88c1a5aSDimitry Andric             else if (getHeight(I) == getHeight(maxHeight) &&
16434ba319b5SDimitry Andric                      getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
1644d88c1a5aSDimitry Andric               maxHeight = I;
16454ba319b5SDimitry Andric             else if (getHeight(I) == getHeight(maxHeight) &&
16464ba319b5SDimitry Andric                      getZeroLatencyHeight(I) ==
16474ba319b5SDimitry Andric                          getZeroLatencyHeight(maxHeight) &&
16484ba319b5SDimitry Andric                      getMOV(I) < getMOV(maxHeight))
1649d88c1a5aSDimitry Andric               maxHeight = I;
1650d88c1a5aSDimitry Andric           }
1651d88c1a5aSDimitry Andric           NodeOrder.insert(maxHeight);
16524ba319b5SDimitry Andric           LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
1653d88c1a5aSDimitry Andric           R.remove(maxHeight);
1654d88c1a5aSDimitry Andric           for (const auto &I : maxHeight->Succs) {
1655d88c1a5aSDimitry Andric             if (Nodes.count(I.getSUnit()) == 0)
1656d88c1a5aSDimitry Andric               continue;
1657d88c1a5aSDimitry Andric             if (NodeOrder.count(I.getSUnit()) != 0)
1658d88c1a5aSDimitry Andric               continue;
1659d88c1a5aSDimitry Andric             if (ignoreDependence(I, false))
1660d88c1a5aSDimitry Andric               continue;
1661d88c1a5aSDimitry Andric             R.insert(I.getSUnit());
1662d88c1a5aSDimitry Andric           }
1663d88c1a5aSDimitry Andric           // Back-edges are predecessors with an anti-dependence.
1664d88c1a5aSDimitry Andric           for (const auto &I : maxHeight->Preds) {
1665d88c1a5aSDimitry Andric             if (I.getKind() != SDep::Anti)
1666d88c1a5aSDimitry Andric               continue;
1667d88c1a5aSDimitry Andric             if (Nodes.count(I.getSUnit()) == 0)
1668d88c1a5aSDimitry Andric               continue;
1669d88c1a5aSDimitry Andric             if (NodeOrder.count(I.getSUnit()) != 0)
1670d88c1a5aSDimitry Andric               continue;
1671d88c1a5aSDimitry Andric             R.insert(I.getSUnit());
1672d88c1a5aSDimitry Andric           }
1673d88c1a5aSDimitry Andric         }
1674d88c1a5aSDimitry Andric         Order = BottomUp;
16754ba319b5SDimitry Andric         LLVM_DEBUG(dbgs() << "\n   Switching order to bottom up ");
1676d88c1a5aSDimitry Andric         SmallSetVector<SUnit *, 8> N;
1677d88c1a5aSDimitry Andric         if (pred_L(NodeOrder, N, &Nodes))
1678d88c1a5aSDimitry Andric           R.insert(N.begin(), N.end());
1679d88c1a5aSDimitry Andric       } else {
1680d88c1a5aSDimitry Andric         // Choose the node with the maximum depth.  If more than one, choose
16814ba319b5SDimitry Andric         // the node with the maximum ZeroLatencyDepth. If still more than one,
16824ba319b5SDimitry Andric         // choose the node with the lowest MOV.
1683d88c1a5aSDimitry Andric         while (!R.empty()) {
1684d88c1a5aSDimitry Andric           SUnit *maxDepth = nullptr;
1685d88c1a5aSDimitry Andric           for (SUnit *I : R) {
1686d88c1a5aSDimitry Andric             if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
1687d88c1a5aSDimitry Andric               maxDepth = I;
1688d88c1a5aSDimitry Andric             else if (getDepth(I) == getDepth(maxDepth) &&
16894ba319b5SDimitry Andric                      getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
1690d88c1a5aSDimitry Andric               maxDepth = I;
16914ba319b5SDimitry Andric             else if (getDepth(I) == getDepth(maxDepth) &&
16924ba319b5SDimitry Andric                      getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
16934ba319b5SDimitry Andric                      getMOV(I) < getMOV(maxDepth))
1694d88c1a5aSDimitry Andric               maxDepth = I;
1695d88c1a5aSDimitry Andric           }
1696d88c1a5aSDimitry Andric           NodeOrder.insert(maxDepth);
16974ba319b5SDimitry Andric           LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
1698d88c1a5aSDimitry Andric           R.remove(maxDepth);
1699d88c1a5aSDimitry Andric           if (Nodes.isExceedSU(maxDepth)) {
1700d88c1a5aSDimitry Andric             Order = TopDown;
1701d88c1a5aSDimitry Andric             R.clear();
1702d88c1a5aSDimitry Andric             R.insert(Nodes.getNode(0));
1703d88c1a5aSDimitry Andric             break;
1704d88c1a5aSDimitry Andric           }
1705d88c1a5aSDimitry Andric           for (const auto &I : maxDepth->Preds) {
1706d88c1a5aSDimitry Andric             if (Nodes.count(I.getSUnit()) == 0)
1707d88c1a5aSDimitry Andric               continue;
1708d88c1a5aSDimitry Andric             if (NodeOrder.count(I.getSUnit()) != 0)
1709d88c1a5aSDimitry Andric               continue;
1710d88c1a5aSDimitry Andric             R.insert(I.getSUnit());
1711d88c1a5aSDimitry Andric           }
1712d88c1a5aSDimitry Andric           // Back-edges are predecessors with an anti-dependence.
1713d88c1a5aSDimitry Andric           for (const auto &I : maxDepth->Succs) {
1714d88c1a5aSDimitry Andric             if (I.getKind() != SDep::Anti)
1715d88c1a5aSDimitry Andric               continue;
1716d88c1a5aSDimitry Andric             if (Nodes.count(I.getSUnit()) == 0)
1717d88c1a5aSDimitry Andric               continue;
1718d88c1a5aSDimitry Andric             if (NodeOrder.count(I.getSUnit()) != 0)
1719d88c1a5aSDimitry Andric               continue;
1720d88c1a5aSDimitry Andric             R.insert(I.getSUnit());
1721d88c1a5aSDimitry Andric           }
1722d88c1a5aSDimitry Andric         }
1723d88c1a5aSDimitry Andric         Order = TopDown;
17244ba319b5SDimitry Andric         LLVM_DEBUG(dbgs() << "\n   Switching order to top down ");
1725d88c1a5aSDimitry Andric         SmallSetVector<SUnit *, 8> N;
1726d88c1a5aSDimitry Andric         if (succ_L(NodeOrder, N, &Nodes))
1727d88c1a5aSDimitry Andric           R.insert(N.begin(), N.end());
1728d88c1a5aSDimitry Andric       }
1729d88c1a5aSDimitry Andric     }
17304ba319b5SDimitry Andric     LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
1731d88c1a5aSDimitry Andric   }
1732d88c1a5aSDimitry Andric 
17334ba319b5SDimitry Andric   LLVM_DEBUG({
1734d88c1a5aSDimitry Andric     dbgs() << "Node order: ";
1735d88c1a5aSDimitry Andric     for (SUnit *I : NodeOrder)
1736d88c1a5aSDimitry Andric       dbgs() << " " << I->NodeNum << " ";
1737d88c1a5aSDimitry Andric     dbgs() << "\n";
1738d88c1a5aSDimitry Andric   });
1739d88c1a5aSDimitry Andric }
1740d88c1a5aSDimitry Andric 
1741d88c1a5aSDimitry Andric /// Process the nodes in the computed order and create the pipelined schedule
1742d88c1a5aSDimitry Andric /// of the instructions, if possible. Return true if a schedule is found.
schedulePipeline(SMSchedule & Schedule)1743d88c1a5aSDimitry Andric bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
17442cab237bSDimitry Andric   if (NodeOrder.empty())
1745d88c1a5aSDimitry Andric     return false;
1746d88c1a5aSDimitry Andric 
1747d88c1a5aSDimitry Andric   bool scheduleFound = false;
1748d88c1a5aSDimitry Andric   // Keep increasing II until a valid schedule is found.
1749d88c1a5aSDimitry Andric   for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) {
1750d88c1a5aSDimitry Andric     Schedule.reset();
1751d88c1a5aSDimitry Andric     Schedule.setInitiationInterval(II);
17524ba319b5SDimitry Andric     LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
1753d88c1a5aSDimitry Andric 
1754d88c1a5aSDimitry Andric     SetVector<SUnit *>::iterator NI = NodeOrder.begin();
1755d88c1a5aSDimitry Andric     SetVector<SUnit *>::iterator NE = NodeOrder.end();
1756d88c1a5aSDimitry Andric     do {
1757d88c1a5aSDimitry Andric       SUnit *SU = *NI;
1758d88c1a5aSDimitry Andric 
1759d88c1a5aSDimitry Andric       // Compute the schedule time for the instruction, which is based
1760d88c1a5aSDimitry Andric       // upon the scheduled time for any predecessors/successors.
1761d88c1a5aSDimitry Andric       int EarlyStart = INT_MIN;
1762d88c1a5aSDimitry Andric       int LateStart = INT_MAX;
1763d88c1a5aSDimitry Andric       // These values are set when the size of the schedule window is limited
1764d88c1a5aSDimitry Andric       // due to chain dependences.
1765d88c1a5aSDimitry Andric       int SchedEnd = INT_MAX;
1766d88c1a5aSDimitry Andric       int SchedStart = INT_MIN;
1767d88c1a5aSDimitry Andric       Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
1768d88c1a5aSDimitry Andric                             II, this);
17694ba319b5SDimitry Andric       LLVM_DEBUG({
1770d88c1a5aSDimitry Andric         dbgs() << "Inst (" << SU->NodeNum << ") ";
1771d88c1a5aSDimitry Andric         SU->getInstr()->dump();
1772d88c1a5aSDimitry Andric         dbgs() << "\n";
1773d88c1a5aSDimitry Andric       });
17744ba319b5SDimitry Andric       LLVM_DEBUG({
1775d88c1a5aSDimitry Andric         dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart
1776d88c1a5aSDimitry Andric                << " me: " << SchedEnd << " ms: " << SchedStart << "\n";
1777d88c1a5aSDimitry Andric       });
1778d88c1a5aSDimitry Andric 
1779d88c1a5aSDimitry Andric       if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
1780d88c1a5aSDimitry Andric           SchedStart > LateStart)
1781d88c1a5aSDimitry Andric         scheduleFound = false;
1782d88c1a5aSDimitry Andric       else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
1783d88c1a5aSDimitry Andric         SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
1784d88c1a5aSDimitry Andric         scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
1785d88c1a5aSDimitry Andric       } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
1786d88c1a5aSDimitry Andric         SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
1787d88c1a5aSDimitry Andric         scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
1788d88c1a5aSDimitry Andric       } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
1789d88c1a5aSDimitry Andric         SchedEnd =
1790d88c1a5aSDimitry Andric             std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
1791d88c1a5aSDimitry Andric         // When scheduling a Phi it is better to start at the late cycle and go
1792d88c1a5aSDimitry Andric         // backwards. The default order may insert the Phi too far away from
1793d88c1a5aSDimitry Andric         // its first dependence.
1794d88c1a5aSDimitry Andric         if (SU->getInstr()->isPHI())
1795d88c1a5aSDimitry Andric           scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
1796d88c1a5aSDimitry Andric         else
1797d88c1a5aSDimitry Andric           scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
1798d88c1a5aSDimitry Andric       } else {
1799d88c1a5aSDimitry Andric         int FirstCycle = Schedule.getFirstCycle();
1800d88c1a5aSDimitry Andric         scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
1801d88c1a5aSDimitry Andric                                         FirstCycle + getASAP(SU) + II - 1, II);
1802d88c1a5aSDimitry Andric       }
1803d88c1a5aSDimitry Andric       // Even if we find a schedule, make sure the schedule doesn't exceed the
1804d88c1a5aSDimitry Andric       // allowable number of stages. We keep trying if this happens.
1805d88c1a5aSDimitry Andric       if (scheduleFound)
1806d88c1a5aSDimitry Andric         if (SwpMaxStages > -1 &&
1807d88c1a5aSDimitry Andric             Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
1808d88c1a5aSDimitry Andric           scheduleFound = false;
1809d88c1a5aSDimitry Andric 
18104ba319b5SDimitry Andric       LLVM_DEBUG({
1811d88c1a5aSDimitry Andric         if (!scheduleFound)
1812d88c1a5aSDimitry Andric           dbgs() << "\tCan't schedule\n";
1813d88c1a5aSDimitry Andric       });
1814d88c1a5aSDimitry Andric     } while (++NI != NE && scheduleFound);
1815d88c1a5aSDimitry Andric 
1816d88c1a5aSDimitry Andric     // If a schedule is found, check if it is a valid schedule too.
1817d88c1a5aSDimitry Andric     if (scheduleFound)
1818d88c1a5aSDimitry Andric       scheduleFound = Schedule.isValidSchedule(this);
1819d88c1a5aSDimitry Andric   }
1820d88c1a5aSDimitry Andric 
18214ba319b5SDimitry Andric   LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n");
1822d88c1a5aSDimitry Andric 
1823d88c1a5aSDimitry Andric   if (scheduleFound)
1824d88c1a5aSDimitry Andric     Schedule.finalizeSchedule(this);
1825d88c1a5aSDimitry Andric   else
1826d88c1a5aSDimitry Andric     Schedule.reset();
1827d88c1a5aSDimitry Andric 
1828d88c1a5aSDimitry Andric   return scheduleFound && Schedule.getMaxStageCount() > 0;
1829d88c1a5aSDimitry Andric }
1830d88c1a5aSDimitry Andric 
1831d88c1a5aSDimitry Andric /// Given a schedule for the loop, generate a new version of the loop,
1832d88c1a5aSDimitry Andric /// and replace the old version.  This function generates a prolog
1833d88c1a5aSDimitry Andric /// that contains the initial iterations in the pipeline, and kernel
1834d88c1a5aSDimitry Andric /// loop, and the epilogue that contains the code for the final
1835d88c1a5aSDimitry Andric /// iterations.
generatePipelinedLoop(SMSchedule & Schedule)1836d88c1a5aSDimitry Andric void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
1837d88c1a5aSDimitry Andric   // Create a new basic block for the kernel and add it to the CFG.
1838d88c1a5aSDimitry Andric   MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
1839d88c1a5aSDimitry Andric 
1840d88c1a5aSDimitry Andric   unsigned MaxStageCount = Schedule.getMaxStageCount();
1841d88c1a5aSDimitry Andric 
1842d88c1a5aSDimitry Andric   // Remember the registers that are used in different stages. The index is
1843d88c1a5aSDimitry Andric   // the iteration, or stage, that the instruction is scheduled in.  This is
18444ba319b5SDimitry Andric   // a map between register names in the original block and the names created
1845d88c1a5aSDimitry Andric   // in each stage of the pipelined loop.
1846d88c1a5aSDimitry Andric   ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
1847d88c1a5aSDimitry Andric   InstrMapTy InstrMap;
1848d88c1a5aSDimitry Andric 
1849d88c1a5aSDimitry Andric   SmallVector<MachineBasicBlock *, 4> PrologBBs;
1850d88c1a5aSDimitry Andric   // Generate the prolog instructions that set up the pipeline.
1851d88c1a5aSDimitry Andric   generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
1852d88c1a5aSDimitry Andric   MF.insert(BB->getIterator(), KernelBB);
1853d88c1a5aSDimitry Andric 
1854d88c1a5aSDimitry Andric   // Rearrange the instructions to generate the new, pipelined loop,
1855d88c1a5aSDimitry Andric   // and update register names as needed.
1856d88c1a5aSDimitry Andric   for (int Cycle = Schedule.getFirstCycle(),
1857d88c1a5aSDimitry Andric            LastCycle = Schedule.getFinalCycle();
1858d88c1a5aSDimitry Andric        Cycle <= LastCycle; ++Cycle) {
1859d88c1a5aSDimitry Andric     std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
1860d88c1a5aSDimitry Andric     // This inner loop schedules each instruction in the cycle.
1861d88c1a5aSDimitry Andric     for (SUnit *CI : CycleInstrs) {
1862d88c1a5aSDimitry Andric       if (CI->getInstr()->isPHI())
1863d88c1a5aSDimitry Andric         continue;
1864d88c1a5aSDimitry Andric       unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
1865d88c1a5aSDimitry Andric       MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
1866d88c1a5aSDimitry Andric       updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
1867d88c1a5aSDimitry Andric       KernelBB->push_back(NewMI);
1868d88c1a5aSDimitry Andric       InstrMap[NewMI] = CI->getInstr();
1869d88c1a5aSDimitry Andric     }
1870d88c1a5aSDimitry Andric   }
1871d88c1a5aSDimitry Andric 
1872d88c1a5aSDimitry Andric   // Copy any terminator instructions to the new kernel, and update
1873d88c1a5aSDimitry Andric   // names as needed.
1874d88c1a5aSDimitry Andric   for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
1875d88c1a5aSDimitry Andric                                    E = BB->instr_end();
1876d88c1a5aSDimitry Andric        I != E; ++I) {
1877d88c1a5aSDimitry Andric     MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
1878d88c1a5aSDimitry Andric     updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
1879d88c1a5aSDimitry Andric     KernelBB->push_back(NewMI);
1880d88c1a5aSDimitry Andric     InstrMap[NewMI] = &*I;
1881d88c1a5aSDimitry Andric   }
1882d88c1a5aSDimitry Andric 
1883d88c1a5aSDimitry Andric   KernelBB->transferSuccessors(BB);
1884d88c1a5aSDimitry Andric   KernelBB->replaceSuccessor(BB, KernelBB);
1885d88c1a5aSDimitry Andric 
1886d88c1a5aSDimitry Andric   generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
1887d88c1a5aSDimitry Andric                        VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
1888d88c1a5aSDimitry Andric   generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
1889d88c1a5aSDimitry Andric                InstrMap, MaxStageCount, MaxStageCount, false);
1890d88c1a5aSDimitry Andric 
18914ba319b5SDimitry Andric   LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
1892d88c1a5aSDimitry Andric 
1893d88c1a5aSDimitry Andric   SmallVector<MachineBasicBlock *, 4> EpilogBBs;
1894d88c1a5aSDimitry Andric   // Generate the epilog instructions to complete the pipeline.
1895d88c1a5aSDimitry Andric   generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
1896d88c1a5aSDimitry Andric                  PrologBBs);
1897d88c1a5aSDimitry Andric 
1898d88c1a5aSDimitry Andric   // We need this step because the register allocation doesn't handle some
1899d88c1a5aSDimitry Andric   // situations well, so we insert copies to help out.
1900d88c1a5aSDimitry Andric   splitLifetimes(KernelBB, EpilogBBs, Schedule);
1901d88c1a5aSDimitry Andric 
1902d88c1a5aSDimitry Andric   // Remove dead instructions due to loop induction variables.
1903d88c1a5aSDimitry Andric   removeDeadInstructions(KernelBB, EpilogBBs);
1904d88c1a5aSDimitry Andric 
1905d88c1a5aSDimitry Andric   // Add branches between prolog and epilog blocks.
1906d88c1a5aSDimitry Andric   addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);
1907d88c1a5aSDimitry Andric 
1908d88c1a5aSDimitry Andric   // Remove the original loop since it's no longer referenced.
19094ba319b5SDimitry Andric   for (auto &I : *BB)
19104ba319b5SDimitry Andric     LIS.RemoveMachineInstrFromMaps(I);
1911d88c1a5aSDimitry Andric   BB->clear();
1912d88c1a5aSDimitry Andric   BB->eraseFromParent();
1913d88c1a5aSDimitry Andric 
1914d88c1a5aSDimitry Andric   delete[] VRMap;
1915d88c1a5aSDimitry Andric }
1916d88c1a5aSDimitry Andric 
1917d88c1a5aSDimitry Andric /// Generate the pipeline prolog code.
generateProlog(SMSchedule & Schedule,unsigned LastStage,MachineBasicBlock * KernelBB,ValueMapTy * VRMap,MBBVectorTy & PrologBBs)1918d88c1a5aSDimitry Andric void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
1919d88c1a5aSDimitry Andric                                        MachineBasicBlock *KernelBB,
1920d88c1a5aSDimitry Andric                                        ValueMapTy *VRMap,
1921d88c1a5aSDimitry Andric                                        MBBVectorTy &PrologBBs) {
1922d88c1a5aSDimitry Andric   MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
19232cab237bSDimitry Andric   assert(PreheaderBB != nullptr &&
1924d88c1a5aSDimitry Andric          "Need to add code to handle loops w/o preheader");
1925d88c1a5aSDimitry Andric   MachineBasicBlock *PredBB = PreheaderBB;
1926d88c1a5aSDimitry Andric   InstrMapTy InstrMap;
1927d88c1a5aSDimitry Andric 
1928d88c1a5aSDimitry Andric   // Generate a basic block for each stage, not including the last stage,
1929d88c1a5aSDimitry Andric   // which will be generated in the kernel. Each basic block may contain
1930d88c1a5aSDimitry Andric   // instructions from multiple stages/iterations.
1931d88c1a5aSDimitry Andric   for (unsigned i = 0; i < LastStage; ++i) {
1932d88c1a5aSDimitry Andric     // Create and insert the prolog basic block prior to the original loop
1933d88c1a5aSDimitry Andric     // basic block.  The original loop is removed later.
1934d88c1a5aSDimitry Andric     MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
1935d88c1a5aSDimitry Andric     PrologBBs.push_back(NewBB);
1936d88c1a5aSDimitry Andric     MF.insert(BB->getIterator(), NewBB);
1937d88c1a5aSDimitry Andric     NewBB->transferSuccessors(PredBB);
1938d88c1a5aSDimitry Andric     PredBB->addSuccessor(NewBB);
1939d88c1a5aSDimitry Andric     PredBB = NewBB;
1940d88c1a5aSDimitry Andric 
1941d88c1a5aSDimitry Andric     // Generate instructions for each appropriate stage. Process instructions
1942d88c1a5aSDimitry Andric     // in original program order.
1943d88c1a5aSDimitry Andric     for (int StageNum = i; StageNum >= 0; --StageNum) {
1944d88c1a5aSDimitry Andric       for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
1945d88c1a5aSDimitry Andric                                        BBE = BB->getFirstTerminator();
1946d88c1a5aSDimitry Andric            BBI != BBE; ++BBI) {
1947d88c1a5aSDimitry Andric         if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
1948d88c1a5aSDimitry Andric           if (BBI->isPHI())
1949d88c1a5aSDimitry Andric             continue;
1950d88c1a5aSDimitry Andric           MachineInstr *NewMI =
1951d88c1a5aSDimitry Andric               cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
1952d88c1a5aSDimitry Andric           updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
1953d88c1a5aSDimitry Andric                             VRMap);
1954d88c1a5aSDimitry Andric           NewBB->push_back(NewMI);
1955d88c1a5aSDimitry Andric           InstrMap[NewMI] = &*BBI;
1956d88c1a5aSDimitry Andric         }
1957d88c1a5aSDimitry Andric       }
1958d88c1a5aSDimitry Andric     }
1959d88c1a5aSDimitry Andric     rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
19604ba319b5SDimitry Andric     LLVM_DEBUG({
1961d88c1a5aSDimitry Andric       dbgs() << "prolog:\n";
1962d88c1a5aSDimitry Andric       NewBB->dump();
1963d88c1a5aSDimitry Andric     });
1964d88c1a5aSDimitry Andric   }
1965d88c1a5aSDimitry Andric 
1966d88c1a5aSDimitry Andric   PredBB->replaceSuccessor(BB, KernelBB);
1967d88c1a5aSDimitry Andric 
1968d88c1a5aSDimitry Andric   // Check if we need to remove the branch from the preheader to the original
1969d88c1a5aSDimitry Andric   // loop, and replace it with a branch to the new loop.
1970d88c1a5aSDimitry Andric   unsigned numBranches = TII->removeBranch(*PreheaderBB);
1971d88c1a5aSDimitry Andric   if (numBranches) {
1972d88c1a5aSDimitry Andric     SmallVector<MachineOperand, 0> Cond;
1973d88c1a5aSDimitry Andric     TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc());
1974d88c1a5aSDimitry Andric   }
1975d88c1a5aSDimitry Andric }
1976d88c1a5aSDimitry Andric 
1977d88c1a5aSDimitry Andric /// Generate the pipeline epilog code. The epilog code finishes the iterations
1978d88c1a5aSDimitry Andric /// that were started in either the prolog or the kernel.  We create a basic
1979d88c1a5aSDimitry Andric /// block for each stage that needs to complete.
generateEpilog(SMSchedule & Schedule,unsigned LastStage,MachineBasicBlock * KernelBB,ValueMapTy * VRMap,MBBVectorTy & EpilogBBs,MBBVectorTy & PrologBBs)1980d88c1a5aSDimitry Andric void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
1981d88c1a5aSDimitry Andric                                        MachineBasicBlock *KernelBB,
1982d88c1a5aSDimitry Andric                                        ValueMapTy *VRMap,
1983d88c1a5aSDimitry Andric                                        MBBVectorTy &EpilogBBs,
1984d88c1a5aSDimitry Andric                                        MBBVectorTy &PrologBBs) {
1985d88c1a5aSDimitry Andric   // We need to change the branch from the kernel to the first epilog block, so
1986d88c1a5aSDimitry Andric   // this call to analyze branch uses the kernel rather than the original BB.
1987d88c1a5aSDimitry Andric   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1988d88c1a5aSDimitry Andric   SmallVector<MachineOperand, 4> Cond;
1989d88c1a5aSDimitry Andric   bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
1990d88c1a5aSDimitry Andric   assert(!checkBranch && "generateEpilog must be able to analyze the branch");
1991d88c1a5aSDimitry Andric   if (checkBranch)
1992d88c1a5aSDimitry Andric     return;
1993d88c1a5aSDimitry Andric 
1994d88c1a5aSDimitry Andric   MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
1995d88c1a5aSDimitry Andric   if (*LoopExitI == KernelBB)
1996d88c1a5aSDimitry Andric     ++LoopExitI;
1997d88c1a5aSDimitry Andric   assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
1998d88c1a5aSDimitry Andric   MachineBasicBlock *LoopExitBB = *LoopExitI;
1999d88c1a5aSDimitry Andric 
2000d88c1a5aSDimitry Andric   MachineBasicBlock *PredBB = KernelBB;
2001d88c1a5aSDimitry Andric   MachineBasicBlock *EpilogStart = LoopExitBB;
2002d88c1a5aSDimitry Andric   InstrMapTy InstrMap;
2003d88c1a5aSDimitry Andric 
2004d88c1a5aSDimitry Andric   // Generate a basic block for each stage, not including the last stage,
2005d88c1a5aSDimitry Andric   // which was generated for the kernel.  Each basic block may contain
2006d88c1a5aSDimitry Andric   // instructions from multiple stages/iterations.
2007d88c1a5aSDimitry Andric   int EpilogStage = LastStage + 1;
2008d88c1a5aSDimitry Andric   for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
2009d88c1a5aSDimitry Andric     MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
2010d88c1a5aSDimitry Andric     EpilogBBs.push_back(NewBB);
2011d88c1a5aSDimitry Andric     MF.insert(BB->getIterator(), NewBB);
2012d88c1a5aSDimitry Andric 
2013d88c1a5aSDimitry Andric     PredBB->replaceSuccessor(LoopExitBB, NewBB);
2014d88c1a5aSDimitry Andric     NewBB->addSuccessor(LoopExitBB);
2015d88c1a5aSDimitry Andric 
2016d88c1a5aSDimitry Andric     if (EpilogStart == LoopExitBB)
2017d88c1a5aSDimitry Andric       EpilogStart = NewBB;
2018d88c1a5aSDimitry Andric 
2019d88c1a5aSDimitry Andric     // Add instructions to the epilog depending on the current block.
2020d88c1a5aSDimitry Andric     // Process instructions in original program order.
2021d88c1a5aSDimitry Andric     for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
2022d88c1a5aSDimitry Andric       for (auto &BBI : *BB) {
2023d88c1a5aSDimitry Andric         if (BBI.isPHI())
2024d88c1a5aSDimitry Andric           continue;
2025d88c1a5aSDimitry Andric         MachineInstr *In = &BBI;
2026d88c1a5aSDimitry Andric         if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
20274ba319b5SDimitry Andric           // Instructions with memoperands in the epilog are updated with
20284ba319b5SDimitry Andric           // conservative values.
20294ba319b5SDimitry Andric           MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
2030d88c1a5aSDimitry Andric           updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
2031d88c1a5aSDimitry Andric           NewBB->push_back(NewMI);
2032d88c1a5aSDimitry Andric           InstrMap[NewMI] = In;
2033d88c1a5aSDimitry Andric         }
2034d88c1a5aSDimitry Andric       }
2035d88c1a5aSDimitry Andric     }
2036d88c1a5aSDimitry Andric     generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
2037d88c1a5aSDimitry Andric                          VRMap, InstrMap, LastStage, EpilogStage, i == 1);
2038d88c1a5aSDimitry Andric     generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
2039d88c1a5aSDimitry Andric                  InstrMap, LastStage, EpilogStage, i == 1);
2040d88c1a5aSDimitry Andric     PredBB = NewBB;
2041d88c1a5aSDimitry Andric 
20424ba319b5SDimitry Andric     LLVM_DEBUG({
2043d88c1a5aSDimitry Andric       dbgs() << "epilog:\n";
2044d88c1a5aSDimitry Andric       NewBB->dump();
2045d88c1a5aSDimitry Andric     });
2046d88c1a5aSDimitry Andric   }
2047d88c1a5aSDimitry Andric 
2048d88c1a5aSDimitry Andric   // Fix any Phi nodes in the loop exit block.
2049d88c1a5aSDimitry Andric   for (MachineInstr &MI : *LoopExitBB) {
2050d88c1a5aSDimitry Andric     if (!MI.isPHI())
2051d88c1a5aSDimitry Andric       break;
2052d88c1a5aSDimitry Andric     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
2053d88c1a5aSDimitry Andric       MachineOperand &MO = MI.getOperand(i);
2054d88c1a5aSDimitry Andric       if (MO.getMBB() == BB)
2055d88c1a5aSDimitry Andric         MO.setMBB(PredBB);
2056d88c1a5aSDimitry Andric     }
2057d88c1a5aSDimitry Andric   }
2058d88c1a5aSDimitry Andric 
2059d88c1a5aSDimitry Andric   // Create a branch to the new epilog from the kernel.
2060d88c1a5aSDimitry Andric   // Remove the original branch and add a new branch to the epilog.
2061d88c1a5aSDimitry Andric   TII->removeBranch(*KernelBB);
2062d88c1a5aSDimitry Andric   TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
2063d88c1a5aSDimitry Andric   // Add a branch to the loop exit.
2064d88c1a5aSDimitry Andric   if (EpilogBBs.size() > 0) {
2065d88c1a5aSDimitry Andric     MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
2066d88c1a5aSDimitry Andric     SmallVector<MachineOperand, 4> Cond1;
2067d88c1a5aSDimitry Andric     TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
2068d88c1a5aSDimitry Andric   }
2069d88c1a5aSDimitry Andric }
2070d88c1a5aSDimitry Andric 
2071d88c1a5aSDimitry Andric /// Replace all uses of FromReg that appear outside the specified
2072d88c1a5aSDimitry Andric /// basic block with ToReg.
replaceRegUsesAfterLoop(unsigned FromReg,unsigned ToReg,MachineBasicBlock * MBB,MachineRegisterInfo & MRI,LiveIntervals & LIS)2073d88c1a5aSDimitry Andric static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
2074d88c1a5aSDimitry Andric                                     MachineBasicBlock *MBB,
2075d88c1a5aSDimitry Andric                                     MachineRegisterInfo &MRI,
2076d88c1a5aSDimitry Andric                                     LiveIntervals &LIS) {
2077d88c1a5aSDimitry Andric   for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
2078d88c1a5aSDimitry Andric                                          E = MRI.use_end();
2079d88c1a5aSDimitry Andric        I != E;) {
2080d88c1a5aSDimitry Andric     MachineOperand &O = *I;
2081d88c1a5aSDimitry Andric     ++I;
2082d88c1a5aSDimitry Andric     if (O.getParent()->getParent() != MBB)
2083d88c1a5aSDimitry Andric       O.setReg(ToReg);
2084d88c1a5aSDimitry Andric   }
2085d88c1a5aSDimitry Andric   if (!LIS.hasInterval(ToReg))
2086d88c1a5aSDimitry Andric     LIS.createEmptyInterval(ToReg);
2087d88c1a5aSDimitry Andric }
2088d88c1a5aSDimitry Andric 
2089d88c1a5aSDimitry Andric /// Return true if the register has a use that occurs outside the
2090d88c1a5aSDimitry Andric /// specified loop.
hasUseAfterLoop(unsigned Reg,MachineBasicBlock * BB,MachineRegisterInfo & MRI)2091d88c1a5aSDimitry Andric static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
2092d88c1a5aSDimitry Andric                             MachineRegisterInfo &MRI) {
2093d88c1a5aSDimitry Andric   for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
2094d88c1a5aSDimitry Andric                                          E = MRI.use_end();
2095d88c1a5aSDimitry Andric        I != E; ++I)
2096d88c1a5aSDimitry Andric     if (I->getParent()->getParent() != BB)
2097d88c1a5aSDimitry Andric       return true;
2098d88c1a5aSDimitry Andric   return false;
2099d88c1a5aSDimitry Andric }
2100d88c1a5aSDimitry Andric 
2101d88c1a5aSDimitry Andric /// Generate Phis for the specific block in the generated pipelined code.
2102d88c1a5aSDimitry Andric /// This function looks at the Phis from the original code to guide the
2103d88c1a5aSDimitry Andric /// creation of new Phis.
generateExistingPhis(MachineBasicBlock * NewBB,MachineBasicBlock * BB1,MachineBasicBlock * BB2,MachineBasicBlock * KernelBB,SMSchedule & Schedule,ValueMapTy * VRMap,InstrMapTy & InstrMap,unsigned LastStageNum,unsigned CurStageNum,bool IsLast)2104d88c1a5aSDimitry Andric void SwingSchedulerDAG::generateExistingPhis(
2105d88c1a5aSDimitry Andric     MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2106d88c1a5aSDimitry Andric     MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2107d88c1a5aSDimitry Andric     InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2108d88c1a5aSDimitry Andric     bool IsLast) {
21097a7e6055SDimitry Andric   // Compute the stage number for the initial value of the Phi, which
2110d88c1a5aSDimitry Andric   // comes from the prolog. The prolog to use depends on to which kernel/
2111d88c1a5aSDimitry Andric   // epilog that we're adding the Phi.
2112d88c1a5aSDimitry Andric   unsigned PrologStage = 0;
2113d88c1a5aSDimitry Andric   unsigned PrevStage = 0;
2114d88c1a5aSDimitry Andric   bool InKernel = (LastStageNum == CurStageNum);
2115d88c1a5aSDimitry Andric   if (InKernel) {
2116d88c1a5aSDimitry Andric     PrologStage = LastStageNum - 1;
2117d88c1a5aSDimitry Andric     PrevStage = CurStageNum;
2118d88c1a5aSDimitry Andric   } else {
2119d88c1a5aSDimitry Andric     PrologStage = LastStageNum - (CurStageNum - LastStageNum);
2120d88c1a5aSDimitry Andric     PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
2121d88c1a5aSDimitry Andric   }
2122d88c1a5aSDimitry Andric 
2123d88c1a5aSDimitry Andric   for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2124d88c1a5aSDimitry Andric                                    BBE = BB->getFirstNonPHI();
2125d88c1a5aSDimitry Andric        BBI != BBE; ++BBI) {
2126d88c1a5aSDimitry Andric     unsigned Def = BBI->getOperand(0).getReg();
2127d88c1a5aSDimitry Andric 
2128d88c1a5aSDimitry Andric     unsigned InitVal = 0;
2129d88c1a5aSDimitry Andric     unsigned LoopVal = 0;
2130d88c1a5aSDimitry Andric     getPhiRegs(*BBI, BB, InitVal, LoopVal);
2131d88c1a5aSDimitry Andric 
2132d88c1a5aSDimitry Andric     unsigned PhiOp1 = 0;
2133d88c1a5aSDimitry Andric     // The Phi value from the loop body typically is defined in the loop, but
2134d88c1a5aSDimitry Andric     // not always. So, we need to check if the value is defined in the loop.
2135d88c1a5aSDimitry Andric     unsigned PhiOp2 = LoopVal;
2136d88c1a5aSDimitry Andric     if (VRMap[LastStageNum].count(LoopVal))
2137d88c1a5aSDimitry Andric       PhiOp2 = VRMap[LastStageNum][LoopVal];
2138d88c1a5aSDimitry Andric 
2139d88c1a5aSDimitry Andric     int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2140d88c1a5aSDimitry Andric     int LoopValStage =
2141d88c1a5aSDimitry Andric         Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
2142d88c1a5aSDimitry Andric     unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
2143d88c1a5aSDimitry Andric     if (NumStages == 0) {
2144d88c1a5aSDimitry Andric       // We don't need to generate a Phi anymore, but we need to rename any uses
2145d88c1a5aSDimitry Andric       // of the Phi value.
2146d88c1a5aSDimitry Andric       unsigned NewReg = VRMap[PrevStage][LoopVal];
2147d88c1a5aSDimitry Andric       rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
21484ba319b5SDimitry Andric                             Def, InitVal, NewReg);
2149d88c1a5aSDimitry Andric       if (VRMap[CurStageNum].count(LoopVal))
2150d88c1a5aSDimitry Andric         VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
2151d88c1a5aSDimitry Andric     }
2152d88c1a5aSDimitry Andric     // Adjust the number of Phis needed depending on the number of prologs left,
21534ba319b5SDimitry Andric     // and the distance from where the Phi is first scheduled. The number of
21544ba319b5SDimitry Andric     // Phis cannot exceed the number of prolog stages. Each stage can
21554ba319b5SDimitry Andric     // potentially define two values.
21564ba319b5SDimitry Andric     unsigned MaxPhis = PrologStage + 2;
21574ba319b5SDimitry Andric     if (!InKernel && (int)PrologStage <= LoopValStage)
21584ba319b5SDimitry Andric       MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
21594ba319b5SDimitry Andric     unsigned NumPhis = std::min(NumStages, MaxPhis);
2160d88c1a5aSDimitry Andric 
2161d88c1a5aSDimitry Andric     unsigned NewReg = 0;
2162d88c1a5aSDimitry Andric     unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
2163d88c1a5aSDimitry Andric     // In the epilog, we may need to look back one stage to get the correct
2164d88c1a5aSDimitry Andric     // Phi name because the epilog and prolog blocks execute the same stage.
2165d88c1a5aSDimitry Andric     // The correct name is from the previous block only when the Phi has
2166d88c1a5aSDimitry Andric     // been completely scheduled prior to the epilog, and Phi value is not
2167d88c1a5aSDimitry Andric     // needed in multiple stages.
2168d88c1a5aSDimitry Andric     int StageDiff = 0;
2169d88c1a5aSDimitry Andric     if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
2170d88c1a5aSDimitry Andric         NumPhis == 1)
2171d88c1a5aSDimitry Andric       StageDiff = 1;
2172d88c1a5aSDimitry Andric     // Adjust the computations below when the phi and the loop definition
2173d88c1a5aSDimitry Andric     // are scheduled in different stages.
2174d88c1a5aSDimitry Andric     if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
2175d88c1a5aSDimitry Andric       StageDiff = StageScheduled - LoopValStage;
2176d88c1a5aSDimitry Andric     for (unsigned np = 0; np < NumPhis; ++np) {
2177d88c1a5aSDimitry Andric       // If the Phi hasn't been scheduled, then use the initial Phi operand
2178d88c1a5aSDimitry Andric       // value. Otherwise, use the scheduled version of the instruction. This
2179d88c1a5aSDimitry Andric       // is a little complicated when a Phi references another Phi.
2180d88c1a5aSDimitry Andric       if (np > PrologStage || StageScheduled >= (int)LastStageNum)
2181d88c1a5aSDimitry Andric         PhiOp1 = InitVal;
2182d88c1a5aSDimitry Andric       // Check if the Phi has already been scheduled in a prolog stage.
2183d88c1a5aSDimitry Andric       else if (PrologStage >= AccessStage + StageDiff + np &&
2184d88c1a5aSDimitry Andric                VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
2185d88c1a5aSDimitry Andric         PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
2186*b5893f02SDimitry Andric       // Check if the Phi has already been scheduled, but the loop instruction
2187d88c1a5aSDimitry Andric       // is either another Phi, or doesn't occur in the loop.
2188d88c1a5aSDimitry Andric       else if (PrologStage >= AccessStage + StageDiff + np) {
2189d88c1a5aSDimitry Andric         // If the Phi references another Phi, we need to examine the other
2190d88c1a5aSDimitry Andric         // Phi to get the correct value.
2191d88c1a5aSDimitry Andric         PhiOp1 = LoopVal;
2192d88c1a5aSDimitry Andric         MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
2193d88c1a5aSDimitry Andric         int Indirects = 1;
2194d88c1a5aSDimitry Andric         while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
2195d88c1a5aSDimitry Andric           int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
2196d88c1a5aSDimitry Andric           if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
2197d88c1a5aSDimitry Andric             PhiOp1 = getInitPhiReg(*InstOp1, BB);
2198d88c1a5aSDimitry Andric           else
2199d88c1a5aSDimitry Andric             PhiOp1 = getLoopPhiReg(*InstOp1, BB);
2200d88c1a5aSDimitry Andric           InstOp1 = MRI.getVRegDef(PhiOp1);
2201d88c1a5aSDimitry Andric           int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
2202d88c1a5aSDimitry Andric           int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
2203d88c1a5aSDimitry Andric           if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
2204d88c1a5aSDimitry Andric               VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
2205d88c1a5aSDimitry Andric             PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
2206d88c1a5aSDimitry Andric             break;
2207d88c1a5aSDimitry Andric           }
2208d88c1a5aSDimitry Andric           ++Indirects;
2209d88c1a5aSDimitry Andric         }
2210d88c1a5aSDimitry Andric       } else
2211d88c1a5aSDimitry Andric         PhiOp1 = InitVal;
2212d88c1a5aSDimitry Andric       // If this references a generated Phi in the kernel, get the Phi operand
2213d88c1a5aSDimitry Andric       // from the incoming block.
2214d88c1a5aSDimitry Andric       if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
2215d88c1a5aSDimitry Andric         if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2216d88c1a5aSDimitry Andric           PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2217d88c1a5aSDimitry Andric 
2218d88c1a5aSDimitry Andric       MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
2219d88c1a5aSDimitry Andric       bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
2220d88c1a5aSDimitry Andric       // In the epilog, a map lookup is needed to get the value from the kernel,
2221d88c1a5aSDimitry Andric       // or previous epilog block. How is does this depends on if the
2222d88c1a5aSDimitry Andric       // instruction is scheduled in the previous block.
2223d88c1a5aSDimitry Andric       if (!InKernel) {
2224d88c1a5aSDimitry Andric         int StageDiffAdj = 0;
2225d88c1a5aSDimitry Andric         if (LoopValStage != -1 && StageScheduled > LoopValStage)
2226d88c1a5aSDimitry Andric           StageDiffAdj = StageScheduled - LoopValStage;
2227d88c1a5aSDimitry Andric         // Use the loop value defined in the kernel, unless the kernel
2228d88c1a5aSDimitry Andric         // contains the last definition of the Phi.
2229d88c1a5aSDimitry Andric         if (np == 0 && PrevStage == LastStageNum &&
2230d88c1a5aSDimitry Andric             (StageScheduled != 0 || LoopValStage != 0) &&
2231d88c1a5aSDimitry Andric             VRMap[PrevStage - StageDiffAdj].count(LoopVal))
2232d88c1a5aSDimitry Andric           PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
2233d88c1a5aSDimitry Andric         // Use the value defined by the Phi. We add one because we switch
2234d88c1a5aSDimitry Andric         // from looking at the loop value to the Phi definition.
2235d88c1a5aSDimitry Andric         else if (np > 0 && PrevStage == LastStageNum &&
2236d88c1a5aSDimitry Andric                  VRMap[PrevStage - np + 1].count(Def))
2237d88c1a5aSDimitry Andric           PhiOp2 = VRMap[PrevStage - np + 1][Def];
2238d88c1a5aSDimitry Andric         // Use the loop value defined in the kernel.
2239*b5893f02SDimitry Andric         else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
2240d88c1a5aSDimitry Andric                  VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
2241d88c1a5aSDimitry Andric           PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
2242d88c1a5aSDimitry Andric         // Use the value defined by the Phi, unless we're generating the first
2243d88c1a5aSDimitry Andric         // epilog and the Phi refers to a Phi in a different stage.
2244d88c1a5aSDimitry Andric         else if (VRMap[PrevStage - np].count(Def) &&
2245d88c1a5aSDimitry Andric                  (!LoopDefIsPhi || PrevStage != LastStageNum))
2246d88c1a5aSDimitry Andric           PhiOp2 = VRMap[PrevStage - np][Def];
2247d88c1a5aSDimitry Andric       }
2248d88c1a5aSDimitry Andric 
2249d88c1a5aSDimitry Andric       // Check if we can reuse an existing Phi. This occurs when a Phi
2250d88c1a5aSDimitry Andric       // references another Phi, and the other Phi is scheduled in an
2251d88c1a5aSDimitry Andric       // earlier stage. We can try to reuse an existing Phi up until the last
2252d88c1a5aSDimitry Andric       // stage of the current Phi.
2253*b5893f02SDimitry Andric       if (LoopDefIsPhi) {
2254*b5893f02SDimitry Andric         if (static_cast<int>(PrologStage - np) >= StageScheduled) {
2255d88c1a5aSDimitry Andric           int LVNumStages = Schedule.getStagesForPhi(LoopVal);
2256d88c1a5aSDimitry Andric           int StageDiff = (StageScheduled - LoopValStage);
2257d88c1a5aSDimitry Andric           LVNumStages -= StageDiff;
22584ba319b5SDimitry Andric           // Make sure the loop value Phi has been processed already.
22594ba319b5SDimitry Andric           if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
2260d88c1a5aSDimitry Andric             NewReg = PhiOp2;
2261d88c1a5aSDimitry Andric             unsigned ReuseStage = CurStageNum;
2262d88c1a5aSDimitry Andric             if (Schedule.isLoopCarried(this, *PhiInst))
2263d88c1a5aSDimitry Andric               ReuseStage -= LVNumStages;
2264d88c1a5aSDimitry Andric             // Check if the Phi to reuse has been generated yet. If not, then
2265d88c1a5aSDimitry Andric             // there is nothing to reuse.
22664ba319b5SDimitry Andric             if (VRMap[ReuseStage - np].count(LoopVal)) {
22674ba319b5SDimitry Andric               NewReg = VRMap[ReuseStage - np][LoopVal];
2268d88c1a5aSDimitry Andric 
2269d88c1a5aSDimitry Andric               rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2270d88c1a5aSDimitry Andric                                     &*BBI, Def, NewReg);
2271d88c1a5aSDimitry Andric               // Update the map with the new Phi name.
2272d88c1a5aSDimitry Andric               VRMap[CurStageNum - np][Def] = NewReg;
2273d88c1a5aSDimitry Andric               PhiOp2 = NewReg;
2274d88c1a5aSDimitry Andric               if (VRMap[LastStageNum - np - 1].count(LoopVal))
2275d88c1a5aSDimitry Andric                 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
2276d88c1a5aSDimitry Andric 
2277d88c1a5aSDimitry Andric               if (IsLast && np == NumPhis - 1)
2278d88c1a5aSDimitry Andric                 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2279d88c1a5aSDimitry Andric               continue;
2280d88c1a5aSDimitry Andric             }
2281*b5893f02SDimitry Andric           }
2282*b5893f02SDimitry Andric         }
2283*b5893f02SDimitry Andric         if (InKernel && StageDiff > 0 &&
2284d88c1a5aSDimitry Andric             VRMap[CurStageNum - StageDiff - np].count(LoopVal))
2285d88c1a5aSDimitry Andric           PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
2286d88c1a5aSDimitry Andric       }
2287d88c1a5aSDimitry Andric 
2288d88c1a5aSDimitry Andric       const TargetRegisterClass *RC = MRI.getRegClass(Def);
2289d88c1a5aSDimitry Andric       NewReg = MRI.createVirtualRegister(RC);
2290d88c1a5aSDimitry Andric 
2291d88c1a5aSDimitry Andric       MachineInstrBuilder NewPhi =
2292d88c1a5aSDimitry Andric           BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2293d88c1a5aSDimitry Andric                   TII->get(TargetOpcode::PHI), NewReg);
2294d88c1a5aSDimitry Andric       NewPhi.addReg(PhiOp1).addMBB(BB1);
2295d88c1a5aSDimitry Andric       NewPhi.addReg(PhiOp2).addMBB(BB2);
2296d88c1a5aSDimitry Andric       if (np == 0)
2297d88c1a5aSDimitry Andric         InstrMap[NewPhi] = &*BBI;
2298d88c1a5aSDimitry Andric 
2299d88c1a5aSDimitry Andric       // We define the Phis after creating the new pipelined code, so
2300d88c1a5aSDimitry Andric       // we need to rename the Phi values in scheduled instructions.
2301d88c1a5aSDimitry Andric 
2302d88c1a5aSDimitry Andric       unsigned PrevReg = 0;
2303d88c1a5aSDimitry Andric       if (InKernel && VRMap[PrevStage - np].count(LoopVal))
2304d88c1a5aSDimitry Andric         PrevReg = VRMap[PrevStage - np][LoopVal];
2305d88c1a5aSDimitry Andric       rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2306d88c1a5aSDimitry Andric                             Def, NewReg, PrevReg);
2307d88c1a5aSDimitry Andric       // If the Phi has been scheduled, use the new name for rewriting.
2308d88c1a5aSDimitry Andric       if (VRMap[CurStageNum - np].count(Def)) {
2309d88c1a5aSDimitry Andric         unsigned R = VRMap[CurStageNum - np][Def];
2310d88c1a5aSDimitry Andric         rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2311d88c1a5aSDimitry Andric                               R, NewReg);
2312d88c1a5aSDimitry Andric       }
2313d88c1a5aSDimitry Andric 
2314d88c1a5aSDimitry Andric       // Check if we need to rename any uses that occurs after the loop. The
2315d88c1a5aSDimitry Andric       // register to replace depends on whether the Phi is scheduled in the
2316d88c1a5aSDimitry Andric       // epilog.
2317d88c1a5aSDimitry Andric       if (IsLast && np == NumPhis - 1)
2318d88c1a5aSDimitry Andric         replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2319d88c1a5aSDimitry Andric 
2320d88c1a5aSDimitry Andric       // In the kernel, a dependent Phi uses the value from this Phi.
2321d88c1a5aSDimitry Andric       if (InKernel)
2322d88c1a5aSDimitry Andric         PhiOp2 = NewReg;
2323d88c1a5aSDimitry Andric 
2324d88c1a5aSDimitry Andric       // Update the map with the new Phi name.
2325d88c1a5aSDimitry Andric       VRMap[CurStageNum - np][Def] = NewReg;
2326d88c1a5aSDimitry Andric     }
2327d88c1a5aSDimitry Andric 
2328d88c1a5aSDimitry Andric     while (NumPhis++ < NumStages) {
2329d88c1a5aSDimitry Andric       rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
2330d88c1a5aSDimitry Andric                             &*BBI, Def, NewReg, 0);
2331d88c1a5aSDimitry Andric     }
2332d88c1a5aSDimitry Andric 
2333d88c1a5aSDimitry Andric     // Check if we need to rename a Phi that has been eliminated due to
2334d88c1a5aSDimitry Andric     // scheduling.
2335d88c1a5aSDimitry Andric     if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
2336d88c1a5aSDimitry Andric       replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
2337d88c1a5aSDimitry Andric   }
2338d88c1a5aSDimitry Andric }
2339d88c1a5aSDimitry Andric 
2340d88c1a5aSDimitry Andric /// Generate Phis for the specified block in the generated pipelined code.
2341d88c1a5aSDimitry Andric /// These are new Phis needed because the definition is scheduled after the
23424ba319b5SDimitry Andric /// use in the pipelined sequence.
generatePhis(MachineBasicBlock * NewBB,MachineBasicBlock * BB1,MachineBasicBlock * BB2,MachineBasicBlock * KernelBB,SMSchedule & Schedule,ValueMapTy * VRMap,InstrMapTy & InstrMap,unsigned LastStageNum,unsigned CurStageNum,bool IsLast)2343d88c1a5aSDimitry Andric void SwingSchedulerDAG::generatePhis(
2344d88c1a5aSDimitry Andric     MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2345d88c1a5aSDimitry Andric     MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2346d88c1a5aSDimitry Andric     InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2347d88c1a5aSDimitry Andric     bool IsLast) {
2348d88c1a5aSDimitry Andric   // Compute the stage number that contains the initial Phi value, and
2349d88c1a5aSDimitry Andric   // the Phi from the previous stage.
2350d88c1a5aSDimitry Andric   unsigned PrologStage = 0;
2351d88c1a5aSDimitry Andric   unsigned PrevStage = 0;
2352d88c1a5aSDimitry Andric   unsigned StageDiff = CurStageNum - LastStageNum;
2353d88c1a5aSDimitry Andric   bool InKernel = (StageDiff == 0);
2354d88c1a5aSDimitry Andric   if (InKernel) {
2355d88c1a5aSDimitry Andric     PrologStage = LastStageNum - 1;
2356d88c1a5aSDimitry Andric     PrevStage = CurStageNum;
2357d88c1a5aSDimitry Andric   } else {
2358d88c1a5aSDimitry Andric     PrologStage = LastStageNum - StageDiff;
2359d88c1a5aSDimitry Andric     PrevStage = LastStageNum + StageDiff - 1;
2360d88c1a5aSDimitry Andric   }
2361d88c1a5aSDimitry Andric 
2362d88c1a5aSDimitry Andric   for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
2363d88c1a5aSDimitry Andric                                    BBE = BB->instr_end();
2364d88c1a5aSDimitry Andric        BBI != BBE; ++BBI) {
2365d88c1a5aSDimitry Andric     for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
2366d88c1a5aSDimitry Andric       MachineOperand &MO = BBI->getOperand(i);
2367d88c1a5aSDimitry Andric       if (!MO.isReg() || !MO.isDef() ||
2368d88c1a5aSDimitry Andric           !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2369d88c1a5aSDimitry Andric         continue;
2370d88c1a5aSDimitry Andric 
2371d88c1a5aSDimitry Andric       int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2372d88c1a5aSDimitry Andric       assert(StageScheduled != -1 && "Expecting scheduled instruction.");
2373d88c1a5aSDimitry Andric       unsigned Def = MO.getReg();
2374d88c1a5aSDimitry Andric       unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
2375d88c1a5aSDimitry Andric       // An instruction scheduled in stage 0 and is used after the loop
2376d88c1a5aSDimitry Andric       // requires a phi in the epilog for the last definition from either
2377d88c1a5aSDimitry Andric       // the kernel or prolog.
2378d88c1a5aSDimitry Andric       if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
2379d88c1a5aSDimitry Andric           hasUseAfterLoop(Def, BB, MRI))
2380d88c1a5aSDimitry Andric         NumPhis = 1;
2381d88c1a5aSDimitry Andric       if (!InKernel && (unsigned)StageScheduled > PrologStage)
2382d88c1a5aSDimitry Andric         continue;
2383d88c1a5aSDimitry Andric 
2384d88c1a5aSDimitry Andric       unsigned PhiOp2 = VRMap[PrevStage][Def];
2385d88c1a5aSDimitry Andric       if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
2386d88c1a5aSDimitry Andric         if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
2387d88c1a5aSDimitry Andric           PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
2388d88c1a5aSDimitry Andric       // The number of Phis can't exceed the number of prolog stages. The
2389d88c1a5aSDimitry Andric       // prolog stage number is zero based.
2390d88c1a5aSDimitry Andric       if (NumPhis > PrologStage + 1 - StageScheduled)
2391d88c1a5aSDimitry Andric         NumPhis = PrologStage + 1 - StageScheduled;
2392d88c1a5aSDimitry Andric       for (unsigned np = 0; np < NumPhis; ++np) {
2393d88c1a5aSDimitry Andric         unsigned PhiOp1 = VRMap[PrologStage][Def];
2394d88c1a5aSDimitry Andric         if (np <= PrologStage)
2395d88c1a5aSDimitry Andric           PhiOp1 = VRMap[PrologStage - np][Def];
2396d88c1a5aSDimitry Andric         if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
2397d88c1a5aSDimitry Andric           if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2398d88c1a5aSDimitry Andric             PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2399d88c1a5aSDimitry Andric           if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
2400d88c1a5aSDimitry Andric             PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
2401d88c1a5aSDimitry Andric         }
2402d88c1a5aSDimitry Andric         if (!InKernel)
2403d88c1a5aSDimitry Andric           PhiOp2 = VRMap[PrevStage - np][Def];
2404d88c1a5aSDimitry Andric 
2405d88c1a5aSDimitry Andric         const TargetRegisterClass *RC = MRI.getRegClass(Def);
2406d88c1a5aSDimitry Andric         unsigned NewReg = MRI.createVirtualRegister(RC);
2407d88c1a5aSDimitry Andric 
2408d88c1a5aSDimitry Andric         MachineInstrBuilder NewPhi =
2409d88c1a5aSDimitry Andric             BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2410d88c1a5aSDimitry Andric                     TII->get(TargetOpcode::PHI), NewReg);
2411d88c1a5aSDimitry Andric         NewPhi.addReg(PhiOp1).addMBB(BB1);
2412d88c1a5aSDimitry Andric         NewPhi.addReg(PhiOp2).addMBB(BB2);
2413d88c1a5aSDimitry Andric         if (np == 0)
2414d88c1a5aSDimitry Andric           InstrMap[NewPhi] = &*BBI;
2415d88c1a5aSDimitry Andric 
2416d88c1a5aSDimitry Andric         // Rewrite uses and update the map. The actions depend upon whether
2417d88c1a5aSDimitry Andric         // we generating code for the kernel or epilog blocks.
2418d88c1a5aSDimitry Andric         if (InKernel) {
2419d88c1a5aSDimitry Andric           rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2420d88c1a5aSDimitry Andric                                 &*BBI, PhiOp1, NewReg);
2421d88c1a5aSDimitry Andric           rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2422d88c1a5aSDimitry Andric                                 &*BBI, PhiOp2, NewReg);
2423d88c1a5aSDimitry Andric 
2424d88c1a5aSDimitry Andric           PhiOp2 = NewReg;
2425d88c1a5aSDimitry Andric           VRMap[PrevStage - np - 1][Def] = NewReg;
2426d88c1a5aSDimitry Andric         } else {
2427d88c1a5aSDimitry Andric           VRMap[CurStageNum - np][Def] = NewReg;
2428d88c1a5aSDimitry Andric           if (np == NumPhis - 1)
2429d88c1a5aSDimitry Andric             rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2430d88c1a5aSDimitry Andric                                   &*BBI, Def, NewReg);
2431d88c1a5aSDimitry Andric         }
2432d88c1a5aSDimitry Andric         if (IsLast && np == NumPhis - 1)
2433d88c1a5aSDimitry Andric           replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2434d88c1a5aSDimitry Andric       }
2435d88c1a5aSDimitry Andric     }
2436d88c1a5aSDimitry Andric   }
2437d88c1a5aSDimitry Andric }
2438d88c1a5aSDimitry Andric 
2439d88c1a5aSDimitry Andric /// Remove instructions that generate values with no uses.
2440d88c1a5aSDimitry Andric /// Typically, these are induction variable operations that generate values
2441d88c1a5aSDimitry Andric /// used in the loop itself.  A dead instruction has a definition with
2442d88c1a5aSDimitry Andric /// no uses, or uses that occur in the original loop only.
removeDeadInstructions(MachineBasicBlock * KernelBB,MBBVectorTy & EpilogBBs)2443d88c1a5aSDimitry Andric void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
2444d88c1a5aSDimitry Andric                                                MBBVectorTy &EpilogBBs) {
2445d88c1a5aSDimitry Andric   // For each epilog block, check that the value defined by each instruction
2446d88c1a5aSDimitry Andric   // is used.  If not, delete it.
2447d88c1a5aSDimitry Andric   for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
2448d88c1a5aSDimitry Andric                                      MBE = EpilogBBs.rend();
2449d88c1a5aSDimitry Andric        MBB != MBE; ++MBB)
2450d88c1a5aSDimitry Andric     for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
2451d88c1a5aSDimitry Andric                                                    ME = (*MBB)->instr_rend();
2452d88c1a5aSDimitry Andric          MI != ME;) {
2453d88c1a5aSDimitry Andric       // From DeadMachineInstructionElem. Don't delete inline assembly.
2454d88c1a5aSDimitry Andric       if (MI->isInlineAsm()) {
2455d88c1a5aSDimitry Andric         ++MI;
2456d88c1a5aSDimitry Andric         continue;
2457d88c1a5aSDimitry Andric       }
2458d88c1a5aSDimitry Andric       bool SawStore = false;
2459d88c1a5aSDimitry Andric       // Check if it's safe to remove the instruction due to side effects.
2460d88c1a5aSDimitry Andric       // We can, and want to, remove Phis here.
2461d88c1a5aSDimitry Andric       if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
2462d88c1a5aSDimitry Andric         ++MI;
2463d88c1a5aSDimitry Andric         continue;
2464d88c1a5aSDimitry Andric       }
2465d88c1a5aSDimitry Andric       bool used = true;
2466d88c1a5aSDimitry Andric       for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
2467d88c1a5aSDimitry Andric                                       MOE = MI->operands_end();
2468d88c1a5aSDimitry Andric            MOI != MOE; ++MOI) {
2469d88c1a5aSDimitry Andric         if (!MOI->isReg() || !MOI->isDef())
2470d88c1a5aSDimitry Andric           continue;
2471d88c1a5aSDimitry Andric         unsigned reg = MOI->getReg();
24724ba319b5SDimitry Andric         // Assume physical registers are used, unless they are marked dead.
24734ba319b5SDimitry Andric         if (TargetRegisterInfo::isPhysicalRegister(reg)) {
24744ba319b5SDimitry Andric           used = !MOI->isDead();
24754ba319b5SDimitry Andric           if (used)
24764ba319b5SDimitry Andric             break;
24774ba319b5SDimitry Andric           continue;
24784ba319b5SDimitry Andric         }
2479d88c1a5aSDimitry Andric         unsigned realUses = 0;
2480d88c1a5aSDimitry Andric         for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
2481d88c1a5aSDimitry Andric                                                EI = MRI.use_end();
2482d88c1a5aSDimitry Andric              UI != EI; ++UI) {
2483d88c1a5aSDimitry Andric           // Check if there are any uses that occur only in the original
2484d88c1a5aSDimitry Andric           // loop.  If so, that's not a real use.
2485d88c1a5aSDimitry Andric           if (UI->getParent()->getParent() != BB) {
2486d88c1a5aSDimitry Andric             realUses++;
2487d88c1a5aSDimitry Andric             used = true;
2488d88c1a5aSDimitry Andric             break;
2489d88c1a5aSDimitry Andric           }
2490d88c1a5aSDimitry Andric         }
2491d88c1a5aSDimitry Andric         if (realUses > 0)
2492d88c1a5aSDimitry Andric           break;
2493d88c1a5aSDimitry Andric         used = false;
2494d88c1a5aSDimitry Andric       }
2495d88c1a5aSDimitry Andric       if (!used) {
24964ba319b5SDimitry Andric         LIS.RemoveMachineInstrFromMaps(*MI);
2497d88c1a5aSDimitry Andric         MI++->eraseFromParent();
2498d88c1a5aSDimitry Andric         continue;
2499d88c1a5aSDimitry Andric       }
2500d88c1a5aSDimitry Andric       ++MI;
2501d88c1a5aSDimitry Andric     }
2502d88c1a5aSDimitry Andric   // In the kernel block, check if we can remove a Phi that generates a value
2503d88c1a5aSDimitry Andric   // used in an instruction removed in the epilog block.
2504d88c1a5aSDimitry Andric   for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
2505d88c1a5aSDimitry Andric                                    BBE = KernelBB->getFirstNonPHI();
2506d88c1a5aSDimitry Andric        BBI != BBE;) {
2507d88c1a5aSDimitry Andric     MachineInstr *MI = &*BBI;
2508d88c1a5aSDimitry Andric     ++BBI;
2509d88c1a5aSDimitry Andric     unsigned reg = MI->getOperand(0).getReg();
2510d88c1a5aSDimitry Andric     if (MRI.use_begin(reg) == MRI.use_end()) {
25114ba319b5SDimitry Andric       LIS.RemoveMachineInstrFromMaps(*MI);
2512d88c1a5aSDimitry Andric       MI->eraseFromParent();
2513d88c1a5aSDimitry Andric     }
2514d88c1a5aSDimitry Andric   }
2515d88c1a5aSDimitry Andric }
2516d88c1a5aSDimitry Andric 
2517d88c1a5aSDimitry Andric /// For loop carried definitions, we split the lifetime of a virtual register
2518d88c1a5aSDimitry Andric /// that has uses past the definition in the next iteration. A copy with a new
2519d88c1a5aSDimitry Andric /// virtual register is inserted before the definition, which helps with
2520d88c1a5aSDimitry Andric /// generating a better register assignment.
2521d88c1a5aSDimitry Andric ///
2522d88c1a5aSDimitry Andric ///   v1 = phi(a, v2)     v1 = phi(a, v2)
2523d88c1a5aSDimitry Andric ///   v2 = phi(b, v3)     v2 = phi(b, v3)
2524d88c1a5aSDimitry Andric ///   v3 = ..             v4 = copy v1
2525d88c1a5aSDimitry Andric ///   .. = V1             v3 = ..
2526d88c1a5aSDimitry Andric ///                       .. = v4
splitLifetimes(MachineBasicBlock * KernelBB,MBBVectorTy & EpilogBBs,SMSchedule & Schedule)2527d88c1a5aSDimitry Andric void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
2528d88c1a5aSDimitry Andric                                        MBBVectorTy &EpilogBBs,
2529d88c1a5aSDimitry Andric                                        SMSchedule &Schedule) {
2530d88c1a5aSDimitry Andric   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
25314ba319b5SDimitry Andric   for (auto &PHI : KernelBB->phis()) {
25324ba319b5SDimitry Andric     unsigned Def = PHI.getOperand(0).getReg();
2533d88c1a5aSDimitry Andric     // Check for any Phi definition that used as an operand of another Phi
2534d88c1a5aSDimitry Andric     // in the same block.
2535d88c1a5aSDimitry Andric     for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
2536d88c1a5aSDimitry Andric                                                  E = MRI.use_instr_end();
2537d88c1a5aSDimitry Andric          I != E; ++I) {
2538d88c1a5aSDimitry Andric       if (I->isPHI() && I->getParent() == KernelBB) {
2539d88c1a5aSDimitry Andric         // Get the loop carried definition.
25404ba319b5SDimitry Andric         unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
2541d88c1a5aSDimitry Andric         if (!LCDef)
2542d88c1a5aSDimitry Andric           continue;
2543d88c1a5aSDimitry Andric         MachineInstr *MI = MRI.getVRegDef(LCDef);
2544d88c1a5aSDimitry Andric         if (!MI || MI->getParent() != KernelBB || MI->isPHI())
2545d88c1a5aSDimitry Andric           continue;
2546d88c1a5aSDimitry Andric         // Search through the rest of the block looking for uses of the Phi
2547d88c1a5aSDimitry Andric         // definition. If one occurs, then split the lifetime.
2548d88c1a5aSDimitry Andric         unsigned SplitReg = 0;
2549d88c1a5aSDimitry Andric         for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
2550d88c1a5aSDimitry Andric                                     KernelBB->instr_end()))
2551d88c1a5aSDimitry Andric           if (BBJ.readsRegister(Def)) {
2552d88c1a5aSDimitry Andric             // We split the lifetime when we find the first use.
2553d88c1a5aSDimitry Andric             if (SplitReg == 0) {
2554d88c1a5aSDimitry Andric               SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
2555d88c1a5aSDimitry Andric               BuildMI(*KernelBB, MI, MI->getDebugLoc(),
2556d88c1a5aSDimitry Andric                       TII->get(TargetOpcode::COPY), SplitReg)
2557d88c1a5aSDimitry Andric                   .addReg(Def);
2558d88c1a5aSDimitry Andric             }
2559d88c1a5aSDimitry Andric             BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
2560d88c1a5aSDimitry Andric           }
2561d88c1a5aSDimitry Andric         if (!SplitReg)
2562d88c1a5aSDimitry Andric           continue;
2563d88c1a5aSDimitry Andric         // Search through each of the epilog blocks for any uses to be renamed.
2564d88c1a5aSDimitry Andric         for (auto &Epilog : EpilogBBs)
2565d88c1a5aSDimitry Andric           for (auto &I : *Epilog)
2566d88c1a5aSDimitry Andric             if (I.readsRegister(Def))
2567d88c1a5aSDimitry Andric               I.substituteRegister(Def, SplitReg, 0, *TRI);
2568d88c1a5aSDimitry Andric         break;
2569d88c1a5aSDimitry Andric       }
2570d88c1a5aSDimitry Andric     }
2571d88c1a5aSDimitry Andric   }
2572d88c1a5aSDimitry Andric }
2573d88c1a5aSDimitry Andric 
2574d88c1a5aSDimitry Andric /// Remove the incoming block from the Phis in a basic block.
removePhis(MachineBasicBlock * BB,MachineBasicBlock * Incoming)2575d88c1a5aSDimitry Andric static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
2576d88c1a5aSDimitry Andric   for (MachineInstr &MI : *BB) {
2577d88c1a5aSDimitry Andric     if (!MI.isPHI())
2578d88c1a5aSDimitry Andric       break;
2579d88c1a5aSDimitry Andric     for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
2580d88c1a5aSDimitry Andric       if (MI.getOperand(i + 1).getMBB() == Incoming) {
2581d88c1a5aSDimitry Andric         MI.RemoveOperand(i + 1);
2582d88c1a5aSDimitry Andric         MI.RemoveOperand(i);
2583d88c1a5aSDimitry Andric         break;
2584d88c1a5aSDimitry Andric       }
2585d88c1a5aSDimitry Andric   }
2586d88c1a5aSDimitry Andric }
2587d88c1a5aSDimitry Andric 
2588d88c1a5aSDimitry Andric /// Create branches from each prolog basic block to the appropriate epilog
2589d88c1a5aSDimitry Andric /// block.  These edges are needed if the loop ends before reaching the
2590d88c1a5aSDimitry Andric /// kernel.
addBranches(MBBVectorTy & PrologBBs,MachineBasicBlock * KernelBB,MBBVectorTy & EpilogBBs,SMSchedule & Schedule,ValueMapTy * VRMap)2591d88c1a5aSDimitry Andric void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs,
2592d88c1a5aSDimitry Andric                                     MachineBasicBlock *KernelBB,
2593d88c1a5aSDimitry Andric                                     MBBVectorTy &EpilogBBs,
2594d88c1a5aSDimitry Andric                                     SMSchedule &Schedule, ValueMapTy *VRMap) {
2595d88c1a5aSDimitry Andric   assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
2596d88c1a5aSDimitry Andric   MachineInstr *IndVar = Pass.LI.LoopInductionVar;
2597d88c1a5aSDimitry Andric   MachineInstr *Cmp = Pass.LI.LoopCompare;
2598d88c1a5aSDimitry Andric   MachineBasicBlock *LastPro = KernelBB;
2599d88c1a5aSDimitry Andric   MachineBasicBlock *LastEpi = KernelBB;
2600d88c1a5aSDimitry Andric 
2601d88c1a5aSDimitry Andric   // Start from the blocks connected to the kernel and work "out"
2602d88c1a5aSDimitry Andric   // to the first prolog and the last epilog blocks.
2603d88c1a5aSDimitry Andric   SmallVector<MachineInstr *, 4> PrevInsts;
2604d88c1a5aSDimitry Andric   unsigned MaxIter = PrologBBs.size() - 1;
2605d88c1a5aSDimitry Andric   unsigned LC = UINT_MAX;
2606d88c1a5aSDimitry Andric   unsigned LCMin = UINT_MAX;
2607d88c1a5aSDimitry Andric   for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
2608d88c1a5aSDimitry Andric     // Add branches to the prolog that go to the corresponding
2609d88c1a5aSDimitry Andric     // epilog, and the fall-thru prolog/kernel block.
2610d88c1a5aSDimitry Andric     MachineBasicBlock *Prolog = PrologBBs[j];
2611d88c1a5aSDimitry Andric     MachineBasicBlock *Epilog = EpilogBBs[i];
2612d88c1a5aSDimitry Andric     // We've executed one iteration, so decrement the loop count and check for
2613d88c1a5aSDimitry Andric     // the loop end.
2614d88c1a5aSDimitry Andric     SmallVector<MachineOperand, 4> Cond;
2615d88c1a5aSDimitry Andric     // Check if the LOOP0 has already been removed. If so, then there is no need
2616d88c1a5aSDimitry Andric     // to reduce the trip count.
2617d88c1a5aSDimitry Andric     if (LC != 0)
2618d88c1a5aSDimitry Andric       LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j,
2619d88c1a5aSDimitry Andric                                 MaxIter);
2620d88c1a5aSDimitry Andric 
2621d88c1a5aSDimitry Andric     // Record the value of the first trip count, which is used to determine if
2622d88c1a5aSDimitry Andric     // branches and blocks can be removed for constant trip counts.
2623d88c1a5aSDimitry Andric     if (LCMin == UINT_MAX)
2624d88c1a5aSDimitry Andric       LCMin = LC;
2625d88c1a5aSDimitry Andric 
2626d88c1a5aSDimitry Andric     unsigned numAdded = 0;
2627d88c1a5aSDimitry Andric     if (TargetRegisterInfo::isVirtualRegister(LC)) {
2628d88c1a5aSDimitry Andric       Prolog->addSuccessor(Epilog);
2629d88c1a5aSDimitry Andric       numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
2630d88c1a5aSDimitry Andric     } else if (j >= LCMin) {
2631d88c1a5aSDimitry Andric       Prolog->addSuccessor(Epilog);
2632d88c1a5aSDimitry Andric       Prolog->removeSuccessor(LastPro);
2633d88c1a5aSDimitry Andric       LastEpi->removeSuccessor(Epilog);
2634d88c1a5aSDimitry Andric       numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
2635d88c1a5aSDimitry Andric       removePhis(Epilog, LastEpi);
2636d88c1a5aSDimitry Andric       // Remove the blocks that are no longer referenced.
2637d88c1a5aSDimitry Andric       if (LastPro != LastEpi) {
2638d88c1a5aSDimitry Andric         LastEpi->clear();
2639d88c1a5aSDimitry Andric         LastEpi->eraseFromParent();
2640d88c1a5aSDimitry Andric       }
2641d88c1a5aSDimitry Andric       LastPro->clear();
2642d88c1a5aSDimitry Andric       LastPro->eraseFromParent();
2643d88c1a5aSDimitry Andric     } else {
2644d88c1a5aSDimitry Andric       numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
2645d88c1a5aSDimitry Andric       removePhis(Epilog, Prolog);
2646d88c1a5aSDimitry Andric     }
2647d88c1a5aSDimitry Andric     LastPro = Prolog;
2648d88c1a5aSDimitry Andric     LastEpi = Epilog;
2649d88c1a5aSDimitry Andric     for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
2650d88c1a5aSDimitry Andric                                                    E = Prolog->instr_rend();
2651d88c1a5aSDimitry Andric          I != E && numAdded > 0; ++I, --numAdded)
2652d88c1a5aSDimitry Andric       updateInstruction(&*I, false, j, 0, Schedule, VRMap);
2653d88c1a5aSDimitry Andric   }
2654d88c1a5aSDimitry Andric }
2655d88c1a5aSDimitry Andric 
2656d88c1a5aSDimitry Andric /// Return true if we can compute the amount the instruction changes
2657d88c1a5aSDimitry Andric /// during each iteration. Set Delta to the amount of the change.
computeDelta(MachineInstr & MI,unsigned & Delta)2658d88c1a5aSDimitry Andric bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
2659d88c1a5aSDimitry Andric   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2660*b5893f02SDimitry Andric   MachineOperand *BaseOp;
2661d88c1a5aSDimitry Andric   int64_t Offset;
2662*b5893f02SDimitry Andric   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
2663d88c1a5aSDimitry Andric     return false;
2664d88c1a5aSDimitry Andric 
2665*b5893f02SDimitry Andric   if (!BaseOp->isReg())
2666*b5893f02SDimitry Andric     return false;
2667*b5893f02SDimitry Andric 
2668*b5893f02SDimitry Andric   unsigned BaseReg = BaseOp->getReg();
2669*b5893f02SDimitry Andric 
2670d88c1a5aSDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
2671d88c1a5aSDimitry Andric   // Check if there is a Phi. If so, get the definition in the loop.
2672d88c1a5aSDimitry Andric   MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
2673d88c1a5aSDimitry Andric   if (BaseDef && BaseDef->isPHI()) {
2674d88c1a5aSDimitry Andric     BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
2675d88c1a5aSDimitry Andric     BaseDef = MRI.getVRegDef(BaseReg);
2676d88c1a5aSDimitry Andric   }
2677d88c1a5aSDimitry Andric   if (!BaseDef)
2678d88c1a5aSDimitry Andric     return false;
2679d88c1a5aSDimitry Andric 
2680d88c1a5aSDimitry Andric   int D = 0;
2681d88c1a5aSDimitry Andric   if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
2682d88c1a5aSDimitry Andric     return false;
2683d88c1a5aSDimitry Andric 
2684d88c1a5aSDimitry Andric   Delta = D;
2685d88c1a5aSDimitry Andric   return true;
2686d88c1a5aSDimitry Andric }
2687d88c1a5aSDimitry Andric 
2688d88c1a5aSDimitry Andric /// Update the memory operand with a new offset when the pipeliner
2689d88c1a5aSDimitry Andric /// generates a new copy of the instruction that refers to a
2690d88c1a5aSDimitry Andric /// different memory location.
updateMemOperands(MachineInstr & NewMI,MachineInstr & OldMI,unsigned Num)2691d88c1a5aSDimitry Andric void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
2692d88c1a5aSDimitry Andric                                           MachineInstr &OldMI, unsigned Num) {
2693d88c1a5aSDimitry Andric   if (Num == 0)
2694d88c1a5aSDimitry Andric     return;
2695d88c1a5aSDimitry Andric   // If the instruction has memory operands, then adjust the offset
2696d88c1a5aSDimitry Andric   // when the instruction appears in different stages.
2697*b5893f02SDimitry Andric   if (NewMI.memoperands_empty())
2698d88c1a5aSDimitry Andric     return;
2699*b5893f02SDimitry Andric   SmallVector<MachineMemOperand *, 2> NewMMOs;
2700d88c1a5aSDimitry Andric   for (MachineMemOperand *MMO : NewMI.memoperands()) {
2701d88c1a5aSDimitry Andric     if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) ||
2702d88c1a5aSDimitry Andric         (!MMO->getValue())) {
2703*b5893f02SDimitry Andric       NewMMOs.push_back(MMO);
2704d88c1a5aSDimitry Andric       continue;
2705d88c1a5aSDimitry Andric     }
2706d88c1a5aSDimitry Andric     unsigned Delta;
27074ba319b5SDimitry Andric     if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
2708d88c1a5aSDimitry Andric       int64_t AdjOffset = Delta * Num;
2709*b5893f02SDimitry Andric       NewMMOs.push_back(
2710*b5893f02SDimitry Andric           MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
27114ba319b5SDimitry Andric     } else {
2712*b5893f02SDimitry Andric       NewMMOs.push_back(
2713*b5893f02SDimitry Andric           MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
27144ba319b5SDimitry Andric     }
2715d88c1a5aSDimitry Andric   }
2716*b5893f02SDimitry Andric   NewMI.setMemRefs(MF, NewMMOs);
2717d88c1a5aSDimitry Andric }
2718d88c1a5aSDimitry Andric 
2719d88c1a5aSDimitry Andric /// Clone the instruction for the new pipelined loop and update the
2720d88c1a5aSDimitry Andric /// memory operands, if needed.
cloneInstr(MachineInstr * OldMI,unsigned CurStageNum,unsigned InstStageNum)2721d88c1a5aSDimitry Andric MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
2722d88c1a5aSDimitry Andric                                             unsigned CurStageNum,
2723d88c1a5aSDimitry Andric                                             unsigned InstStageNum) {
2724d88c1a5aSDimitry Andric   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
2725d88c1a5aSDimitry Andric   // Check for tied operands in inline asm instructions. This should be handled
2726d88c1a5aSDimitry Andric   // elsewhere, but I'm not sure of the best solution.
2727d88c1a5aSDimitry Andric   if (OldMI->isInlineAsm())
2728d88c1a5aSDimitry Andric     for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
2729d88c1a5aSDimitry Andric       const auto &MO = OldMI->getOperand(i);
2730d88c1a5aSDimitry Andric       if (MO.isReg() && MO.isUse())
2731d88c1a5aSDimitry Andric         break;
2732d88c1a5aSDimitry Andric       unsigned UseIdx;
2733d88c1a5aSDimitry Andric       if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
2734d88c1a5aSDimitry Andric         NewMI->tieOperands(i, UseIdx);
2735d88c1a5aSDimitry Andric     }
2736d88c1a5aSDimitry Andric   updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
2737d88c1a5aSDimitry Andric   return NewMI;
2738d88c1a5aSDimitry Andric }
2739d88c1a5aSDimitry Andric 
2740d88c1a5aSDimitry Andric /// Clone the instruction for the new pipelined loop. If needed, this
2741d88c1a5aSDimitry Andric /// function updates the instruction using the values saved in the
2742d88c1a5aSDimitry Andric /// InstrChanges structure.
cloneAndChangeInstr(MachineInstr * OldMI,unsigned CurStageNum,unsigned InstStageNum,SMSchedule & Schedule)2743d88c1a5aSDimitry Andric MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
2744d88c1a5aSDimitry Andric                                                      unsigned CurStageNum,
2745d88c1a5aSDimitry Andric                                                      unsigned InstStageNum,
2746d88c1a5aSDimitry Andric                                                      SMSchedule &Schedule) {
2747d88c1a5aSDimitry Andric   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
2748d88c1a5aSDimitry Andric   DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2749d88c1a5aSDimitry Andric       InstrChanges.find(getSUnit(OldMI));
2750d88c1a5aSDimitry Andric   if (It != InstrChanges.end()) {
2751d88c1a5aSDimitry Andric     std::pair<unsigned, int64_t> RegAndOffset = It->second;
2752d88c1a5aSDimitry Andric     unsigned BasePos, OffsetPos;
2753d88c1a5aSDimitry Andric     if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
2754d88c1a5aSDimitry Andric       return nullptr;
2755d88c1a5aSDimitry Andric     int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
2756d88c1a5aSDimitry Andric     MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
2757d88c1a5aSDimitry Andric     if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
2758d88c1a5aSDimitry Andric       NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
2759d88c1a5aSDimitry Andric     NewMI->getOperand(OffsetPos).setImm(NewOffset);
2760d88c1a5aSDimitry Andric   }
2761d88c1a5aSDimitry Andric   updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
2762d88c1a5aSDimitry Andric   return NewMI;
2763d88c1a5aSDimitry Andric }
2764d88c1a5aSDimitry Andric 
2765d88c1a5aSDimitry Andric /// Update the machine instruction with new virtual registers.  This
2766d88c1a5aSDimitry Andric /// function may change the defintions and/or uses.
updateInstruction(MachineInstr * NewMI,bool LastDef,unsigned CurStageNum,unsigned InstrStageNum,SMSchedule & Schedule,ValueMapTy * VRMap)2767d88c1a5aSDimitry Andric void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
2768d88c1a5aSDimitry Andric                                           unsigned CurStageNum,
2769d88c1a5aSDimitry Andric                                           unsigned InstrStageNum,
2770d88c1a5aSDimitry Andric                                           SMSchedule &Schedule,
2771d88c1a5aSDimitry Andric                                           ValueMapTy *VRMap) {
2772d88c1a5aSDimitry Andric   for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
2773d88c1a5aSDimitry Andric     MachineOperand &MO = NewMI->getOperand(i);
2774d88c1a5aSDimitry Andric     if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2775d88c1a5aSDimitry Andric       continue;
2776d88c1a5aSDimitry Andric     unsigned reg = MO.getReg();
2777d88c1a5aSDimitry Andric     if (MO.isDef()) {
2778d88c1a5aSDimitry Andric       // Create a new virtual register for the definition.
2779d88c1a5aSDimitry Andric       const TargetRegisterClass *RC = MRI.getRegClass(reg);
2780d88c1a5aSDimitry Andric       unsigned NewReg = MRI.createVirtualRegister(RC);
2781d88c1a5aSDimitry Andric       MO.setReg(NewReg);
2782d88c1a5aSDimitry Andric       VRMap[CurStageNum][reg] = NewReg;
2783d88c1a5aSDimitry Andric       if (LastDef)
2784d88c1a5aSDimitry Andric         replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
2785d88c1a5aSDimitry Andric     } else if (MO.isUse()) {
2786d88c1a5aSDimitry Andric       MachineInstr *Def = MRI.getVRegDef(reg);
2787d88c1a5aSDimitry Andric       // Compute the stage that contains the last definition for instruction.
2788d88c1a5aSDimitry Andric       int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
2789d88c1a5aSDimitry Andric       unsigned StageNum = CurStageNum;
2790d88c1a5aSDimitry Andric       if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
2791d88c1a5aSDimitry Andric         // Compute the difference in stages between the defintion and the use.
2792d88c1a5aSDimitry Andric         unsigned StageDiff = (InstrStageNum - DefStageNum);
2793d88c1a5aSDimitry Andric         // Make an adjustment to get the last definition.
2794d88c1a5aSDimitry Andric         StageNum -= StageDiff;
2795d88c1a5aSDimitry Andric       }
2796d88c1a5aSDimitry Andric       if (VRMap[StageNum].count(reg))
2797d88c1a5aSDimitry Andric         MO.setReg(VRMap[StageNum][reg]);
2798d88c1a5aSDimitry Andric     }
2799d88c1a5aSDimitry Andric   }
2800d88c1a5aSDimitry Andric }
2801d88c1a5aSDimitry Andric 
2802d88c1a5aSDimitry Andric /// Return the instruction in the loop that defines the register.
2803d88c1a5aSDimitry Andric /// If the definition is a Phi, then follow the Phi operand to
2804d88c1a5aSDimitry Andric /// the instruction in the loop.
findDefInLoop(unsigned Reg)2805d88c1a5aSDimitry Andric MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
2806d88c1a5aSDimitry Andric   SmallPtrSet<MachineInstr *, 8> Visited;
2807d88c1a5aSDimitry Andric   MachineInstr *Def = MRI.getVRegDef(Reg);
2808d88c1a5aSDimitry Andric   while (Def->isPHI()) {
2809d88c1a5aSDimitry Andric     if (!Visited.insert(Def).second)
2810d88c1a5aSDimitry Andric       break;
2811d88c1a5aSDimitry Andric     for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
2812d88c1a5aSDimitry Andric       if (Def->getOperand(i + 1).getMBB() == BB) {
2813d88c1a5aSDimitry Andric         Def = MRI.getVRegDef(Def->getOperand(i).getReg());
2814d88c1a5aSDimitry Andric         break;
2815d88c1a5aSDimitry Andric       }
2816d88c1a5aSDimitry Andric   }
2817d88c1a5aSDimitry Andric   return Def;
2818d88c1a5aSDimitry Andric }
2819d88c1a5aSDimitry Andric 
2820d88c1a5aSDimitry Andric /// Return the new name for the value from the previous stage.
getPrevMapVal(unsigned StageNum,unsigned PhiStage,unsigned LoopVal,unsigned LoopStage,ValueMapTy * VRMap,MachineBasicBlock * BB)2821d88c1a5aSDimitry Andric unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
2822d88c1a5aSDimitry Andric                                           unsigned LoopVal, unsigned LoopStage,
2823d88c1a5aSDimitry Andric                                           ValueMapTy *VRMap,
2824d88c1a5aSDimitry Andric                                           MachineBasicBlock *BB) {
2825d88c1a5aSDimitry Andric   unsigned PrevVal = 0;
2826d88c1a5aSDimitry Andric   if (StageNum > PhiStage) {
2827d88c1a5aSDimitry Andric     MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
2828d88c1a5aSDimitry Andric     if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
2829d88c1a5aSDimitry Andric       // The name is defined in the previous stage.
2830d88c1a5aSDimitry Andric       PrevVal = VRMap[StageNum - 1][LoopVal];
2831d88c1a5aSDimitry Andric     else if (VRMap[StageNum].count(LoopVal))
2832d88c1a5aSDimitry Andric       // The previous name is defined in the current stage when the instruction
2833d88c1a5aSDimitry Andric       // order is swapped.
2834d88c1a5aSDimitry Andric       PrevVal = VRMap[StageNum][LoopVal];
2835d88c1a5aSDimitry Andric     else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
2836d88c1a5aSDimitry Andric       // The loop value hasn't yet been scheduled.
2837d88c1a5aSDimitry Andric       PrevVal = LoopVal;
2838d88c1a5aSDimitry Andric     else if (StageNum == PhiStage + 1)
2839d88c1a5aSDimitry Andric       // The loop value is another phi, which has not been scheduled.
2840d88c1a5aSDimitry Andric       PrevVal = getInitPhiReg(*LoopInst, BB);
2841d88c1a5aSDimitry Andric     else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
2842d88c1a5aSDimitry Andric       // The loop value is another phi, which has been scheduled.
2843d88c1a5aSDimitry Andric       PrevVal =
2844d88c1a5aSDimitry Andric           getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
2845d88c1a5aSDimitry Andric                         LoopStage, VRMap, BB);
2846d88c1a5aSDimitry Andric   }
2847d88c1a5aSDimitry Andric   return PrevVal;
2848d88c1a5aSDimitry Andric }
2849d88c1a5aSDimitry Andric 
2850d88c1a5aSDimitry Andric /// Rewrite the Phi values in the specified block to use the mappings
2851d88c1a5aSDimitry Andric /// from the initial operand. Once the Phi is scheduled, we switch
2852d88c1a5aSDimitry Andric /// to using the loop value instead of the Phi value, so those names
2853d88c1a5aSDimitry Andric /// do not need to be rewritten.
rewritePhiValues(MachineBasicBlock * NewBB,unsigned StageNum,SMSchedule & Schedule,ValueMapTy * VRMap,InstrMapTy & InstrMap)2854d88c1a5aSDimitry Andric void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
2855d88c1a5aSDimitry Andric                                          unsigned StageNum,
2856d88c1a5aSDimitry Andric                                          SMSchedule &Schedule,
2857d88c1a5aSDimitry Andric                                          ValueMapTy *VRMap,
2858d88c1a5aSDimitry Andric                                          InstrMapTy &InstrMap) {
28594ba319b5SDimitry Andric   for (auto &PHI : BB->phis()) {
2860d88c1a5aSDimitry Andric     unsigned InitVal = 0;
2861d88c1a5aSDimitry Andric     unsigned LoopVal = 0;
28624ba319b5SDimitry Andric     getPhiRegs(PHI, BB, InitVal, LoopVal);
28634ba319b5SDimitry Andric     unsigned PhiDef = PHI.getOperand(0).getReg();
2864d88c1a5aSDimitry Andric 
2865d88c1a5aSDimitry Andric     unsigned PhiStage =
2866d88c1a5aSDimitry Andric         (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
2867d88c1a5aSDimitry Andric     unsigned LoopStage =
2868d88c1a5aSDimitry Andric         (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
2869d88c1a5aSDimitry Andric     unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
2870d88c1a5aSDimitry Andric     if (NumPhis > StageNum)
2871d88c1a5aSDimitry Andric       NumPhis = StageNum;
2872d88c1a5aSDimitry Andric     for (unsigned np = 0; np <= NumPhis; ++np) {
2873d88c1a5aSDimitry Andric       unsigned NewVal =
2874d88c1a5aSDimitry Andric           getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
2875d88c1a5aSDimitry Andric       if (!NewVal)
2876d88c1a5aSDimitry Andric         NewVal = InitVal;
28774ba319b5SDimitry Andric       rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI,
2878d88c1a5aSDimitry Andric                             PhiDef, NewVal);
2879d88c1a5aSDimitry Andric     }
2880d88c1a5aSDimitry Andric   }
2881d88c1a5aSDimitry Andric }
2882d88c1a5aSDimitry Andric 
2883d88c1a5aSDimitry Andric /// Rewrite a previously scheduled instruction to use the register value
2884d88c1a5aSDimitry Andric /// from the new instruction. Make sure the instruction occurs in the
2885d88c1a5aSDimitry Andric /// basic block, and we don't change the uses in the new instruction.
rewriteScheduledInstr(MachineBasicBlock * BB,SMSchedule & Schedule,InstrMapTy & InstrMap,unsigned CurStageNum,unsigned PhiNum,MachineInstr * Phi,unsigned OldReg,unsigned NewReg,unsigned PrevReg)2886d88c1a5aSDimitry Andric void SwingSchedulerDAG::rewriteScheduledInstr(
2887d88c1a5aSDimitry Andric     MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
2888d88c1a5aSDimitry Andric     unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
2889d88c1a5aSDimitry Andric     unsigned NewReg, unsigned PrevReg) {
2890d88c1a5aSDimitry Andric   bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
2891d88c1a5aSDimitry Andric   int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
2892d88c1a5aSDimitry Andric   // Rewrite uses that have been scheduled already to use the new
2893d88c1a5aSDimitry Andric   // Phi register.
2894d88c1a5aSDimitry Andric   for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
2895d88c1a5aSDimitry Andric                                          EI = MRI.use_end();
2896d88c1a5aSDimitry Andric        UI != EI;) {
2897d88c1a5aSDimitry Andric     MachineOperand &UseOp = *UI;
2898d88c1a5aSDimitry Andric     MachineInstr *UseMI = UseOp.getParent();
2899d88c1a5aSDimitry Andric     ++UI;
2900d88c1a5aSDimitry Andric     if (UseMI->getParent() != BB)
2901d88c1a5aSDimitry Andric       continue;
2902d88c1a5aSDimitry Andric     if (UseMI->isPHI()) {
2903d88c1a5aSDimitry Andric       if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
2904d88c1a5aSDimitry Andric         continue;
2905d88c1a5aSDimitry Andric       if (getLoopPhiReg(*UseMI, BB) != OldReg)
2906d88c1a5aSDimitry Andric         continue;
2907d88c1a5aSDimitry Andric     }
2908d88c1a5aSDimitry Andric     InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
2909d88c1a5aSDimitry Andric     assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
2910d88c1a5aSDimitry Andric     SUnit *OrigMISU = getSUnit(OrigInstr->second);
2911d88c1a5aSDimitry Andric     int StageSched = Schedule.stageScheduled(OrigMISU);
2912d88c1a5aSDimitry Andric     int CycleSched = Schedule.cycleScheduled(OrigMISU);
2913d88c1a5aSDimitry Andric     unsigned ReplaceReg = 0;
2914d88c1a5aSDimitry Andric     // This is the stage for the scheduled instruction.
2915d88c1a5aSDimitry Andric     if (StagePhi == StageSched && Phi->isPHI()) {
2916d88c1a5aSDimitry Andric       int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
2917d88c1a5aSDimitry Andric       if (PrevReg && InProlog)
2918d88c1a5aSDimitry Andric         ReplaceReg = PrevReg;
2919d88c1a5aSDimitry Andric       else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
2920d88c1a5aSDimitry Andric                (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
2921d88c1a5aSDimitry Andric         ReplaceReg = PrevReg;
2922d88c1a5aSDimitry Andric       else
2923d88c1a5aSDimitry Andric         ReplaceReg = NewReg;
2924d88c1a5aSDimitry Andric     }
2925d88c1a5aSDimitry Andric     // The scheduled instruction occurs before the scheduled Phi, and the
2926d88c1a5aSDimitry Andric     // Phi is not loop carried.
2927d88c1a5aSDimitry Andric     if (!InProlog && StagePhi + 1 == StageSched &&
2928d88c1a5aSDimitry Andric         !Schedule.isLoopCarried(this, *Phi))
2929d88c1a5aSDimitry Andric       ReplaceReg = NewReg;
2930d88c1a5aSDimitry Andric     if (StagePhi > StageSched && Phi->isPHI())
2931d88c1a5aSDimitry Andric       ReplaceReg = NewReg;
2932d88c1a5aSDimitry Andric     if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
2933d88c1a5aSDimitry Andric       ReplaceReg = NewReg;
2934d88c1a5aSDimitry Andric     if (ReplaceReg) {
2935d88c1a5aSDimitry Andric       MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
2936d88c1a5aSDimitry Andric       UseOp.setReg(ReplaceReg);
2937d88c1a5aSDimitry Andric     }
2938d88c1a5aSDimitry Andric   }
2939d88c1a5aSDimitry Andric }
2940d88c1a5aSDimitry Andric 
2941d88c1a5aSDimitry Andric /// Check if we can change the instruction to use an offset value from the
2942d88c1a5aSDimitry Andric /// previous iteration. If so, return true and set the base and offset values
2943d88c1a5aSDimitry Andric /// so that we can rewrite the load, if necessary.
2944d88c1a5aSDimitry Andric ///   v1 = Phi(v0, v3)
2945d88c1a5aSDimitry Andric ///   v2 = load v1, 0
2946d88c1a5aSDimitry Andric ///   v3 = post_store v1, 4, x
2947d88c1a5aSDimitry Andric /// This function enables the load to be rewritten as v2 = load v3, 4.
canUseLastOffsetValue(MachineInstr * MI,unsigned & BasePos,unsigned & OffsetPos,unsigned & NewBase,int64_t & Offset)2948d88c1a5aSDimitry Andric bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
2949d88c1a5aSDimitry Andric                                               unsigned &BasePos,
2950d88c1a5aSDimitry Andric                                               unsigned &OffsetPos,
2951d88c1a5aSDimitry Andric                                               unsigned &NewBase,
2952d88c1a5aSDimitry Andric                                               int64_t &Offset) {
2953d88c1a5aSDimitry Andric   // Get the load instruction.
2954d88c1a5aSDimitry Andric   if (TII->isPostIncrement(*MI))
2955d88c1a5aSDimitry Andric     return false;
2956d88c1a5aSDimitry Andric   unsigned BasePosLd, OffsetPosLd;
2957d88c1a5aSDimitry Andric   if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
2958d88c1a5aSDimitry Andric     return false;
2959d88c1a5aSDimitry Andric   unsigned BaseReg = MI->getOperand(BasePosLd).getReg();
2960d88c1a5aSDimitry Andric 
2961d88c1a5aSDimitry Andric   // Look for the Phi instruction.
29622cab237bSDimitry Andric   MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
2963d88c1a5aSDimitry Andric   MachineInstr *Phi = MRI.getVRegDef(BaseReg);
2964d88c1a5aSDimitry Andric   if (!Phi || !Phi->isPHI())
2965d88c1a5aSDimitry Andric     return false;
2966d88c1a5aSDimitry Andric   // Get the register defined in the loop block.
2967d88c1a5aSDimitry Andric   unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
2968d88c1a5aSDimitry Andric   if (!PrevReg)
2969d88c1a5aSDimitry Andric     return false;
2970d88c1a5aSDimitry Andric 
2971d88c1a5aSDimitry Andric   // Check for the post-increment load/store instruction.
2972d88c1a5aSDimitry Andric   MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
2973d88c1a5aSDimitry Andric   if (!PrevDef || PrevDef == MI)
2974d88c1a5aSDimitry Andric     return false;
2975d88c1a5aSDimitry Andric 
2976d88c1a5aSDimitry Andric   if (!TII->isPostIncrement(*PrevDef))
2977d88c1a5aSDimitry Andric     return false;
2978d88c1a5aSDimitry Andric 
2979d88c1a5aSDimitry Andric   unsigned BasePos1 = 0, OffsetPos1 = 0;
2980d88c1a5aSDimitry Andric   if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
2981d88c1a5aSDimitry Andric     return false;
2982d88c1a5aSDimitry Andric 
29834ba319b5SDimitry Andric   // Make sure that the instructions do not access the same memory location in
29844ba319b5SDimitry Andric   // the next iteration.
2985d88c1a5aSDimitry Andric   int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
2986d88c1a5aSDimitry Andric   int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
29874ba319b5SDimitry Andric   MachineInstr *NewMI = MF.CloneMachineInstr(MI);
29884ba319b5SDimitry Andric   NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
29894ba319b5SDimitry Andric   bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
29904ba319b5SDimitry Andric   MF.DeleteMachineInstr(NewMI);
29914ba319b5SDimitry Andric   if (!Disjoint)
2992d88c1a5aSDimitry Andric     return false;
2993d88c1a5aSDimitry Andric 
2994d88c1a5aSDimitry Andric   // Set the return value once we determine that we return true.
2995d88c1a5aSDimitry Andric   BasePos = BasePosLd;
2996d88c1a5aSDimitry Andric   OffsetPos = OffsetPosLd;
2997d88c1a5aSDimitry Andric   NewBase = PrevReg;
2998d88c1a5aSDimitry Andric   Offset = StoreOffset;
2999d88c1a5aSDimitry Andric   return true;
3000d88c1a5aSDimitry Andric }
3001d88c1a5aSDimitry Andric 
3002d88c1a5aSDimitry Andric /// Apply changes to the instruction if needed. The changes are need
3003d88c1a5aSDimitry Andric /// to improve the scheduling and depend up on the final schedule.
applyInstrChange(MachineInstr * MI,SMSchedule & Schedule)30042cab237bSDimitry Andric void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
30052cab237bSDimitry Andric                                          SMSchedule &Schedule) {
3006d88c1a5aSDimitry Andric   SUnit *SU = getSUnit(MI);
3007d88c1a5aSDimitry Andric   DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3008d88c1a5aSDimitry Andric       InstrChanges.find(SU);
3009d88c1a5aSDimitry Andric   if (It != InstrChanges.end()) {
3010d88c1a5aSDimitry Andric     std::pair<unsigned, int64_t> RegAndOffset = It->second;
3011d88c1a5aSDimitry Andric     unsigned BasePos, OffsetPos;
3012d88c1a5aSDimitry Andric     if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
30132cab237bSDimitry Andric       return;
3014d88c1a5aSDimitry Andric     unsigned BaseReg = MI->getOperand(BasePos).getReg();
3015d88c1a5aSDimitry Andric     MachineInstr *LoopDef = findDefInLoop(BaseReg);
3016d88c1a5aSDimitry Andric     int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
3017d88c1a5aSDimitry Andric     int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
3018d88c1a5aSDimitry Andric     int BaseStageNum = Schedule.stageScheduled(SU);
3019d88c1a5aSDimitry Andric     int BaseCycleNum = Schedule.cycleScheduled(SU);
3020d88c1a5aSDimitry Andric     if (BaseStageNum < DefStageNum) {
3021d88c1a5aSDimitry Andric       MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3022d88c1a5aSDimitry Andric       int OffsetDiff = DefStageNum - BaseStageNum;
3023d88c1a5aSDimitry Andric       if (DefCycleNum < BaseCycleNum) {
3024d88c1a5aSDimitry Andric         NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
3025d88c1a5aSDimitry Andric         if (OffsetDiff > 0)
3026d88c1a5aSDimitry Andric           --OffsetDiff;
3027d88c1a5aSDimitry Andric       }
3028d88c1a5aSDimitry Andric       int64_t NewOffset =
3029d88c1a5aSDimitry Andric           MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
3030d88c1a5aSDimitry Andric       NewMI->getOperand(OffsetPos).setImm(NewOffset);
3031d88c1a5aSDimitry Andric       SU->setInstr(NewMI);
3032d88c1a5aSDimitry Andric       MISUnitMap[NewMI] = SU;
3033d88c1a5aSDimitry Andric       NewMIs.insert(NewMI);
3034d88c1a5aSDimitry Andric     }
3035d88c1a5aSDimitry Andric   }
3036d88c1a5aSDimitry Andric }
3037d88c1a5aSDimitry Andric 
30384ba319b5SDimitry Andric /// Return true for an order or output dependence that is loop carried
30394ba319b5SDimitry Andric /// potentially. A dependence is loop carried if the destination defines a valu
30404ba319b5SDimitry Andric /// that may be used or defined by the source in a subsequent iteration.
isLoopCarriedDep(SUnit * Source,const SDep & Dep,bool isSucc)30414ba319b5SDimitry Andric bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
3042d88c1a5aSDimitry Andric                                          bool isSucc) {
30434ba319b5SDimitry Andric   if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
30444ba319b5SDimitry Andric       Dep.isArtificial())
3045d88c1a5aSDimitry Andric     return false;
3046d88c1a5aSDimitry Andric 
3047d88c1a5aSDimitry Andric   if (!SwpPruneLoopCarried)
3048d88c1a5aSDimitry Andric     return true;
3049d88c1a5aSDimitry Andric 
30504ba319b5SDimitry Andric   if (Dep.getKind() == SDep::Output)
30514ba319b5SDimitry Andric     return true;
30524ba319b5SDimitry Andric 
3053d88c1a5aSDimitry Andric   MachineInstr *SI = Source->getInstr();
3054d88c1a5aSDimitry Andric   MachineInstr *DI = Dep.getSUnit()->getInstr();
3055d88c1a5aSDimitry Andric   if (!isSucc)
3056d88c1a5aSDimitry Andric     std::swap(SI, DI);
3057d88c1a5aSDimitry Andric   assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
3058d88c1a5aSDimitry Andric 
3059d88c1a5aSDimitry Andric   // Assume ordered loads and stores may have a loop carried dependence.
3060d88c1a5aSDimitry Andric   if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
3061d88c1a5aSDimitry Andric       SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
3062d88c1a5aSDimitry Andric     return true;
3063d88c1a5aSDimitry Andric 
3064d88c1a5aSDimitry Andric   // Only chain dependences between a load and store can be loop carried.
3065d88c1a5aSDimitry Andric   if (!DI->mayStore() || !SI->mayLoad())
3066d88c1a5aSDimitry Andric     return false;
3067d88c1a5aSDimitry Andric 
3068d88c1a5aSDimitry Andric   unsigned DeltaS, DeltaD;
3069d88c1a5aSDimitry Andric   if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
3070d88c1a5aSDimitry Andric     return true;
3071d88c1a5aSDimitry Andric 
3072*b5893f02SDimitry Andric   MachineOperand *BaseOpS, *BaseOpD;
3073d88c1a5aSDimitry Andric   int64_t OffsetS, OffsetD;
3074d88c1a5aSDimitry Andric   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3075*b5893f02SDimitry Andric   if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, TRI) ||
3076*b5893f02SDimitry Andric       !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, TRI))
3077d88c1a5aSDimitry Andric     return true;
3078d88c1a5aSDimitry Andric 
3079*b5893f02SDimitry Andric   if (!BaseOpS->isIdenticalTo(*BaseOpD))
3080d88c1a5aSDimitry Andric     return true;
3081d88c1a5aSDimitry Andric 
30824ba319b5SDimitry Andric   // Check that the base register is incremented by a constant value for each
30834ba319b5SDimitry Andric   // iteration.
3084*b5893f02SDimitry Andric   MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg());
30854ba319b5SDimitry Andric   if (!Def || !Def->isPHI())
30864ba319b5SDimitry Andric     return true;
30874ba319b5SDimitry Andric   unsigned InitVal = 0;
30884ba319b5SDimitry Andric   unsigned LoopVal = 0;
30894ba319b5SDimitry Andric   getPhiRegs(*Def, BB, InitVal, LoopVal);
30904ba319b5SDimitry Andric   MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
30914ba319b5SDimitry Andric   int D = 0;
30924ba319b5SDimitry Andric   if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
30934ba319b5SDimitry Andric     return true;
30944ba319b5SDimitry Andric 
3095d88c1a5aSDimitry Andric   uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
3096d88c1a5aSDimitry Andric   uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
3097d88c1a5aSDimitry Andric 
3098d88c1a5aSDimitry Andric   // This is the main test, which checks the offset values and the loop
3099d88c1a5aSDimitry Andric   // increment value to determine if the accesses may be loop carried.
3100d88c1a5aSDimitry Andric   if (OffsetS >= OffsetD)
3101d88c1a5aSDimitry Andric     return OffsetS + AccessSizeS > DeltaS;
31027a7e6055SDimitry Andric   else
3103d88c1a5aSDimitry Andric     return OffsetD + AccessSizeD > DeltaD;
3104d88c1a5aSDimitry Andric 
3105d88c1a5aSDimitry Andric   return true;
3106d88c1a5aSDimitry Andric }
3107d88c1a5aSDimitry Andric 
postprocessDAG()3108d88c1a5aSDimitry Andric void SwingSchedulerDAG::postprocessDAG() {
3109d88c1a5aSDimitry Andric   for (auto &M : Mutations)
3110d88c1a5aSDimitry Andric     M->apply(this);
3111d88c1a5aSDimitry Andric }
3112d88c1a5aSDimitry Andric 
3113d88c1a5aSDimitry Andric /// Try to schedule the node at the specified StartCycle and continue
3114d88c1a5aSDimitry Andric /// until the node is schedule or the EndCycle is reached.  This function
3115d88c1a5aSDimitry Andric /// returns true if the node is scheduled.  This routine may search either
3116d88c1a5aSDimitry Andric /// forward or backward for a place to insert the instruction based upon
3117d88c1a5aSDimitry Andric /// the relative values of StartCycle and EndCycle.
insert(SUnit * SU,int StartCycle,int EndCycle,int II)3118d88c1a5aSDimitry Andric bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
3119d88c1a5aSDimitry Andric   bool forward = true;
3120d88c1a5aSDimitry Andric   if (StartCycle > EndCycle)
3121d88c1a5aSDimitry Andric     forward = false;
3122d88c1a5aSDimitry Andric 
3123d88c1a5aSDimitry Andric   // The terminating condition depends on the direction.
3124d88c1a5aSDimitry Andric   int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
3125d88c1a5aSDimitry Andric   for (int curCycle = StartCycle; curCycle != termCycle;
3126d88c1a5aSDimitry Andric        forward ? ++curCycle : --curCycle) {
3127d88c1a5aSDimitry Andric 
3128d88c1a5aSDimitry Andric     // Add the already scheduled instructions at the specified cycle to the DFA.
3129d88c1a5aSDimitry Andric     Resources->clearResources();
3130d88c1a5aSDimitry Andric     for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
3131d88c1a5aSDimitry Andric          checkCycle <= LastCycle; checkCycle += II) {
3132d88c1a5aSDimitry Andric       std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
3133d88c1a5aSDimitry Andric 
3134d88c1a5aSDimitry Andric       for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
3135d88c1a5aSDimitry Andric                                          E = cycleInstrs.end();
3136d88c1a5aSDimitry Andric            I != E; ++I) {
3137d88c1a5aSDimitry Andric         if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
3138d88c1a5aSDimitry Andric           continue;
3139d88c1a5aSDimitry Andric         assert(Resources->canReserveResources(*(*I)->getInstr()) &&
3140d88c1a5aSDimitry Andric                "These instructions have already been scheduled.");
3141d88c1a5aSDimitry Andric         Resources->reserveResources(*(*I)->getInstr());
3142d88c1a5aSDimitry Andric       }
3143d88c1a5aSDimitry Andric     }
3144d88c1a5aSDimitry Andric     if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
3145d88c1a5aSDimitry Andric         Resources->canReserveResources(*SU->getInstr())) {
31464ba319b5SDimitry Andric       LLVM_DEBUG({
3147d88c1a5aSDimitry Andric         dbgs() << "\tinsert at cycle " << curCycle << " ";
3148d88c1a5aSDimitry Andric         SU->getInstr()->dump();
3149d88c1a5aSDimitry Andric       });
3150d88c1a5aSDimitry Andric 
3151d88c1a5aSDimitry Andric       ScheduledInstrs[curCycle].push_back(SU);
3152d88c1a5aSDimitry Andric       InstrToCycle.insert(std::make_pair(SU, curCycle));
3153d88c1a5aSDimitry Andric       if (curCycle > LastCycle)
3154d88c1a5aSDimitry Andric         LastCycle = curCycle;
3155d88c1a5aSDimitry Andric       if (curCycle < FirstCycle)
3156d88c1a5aSDimitry Andric         FirstCycle = curCycle;
3157d88c1a5aSDimitry Andric       return true;
3158d88c1a5aSDimitry Andric     }
31594ba319b5SDimitry Andric     LLVM_DEBUG({
3160d88c1a5aSDimitry Andric       dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
3161d88c1a5aSDimitry Andric       SU->getInstr()->dump();
3162d88c1a5aSDimitry Andric     });
3163d88c1a5aSDimitry Andric   }
3164d88c1a5aSDimitry Andric   return false;
3165d88c1a5aSDimitry Andric }
3166d88c1a5aSDimitry Andric 
3167d88c1a5aSDimitry Andric // Return the cycle of the earliest scheduled instruction in the chain.
earliestCycleInChain(const SDep & Dep)3168d88c1a5aSDimitry Andric int SMSchedule::earliestCycleInChain(const SDep &Dep) {
3169d88c1a5aSDimitry Andric   SmallPtrSet<SUnit *, 8> Visited;
3170d88c1a5aSDimitry Andric   SmallVector<SDep, 8> Worklist;
3171d88c1a5aSDimitry Andric   Worklist.push_back(Dep);
3172d88c1a5aSDimitry Andric   int EarlyCycle = INT_MAX;
3173d88c1a5aSDimitry Andric   while (!Worklist.empty()) {
3174d88c1a5aSDimitry Andric     const SDep &Cur = Worklist.pop_back_val();
3175d88c1a5aSDimitry Andric     SUnit *PrevSU = Cur.getSUnit();
3176d88c1a5aSDimitry Andric     if (Visited.count(PrevSU))
3177d88c1a5aSDimitry Andric       continue;
3178d88c1a5aSDimitry Andric     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
3179d88c1a5aSDimitry Andric     if (it == InstrToCycle.end())
3180d88c1a5aSDimitry Andric       continue;
3181d88c1a5aSDimitry Andric     EarlyCycle = std::min(EarlyCycle, it->second);
3182d88c1a5aSDimitry Andric     for (const auto &PI : PrevSU->Preds)
31834ba319b5SDimitry Andric       if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
3184d88c1a5aSDimitry Andric         Worklist.push_back(PI);
3185d88c1a5aSDimitry Andric     Visited.insert(PrevSU);
3186d88c1a5aSDimitry Andric   }
3187d88c1a5aSDimitry Andric   return EarlyCycle;
3188d88c1a5aSDimitry Andric }
3189d88c1a5aSDimitry Andric 
3190d88c1a5aSDimitry Andric // Return the cycle of the latest scheduled instruction in the chain.
latestCycleInChain(const SDep & Dep)3191d88c1a5aSDimitry Andric int SMSchedule::latestCycleInChain(const SDep &Dep) {
3192d88c1a5aSDimitry Andric   SmallPtrSet<SUnit *, 8> Visited;
3193d88c1a5aSDimitry Andric   SmallVector<SDep, 8> Worklist;
3194d88c1a5aSDimitry Andric   Worklist.push_back(Dep);
3195d88c1a5aSDimitry Andric   int LateCycle = INT_MIN;
3196d88c1a5aSDimitry Andric   while (!Worklist.empty()) {
3197d88c1a5aSDimitry Andric     const SDep &Cur = Worklist.pop_back_val();
3198d88c1a5aSDimitry Andric     SUnit *SuccSU = Cur.getSUnit();
3199d88c1a5aSDimitry Andric     if (Visited.count(SuccSU))
3200d88c1a5aSDimitry Andric       continue;
3201d88c1a5aSDimitry Andric     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
3202d88c1a5aSDimitry Andric     if (it == InstrToCycle.end())
3203d88c1a5aSDimitry Andric       continue;
3204d88c1a5aSDimitry Andric     LateCycle = std::max(LateCycle, it->second);
3205d88c1a5aSDimitry Andric     for (const auto &SI : SuccSU->Succs)
32064ba319b5SDimitry Andric       if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
3207d88c1a5aSDimitry Andric         Worklist.push_back(SI);
3208d88c1a5aSDimitry Andric     Visited.insert(SuccSU);
3209d88c1a5aSDimitry Andric   }
3210d88c1a5aSDimitry Andric   return LateCycle;
3211d88c1a5aSDimitry Andric }
3212d88c1a5aSDimitry Andric 
3213d88c1a5aSDimitry Andric /// If an instruction has a use that spans multiple iterations, then
3214d88c1a5aSDimitry Andric /// return true. These instructions are characterized by having a back-ege
3215d88c1a5aSDimitry Andric /// to a Phi, which contains a reference to another Phi.
multipleIterations(SUnit * SU,SwingSchedulerDAG * DAG)3216d88c1a5aSDimitry Andric static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
3217d88c1a5aSDimitry Andric   for (auto &P : SU->Preds)
3218d88c1a5aSDimitry Andric     if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
3219d88c1a5aSDimitry Andric       for (auto &S : P.getSUnit()->Succs)
32204ba319b5SDimitry Andric         if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
3221d88c1a5aSDimitry Andric           return P.getSUnit();
3222d88c1a5aSDimitry Andric   return nullptr;
3223d88c1a5aSDimitry Andric }
3224d88c1a5aSDimitry Andric 
3225d88c1a5aSDimitry Andric /// Compute the scheduling start slot for the instruction.  The start slot
3226d88c1a5aSDimitry Andric /// depends on any predecessor or successor nodes scheduled already.
computeStart(SUnit * SU,int * MaxEarlyStart,int * MinLateStart,int * MinEnd,int * MaxStart,int II,SwingSchedulerDAG * DAG)3227d88c1a5aSDimitry Andric void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
3228d88c1a5aSDimitry Andric                               int *MinEnd, int *MaxStart, int II,
3229d88c1a5aSDimitry Andric                               SwingSchedulerDAG *DAG) {
3230d88c1a5aSDimitry Andric   // Iterate over each instruction that has been scheduled already.  The start
32314ba319b5SDimitry Andric   // slot computation depends on whether the previously scheduled instruction
3232d88c1a5aSDimitry Andric   // is a predecessor or successor of the specified instruction.
3233d88c1a5aSDimitry Andric   for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
3234d88c1a5aSDimitry Andric 
3235d88c1a5aSDimitry Andric     // Iterate over each instruction in the current cycle.
3236d88c1a5aSDimitry Andric     for (SUnit *I : getInstructions(cycle)) {
3237d88c1a5aSDimitry Andric       // Because we're processing a DAG for the dependences, we recognize
3238d88c1a5aSDimitry Andric       // the back-edge in recurrences by anti dependences.
3239d88c1a5aSDimitry Andric       for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
3240d88c1a5aSDimitry Andric         const SDep &Dep = SU->Preds[i];
3241d88c1a5aSDimitry Andric         if (Dep.getSUnit() == I) {
3242d88c1a5aSDimitry Andric           if (!DAG->isBackedge(SU, Dep)) {
32434ba319b5SDimitry Andric             int EarlyStart = cycle + Dep.getLatency() -
3244d88c1a5aSDimitry Andric                              DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3245d88c1a5aSDimitry Andric             *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
32464ba319b5SDimitry Andric             if (DAG->isLoopCarriedDep(SU, Dep, false)) {
3247d88c1a5aSDimitry Andric               int End = earliestCycleInChain(Dep) + (II - 1);
3248d88c1a5aSDimitry Andric               *MinEnd = std::min(*MinEnd, End);
3249d88c1a5aSDimitry Andric             }
3250d88c1a5aSDimitry Andric           } else {
32514ba319b5SDimitry Andric             int LateStart = cycle - Dep.getLatency() +
3252d88c1a5aSDimitry Andric                             DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3253d88c1a5aSDimitry Andric             *MinLateStart = std::min(*MinLateStart, LateStart);
3254d88c1a5aSDimitry Andric           }
3255d88c1a5aSDimitry Andric         }
3256d88c1a5aSDimitry Andric         // For instruction that requires multiple iterations, make sure that
3257d88c1a5aSDimitry Andric         // the dependent instruction is not scheduled past the definition.
3258d88c1a5aSDimitry Andric         SUnit *BE = multipleIterations(I, DAG);
3259d88c1a5aSDimitry Andric         if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
3260d88c1a5aSDimitry Andric             !SU->isPred(I))
3261d88c1a5aSDimitry Andric           *MinLateStart = std::min(*MinLateStart, cycle);
3262d88c1a5aSDimitry Andric       }
32634ba319b5SDimitry Andric       for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
3264d88c1a5aSDimitry Andric         if (SU->Succs[i].getSUnit() == I) {
3265d88c1a5aSDimitry Andric           const SDep &Dep = SU->Succs[i];
3266d88c1a5aSDimitry Andric           if (!DAG->isBackedge(SU, Dep)) {
32674ba319b5SDimitry Andric             int LateStart = cycle - Dep.getLatency() +
3268d88c1a5aSDimitry Andric                             DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3269d88c1a5aSDimitry Andric             *MinLateStart = std::min(*MinLateStart, LateStart);
32704ba319b5SDimitry Andric             if (DAG->isLoopCarriedDep(SU, Dep)) {
3271d88c1a5aSDimitry Andric               int Start = latestCycleInChain(Dep) + 1 - II;
3272d88c1a5aSDimitry Andric               *MaxStart = std::max(*MaxStart, Start);
3273d88c1a5aSDimitry Andric             }
3274d88c1a5aSDimitry Andric           } else {
32754ba319b5SDimitry Andric             int EarlyStart = cycle + Dep.getLatency() -
3276d88c1a5aSDimitry Andric                              DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3277d88c1a5aSDimitry Andric             *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3278d88c1a5aSDimitry Andric           }
3279d88c1a5aSDimitry Andric         }
3280d88c1a5aSDimitry Andric       }
3281d88c1a5aSDimitry Andric     }
3282d88c1a5aSDimitry Andric   }
32834ba319b5SDimitry Andric }
3284d88c1a5aSDimitry Andric 
3285d88c1a5aSDimitry Andric /// Order the instructions within a cycle so that the definitions occur
3286d88c1a5aSDimitry Andric /// before the uses. Returns true if the instruction is added to the start
3287d88c1a5aSDimitry Andric /// of the list, or false if added to the end.
orderDependence(SwingSchedulerDAG * SSD,SUnit * SU,std::deque<SUnit * > & Insts)32884ba319b5SDimitry Andric void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
3289d88c1a5aSDimitry Andric                                  std::deque<SUnit *> &Insts) {
3290d88c1a5aSDimitry Andric   MachineInstr *MI = SU->getInstr();
3291d88c1a5aSDimitry Andric   bool OrderBeforeUse = false;
3292d88c1a5aSDimitry Andric   bool OrderAfterDef = false;
3293d88c1a5aSDimitry Andric   bool OrderBeforeDef = false;
3294d88c1a5aSDimitry Andric   unsigned MoveDef = 0;
3295d88c1a5aSDimitry Andric   unsigned MoveUse = 0;
3296d88c1a5aSDimitry Andric   int StageInst1 = stageScheduled(SU);
3297d88c1a5aSDimitry Andric 
3298d88c1a5aSDimitry Andric   unsigned Pos = 0;
3299d88c1a5aSDimitry Andric   for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
3300d88c1a5aSDimitry Andric        ++I, ++Pos) {
3301d88c1a5aSDimitry Andric     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3302d88c1a5aSDimitry Andric       MachineOperand &MO = MI->getOperand(i);
3303d88c1a5aSDimitry Andric       if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3304d88c1a5aSDimitry Andric         continue;
33054ba319b5SDimitry Andric 
3306d88c1a5aSDimitry Andric       unsigned Reg = MO.getReg();
3307d88c1a5aSDimitry Andric       unsigned BasePos, OffsetPos;
3308d88c1a5aSDimitry Andric       if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
3309d88c1a5aSDimitry Andric         if (MI->getOperand(BasePos).getReg() == Reg)
3310d88c1a5aSDimitry Andric           if (unsigned NewReg = SSD->getInstrBaseReg(SU))
3311d88c1a5aSDimitry Andric             Reg = NewReg;
3312d88c1a5aSDimitry Andric       bool Reads, Writes;
3313d88c1a5aSDimitry Andric       std::tie(Reads, Writes) =
3314d88c1a5aSDimitry Andric           (*I)->getInstr()->readsWritesVirtualRegister(Reg);
3315d88c1a5aSDimitry Andric       if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
3316d88c1a5aSDimitry Andric         OrderBeforeUse = true;
33174ba319b5SDimitry Andric         if (MoveUse == 0)
3318d88c1a5aSDimitry Andric           MoveUse = Pos;
3319d88c1a5aSDimitry Andric       } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
3320d88c1a5aSDimitry Andric         // Add the instruction after the scheduled instruction.
3321d88c1a5aSDimitry Andric         OrderAfterDef = true;
3322d88c1a5aSDimitry Andric         MoveDef = Pos;
3323d88c1a5aSDimitry Andric       } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
3324d88c1a5aSDimitry Andric         if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
3325d88c1a5aSDimitry Andric           OrderBeforeUse = true;
33264ba319b5SDimitry Andric           if (MoveUse == 0)
3327d88c1a5aSDimitry Andric             MoveUse = Pos;
3328d88c1a5aSDimitry Andric         } else {
3329d88c1a5aSDimitry Andric           OrderAfterDef = true;
3330d88c1a5aSDimitry Andric           MoveDef = Pos;
3331d88c1a5aSDimitry Andric         }
3332d88c1a5aSDimitry Andric       } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
3333d88c1a5aSDimitry Andric         OrderBeforeUse = true;
33344ba319b5SDimitry Andric         if (MoveUse == 0)
3335d88c1a5aSDimitry Andric           MoveUse = Pos;
3336d88c1a5aSDimitry Andric         if (MoveUse != 0) {
3337d88c1a5aSDimitry Andric           OrderAfterDef = true;
3338d88c1a5aSDimitry Andric           MoveDef = Pos - 1;
3339d88c1a5aSDimitry Andric         }
3340d88c1a5aSDimitry Andric       } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
3341d88c1a5aSDimitry Andric         // Add the instruction before the scheduled instruction.
3342d88c1a5aSDimitry Andric         OrderBeforeUse = true;
33434ba319b5SDimitry Andric         if (MoveUse == 0)
3344d88c1a5aSDimitry Andric           MoveUse = Pos;
3345d88c1a5aSDimitry Andric       } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
3346d88c1a5aSDimitry Andric                  isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
33474ba319b5SDimitry Andric         if (MoveUse == 0) {
3348d88c1a5aSDimitry Andric           OrderBeforeDef = true;
3349d88c1a5aSDimitry Andric           MoveUse = Pos;
3350d88c1a5aSDimitry Andric         }
3351d88c1a5aSDimitry Andric       }
33524ba319b5SDimitry Andric     }
3353d88c1a5aSDimitry Andric     // Check for order dependences between instructions. Make sure the source
3354d88c1a5aSDimitry Andric     // is ordered before the destination.
33554ba319b5SDimitry Andric     for (auto &S : SU->Succs) {
33564ba319b5SDimitry Andric       if (S.getSUnit() != *I)
33574ba319b5SDimitry Andric         continue;
33584ba319b5SDimitry Andric       if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
3359d88c1a5aSDimitry Andric         OrderBeforeUse = true;
33604ba319b5SDimitry Andric         if (Pos < MoveUse)
3361d88c1a5aSDimitry Andric           MoveUse = Pos;
3362d88c1a5aSDimitry Andric       }
3363d88c1a5aSDimitry Andric     }
33644ba319b5SDimitry Andric     for (auto &P : SU->Preds) {
33654ba319b5SDimitry Andric       if (P.getSUnit() != *I)
33664ba319b5SDimitry Andric         continue;
33674ba319b5SDimitry Andric       if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
3368d88c1a5aSDimitry Andric         OrderAfterDef = true;
3369d88c1a5aSDimitry Andric         MoveDef = Pos;
3370d88c1a5aSDimitry Andric       }
3371d88c1a5aSDimitry Andric     }
3372d88c1a5aSDimitry Andric   }
3373d88c1a5aSDimitry Andric 
3374d88c1a5aSDimitry Andric   // A circular dependence.
3375d88c1a5aSDimitry Andric   if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
3376d88c1a5aSDimitry Andric     OrderBeforeUse = false;
3377d88c1a5aSDimitry Andric 
3378d88c1a5aSDimitry Andric   // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
3379d88c1a5aSDimitry Andric   // to a loop-carried dependence.
3380d88c1a5aSDimitry Andric   if (OrderBeforeDef)
3381d88c1a5aSDimitry Andric     OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
3382d88c1a5aSDimitry Andric 
3383d88c1a5aSDimitry Andric   // The uncommon case when the instruction order needs to be updated because
3384d88c1a5aSDimitry Andric   // there is both a use and def.
3385d88c1a5aSDimitry Andric   if (OrderBeforeUse && OrderAfterDef) {
3386d88c1a5aSDimitry Andric     SUnit *UseSU = Insts.at(MoveUse);
3387d88c1a5aSDimitry Andric     SUnit *DefSU = Insts.at(MoveDef);
3388d88c1a5aSDimitry Andric     if (MoveUse > MoveDef) {
3389d88c1a5aSDimitry Andric       Insts.erase(Insts.begin() + MoveUse);
3390d88c1a5aSDimitry Andric       Insts.erase(Insts.begin() + MoveDef);
3391d88c1a5aSDimitry Andric     } else {
3392d88c1a5aSDimitry Andric       Insts.erase(Insts.begin() + MoveDef);
3393d88c1a5aSDimitry Andric       Insts.erase(Insts.begin() + MoveUse);
3394d88c1a5aSDimitry Andric     }
33954ba319b5SDimitry Andric     orderDependence(SSD, UseSU, Insts);
33964ba319b5SDimitry Andric     orderDependence(SSD, SU, Insts);
3397d88c1a5aSDimitry Andric     orderDependence(SSD, DefSU, Insts);
33984ba319b5SDimitry Andric     return;
3399d88c1a5aSDimitry Andric   }
3400d88c1a5aSDimitry Andric   // Put the new instruction first if there is a use in the list. Otherwise,
3401d88c1a5aSDimitry Andric   // put it at the end of the list.
3402d88c1a5aSDimitry Andric   if (OrderBeforeUse)
3403d88c1a5aSDimitry Andric     Insts.push_front(SU);
3404d88c1a5aSDimitry Andric   else
3405d88c1a5aSDimitry Andric     Insts.push_back(SU);
3406d88c1a5aSDimitry Andric }
3407d88c1a5aSDimitry Andric 
3408d88c1a5aSDimitry Andric /// Return true if the scheduled Phi has a loop carried operand.
isLoopCarried(SwingSchedulerDAG * SSD,MachineInstr & Phi)3409d88c1a5aSDimitry Andric bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
3410d88c1a5aSDimitry Andric   if (!Phi.isPHI())
3411d88c1a5aSDimitry Andric     return false;
34124ba319b5SDimitry Andric   assert(Phi.isPHI() && "Expecting a Phi.");
3413d88c1a5aSDimitry Andric   SUnit *DefSU = SSD->getSUnit(&Phi);
3414d88c1a5aSDimitry Andric   unsigned DefCycle = cycleScheduled(DefSU);
3415d88c1a5aSDimitry Andric   int DefStage = stageScheduled(DefSU);
3416d88c1a5aSDimitry Andric 
3417d88c1a5aSDimitry Andric   unsigned InitVal = 0;
3418d88c1a5aSDimitry Andric   unsigned LoopVal = 0;
3419d88c1a5aSDimitry Andric   getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
3420d88c1a5aSDimitry Andric   SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
3421d88c1a5aSDimitry Andric   if (!UseSU)
3422d88c1a5aSDimitry Andric     return true;
3423d88c1a5aSDimitry Andric   if (UseSU->getInstr()->isPHI())
3424d88c1a5aSDimitry Andric     return true;
3425d88c1a5aSDimitry Andric   unsigned LoopCycle = cycleScheduled(UseSU);
3426d88c1a5aSDimitry Andric   int LoopStage = stageScheduled(UseSU);
3427d88c1a5aSDimitry Andric   return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
3428d88c1a5aSDimitry Andric }
3429d88c1a5aSDimitry Andric 
3430d88c1a5aSDimitry Andric /// Return true if the instruction is a definition that is loop carried
3431d88c1a5aSDimitry Andric /// and defines the use on the next iteration.
3432d88c1a5aSDimitry Andric ///        v1 = phi(v2, v3)
3433d88c1a5aSDimitry Andric ///  (Def) v3 = op v1
3434d88c1a5aSDimitry Andric ///  (MO)   = v1
3435d88c1a5aSDimitry Andric /// If MO appears before Def, then then v1 and v3 may get assigned to the same
3436d88c1a5aSDimitry Andric /// register.
isLoopCarriedDefOfUse(SwingSchedulerDAG * SSD,MachineInstr * Def,MachineOperand & MO)3437d88c1a5aSDimitry Andric bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
3438d88c1a5aSDimitry Andric                                        MachineInstr *Def, MachineOperand &MO) {
3439d88c1a5aSDimitry Andric   if (!MO.isReg())
3440d88c1a5aSDimitry Andric     return false;
3441d88c1a5aSDimitry Andric   if (Def->isPHI())
3442d88c1a5aSDimitry Andric     return false;
3443d88c1a5aSDimitry Andric   MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
3444d88c1a5aSDimitry Andric   if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
3445d88c1a5aSDimitry Andric     return false;
3446d88c1a5aSDimitry Andric   if (!isLoopCarried(SSD, *Phi))
3447d88c1a5aSDimitry Andric     return false;
3448d88c1a5aSDimitry Andric   unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
3449d88c1a5aSDimitry Andric   for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
3450d88c1a5aSDimitry Andric     MachineOperand &DMO = Def->getOperand(i);
3451d88c1a5aSDimitry Andric     if (!DMO.isReg() || !DMO.isDef())
3452d88c1a5aSDimitry Andric       continue;
3453d88c1a5aSDimitry Andric     if (DMO.getReg() == LoopReg)
3454d88c1a5aSDimitry Andric       return true;
3455d88c1a5aSDimitry Andric   }
3456d88c1a5aSDimitry Andric   return false;
3457d88c1a5aSDimitry Andric }
3458d88c1a5aSDimitry Andric 
3459d88c1a5aSDimitry Andric // Check if the generated schedule is valid. This function checks if
3460d88c1a5aSDimitry Andric // an instruction that uses a physical register is scheduled in a
3461d88c1a5aSDimitry Andric // different stage than the definition. The pipeliner does not handle
3462d88c1a5aSDimitry Andric // physical register values that may cross a basic block boundary.
isValidSchedule(SwingSchedulerDAG * SSD)3463d88c1a5aSDimitry Andric bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
3464d88c1a5aSDimitry Andric   for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
3465d88c1a5aSDimitry Andric     SUnit &SU = SSD->SUnits[i];
3466d88c1a5aSDimitry Andric     if (!SU.hasPhysRegDefs)
3467d88c1a5aSDimitry Andric       continue;
3468d88c1a5aSDimitry Andric     int StageDef = stageScheduled(&SU);
3469d88c1a5aSDimitry Andric     assert(StageDef != -1 && "Instruction should have been scheduled.");
3470d88c1a5aSDimitry Andric     for (auto &SI : SU.Succs)
3471d88c1a5aSDimitry Andric       if (SI.isAssignedRegDep())
3472d88c1a5aSDimitry Andric         if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg()))
3473d88c1a5aSDimitry Andric           if (stageScheduled(SI.getSUnit()) != StageDef)
3474d88c1a5aSDimitry Andric             return false;
3475d88c1a5aSDimitry Andric   }
3476d88c1a5aSDimitry Andric   return true;
3477d88c1a5aSDimitry Andric }
3478d88c1a5aSDimitry Andric 
34794ba319b5SDimitry Andric /// A property of the node order in swing-modulo-scheduling is
34804ba319b5SDimitry Andric /// that for nodes outside circuits the following holds:
34814ba319b5SDimitry Andric /// none of them is scheduled after both a successor and a
34824ba319b5SDimitry Andric /// predecessor.
34834ba319b5SDimitry Andric /// The method below checks whether the property is met.
34844ba319b5SDimitry Andric /// If not, debug information is printed and statistics information updated.
34854ba319b5SDimitry Andric /// Note that we do not use an assert statement.
34864ba319b5SDimitry Andric /// The reason is that although an invalid node oder may prevent
34874ba319b5SDimitry Andric /// the pipeliner from finding a pipelined schedule for arbitrary II,
34884ba319b5SDimitry Andric /// it does not lead to the generation of incorrect code.
checkValidNodeOrder(const NodeSetType & Circuits) const34894ba319b5SDimitry Andric void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
34904ba319b5SDimitry Andric 
34914ba319b5SDimitry Andric   // a sorted vector that maps each SUnit to its index in the NodeOrder
34924ba319b5SDimitry Andric   typedef std::pair<SUnit *, unsigned> UnitIndex;
34934ba319b5SDimitry Andric   std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
34944ba319b5SDimitry Andric 
34954ba319b5SDimitry Andric   for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
34964ba319b5SDimitry Andric     Indices.push_back(std::make_pair(NodeOrder[i], i));
34974ba319b5SDimitry Andric 
34984ba319b5SDimitry Andric   auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
34994ba319b5SDimitry Andric     return std::get<0>(i1) < std::get<0>(i2);
35004ba319b5SDimitry Andric   };
35014ba319b5SDimitry Andric 
35024ba319b5SDimitry Andric   // sort, so that we can perform a binary search
3503*b5893f02SDimitry Andric   llvm::sort(Indices, CompareKey);
35044ba319b5SDimitry Andric 
35054ba319b5SDimitry Andric   bool Valid = true;
35064ba319b5SDimitry Andric   (void)Valid;
35074ba319b5SDimitry Andric   // for each SUnit in the NodeOrder, check whether
35084ba319b5SDimitry Andric   // it appears after both a successor and a predecessor
35094ba319b5SDimitry Andric   // of the SUnit. If this is the case, and the SUnit
35104ba319b5SDimitry Andric   // is not part of circuit, then the NodeOrder is not
35114ba319b5SDimitry Andric   // valid.
35124ba319b5SDimitry Andric   for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
35134ba319b5SDimitry Andric     SUnit *SU = NodeOrder[i];
35144ba319b5SDimitry Andric     unsigned Index = i;
35154ba319b5SDimitry Andric 
35164ba319b5SDimitry Andric     bool PredBefore = false;
35174ba319b5SDimitry Andric     bool SuccBefore = false;
35184ba319b5SDimitry Andric 
35194ba319b5SDimitry Andric     SUnit *Succ;
35204ba319b5SDimitry Andric     SUnit *Pred;
35214ba319b5SDimitry Andric     (void)Succ;
35224ba319b5SDimitry Andric     (void)Pred;
35234ba319b5SDimitry Andric 
35244ba319b5SDimitry Andric     for (SDep &PredEdge : SU->Preds) {
35254ba319b5SDimitry Andric       SUnit *PredSU = PredEdge.getSUnit();
35264ba319b5SDimitry Andric       unsigned PredIndex =
35274ba319b5SDimitry Andric           std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(),
35284ba319b5SDimitry Andric                                         std::make_pair(PredSU, 0), CompareKey));
35294ba319b5SDimitry Andric       if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
35304ba319b5SDimitry Andric         PredBefore = true;
35314ba319b5SDimitry Andric         Pred = PredSU;
35324ba319b5SDimitry Andric         break;
35334ba319b5SDimitry Andric       }
35344ba319b5SDimitry Andric     }
35354ba319b5SDimitry Andric 
35364ba319b5SDimitry Andric     for (SDep &SuccEdge : SU->Succs) {
35374ba319b5SDimitry Andric       SUnit *SuccSU = SuccEdge.getSUnit();
35384ba319b5SDimitry Andric       unsigned SuccIndex =
35394ba319b5SDimitry Andric           std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(),
35404ba319b5SDimitry Andric                                         std::make_pair(SuccSU, 0), CompareKey));
35414ba319b5SDimitry Andric       if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
35424ba319b5SDimitry Andric         SuccBefore = true;
35434ba319b5SDimitry Andric         Succ = SuccSU;
35444ba319b5SDimitry Andric         break;
35454ba319b5SDimitry Andric       }
35464ba319b5SDimitry Andric     }
35474ba319b5SDimitry Andric 
35484ba319b5SDimitry Andric     if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
35494ba319b5SDimitry Andric       // instructions in circuits are allowed to be scheduled
35504ba319b5SDimitry Andric       // after both a successor and predecessor.
35514ba319b5SDimitry Andric       bool InCircuit = std::any_of(
35524ba319b5SDimitry Andric           Circuits.begin(), Circuits.end(),
35534ba319b5SDimitry Andric           [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
35544ba319b5SDimitry Andric       if (InCircuit)
35554ba319b5SDimitry Andric         LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
35564ba319b5SDimitry Andric       else {
35574ba319b5SDimitry Andric         Valid = false;
35584ba319b5SDimitry Andric         NumNodeOrderIssues++;
35594ba319b5SDimitry Andric         LLVM_DEBUG(dbgs() << "Predecessor ";);
35604ba319b5SDimitry Andric       }
35614ba319b5SDimitry Andric       LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
35624ba319b5SDimitry Andric                         << " are scheduled before node " << SU->NodeNum
35634ba319b5SDimitry Andric                         << "\n";);
35644ba319b5SDimitry Andric     }
35654ba319b5SDimitry Andric   }
35664ba319b5SDimitry Andric 
35674ba319b5SDimitry Andric   LLVM_DEBUG({
35684ba319b5SDimitry Andric     if (!Valid)
35694ba319b5SDimitry Andric       dbgs() << "Invalid node order found!\n";
35704ba319b5SDimitry Andric   });
35714ba319b5SDimitry Andric }
35724ba319b5SDimitry Andric 
35732cab237bSDimitry Andric /// Attempt to fix the degenerate cases when the instruction serialization
35742cab237bSDimitry Andric /// causes the register lifetimes to overlap. For example,
35752cab237bSDimitry Andric ///   p' = store_pi(p, b)
35762cab237bSDimitry Andric ///      = load p, offset
35772cab237bSDimitry Andric /// In this case p and p' overlap, which means that two registers are needed.
35782cab237bSDimitry Andric /// Instead, this function changes the load to use p' and updates the offset.
fixupRegisterOverlaps(std::deque<SUnit * > & Instrs)35792cab237bSDimitry Andric void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
35802cab237bSDimitry Andric   unsigned OverlapReg = 0;
35812cab237bSDimitry Andric   unsigned NewBaseReg = 0;
35822cab237bSDimitry Andric   for (SUnit *SU : Instrs) {
35832cab237bSDimitry Andric     MachineInstr *MI = SU->getInstr();
35842cab237bSDimitry Andric     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
35852cab237bSDimitry Andric       const MachineOperand &MO = MI->getOperand(i);
35862cab237bSDimitry Andric       // Look for an instruction that uses p. The instruction occurs in the
35872cab237bSDimitry Andric       // same cycle but occurs later in the serialized order.
35882cab237bSDimitry Andric       if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
35892cab237bSDimitry Andric         // Check that the instruction appears in the InstrChanges structure,
35902cab237bSDimitry Andric         // which contains instructions that can have the offset updated.
35912cab237bSDimitry Andric         DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
35922cab237bSDimitry Andric           InstrChanges.find(SU);
35932cab237bSDimitry Andric         if (It != InstrChanges.end()) {
35942cab237bSDimitry Andric           unsigned BasePos, OffsetPos;
35952cab237bSDimitry Andric           // Update the base register and adjust the offset.
35962cab237bSDimitry Andric           if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
35972cab237bSDimitry Andric             MachineInstr *NewMI = MF.CloneMachineInstr(MI);
35982cab237bSDimitry Andric             NewMI->getOperand(BasePos).setReg(NewBaseReg);
35992cab237bSDimitry Andric             int64_t NewOffset =
36002cab237bSDimitry Andric                 MI->getOperand(OffsetPos).getImm() - It->second.second;
36012cab237bSDimitry Andric             NewMI->getOperand(OffsetPos).setImm(NewOffset);
36022cab237bSDimitry Andric             SU->setInstr(NewMI);
36032cab237bSDimitry Andric             MISUnitMap[NewMI] = SU;
36042cab237bSDimitry Andric             NewMIs.insert(NewMI);
36052cab237bSDimitry Andric           }
36062cab237bSDimitry Andric         }
36072cab237bSDimitry Andric         OverlapReg = 0;
36082cab237bSDimitry Andric         NewBaseReg = 0;
36092cab237bSDimitry Andric         break;
36102cab237bSDimitry Andric       }
36112cab237bSDimitry Andric       // Look for an instruction of the form p' = op(p), which uses and defines
36122cab237bSDimitry Andric       // two virtual registers that get allocated to the same physical register.
36132cab237bSDimitry Andric       unsigned TiedUseIdx = 0;
36142cab237bSDimitry Andric       if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
36152cab237bSDimitry Andric         // OverlapReg is p in the example above.
36162cab237bSDimitry Andric         OverlapReg = MI->getOperand(TiedUseIdx).getReg();
36172cab237bSDimitry Andric         // NewBaseReg is p' in the example above.
36182cab237bSDimitry Andric         NewBaseReg = MI->getOperand(i).getReg();
36192cab237bSDimitry Andric         break;
36202cab237bSDimitry Andric       }
36212cab237bSDimitry Andric     }
36222cab237bSDimitry Andric   }
36232cab237bSDimitry Andric }
36242cab237bSDimitry Andric 
3625d88c1a5aSDimitry Andric /// After the schedule has been formed, call this function to combine
3626d88c1a5aSDimitry Andric /// the instructions from the different stages/cycles.  That is, this
3627d88c1a5aSDimitry Andric /// function creates a schedule that represents a single iteration.
finalizeSchedule(SwingSchedulerDAG * SSD)3628d88c1a5aSDimitry Andric void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
3629d88c1a5aSDimitry Andric   // Move all instructions to the first stage from later stages.
3630d88c1a5aSDimitry Andric   for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3631d88c1a5aSDimitry Andric     for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
3632d88c1a5aSDimitry Andric          ++stage) {
3633d88c1a5aSDimitry Andric       std::deque<SUnit *> &cycleInstrs =
3634d88c1a5aSDimitry Andric           ScheduledInstrs[cycle + (stage * InitiationInterval)];
3635d88c1a5aSDimitry Andric       for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
3636d88c1a5aSDimitry Andric                                                  E = cycleInstrs.rend();
3637d88c1a5aSDimitry Andric            I != E; ++I)
3638d88c1a5aSDimitry Andric         ScheduledInstrs[cycle].push_front(*I);
3639d88c1a5aSDimitry Andric     }
3640d88c1a5aSDimitry Andric   }
3641d88c1a5aSDimitry Andric   // Iterate over the definitions in each instruction, and compute the
3642d88c1a5aSDimitry Andric   // stage difference for each use.  Keep the maximum value.
3643d88c1a5aSDimitry Andric   for (auto &I : InstrToCycle) {
3644d88c1a5aSDimitry Andric     int DefStage = stageScheduled(I.first);
3645d88c1a5aSDimitry Andric     MachineInstr *MI = I.first->getInstr();
3646d88c1a5aSDimitry Andric     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3647d88c1a5aSDimitry Andric       MachineOperand &Op = MI->getOperand(i);
3648d88c1a5aSDimitry Andric       if (!Op.isReg() || !Op.isDef())
3649d88c1a5aSDimitry Andric         continue;
3650d88c1a5aSDimitry Andric 
3651d88c1a5aSDimitry Andric       unsigned Reg = Op.getReg();
3652d88c1a5aSDimitry Andric       unsigned MaxDiff = 0;
3653d88c1a5aSDimitry Andric       bool PhiIsSwapped = false;
3654d88c1a5aSDimitry Andric       for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
3655d88c1a5aSDimitry Andric                                              EI = MRI.use_end();
3656d88c1a5aSDimitry Andric            UI != EI; ++UI) {
3657d88c1a5aSDimitry Andric         MachineOperand &UseOp = *UI;
3658d88c1a5aSDimitry Andric         MachineInstr *UseMI = UseOp.getParent();
3659d88c1a5aSDimitry Andric         SUnit *SUnitUse = SSD->getSUnit(UseMI);
3660d88c1a5aSDimitry Andric         int UseStage = stageScheduled(SUnitUse);
3661d88c1a5aSDimitry Andric         unsigned Diff = 0;
3662d88c1a5aSDimitry Andric         if (UseStage != -1 && UseStage >= DefStage)
3663d88c1a5aSDimitry Andric           Diff = UseStage - DefStage;
3664d88c1a5aSDimitry Andric         if (MI->isPHI()) {
3665d88c1a5aSDimitry Andric           if (isLoopCarried(SSD, *MI))
3666d88c1a5aSDimitry Andric             ++Diff;
3667d88c1a5aSDimitry Andric           else
3668d88c1a5aSDimitry Andric             PhiIsSwapped = true;
3669d88c1a5aSDimitry Andric         }
3670d88c1a5aSDimitry Andric         MaxDiff = std::max(Diff, MaxDiff);
3671d88c1a5aSDimitry Andric       }
3672d88c1a5aSDimitry Andric       RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
3673d88c1a5aSDimitry Andric     }
3674d88c1a5aSDimitry Andric   }
3675d88c1a5aSDimitry Andric 
3676d88c1a5aSDimitry Andric   // Erase all the elements in the later stages. Only one iteration should
3677d88c1a5aSDimitry Andric   // remain in the scheduled list, and it contains all the instructions.
3678d88c1a5aSDimitry Andric   for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
3679d88c1a5aSDimitry Andric     ScheduledInstrs.erase(cycle);
3680d88c1a5aSDimitry Andric 
3681d88c1a5aSDimitry Andric   // Change the registers in instruction as specified in the InstrChanges
3682d88c1a5aSDimitry Andric   // map. We need to use the new registers to create the correct order.
3683d88c1a5aSDimitry Andric   for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
3684d88c1a5aSDimitry Andric     SUnit *SU = &SSD->SUnits[i];
36852cab237bSDimitry Andric     SSD->applyInstrChange(SU->getInstr(), *this);
3686d88c1a5aSDimitry Andric   }
3687d88c1a5aSDimitry Andric 
3688d88c1a5aSDimitry Andric   // Reorder the instructions in each cycle to fix and improve the
3689d88c1a5aSDimitry Andric   // generated code.
3690d88c1a5aSDimitry Andric   for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
3691d88c1a5aSDimitry Andric     std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
36924ba319b5SDimitry Andric     std::deque<SUnit *> newOrderPhi;
3693d88c1a5aSDimitry Andric     for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
3694d88c1a5aSDimitry Andric       SUnit *SU = cycleInstrs[i];
36954ba319b5SDimitry Andric       if (SU->getInstr()->isPHI())
36964ba319b5SDimitry Andric         newOrderPhi.push_back(SU);
3697d88c1a5aSDimitry Andric     }
3698d88c1a5aSDimitry Andric     std::deque<SUnit *> newOrderI;
3699d88c1a5aSDimitry Andric     for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
3700d88c1a5aSDimitry Andric       SUnit *SU = cycleInstrs[i];
37014ba319b5SDimitry Andric       if (!SU->getInstr()->isPHI())
3702d88c1a5aSDimitry Andric         orderDependence(SSD, SU, newOrderI);
3703d88c1a5aSDimitry Andric     }
3704d88c1a5aSDimitry Andric     // Replace the old order with the new order.
37054ba319b5SDimitry Andric     cycleInstrs.swap(newOrderPhi);
3706d88c1a5aSDimitry Andric     cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
37072cab237bSDimitry Andric     SSD->fixupRegisterOverlaps(cycleInstrs);
3708d88c1a5aSDimitry Andric   }
3709d88c1a5aSDimitry Andric 
37104ba319b5SDimitry Andric   LLVM_DEBUG(dump(););
3711d88c1a5aSDimitry Andric }
3712d88c1a5aSDimitry Andric 
print(raw_ostream & os) const3713*b5893f02SDimitry Andric void NodeSet::print(raw_ostream &os) const {
3714*b5893f02SDimitry Andric   os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
3715*b5893f02SDimitry Andric      << " depth " << MaxDepth << " col " << Colocate << "\n";
3716*b5893f02SDimitry Andric   for (const auto &I : Nodes)
3717*b5893f02SDimitry Andric     os << "   SU(" << I->NodeNum << ") " << *(I->getInstr());
3718*b5893f02SDimitry Andric   os << "\n";
3719*b5893f02SDimitry Andric }
3720*b5893f02SDimitry Andric 
37212cab237bSDimitry Andric #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3722d88c1a5aSDimitry Andric /// Print the schedule information to the given output.
print(raw_ostream & os) const3723d88c1a5aSDimitry Andric void SMSchedule::print(raw_ostream &os) const {
3724d88c1a5aSDimitry Andric   // Iterate over each cycle.
3725d88c1a5aSDimitry Andric   for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3726d88c1a5aSDimitry Andric     // Iterate over each instruction in the cycle.
3727d88c1a5aSDimitry Andric     const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
3728d88c1a5aSDimitry Andric     for (SUnit *CI : cycleInstrs->second) {
3729d88c1a5aSDimitry Andric       os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
3730d88c1a5aSDimitry Andric       os << "(" << CI->NodeNum << ") ";
3731d88c1a5aSDimitry Andric       CI->getInstr()->print(os);
3732d88c1a5aSDimitry Andric       os << "\n";
3733d88c1a5aSDimitry Andric     }
3734d88c1a5aSDimitry Andric   }
3735d88c1a5aSDimitry Andric }
3736d88c1a5aSDimitry Andric 
3737d88c1a5aSDimitry Andric /// Utility function used for debugging to print the schedule.
dump() const37387a7e6055SDimitry Andric LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
dump() const3739*b5893f02SDimitry Andric LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); }
3740*b5893f02SDimitry Andric 
37417a7e6055SDimitry Andric #endif
3742*b5893f02SDimitry Andric 
3743*b5893f02SDimitry Andric 
3744*b5893f02SDimitry Andric 
3745