1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// Replaces repeated sequences of instructions with function calls. 12 /// 13 /// This works by placing every instruction from every basic block in a 14 /// suffix tree, and repeatedly querying that tree for repeated sequences of 15 /// instructions. If a sequence of instructions appears often, then it ought 16 /// to be beneficial to pull out into a function. 17 /// 18 /// The MachineOutliner communicates with a given target using hooks defined in 19 /// TargetInstrInfo.h. The target supplies the outliner with information on how 20 /// a specific sequence of instructions should be outlined. This information 21 /// is used to deduce the number of instructions necessary to 22 /// 23 /// * Create an outlined function 24 /// * Call that outlined function 25 /// 26 /// Targets must implement 27 /// * getOutliningCandidateInfo 28 /// * insertOutlinerEpilogue 29 /// * insertOutlinedCall 30 /// * insertOutlinerPrologue 31 /// * isFunctionSafeToOutlineFrom 32 /// 33 /// in order to make use of the MachineOutliner. 34 /// 35 /// This was originally presented at the 2016 LLVM Developers' Meeting in the 36 /// talk "Reducing Code Size Using Outlining". For a high-level overview of 37 /// how this pass works, the talk is available on YouTube at 38 /// 39 /// https://www.youtube.com/watch?v=yorld-WSOeU 40 /// 41 /// The slides for the talk are available at 42 /// 43 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 44 /// 45 /// The talk provides an overview of how the outliner finds candidates and 46 /// ultimately outlines them. It describes how the main data structure for this 47 /// pass, the suffix tree, is queried and purged for candidates. It also gives 48 /// a simplified suffix tree construction algorithm for suffix trees based off 49 /// of the algorithm actually used here, Ukkonen's algorithm. 50 /// 51 /// For the original RFC for this pass, please see 52 /// 53 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 54 /// 55 /// For more information on the suffix tree data structure, please see 56 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 57 /// 58 //===----------------------------------------------------------------------===// 59 #include "llvm/ADT/DenseMap.h" 60 #include "llvm/ADT/Statistic.h" 61 #include "llvm/ADT/Twine.h" 62 #include "llvm/CodeGen/MachineFunction.h" 63 #include "llvm/CodeGen/MachineModuleInfo.h" 64 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 65 #include "llvm/CodeGen/Passes.h" 66 #include "llvm/CodeGen/TargetInstrInfo.h" 67 #include "llvm/CodeGen/TargetRegisterInfo.h" 68 #include "llvm/CodeGen/TargetSubtargetInfo.h" 69 #include "llvm/IR/IRBuilder.h" 70 #include "llvm/Support/Allocator.h" 71 #include "llvm/Support/Debug.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <functional> 74 #include <map> 75 #include <sstream> 76 #include <tuple> 77 #include <vector> 78 79 #define DEBUG_TYPE "machine-outliner" 80 81 using namespace llvm; 82 using namespace ore; 83 84 STATISTIC(NumOutlined, "Number of candidates outlined"); 85 STATISTIC(FunctionsCreated, "Number of functions created"); 86 87 namespace { 88 89 /// \brief An individual sequence of instructions to be replaced with a call to 90 /// an outlined function. 91 struct Candidate { 92 private: 93 /// The start index of this \p Candidate in the instruction list. 94 unsigned StartIdx; 95 96 /// The number of instructions in this \p Candidate. 97 unsigned Len; 98 99 public: 100 /// Set to false if the candidate overlapped with another candidate. 101 bool InCandidateList = true; 102 103 /// \brief The index of this \p Candidate's \p OutlinedFunction in the list of 104 /// \p OutlinedFunctions. 105 unsigned FunctionIdx; 106 107 /// Contains all target-specific information for this \p Candidate. 108 TargetInstrInfo::MachineOutlinerInfo MInfo; 109 110 /// Return the number of instructions in this Candidate. 111 unsigned getLength() const { return Len; } 112 113 /// Return the start index of this candidate. 114 unsigned getStartIdx() const { return StartIdx; } 115 116 // Return the end index of this candidate. 117 unsigned getEndIdx() const { return StartIdx + Len - 1; } 118 119 /// \brief The number of instructions that would be saved by outlining every 120 /// candidate of this type. 121 /// 122 /// This is a fixed value which is not updated during the candidate pruning 123 /// process. It is only used for deciding which candidate to keep if two 124 /// candidates overlap. The true benefit is stored in the OutlinedFunction 125 /// for some given candidate. 126 unsigned Benefit = 0; 127 128 Candidate(unsigned StartIdx, unsigned Len, unsigned FunctionIdx) 129 : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {} 130 131 Candidate() {} 132 133 /// \brief Used to ensure that \p Candidates are outlined in an order that 134 /// preserves the start and end indices of other \p Candidates. 135 bool operator<(const Candidate &RHS) const { 136 return getStartIdx() > RHS.getStartIdx(); 137 } 138 }; 139 140 /// \brief The information necessary to create an outlined function for some 141 /// class of candidate. 142 struct OutlinedFunction { 143 144 private: 145 /// The number of candidates for this \p OutlinedFunction. 146 unsigned OccurrenceCount = 0; 147 148 public: 149 std::vector<std::shared_ptr<Candidate>> Candidates; 150 151 /// The actual outlined function created. 152 /// This is initialized after we go through and create the actual function. 153 MachineFunction *MF = nullptr; 154 155 /// A number assigned to this function which appears at the end of its name. 156 unsigned Name; 157 158 /// \brief The sequence of integers corresponding to the instructions in this 159 /// function. 160 std::vector<unsigned> Sequence; 161 162 /// Contains all target-specific information for this \p OutlinedFunction. 163 TargetInstrInfo::MachineOutlinerInfo MInfo; 164 165 /// Return the number of candidates for this \p OutlinedFunction. 166 unsigned getOccurrenceCount() { return OccurrenceCount; } 167 168 /// Decrement the occurrence count of this OutlinedFunction and return the 169 /// new count. 170 unsigned decrement() { 171 assert(OccurrenceCount > 0 && "Can't decrement an empty function!"); 172 OccurrenceCount--; 173 return getOccurrenceCount(); 174 } 175 176 /// \brief Return the number of instructions it would take to outline this 177 /// function. 178 unsigned getOutliningCost() { 179 return (OccurrenceCount * MInfo.CallOverhead) + Sequence.size() + 180 MInfo.FrameOverhead; 181 } 182 183 /// \brief Return the number of instructions that would be saved by outlining 184 /// this function. 185 unsigned getBenefit() { 186 unsigned NotOutlinedCost = OccurrenceCount * Sequence.size(); 187 unsigned OutlinedCost = getOutliningCost(); 188 return (NotOutlinedCost < OutlinedCost) ? 0 189 : NotOutlinedCost - OutlinedCost; 190 } 191 192 OutlinedFunction(unsigned Name, unsigned OccurrenceCount, 193 const std::vector<unsigned> &Sequence, 194 TargetInstrInfo::MachineOutlinerInfo &MInfo) 195 : OccurrenceCount(OccurrenceCount), Name(Name), Sequence(Sequence), 196 MInfo(MInfo) {} 197 }; 198 199 /// Represents an undefined index in the suffix tree. 200 const unsigned EmptyIdx = -1; 201 202 /// A node in a suffix tree which represents a substring or suffix. 203 /// 204 /// Each node has either no children or at least two children, with the root 205 /// being a exception in the empty tree. 206 /// 207 /// Children are represented as a map between unsigned integers and nodes. If 208 /// a node N has a child M on unsigned integer k, then the mapping represented 209 /// by N is a proper prefix of the mapping represented by M. Note that this, 210 /// although similar to a trie is somewhat different: each node stores a full 211 /// substring of the full mapping rather than a single character state. 212 /// 213 /// Each internal node contains a pointer to the internal node representing 214 /// the same string, but with the first character chopped off. This is stored 215 /// in \p Link. Each leaf node stores the start index of its respective 216 /// suffix in \p SuffixIdx. 217 struct SuffixTreeNode { 218 219 /// The children of this node. 220 /// 221 /// A child existing on an unsigned integer implies that from the mapping 222 /// represented by the current node, there is a way to reach another 223 /// mapping by tacking that character on the end of the current string. 224 DenseMap<unsigned, SuffixTreeNode *> Children; 225 226 /// A flag set to false if the node has been pruned from the tree. 227 bool IsInTree = true; 228 229 /// The start index of this node's substring in the main string. 230 unsigned StartIdx = EmptyIdx; 231 232 /// The end index of this node's substring in the main string. 233 /// 234 /// Every leaf node must have its \p EndIdx incremented at the end of every 235 /// step in the construction algorithm. To avoid having to update O(N) 236 /// nodes individually at the end of every step, the end index is stored 237 /// as a pointer. 238 unsigned *EndIdx = nullptr; 239 240 /// For leaves, the start index of the suffix represented by this node. 241 /// 242 /// For all other nodes, this is ignored. 243 unsigned SuffixIdx = EmptyIdx; 244 245 /// \brief For internal nodes, a pointer to the internal node representing 246 /// the same sequence with the first character chopped off. 247 /// 248 /// This acts as a shortcut in Ukkonen's algorithm. One of the things that 249 /// Ukkonen's algorithm does to achieve linear-time construction is 250 /// keep track of which node the next insert should be at. This makes each 251 /// insert O(1), and there are a total of O(N) inserts. The suffix link 252 /// helps with inserting children of internal nodes. 253 /// 254 /// Say we add a child to an internal node with associated mapping S. The 255 /// next insertion must be at the node representing S - its first character. 256 /// This is given by the way that we iteratively build the tree in Ukkonen's 257 /// algorithm. The main idea is to look at the suffixes of each prefix in the 258 /// string, starting with the longest suffix of the prefix, and ending with 259 /// the shortest. Therefore, if we keep pointers between such nodes, we can 260 /// move to the next insertion point in O(1) time. If we don't, then we'd 261 /// have to query from the root, which takes O(N) time. This would make the 262 /// construction algorithm O(N^2) rather than O(N). 263 SuffixTreeNode *Link = nullptr; 264 265 /// The parent of this node. Every node except for the root has a parent. 266 SuffixTreeNode *Parent = nullptr; 267 268 /// The number of times this node's string appears in the tree. 269 /// 270 /// This is equal to the number of leaf children of the string. It represents 271 /// the number of suffixes that the node's string is a prefix of. 272 unsigned OccurrenceCount = 0; 273 274 /// The length of the string formed by concatenating the edge labels from the 275 /// root to this node. 276 unsigned ConcatLen = 0; 277 278 /// Returns true if this node is a leaf. 279 bool isLeaf() const { return SuffixIdx != EmptyIdx; } 280 281 /// Returns true if this node is the root of its owning \p SuffixTree. 282 bool isRoot() const { return StartIdx == EmptyIdx; } 283 284 /// Return the number of elements in the substring associated with this node. 285 size_t size() const { 286 287 // Is it the root? If so, it's the empty string so return 0. 288 if (isRoot()) 289 return 0; 290 291 assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 292 293 // Size = the number of elements in the string. 294 // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 295 return *EndIdx - StartIdx + 1; 296 } 297 298 SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link, 299 SuffixTreeNode *Parent) 300 : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {} 301 302 SuffixTreeNode() {} 303 }; 304 305 /// A data structure for fast substring queries. 306 /// 307 /// Suffix trees represent the suffixes of their input strings in their leaves. 308 /// A suffix tree is a type of compressed trie structure where each node 309 /// represents an entire substring rather than a single character. Each leaf 310 /// of the tree is a suffix. 311 /// 312 /// A suffix tree can be seen as a type of state machine where each state is a 313 /// substring of the full string. The tree is structured so that, for a string 314 /// of length N, there are exactly N leaves in the tree. This structure allows 315 /// us to quickly find repeated substrings of the input string. 316 /// 317 /// In this implementation, a "string" is a vector of unsigned integers. 318 /// These integers may result from hashing some data type. A suffix tree can 319 /// contain 1 or many strings, which can then be queried as one large string. 320 /// 321 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 322 /// suffix tree construction. Ukkonen's algorithm is explained in more detail 323 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 324 /// paper is available at 325 /// 326 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 327 class SuffixTree { 328 public: 329 /// Stores each leaf node in the tree. 330 /// 331 /// This is used for finding outlining candidates. 332 std::vector<SuffixTreeNode *> LeafVector; 333 334 /// Each element is an integer representing an instruction in the module. 335 ArrayRef<unsigned> Str; 336 337 private: 338 /// Maintains each node in the tree. 339 SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 340 341 /// The root of the suffix tree. 342 /// 343 /// The root represents the empty string. It is maintained by the 344 /// \p NodeAllocator like every other node in the tree. 345 SuffixTreeNode *Root = nullptr; 346 347 /// Maintains the end indices of the internal nodes in the tree. 348 /// 349 /// Each internal node is guaranteed to never have its end index change 350 /// during the construction algorithm; however, leaves must be updated at 351 /// every step. Therefore, we need to store leaf end indices by reference 352 /// to avoid updating O(N) leaves at every step of construction. Thus, 353 /// every internal node must be allocated its own end index. 354 BumpPtrAllocator InternalEndIdxAllocator; 355 356 /// The end index of each leaf in the tree. 357 unsigned LeafEndIdx = -1; 358 359 /// \brief Helper struct which keeps track of the next insertion point in 360 /// Ukkonen's algorithm. 361 struct ActiveState { 362 /// The next node to insert at. 363 SuffixTreeNode *Node; 364 365 /// The index of the first character in the substring currently being added. 366 unsigned Idx = EmptyIdx; 367 368 /// The length of the substring we have to add at the current step. 369 unsigned Len = 0; 370 }; 371 372 /// \brief The point the next insertion will take place at in the 373 /// construction algorithm. 374 ActiveState Active; 375 376 /// Allocate a leaf node and add it to the tree. 377 /// 378 /// \param Parent The parent of this node. 379 /// \param StartIdx The start index of this node's associated string. 380 /// \param Edge The label on the edge leaving \p Parent to this node. 381 /// 382 /// \returns A pointer to the allocated leaf node. 383 SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx, 384 unsigned Edge) { 385 386 assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 387 388 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 389 SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent); 390 Parent.Children[Edge] = N; 391 392 return N; 393 } 394 395 /// Allocate an internal node and add it to the tree. 396 /// 397 /// \param Parent The parent of this node. Only null when allocating the root. 398 /// \param StartIdx The start index of this node's associated string. 399 /// \param EndIdx The end index of this node's associated string. 400 /// \param Edge The label on the edge leaving \p Parent to this node. 401 /// 402 /// \returns A pointer to the allocated internal node. 403 SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx, 404 unsigned EndIdx, unsigned Edge) { 405 406 assert(StartIdx <= EndIdx && "String can't start after it ends!"); 407 assert(!(!Parent && StartIdx != EmptyIdx) && 408 "Non-root internal nodes must have parents!"); 409 410 unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx); 411 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 412 SuffixTreeNode(StartIdx, E, Root, Parent); 413 if (Parent) 414 Parent->Children[Edge] = N; 415 416 return N; 417 } 418 419 /// \brief Set the suffix indices of the leaves to the start indices of their 420 /// respective suffixes. Also stores each leaf in \p LeafVector at its 421 /// respective suffix index. 422 /// 423 /// \param[in] CurrNode The node currently being visited. 424 /// \param CurrIdx The current index of the string being visited. 425 void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrIdx) { 426 427 bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); 428 429 // Store the length of the concatenation of all strings from the root to 430 // this node. 431 if (!CurrNode.isRoot()) { 432 if (CurrNode.ConcatLen == 0) 433 CurrNode.ConcatLen = CurrNode.size(); 434 435 if (CurrNode.Parent) 436 CurrNode.ConcatLen += CurrNode.Parent->ConcatLen; 437 } 438 439 // Traverse the tree depth-first. 440 for (auto &ChildPair : CurrNode.Children) { 441 assert(ChildPair.second && "Node had a null child!"); 442 setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size()); 443 } 444 445 // Is this node a leaf? 446 if (IsLeaf) { 447 // If yes, give it a suffix index and bump its parent's occurrence count. 448 CurrNode.SuffixIdx = Str.size() - CurrIdx; 449 assert(CurrNode.Parent && "CurrNode had no parent!"); 450 CurrNode.Parent->OccurrenceCount++; 451 452 // Store the leaf in the leaf vector for pruning later. 453 LeafVector[CurrNode.SuffixIdx] = &CurrNode; 454 } 455 } 456 457 /// \brief Construct the suffix tree for the prefix of the input ending at 458 /// \p EndIdx. 459 /// 460 /// Used to construct the full suffix tree iteratively. At the end of each 461 /// step, the constructed suffix tree is either a valid suffix tree, or a 462 /// suffix tree with implicit suffixes. At the end of the final step, the 463 /// suffix tree is a valid tree. 464 /// 465 /// \param EndIdx The end index of the current prefix in the main string. 466 /// \param SuffixesToAdd The number of suffixes that must be added 467 /// to complete the suffix tree at the current phase. 468 /// 469 /// \returns The number of suffixes that have not been added at the end of 470 /// this step. 471 unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) { 472 SuffixTreeNode *NeedsLink = nullptr; 473 474 while (SuffixesToAdd > 0) { 475 476 // Are we waiting to add anything other than just the last character? 477 if (Active.Len == 0) { 478 // If not, then say the active index is the end index. 479 Active.Idx = EndIdx; 480 } 481 482 assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 483 484 // The first character in the current substring we're looking at. 485 unsigned FirstChar = Str[Active.Idx]; 486 487 // Have we inserted anything starting with FirstChar at the current node? 488 if (Active.Node->Children.count(FirstChar) == 0) { 489 // If not, then we can just insert a leaf and move too the next step. 490 insertLeaf(*Active.Node, EndIdx, FirstChar); 491 492 // The active node is an internal node, and we visited it, so it must 493 // need a link if it doesn't have one. 494 if (NeedsLink) { 495 NeedsLink->Link = Active.Node; 496 NeedsLink = nullptr; 497 } 498 } else { 499 // There's a match with FirstChar, so look for the point in the tree to 500 // insert a new node. 501 SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 502 503 unsigned SubstringLen = NextNode->size(); 504 505 // Is the current suffix we're trying to insert longer than the size of 506 // the child we want to move to? 507 if (Active.Len >= SubstringLen) { 508 // If yes, then consume the characters we've seen and move to the next 509 // node. 510 Active.Idx += SubstringLen; 511 Active.Len -= SubstringLen; 512 Active.Node = NextNode; 513 continue; 514 } 515 516 // Otherwise, the suffix we're trying to insert must be contained in the 517 // next node we want to move to. 518 unsigned LastChar = Str[EndIdx]; 519 520 // Is the string we're trying to insert a substring of the next node? 521 if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 522 // If yes, then we're done for this step. Remember our insertion point 523 // and move to the next end index. At this point, we have an implicit 524 // suffix tree. 525 if (NeedsLink && !Active.Node->isRoot()) { 526 NeedsLink->Link = Active.Node; 527 NeedsLink = nullptr; 528 } 529 530 Active.Len++; 531 break; 532 } 533 534 // The string we're trying to insert isn't a substring of the next node, 535 // but matches up to a point. Split the node. 536 // 537 // For example, say we ended our search at a node n and we're trying to 538 // insert ABD. Then we'll create a new node s for AB, reduce n to just 539 // representing C, and insert a new leaf node l to represent d. This 540 // allows us to ensure that if n was a leaf, it remains a leaf. 541 // 542 // | ABC ---split---> | AB 543 // n s 544 // C / \ D 545 // n l 546 547 // The node s from the diagram 548 SuffixTreeNode *SplitNode = 549 insertInternalNode(Active.Node, NextNode->StartIdx, 550 NextNode->StartIdx + Active.Len - 1, FirstChar); 551 552 // Insert the new node representing the new substring into the tree as 553 // a child of the split node. This is the node l from the diagram. 554 insertLeaf(*SplitNode, EndIdx, LastChar); 555 556 // Make the old node a child of the split node and update its start 557 // index. This is the node n from the diagram. 558 NextNode->StartIdx += Active.Len; 559 NextNode->Parent = SplitNode; 560 SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 561 562 // SplitNode is an internal node, update the suffix link. 563 if (NeedsLink) 564 NeedsLink->Link = SplitNode; 565 566 NeedsLink = SplitNode; 567 } 568 569 // We've added something new to the tree, so there's one less suffix to 570 // add. 571 SuffixesToAdd--; 572 573 if (Active.Node->isRoot()) { 574 if (Active.Len > 0) { 575 Active.Len--; 576 Active.Idx = EndIdx - SuffixesToAdd + 1; 577 } 578 } else { 579 // Start the next phase at the next smallest suffix. 580 Active.Node = Active.Node->Link; 581 } 582 } 583 584 return SuffixesToAdd; 585 } 586 587 public: 588 /// Construct a suffix tree from a sequence of unsigned integers. 589 /// 590 /// \param Str The string to construct the suffix tree for. 591 SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 592 Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 593 Root->IsInTree = true; 594 Active.Node = Root; 595 LeafVector = std::vector<SuffixTreeNode *>(Str.size()); 596 597 // Keep track of the number of suffixes we have to add of the current 598 // prefix. 599 unsigned SuffixesToAdd = 0; 600 Active.Node = Root; 601 602 // Construct the suffix tree iteratively on each prefix of the string. 603 // PfxEndIdx is the end index of the current prefix. 604 // End is one past the last element in the string. 605 for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; 606 PfxEndIdx++) { 607 SuffixesToAdd++; 608 LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 609 SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 610 } 611 612 // Set the suffix indices of each leaf. 613 assert(Root && "Root node can't be nullptr!"); 614 setSuffixIndices(*Root, 0); 615 } 616 }; 617 618 /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings. 619 struct InstructionMapper { 620 621 /// \brief The next available integer to assign to a \p MachineInstr that 622 /// cannot be outlined. 623 /// 624 /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 625 unsigned IllegalInstrNumber = -3; 626 627 /// \brief The next available integer to assign to a \p MachineInstr that can 628 /// be outlined. 629 unsigned LegalInstrNumber = 0; 630 631 /// Correspondence from \p MachineInstrs to unsigned integers. 632 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 633 InstructionIntegerMap; 634 635 /// Corresponcence from unsigned integers to \p MachineInstrs. 636 /// Inverse of \p InstructionIntegerMap. 637 DenseMap<unsigned, MachineInstr *> IntegerInstructionMap; 638 639 /// The vector of unsigned integers that the module is mapped to. 640 std::vector<unsigned> UnsignedVec; 641 642 /// \brief Stores the location of the instruction associated with the integer 643 /// at index i in \p UnsignedVec for each index i. 644 std::vector<MachineBasicBlock::iterator> InstrList; 645 646 /// \brief Maps \p *It to a legal integer. 647 /// 648 /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap, 649 /// \p IntegerInstructionMap, and \p LegalInstrNumber. 650 /// 651 /// \returns The integer that \p *It was mapped to. 652 unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) { 653 654 // Get the integer for this instruction or give it the current 655 // LegalInstrNumber. 656 InstrList.push_back(It); 657 MachineInstr &MI = *It; 658 bool WasInserted; 659 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 660 ResultIt; 661 std::tie(ResultIt, WasInserted) = 662 InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 663 unsigned MINumber = ResultIt->second; 664 665 // There was an insertion. 666 if (WasInserted) { 667 LegalInstrNumber++; 668 IntegerInstructionMap.insert(std::make_pair(MINumber, &MI)); 669 } 670 671 UnsignedVec.push_back(MINumber); 672 673 // Make sure we don't overflow or use any integers reserved by the DenseMap. 674 if (LegalInstrNumber >= IllegalInstrNumber) 675 report_fatal_error("Instruction mapping overflow!"); 676 677 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 678 "Tried to assign DenseMap tombstone or empty key to instruction."); 679 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 680 "Tried to assign DenseMap tombstone or empty key to instruction."); 681 682 return MINumber; 683 } 684 685 /// Maps \p *It to an illegal integer. 686 /// 687 /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber. 688 /// 689 /// \returns The integer that \p *It was mapped to. 690 unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) { 691 unsigned MINumber = IllegalInstrNumber; 692 693 InstrList.push_back(It); 694 UnsignedVec.push_back(IllegalInstrNumber); 695 IllegalInstrNumber--; 696 697 assert(LegalInstrNumber < IllegalInstrNumber && 698 "Instruction mapping overflow!"); 699 700 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 701 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 702 703 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 704 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 705 706 return MINumber; 707 } 708 709 /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 710 /// and appends it to \p UnsignedVec and \p InstrList. 711 /// 712 /// Two instructions are assigned the same integer if they are identical. 713 /// If an instruction is deemed unsafe to outline, then it will be assigned an 714 /// unique integer. The resulting mapping is placed into a suffix tree and 715 /// queried for candidates. 716 /// 717 /// \param MBB The \p MachineBasicBlock to be translated into integers. 718 /// \param TRI \p TargetRegisterInfo for the module. 719 /// \param TII \p TargetInstrInfo for the module. 720 void convertToUnsignedVec(MachineBasicBlock &MBB, 721 const TargetRegisterInfo &TRI, 722 const TargetInstrInfo &TII) { 723 for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et; 724 It++) { 725 726 // Keep track of where this instruction is in the module. 727 switch (TII.getOutliningType(*It)) { 728 case TargetInstrInfo::MachineOutlinerInstrType::Illegal: 729 mapToIllegalUnsigned(It); 730 break; 731 732 case TargetInstrInfo::MachineOutlinerInstrType::Legal: 733 mapToLegalUnsigned(It); 734 break; 735 736 case TargetInstrInfo::MachineOutlinerInstrType::Invisible: 737 break; 738 } 739 } 740 741 // After we're done every insertion, uniquely terminate this part of the 742 // "string". This makes sure we won't match across basic block or function 743 // boundaries since the "end" is encoded uniquely and thus appears in no 744 // repeated substring. 745 InstrList.push_back(MBB.end()); 746 UnsignedVec.push_back(IllegalInstrNumber); 747 IllegalInstrNumber--; 748 } 749 750 InstructionMapper() { 751 // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 752 // changed. 753 assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 754 "DenseMapInfo<unsigned>'s empty key isn't -1!"); 755 assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 756 "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 757 } 758 }; 759 760 /// \brief An interprocedural pass which finds repeated sequences of 761 /// instructions and replaces them with calls to functions. 762 /// 763 /// Each instruction is mapped to an unsigned integer and placed in a string. 764 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 765 /// is then repeatedly queried for repeated sequences of instructions. Each 766 /// non-overlapping repeated sequence is then placed in its own 767 /// \p MachineFunction and each instance is then replaced with a call to that 768 /// function. 769 struct MachineOutliner : public ModulePass { 770 771 static char ID; 772 773 /// \brief Set to true if the outliner should consider functions with 774 /// linkonceodr linkage. 775 bool OutlineFromLinkOnceODRs = false; 776 777 StringRef getPassName() const override { return "Machine Outliner"; } 778 779 void getAnalysisUsage(AnalysisUsage &AU) const override { 780 AU.addRequired<MachineModuleInfo>(); 781 AU.addPreserved<MachineModuleInfo>(); 782 AU.setPreservesAll(); 783 ModulePass::getAnalysisUsage(AU); 784 } 785 786 MachineOutliner(bool OutlineFromLinkOnceODRs = false) 787 : ModulePass(ID), OutlineFromLinkOnceODRs(OutlineFromLinkOnceODRs) { 788 initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 789 } 790 791 /// Find all repeated substrings that satisfy the outlining cost model. 792 /// 793 /// If a substring appears at least twice, then it must be represented by 794 /// an internal node which appears in at least two suffixes. Each suffix is 795 /// represented by a leaf node. To do this, we visit each internal node in 796 /// the tree, using the leaf children of each internal node. If an internal 797 /// node represents a beneficial substring, then we use each of its leaf 798 /// children to find the locations of its substring. 799 /// 800 /// \param ST A suffix tree to query. 801 /// \param TII TargetInstrInfo for the target. 802 /// \param Mapper Contains outlining mapping information. 803 /// \param[out] CandidateList Filled with candidates representing each 804 /// beneficial substring. 805 /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each 806 /// type of candidate. 807 /// 808 /// \returns The length of the longest candidate found. 809 unsigned 810 findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, 811 InstructionMapper &Mapper, 812 std::vector<std::shared_ptr<Candidate>> &CandidateList, 813 std::vector<OutlinedFunction> &FunctionList); 814 815 /// \brief Replace the sequences of instructions represented by the 816 /// \p Candidates in \p CandidateList with calls to \p MachineFunctions 817 /// described in \p FunctionList. 818 /// 819 /// \param M The module we are outlining from. 820 /// \param CandidateList A list of candidates to be outlined. 821 /// \param FunctionList A list of functions to be inserted into the module. 822 /// \param Mapper Contains the instruction mappings for the module. 823 bool outline(Module &M, 824 const ArrayRef<std::shared_ptr<Candidate>> &CandidateList, 825 std::vector<OutlinedFunction> &FunctionList, 826 InstructionMapper &Mapper); 827 828 /// Creates a function for \p OF and inserts it into the module. 829 MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF, 830 InstructionMapper &Mapper); 831 832 /// Find potential outlining candidates and store them in \p CandidateList. 833 /// 834 /// For each type of potential candidate, also build an \p OutlinedFunction 835 /// struct containing the information to build the function for that 836 /// candidate. 837 /// 838 /// \param[out] CandidateList Filled with outlining candidates for the module. 839 /// \param[out] FunctionList Filled with functions corresponding to each type 840 /// of \p Candidate. 841 /// \param ST The suffix tree for the module. 842 /// \param TII TargetInstrInfo for the module. 843 /// 844 /// \returns The length of the longest candidate found. 0 if there are none. 845 unsigned 846 buildCandidateList(std::vector<std::shared_ptr<Candidate>> &CandidateList, 847 std::vector<OutlinedFunction> &FunctionList, 848 SuffixTree &ST, InstructionMapper &Mapper, 849 const TargetInstrInfo &TII); 850 851 /// Helper function for pruneOverlaps. 852 /// Removes \p C from the candidate list, and updates its \p OutlinedFunction. 853 void prune(Candidate &C, std::vector<OutlinedFunction> &FunctionList); 854 855 /// \brief Remove any overlapping candidates that weren't handled by the 856 /// suffix tree's pruning method. 857 /// 858 /// Pruning from the suffix tree doesn't necessarily remove all overlaps. 859 /// If a short candidate is chosen for outlining, then a longer candidate 860 /// which has that short candidate as a suffix is chosen, the tree's pruning 861 /// method will not find it. Thus, we need to prune before outlining as well. 862 /// 863 /// \param[in,out] CandidateList A list of outlining candidates. 864 /// \param[in,out] FunctionList A list of functions to be outlined. 865 /// \param Mapper Contains instruction mapping info for outlining. 866 /// \param MaxCandidateLen The length of the longest candidate. 867 /// \param TII TargetInstrInfo for the module. 868 void pruneOverlaps(std::vector<std::shared_ptr<Candidate>> &CandidateList, 869 std::vector<OutlinedFunction> &FunctionList, 870 InstructionMapper &Mapper, unsigned MaxCandidateLen, 871 const TargetInstrInfo &TII); 872 873 /// Construct a suffix tree on the instructions in \p M and outline repeated 874 /// strings from that tree. 875 bool runOnModule(Module &M) override; 876 }; 877 878 } // Anonymous namespace. 879 880 char MachineOutliner::ID = 0; 881 882 namespace llvm { 883 ModulePass *createMachineOutlinerPass(bool OutlineFromLinkOnceODRs) { 884 return new MachineOutliner(OutlineFromLinkOnceODRs); 885 } 886 887 } // namespace llvm 888 889 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, 890 false) 891 892 unsigned MachineOutliner::findCandidates( 893 SuffixTree &ST, const TargetInstrInfo &TII, InstructionMapper &Mapper, 894 std::vector<std::shared_ptr<Candidate>> &CandidateList, 895 std::vector<OutlinedFunction> &FunctionList) { 896 CandidateList.clear(); 897 FunctionList.clear(); 898 unsigned MaxLen = 0; 899 900 // FIXME: Visit internal nodes instead of leaves. 901 for (SuffixTreeNode *Leaf : ST.LeafVector) { 902 assert(Leaf && "Leaves in LeafVector cannot be null!"); 903 if (!Leaf->IsInTree) 904 continue; 905 906 assert(Leaf->Parent && "All leaves must have parents!"); 907 SuffixTreeNode &Parent = *(Leaf->Parent); 908 909 // If it doesn't appear enough, or we already outlined from it, skip it. 910 if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree) 911 continue; 912 913 // Figure out if this candidate is beneficial. 914 unsigned StringLen = Leaf->ConcatLen - (unsigned)Leaf->size(); 915 916 // Too short to be beneficial; skip it. 917 // FIXME: This isn't necessarily true for, say, X86. If we factor in 918 // instruction lengths we need more information than this. 919 if (StringLen < 2) 920 continue; 921 922 // If this is a beneficial class of candidate, then every one is stored in 923 // this vector. 924 std::vector<Candidate> CandidatesForRepeatedSeq; 925 926 // Describes the start and end point of each candidate. This allows the 927 // target to infer some information about each occurrence of each repeated 928 // sequence. 929 // FIXME: CandidatesForRepeatedSeq and this should be combined. 930 std::vector< 931 std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>> 932 RepeatedSequenceLocs; 933 934 // Figure out the call overhead for each instance of the sequence. 935 for (auto &ChildPair : Parent.Children) { 936 SuffixTreeNode *M = ChildPair.second; 937 938 if (M && M->IsInTree && M->isLeaf()) { 939 // Never visit this leaf again. 940 M->IsInTree = false; 941 unsigned StartIdx = M->SuffixIdx; 942 unsigned EndIdx = StartIdx + StringLen - 1; 943 944 // Trick: Discard some candidates that would be incompatible with the 945 // ones we've already found for this sequence. This will save us some 946 // work in candidate selection. 947 // 948 // If two candidates overlap, then we can't outline them both. This 949 // happens when we have candidates that look like, say 950 // 951 // AA (where each "A" is an instruction). 952 // 953 // We might have some portion of the module that looks like this: 954 // AAAAAA (6 A's) 955 // 956 // In this case, there are 5 different copies of "AA" in this range, but 957 // at most 3 can be outlined. If only outlining 3 of these is going to 958 // be unbeneficial, then we ought to not bother. 959 // 960 // Note that two things DON'T overlap when they look like this: 961 // start1...end1 .... start2...end2 962 // That is, one must either 963 // * End before the other starts 964 // * Start after the other ends 965 if (std::all_of(CandidatesForRepeatedSeq.begin(), 966 CandidatesForRepeatedSeq.end(), 967 [&StartIdx, &EndIdx](const Candidate &C) { 968 return (EndIdx < C.getStartIdx() || 969 StartIdx > C.getEndIdx()); 970 })) { 971 // It doesn't overlap with anything, so we can outline it. 972 // Each sequence is over [StartIt, EndIt]. 973 MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx]; 974 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 975 976 // Save the candidate and its location. 977 CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, 978 FunctionList.size()); 979 RepeatedSequenceLocs.emplace_back(std::make_pair(StartIt, EndIt)); 980 } 981 } 982 } 983 984 // We've found something we might want to outline. 985 // Create an OutlinedFunction to store it and check if it'd be beneficial 986 // to outline. 987 TargetInstrInfo::MachineOutlinerInfo MInfo = 988 TII.getOutlininingCandidateInfo(RepeatedSequenceLocs); 989 std::vector<unsigned> Seq; 990 for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++) 991 Seq.push_back(ST.Str[i]); 992 OutlinedFunction OF(FunctionList.size(), CandidatesForRepeatedSeq.size(), 993 Seq, MInfo); 994 unsigned Benefit = OF.getBenefit(); 995 996 // Is it better to outline this candidate than not? 997 if (Benefit < 1) { 998 // Outlining this candidate would take more instructions than not 999 // outlining. 1000 // Emit a remark explaining why we didn't outline this candidate. 1001 std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator> C = 1002 RepeatedSequenceLocs[0]; 1003 MachineOptimizationRemarkEmitter MORE( 1004 *(C.first->getParent()->getParent()), nullptr); 1005 MORE.emit([&]() { 1006 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", 1007 C.first->getDebugLoc(), 1008 C.first->getParent()); 1009 R << "Did not outline " << NV("Length", StringLen) << " instructions" 1010 << " from " << NV("NumOccurrences", RepeatedSequenceLocs.size()) 1011 << " locations." 1012 << " Instructions from outlining all occurrences (" 1013 << NV("OutliningCost", OF.getOutliningCost()) << ")" 1014 << " >= Unoutlined instruction count (" 1015 << NV("NotOutliningCost", StringLen * OF.getOccurrenceCount()) << ")" 1016 << " (Also found at: "; 1017 1018 // Tell the user the other places the candidate was found. 1019 for (unsigned i = 1, e = RepeatedSequenceLocs.size(); i < e; i++) { 1020 R << NV((Twine("OtherStartLoc") + Twine(i)).str(), 1021 RepeatedSequenceLocs[i].first->getDebugLoc()); 1022 if (i != e - 1) 1023 R << ", "; 1024 } 1025 1026 R << ")"; 1027 return R; 1028 }); 1029 1030 // Move to the next candidate. 1031 continue; 1032 } 1033 1034 if (StringLen > MaxLen) 1035 MaxLen = StringLen; 1036 1037 // At this point, the candidate class is seen as beneficial. Set their 1038 // benefit values and save them in the candidate list. 1039 std::vector<std::shared_ptr<Candidate>> CandidatesForFn; 1040 for (Candidate &C : CandidatesForRepeatedSeq) { 1041 C.Benefit = Benefit; 1042 C.MInfo = MInfo; 1043 std::shared_ptr<Candidate> Cptr = std::make_shared<Candidate>(C); 1044 CandidateList.push_back(Cptr); 1045 CandidatesForFn.push_back(Cptr); 1046 } 1047 1048 FunctionList.push_back(OF); 1049 FunctionList.back().Candidates = CandidatesForFn; 1050 1051 // Move to the next function. 1052 Parent.IsInTree = false; 1053 } 1054 1055 return MaxLen; 1056 } 1057 1058 // Remove C from the candidate space, and update its OutlinedFunction. 1059 void MachineOutliner::prune(Candidate &C, 1060 std::vector<OutlinedFunction> &FunctionList) { 1061 // Get the OutlinedFunction associated with this Candidate. 1062 OutlinedFunction &F = FunctionList[C.FunctionIdx]; 1063 1064 // Update C's associated function's occurrence count. 1065 F.decrement(); 1066 1067 // Remove C from the CandidateList. 1068 C.InCandidateList = false; 1069 1070 DEBUG(dbgs() << "- Removed a Candidate \n"; 1071 dbgs() << "--- Num fns left for candidate: " << F.getOccurrenceCount() 1072 << "\n"; 1073 dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit() 1074 << "\n";); 1075 } 1076 1077 void MachineOutliner::pruneOverlaps( 1078 std::vector<std::shared_ptr<Candidate>> &CandidateList, 1079 std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper, 1080 unsigned MaxCandidateLen, const TargetInstrInfo &TII) { 1081 1082 // Return true if this candidate became unbeneficial for outlining in a 1083 // previous step. 1084 auto ShouldSkipCandidate = [&FunctionList, this](Candidate &C) { 1085 1086 // Check if the candidate was removed in a previous step. 1087 if (!C.InCandidateList) 1088 return true; 1089 1090 // C must be alive. Check if we should remove it. 1091 if (FunctionList[C.FunctionIdx].getBenefit() < 1) { 1092 prune(C, FunctionList); 1093 return true; 1094 } 1095 1096 // C is in the list, and F is still beneficial. 1097 return false; 1098 }; 1099 1100 // TODO: Experiment with interval trees or other interval-checking structures 1101 // to lower the time complexity of this function. 1102 // TODO: Can we do better than the simple greedy choice? 1103 // Check for overlaps in the range. 1104 // This is O(MaxCandidateLen * CandidateList.size()). 1105 for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et; 1106 It++) { 1107 Candidate &C1 = **It; 1108 1109 // If C1 was already pruned, or its function is no longer beneficial for 1110 // outlining, move to the next candidate. 1111 if (ShouldSkipCandidate(C1)) 1112 continue; 1113 1114 // The minimum start index of any candidate that could overlap with this 1115 // one. 1116 unsigned FarthestPossibleIdx = 0; 1117 1118 // Either the index is 0, or it's at most MaxCandidateLen indices away. 1119 if (C1.getStartIdx() > MaxCandidateLen) 1120 FarthestPossibleIdx = C1.getStartIdx() - MaxCandidateLen; 1121 1122 // Compare against the candidates in the list that start at at most 1123 // FarthestPossibleIdx indices away from C1. There are at most 1124 // MaxCandidateLen of these. 1125 for (auto Sit = It + 1; Sit != Et; Sit++) { 1126 Candidate &C2 = **Sit; 1127 1128 // Is this candidate too far away to overlap? 1129 if (C2.getStartIdx() < FarthestPossibleIdx) 1130 break; 1131 1132 // If C2 was already pruned, or its function is no longer beneficial for 1133 // outlining, move to the next candidate. 1134 if (ShouldSkipCandidate(C2)) 1135 continue; 1136 1137 // Do C1 and C2 overlap? 1138 // 1139 // Not overlapping: 1140 // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices 1141 // 1142 // We sorted our candidate list so C2Start <= C1Start. We know that 1143 // C2End > C2Start since each candidate has length >= 2. Therefore, all we 1144 // have to check is C2End < C2Start to see if we overlap. 1145 if (C2.getEndIdx() < C1.getStartIdx()) 1146 continue; 1147 1148 // C1 and C2 overlap. 1149 // We need to choose the better of the two. 1150 // 1151 // Approximate this by picking the one which would have saved us the 1152 // most instructions before any pruning. 1153 1154 // Is C2 a better candidate? 1155 if (C2.Benefit > C1.Benefit) { 1156 // Yes, so prune C1. Since C1 is dead, we don't have to compare it 1157 // against anything anymore, so break. 1158 prune(C1, FunctionList); 1159 break; 1160 } 1161 1162 // Prune C2 and move on to the next candidate. 1163 prune(C2, FunctionList); 1164 } 1165 } 1166 } 1167 1168 unsigned MachineOutliner::buildCandidateList( 1169 std::vector<std::shared_ptr<Candidate>> &CandidateList, 1170 std::vector<OutlinedFunction> &FunctionList, SuffixTree &ST, 1171 InstructionMapper &Mapper, const TargetInstrInfo &TII) { 1172 1173 std::vector<unsigned> CandidateSequence; // Current outlining candidate. 1174 unsigned MaxCandidateLen = 0; // Length of the longest candidate. 1175 1176 MaxCandidateLen = 1177 findCandidates(ST, TII, Mapper, CandidateList, FunctionList); 1178 1179 // Sort the candidates in decending order. This will simplify the outlining 1180 // process when we have to remove the candidates from the mapping by 1181 // allowing us to cut them out without keeping track of an offset. 1182 std::stable_sort( 1183 CandidateList.begin(), CandidateList.end(), 1184 [](const std::shared_ptr<Candidate> &LHS, 1185 const std::shared_ptr<Candidate> &RHS) { return *LHS < *RHS; }); 1186 1187 return MaxCandidateLen; 1188 } 1189 1190 MachineFunction * 1191 MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF, 1192 InstructionMapper &Mapper) { 1193 1194 // Create the function name. This should be unique. For now, just hash the 1195 // module name and include it in the function name plus the number of this 1196 // function. 1197 std::ostringstream NameStream; 1198 NameStream << "OUTLINED_FUNCTION_" << OF.Name; 1199 1200 // Create the function using an IR-level function. 1201 LLVMContext &C = M.getContext(); 1202 Function *F = dyn_cast<Function>( 1203 M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C))); 1204 assert(F && "Function was null!"); 1205 1206 // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1207 // which gives us better results when we outline from linkonceodr functions. 1208 F->setLinkage(GlobalValue::PrivateLinkage); 1209 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1210 1211 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1212 IRBuilder<> Builder(EntryBB); 1213 Builder.CreateRetVoid(); 1214 1215 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1216 MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); 1217 MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1218 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1219 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1220 1221 // Insert the new function into the module. 1222 MF.insert(MF.begin(), &MBB); 1223 1224 TII.insertOutlinerPrologue(MBB, MF, OF.MInfo); 1225 1226 // Copy over the instructions for the function using the integer mappings in 1227 // its sequence. 1228 for (unsigned Str : OF.Sequence) { 1229 MachineInstr *NewMI = 1230 MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second); 1231 NewMI->dropMemRefs(); 1232 1233 // Don't keep debug information for outlined instructions. 1234 // FIXME: This means outlined functions are currently undebuggable. 1235 NewMI->setDebugLoc(DebugLoc()); 1236 MBB.insert(MBB.end(), NewMI); 1237 } 1238 1239 TII.insertOutlinerEpilogue(MBB, MF, OF.MInfo); 1240 1241 return &MF; 1242 } 1243 1244 bool MachineOutliner::outline( 1245 Module &M, const ArrayRef<std::shared_ptr<Candidate>> &CandidateList, 1246 std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper) { 1247 1248 bool OutlinedSomething = false; 1249 // Replace the candidates with calls to their respective outlined functions. 1250 for (const std::shared_ptr<Candidate> &Cptr : CandidateList) { 1251 Candidate &C = *Cptr; 1252 // Was the candidate removed during pruneOverlaps? 1253 if (!C.InCandidateList) 1254 continue; 1255 1256 // If not, then look at its OutlinedFunction. 1257 OutlinedFunction &OF = FunctionList[C.FunctionIdx]; 1258 1259 // Was its OutlinedFunction made unbeneficial during pruneOverlaps? 1260 if (OF.getBenefit() < 1) 1261 continue; 1262 1263 // If not, then outline it. 1264 assert(C.getStartIdx() < Mapper.InstrList.size() && 1265 "Candidate out of bounds!"); 1266 MachineBasicBlock *MBB = (*Mapper.InstrList[C.getStartIdx()]).getParent(); 1267 MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.getStartIdx()]; 1268 unsigned EndIdx = C.getEndIdx(); 1269 1270 assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); 1271 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1272 assert(EndIt != MBB->end() && "EndIt out of bounds!"); 1273 1274 EndIt++; // Erase needs one past the end index. 1275 1276 // Does this candidate have a function yet? 1277 if (!OF.MF) { 1278 OF.MF = createOutlinedFunction(M, OF, Mapper); 1279 MachineBasicBlock *MBB = &*OF.MF->begin(); 1280 1281 // Output a remark telling the user that an outlined function was created, 1282 // and explaining where it came from. 1283 MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr); 1284 MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction", 1285 MBB->findDebugLoc(MBB->begin()), MBB); 1286 R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) 1287 << " instructions by " 1288 << "outlining " << NV("Length", OF.Sequence.size()) << " instructions " 1289 << "from " << NV("NumOccurrences", OF.getOccurrenceCount()) 1290 << " locations. " 1291 << "(Found at: "; 1292 1293 // Tell the user the other places the candidate was found. 1294 for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) { 1295 1296 // Skip over things that were pruned. 1297 if (!OF.Candidates[i]->InCandidateList) 1298 continue; 1299 1300 R << NV( 1301 (Twine("StartLoc") + Twine(i)).str(), 1302 Mapper.InstrList[OF.Candidates[i]->getStartIdx()]->getDebugLoc()); 1303 if (i != e - 1) 1304 R << ", "; 1305 } 1306 1307 R << ")"; 1308 1309 MORE.emit(R); 1310 FunctionsCreated++; 1311 } 1312 1313 MachineFunction *MF = OF.MF; 1314 const TargetSubtargetInfo &STI = MF->getSubtarget(); 1315 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1316 1317 // Insert a call to the new function and erase the old sequence. 1318 TII.insertOutlinedCall(M, *MBB, StartIt, *MF, C.MInfo); 1319 StartIt = Mapper.InstrList[C.getStartIdx()]; 1320 MBB->erase(StartIt, EndIt); 1321 1322 OutlinedSomething = true; 1323 1324 // Statistics. 1325 NumOutlined++; 1326 } 1327 1328 DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); 1329 1330 return OutlinedSomething; 1331 } 1332 1333 bool MachineOutliner::runOnModule(Module &M) { 1334 1335 // Is there anything in the module at all? 1336 if (M.empty()) 1337 return false; 1338 1339 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); 1340 const TargetSubtargetInfo &STI = 1341 MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget(); 1342 const TargetRegisterInfo *TRI = STI.getRegisterInfo(); 1343 const TargetInstrInfo *TII = STI.getInstrInfo(); 1344 1345 InstructionMapper Mapper; 1346 1347 // Build instruction mappings for each function in the module. 1348 for (Function &F : M) { 1349 MachineFunction &MF = MMI.getOrCreateMachineFunction(F); 1350 1351 // Is the function empty? Safe to outline from? 1352 if (F.empty() || 1353 !TII->isFunctionSafeToOutlineFrom(MF, OutlineFromLinkOnceODRs)) 1354 continue; 1355 1356 // If it is, look at each MachineBasicBlock in the function. 1357 for (MachineBasicBlock &MBB : MF) { 1358 1359 // Is there anything in MBB? 1360 if (MBB.empty()) 1361 continue; 1362 1363 // If yes, map it. 1364 Mapper.convertToUnsignedVec(MBB, *TRI, *TII); 1365 } 1366 } 1367 1368 // Construct a suffix tree, use it to find candidates, and then outline them. 1369 SuffixTree ST(Mapper.UnsignedVec); 1370 std::vector<std::shared_ptr<Candidate>> CandidateList; 1371 std::vector<OutlinedFunction> FunctionList; 1372 1373 // Find all of the outlining candidates. 1374 unsigned MaxCandidateLen = 1375 buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII); 1376 1377 // Remove candidates that overlap with other candidates. 1378 pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII); 1379 1380 // Outline each of the candidates and return true if something was outlined. 1381 return outline(M, CandidateList, FunctionList, Mapper); 1382 } 1383